You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

2501 lines
74KB

  1. /*
  2. * MPEG Audio decoder
  3. * Copyright (c) 2001, 2002 Fabrice Bellard.
  4. *
  5. * This library is free software; you can redistribute it and/or
  6. * modify it under the terms of the GNU Lesser General Public
  7. * License as published by the Free Software Foundation; either
  8. * version 2 of the License, or (at your option) any later version.
  9. *
  10. * This library is distributed in the hope that it will be useful,
  11. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  12. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  13. * Lesser General Public License for more details.
  14. *
  15. * You should have received a copy of the GNU Lesser General Public
  16. * License along with this library; if not, write to the Free Software
  17. * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
  18. */
  19. //#define DEBUG
  20. #include "avcodec.h"
  21. #include "mpegaudio.h"
  22. /*
  23. * TODO:
  24. * - in low precision mode, use more 16 bit multiplies in synth filter
  25. * - test lsf / mpeg25 extensively.
  26. */
  27. /* define USE_HIGHPRECISION to have a bit exact (but slower) mpeg
  28. audio decoder */
  29. //#define USE_HIGHPRECISION
  30. #ifdef USE_HIGHPRECISION
  31. #define FRAC_BITS 23 /* fractional bits for sb_samples and dct */
  32. #define WFRAC_BITS 16 /* fractional bits for window */
  33. #else
  34. #define FRAC_BITS 15 /* fractional bits for sb_samples and dct */
  35. #define WFRAC_BITS 14 /* fractional bits for window */
  36. #endif
  37. #define FRAC_ONE (1 << FRAC_BITS)
  38. #define MULL(a,b) (((INT64)(a) * (INT64)(b)) >> FRAC_BITS)
  39. #define MUL64(a,b) ((INT64)(a) * (INT64)(b))
  40. #define FIX(a) ((int)((a) * FRAC_ONE))
  41. /* WARNING: only correct for posititive numbers */
  42. #define FIXR(a) ((int)((a) * FRAC_ONE + 0.5))
  43. #define FRAC_RND(a) (((a) + (FRAC_ONE/2)) >> FRAC_BITS)
  44. #if FRAC_BITS <= 15
  45. typedef INT16 MPA_INT;
  46. #else
  47. typedef INT32 MPA_INT;
  48. #endif
  49. /****************/
  50. #define HEADER_SIZE 4
  51. #define BACKSTEP_SIZE 512
  52. typedef struct MPADecodeContext {
  53. UINT8 inbuf1[2][MPA_MAX_CODED_FRAME_SIZE + BACKSTEP_SIZE]; /* input buffer */
  54. int inbuf_index;
  55. UINT8 *inbuf_ptr, *inbuf;
  56. int frame_size;
  57. int free_format_frame_size; /* frame size in case of free format
  58. (zero if currently unknown) */
  59. /* next header (used in free format parsing) */
  60. UINT32 free_format_next_header;
  61. int error_protection;
  62. int layer;
  63. int sample_rate;
  64. int sample_rate_index; /* between 0 and 8 */
  65. int bit_rate;
  66. int old_frame_size;
  67. GetBitContext gb;
  68. int nb_channels;
  69. int mode;
  70. int mode_ext;
  71. int lsf;
  72. MPA_INT synth_buf[MPA_MAX_CHANNELS][512 * 2];
  73. int synth_buf_offset[MPA_MAX_CHANNELS];
  74. INT32 sb_samples[MPA_MAX_CHANNELS][36][SBLIMIT];
  75. INT32 mdct_buf[MPA_MAX_CHANNELS][SBLIMIT * 18]; /* previous samples, for layer 3 MDCT */
  76. #ifdef DEBUG
  77. int frame_count;
  78. #endif
  79. } MPADecodeContext;
  80. /* layer 3 "granule" */
  81. typedef struct GranuleDef {
  82. UINT8 scfsi;
  83. int part2_3_length;
  84. int big_values;
  85. int global_gain;
  86. int scalefac_compress;
  87. UINT8 block_type;
  88. UINT8 switch_point;
  89. int table_select[3];
  90. int subblock_gain[3];
  91. UINT8 scalefac_scale;
  92. UINT8 count1table_select;
  93. int region_size[3]; /* number of huffman codes in each region */
  94. int preflag;
  95. int short_start, long_end; /* long/short band indexes */
  96. UINT8 scale_factors[40];
  97. INT32 sb_hybrid[SBLIMIT * 18]; /* 576 samples */
  98. } GranuleDef;
  99. #define MODE_EXT_MS_STEREO 2
  100. #define MODE_EXT_I_STEREO 1
  101. /* layer 3 huffman tables */
  102. typedef struct HuffTable {
  103. int xsize;
  104. const UINT8 *bits;
  105. const UINT16 *codes;
  106. } HuffTable;
  107. #include "mpegaudiodectab.h"
  108. /* vlc structure for decoding layer 3 huffman tables */
  109. static VLC huff_vlc[16];
  110. static UINT8 *huff_code_table[16];
  111. static VLC huff_quad_vlc[2];
  112. /* computed from band_size_long */
  113. static UINT16 band_index_long[9][23];
  114. /* XXX: free when all decoders are closed */
  115. #define TABLE_4_3_SIZE (8191 + 16)
  116. static INT8 *table_4_3_exp;
  117. #if FRAC_BITS <= 15
  118. static UINT16 *table_4_3_value;
  119. #else
  120. static UINT32 *table_4_3_value;
  121. #endif
  122. /* intensity stereo coef table */
  123. static INT32 is_table[2][16];
  124. static INT32 is_table_lsf[2][2][16];
  125. static INT32 csa_table[8][2];
  126. static INT32 mdct_win[8][36];
  127. /* lower 2 bits: modulo 3, higher bits: shift */
  128. static UINT16 scale_factor_modshift[64];
  129. /* [i][j]: 2^(-j/3) * FRAC_ONE * 2^(i+2) / (2^(i+2) - 1) */
  130. static INT32 scale_factor_mult[15][3];
  131. /* mult table for layer 2 group quantization */
  132. #define SCALE_GEN(v) \
  133. { FIXR(1.0 * (v)), FIXR(0.7937005259 * (v)), FIXR(0.6299605249 * (v)) }
  134. static INT32 scale_factor_mult2[3][3] = {
  135. SCALE_GEN(1.0 / 3.0), /* 3 steps */
  136. SCALE_GEN(1.0 / 5.0), /* 5 steps */
  137. SCALE_GEN(1.0 / 9.0), /* 9 steps */
  138. };
  139. /* 2^(n/4) */
  140. static UINT32 scale_factor_mult3[4] = {
  141. FIXR(1.0),
  142. FIXR(1.18920711500272106671),
  143. FIXR(1.41421356237309504880),
  144. FIXR(1.68179283050742908605),
  145. };
  146. static MPA_INT window[512];
  147. /* layer 1 unscaling */
  148. /* n = number of bits of the mantissa minus 1 */
  149. static inline int l1_unscale(int n, int mant, int scale_factor)
  150. {
  151. int shift, mod;
  152. INT64 val;
  153. shift = scale_factor_modshift[scale_factor];
  154. mod = shift & 3;
  155. shift >>= 2;
  156. val = MUL64(mant + (-1 << n) + 1, scale_factor_mult[n-1][mod]);
  157. shift += n;
  158. return (int)((val + (1 << (shift - 1))) >> shift);
  159. }
  160. static inline int l2_unscale_group(int steps, int mant, int scale_factor)
  161. {
  162. int shift, mod, val;
  163. shift = scale_factor_modshift[scale_factor];
  164. mod = shift & 3;
  165. shift >>= 2;
  166. /* XXX: store the result directly */
  167. val = (2 * (mant - (steps >> 1))) * scale_factor_mult2[steps >> 2][mod];
  168. return (val + (1 << (shift - 1))) >> shift;
  169. }
  170. /* compute value^(4/3) * 2^(exponent/4). It normalized to FRAC_BITS */
  171. static inline int l3_unscale(int value, int exponent)
  172. {
  173. #if FRAC_BITS <= 15
  174. unsigned int m;
  175. #else
  176. UINT64 m;
  177. #endif
  178. int e;
  179. e = table_4_3_exp[value];
  180. e += (exponent >> 2);
  181. e = FRAC_BITS - e;
  182. #if FRAC_BITS <= 15
  183. if (e > 31)
  184. e = 31;
  185. #endif
  186. m = table_4_3_value[value];
  187. #if FRAC_BITS <= 15
  188. m = (m * scale_factor_mult3[exponent & 3]);
  189. m = (m + (1 << (e-1))) >> e;
  190. return m;
  191. #else
  192. m = MUL64(m, scale_factor_mult3[exponent & 3]);
  193. m = (m + (UINT64_C(1) << (e-1))) >> e;
  194. return m;
  195. #endif
  196. }
  197. /* all integer n^(4/3) computation code */
  198. #define DEV_ORDER 13
  199. #define POW_FRAC_BITS 24
  200. #define POW_FRAC_ONE (1 << POW_FRAC_BITS)
  201. #define POW_FIX(a) ((int)((a) * POW_FRAC_ONE))
  202. #define POW_MULL(a,b) (((INT64)(a) * (INT64)(b)) >> POW_FRAC_BITS)
  203. static int dev_4_3_coefs[DEV_ORDER];
  204. static int pow_mult3[3] = {
  205. POW_FIX(1.0),
  206. POW_FIX(1.25992104989487316476),
  207. POW_FIX(1.58740105196819947474),
  208. };
  209. static void int_pow_init(void)
  210. {
  211. int i, a;
  212. a = POW_FIX(1.0);
  213. for(i=0;i<DEV_ORDER;i++) {
  214. a = POW_MULL(a, POW_FIX(4.0 / 3.0) - i * POW_FIX(1.0)) / (i + 1);
  215. dev_4_3_coefs[i] = a;
  216. }
  217. }
  218. /* return the mantissa and the binary exponent */
  219. static int int_pow(int i, int *exp_ptr)
  220. {
  221. int e, er, eq, j;
  222. int a, a1;
  223. /* renormalize */
  224. a = i;
  225. e = POW_FRAC_BITS;
  226. while (a < (1 << (POW_FRAC_BITS - 1))) {
  227. a = a << 1;
  228. e--;
  229. }
  230. a -= (1 << POW_FRAC_BITS);
  231. a1 = 0;
  232. for(j = DEV_ORDER - 1; j >= 0; j--)
  233. a1 = POW_MULL(a, dev_4_3_coefs[j] + a1);
  234. a = (1 << POW_FRAC_BITS) + a1;
  235. /* exponent compute (exact) */
  236. e = e * 4;
  237. er = e % 3;
  238. eq = e / 3;
  239. a = POW_MULL(a, pow_mult3[er]);
  240. while (a >= 2 * POW_FRAC_ONE) {
  241. a = a >> 1;
  242. eq++;
  243. }
  244. /* convert to float */
  245. while (a < POW_FRAC_ONE) {
  246. a = a << 1;
  247. eq--;
  248. }
  249. /* now POW_FRAC_ONE <= a < 2 * POW_FRAC_ONE */
  250. #if (POW_FRAC_BITS - 1) > FRAC_BITS
  251. a = (a + (1 << (POW_FRAC_BITS - FRAC_BITS - 1))) >> (POW_FRAC_BITS - FRAC_BITS);
  252. /* correct overflow */
  253. if (a >= 2 * (1 << FRAC_BITS)) {
  254. a = a >> 1;
  255. eq++;
  256. }
  257. #endif
  258. *exp_ptr = eq;
  259. return a;
  260. }
  261. static int decode_init(AVCodecContext * avctx)
  262. {
  263. MPADecodeContext *s = avctx->priv_data;
  264. static int init;
  265. int i, j, k;
  266. if(!init) {
  267. /* scale factors table for layer 1/2 */
  268. for(i=0;i<64;i++) {
  269. int shift, mod;
  270. /* 1.0 (i = 3) is normalized to 2 ^ FRAC_BITS */
  271. shift = (i / 3) - 1;
  272. mod = i % 3;
  273. #if FRAC_BITS <= 15
  274. if (shift > 31)
  275. shift = 31;
  276. #endif
  277. scale_factor_modshift[i] = mod | (shift << 2);
  278. }
  279. /* scale factor multiply for layer 1 */
  280. for(i=0;i<15;i++) {
  281. int n, norm;
  282. n = i + 2;
  283. norm = ((INT64_C(1) << n) * FRAC_ONE) / ((1 << n) - 1);
  284. scale_factor_mult[i][0] = MULL(FIXR(1.0), norm);
  285. scale_factor_mult[i][1] = MULL(FIXR(0.7937005259), norm);
  286. scale_factor_mult[i][2] = MULL(FIXR(0.6299605249), norm);
  287. dprintf("%d: norm=%x s=%x %x %x\n",
  288. i, norm,
  289. scale_factor_mult[i][0],
  290. scale_factor_mult[i][1],
  291. scale_factor_mult[i][2]);
  292. }
  293. /* window */
  294. /* max = 18760, max sum over all 16 coefs : 44736 */
  295. for(i=0;i<257;i++) {
  296. int v;
  297. v = mpa_enwindow[i];
  298. #if WFRAC_BITS < 16
  299. v = (v + (1 << (16 - WFRAC_BITS - 1))) >> (16 - WFRAC_BITS);
  300. #endif
  301. window[i] = v;
  302. if ((i & 63) != 0)
  303. v = -v;
  304. if (i != 0)
  305. window[512 - i] = v;
  306. }
  307. /* huffman decode tables */
  308. huff_code_table[0] = NULL;
  309. for(i=1;i<16;i++) {
  310. const HuffTable *h = &mpa_huff_tables[i];
  311. int xsize, n, x, y;
  312. UINT8 *code_table;
  313. xsize = h->xsize;
  314. n = xsize * xsize;
  315. /* XXX: fail test */
  316. init_vlc(&huff_vlc[i], 8, n,
  317. h->bits, 1, 1, h->codes, 2, 2);
  318. code_table = av_mallocz(n);
  319. j = 0;
  320. for(x=0;x<xsize;x++) {
  321. for(y=0;y<xsize;y++)
  322. code_table[j++] = (x << 4) | y;
  323. }
  324. huff_code_table[i] = code_table;
  325. }
  326. for(i=0;i<2;i++) {
  327. init_vlc(&huff_quad_vlc[i], i == 0 ? 7 : 4, 16,
  328. mpa_quad_bits[i], 1, 1, mpa_quad_codes[i], 1, 1);
  329. }
  330. for(i=0;i<9;i++) {
  331. k = 0;
  332. for(j=0;j<22;j++) {
  333. band_index_long[i][j] = k;
  334. k += band_size_long[i][j];
  335. }
  336. band_index_long[i][22] = k;
  337. }
  338. /* compute n ^ (4/3) and store it in mantissa/exp format */
  339. table_4_3_exp = av_mallocz(TABLE_4_3_SIZE *
  340. sizeof(table_4_3_exp[0]));
  341. if (!table_4_3_exp)
  342. return -1;
  343. table_4_3_value = av_mallocz(TABLE_4_3_SIZE *
  344. sizeof(table_4_3_value[0]));
  345. if (!table_4_3_value) {
  346. av_free(table_4_3_exp);
  347. return -1;
  348. }
  349. int_pow_init();
  350. for(i=1;i<TABLE_4_3_SIZE;i++) {
  351. int e, m;
  352. m = int_pow(i, &e);
  353. #if 0
  354. /* test code */
  355. {
  356. double f, fm;
  357. int e1, m1;
  358. f = pow((double)i, 4.0 / 3.0);
  359. fm = frexp(f, &e1);
  360. m1 = FIXR(2 * fm);
  361. #if FRAC_BITS <= 15
  362. if ((unsigned short)m1 != m1) {
  363. m1 = m1 >> 1;
  364. e1++;
  365. }
  366. #endif
  367. e1--;
  368. if (m != m1 || e != e1) {
  369. printf("%4d: m=%x m1=%x e=%d e1=%d\n",
  370. i, m, m1, e, e1);
  371. }
  372. }
  373. #endif
  374. /* normalized to FRAC_BITS */
  375. table_4_3_value[i] = m;
  376. table_4_3_exp[i] = e;
  377. }
  378. for(i=0;i<7;i++) {
  379. float f;
  380. int v;
  381. if (i != 6) {
  382. f = tan((double)i * M_PI / 12.0);
  383. v = FIXR(f / (1.0 + f));
  384. } else {
  385. v = FIXR(1.0);
  386. }
  387. is_table[0][i] = v;
  388. is_table[1][6 - i] = v;
  389. }
  390. /* invalid values */
  391. for(i=7;i<16;i++)
  392. is_table[0][i] = is_table[1][i] = 0.0;
  393. for(i=0;i<16;i++) {
  394. double f;
  395. int e, k;
  396. for(j=0;j<2;j++) {
  397. e = -(j + 1) * ((i + 1) >> 1);
  398. f = pow(2.0, e / 4.0);
  399. k = i & 1;
  400. is_table_lsf[j][k ^ 1][i] = FIXR(f);
  401. is_table_lsf[j][k][i] = FIXR(1.0);
  402. dprintf("is_table_lsf %d %d: %x %x\n",
  403. i, j, is_table_lsf[j][0][i], is_table_lsf[j][1][i]);
  404. }
  405. }
  406. for(i=0;i<8;i++) {
  407. float ci, cs, ca;
  408. ci = ci_table[i];
  409. cs = 1.0 / sqrt(1.0 + ci * ci);
  410. ca = cs * ci;
  411. csa_table[i][0] = FIX(cs);
  412. csa_table[i][1] = FIX(ca);
  413. }
  414. /* compute mdct windows */
  415. for(i=0;i<36;i++) {
  416. int v;
  417. v = FIXR(sin(M_PI * (i + 0.5) / 36.0));
  418. mdct_win[0][i] = v;
  419. mdct_win[1][i] = v;
  420. mdct_win[3][i] = v;
  421. }
  422. for(i=0;i<6;i++) {
  423. mdct_win[1][18 + i] = FIXR(1.0);
  424. mdct_win[1][24 + i] = FIXR(sin(M_PI * ((i + 6) + 0.5) / 12.0));
  425. mdct_win[1][30 + i] = FIXR(0.0);
  426. mdct_win[3][i] = FIXR(0.0);
  427. mdct_win[3][6 + i] = FIXR(sin(M_PI * (i + 0.5) / 12.0));
  428. mdct_win[3][12 + i] = FIXR(1.0);
  429. }
  430. for(i=0;i<12;i++)
  431. mdct_win[2][i] = FIXR(sin(M_PI * (i + 0.5) / 12.0));
  432. /* NOTE: we do frequency inversion adter the MDCT by changing
  433. the sign of the right window coefs */
  434. for(j=0;j<4;j++) {
  435. for(i=0;i<36;i+=2) {
  436. mdct_win[j + 4][i] = mdct_win[j][i];
  437. mdct_win[j + 4][i + 1] = -mdct_win[j][i + 1];
  438. }
  439. }
  440. #if defined(DEBUG)
  441. for(j=0;j<8;j++) {
  442. printf("win%d=\n", j);
  443. for(i=0;i<36;i++)
  444. printf("%f, ", (double)mdct_win[j][i] / FRAC_ONE);
  445. printf("\n");
  446. }
  447. #endif
  448. init = 1;
  449. }
  450. s->inbuf_index = 0;
  451. s->inbuf = &s->inbuf1[s->inbuf_index][BACKSTEP_SIZE];
  452. s->inbuf_ptr = s->inbuf;
  453. #ifdef DEBUG
  454. s->frame_count = 0;
  455. #endif
  456. return 0;
  457. }
  458. /* tab[i][j] = 1.0 / (2.0 * cos(pi*(2*k+1) / 2^(6 - j))) */;
  459. /* cos(i*pi/64) */
  460. #define COS0_0 FIXR(0.50060299823519630134)
  461. #define COS0_1 FIXR(0.50547095989754365998)
  462. #define COS0_2 FIXR(0.51544730992262454697)
  463. #define COS0_3 FIXR(0.53104259108978417447)
  464. #define COS0_4 FIXR(0.55310389603444452782)
  465. #define COS0_5 FIXR(0.58293496820613387367)
  466. #define COS0_6 FIXR(0.62250412303566481615)
  467. #define COS0_7 FIXR(0.67480834145500574602)
  468. #define COS0_8 FIXR(0.74453627100229844977)
  469. #define COS0_9 FIXR(0.83934964541552703873)
  470. #define COS0_10 FIXR(0.97256823786196069369)
  471. #define COS0_11 FIXR(1.16943993343288495515)
  472. #define COS0_12 FIXR(1.48416461631416627724)
  473. #define COS0_13 FIXR(2.05778100995341155085)
  474. #define COS0_14 FIXR(3.40760841846871878570)
  475. #define COS0_15 FIXR(10.19000812354805681150)
  476. #define COS1_0 FIXR(0.50241928618815570551)
  477. #define COS1_1 FIXR(0.52249861493968888062)
  478. #define COS1_2 FIXR(0.56694403481635770368)
  479. #define COS1_3 FIXR(0.64682178335999012954)
  480. #define COS1_4 FIXR(0.78815462345125022473)
  481. #define COS1_5 FIXR(1.06067768599034747134)
  482. #define COS1_6 FIXR(1.72244709823833392782)
  483. #define COS1_7 FIXR(5.10114861868916385802)
  484. #define COS2_0 FIXR(0.50979557910415916894)
  485. #define COS2_1 FIXR(0.60134488693504528054)
  486. #define COS2_2 FIXR(0.89997622313641570463)
  487. #define COS2_3 FIXR(2.56291544774150617881)
  488. #define COS3_0 FIXR(0.54119610014619698439)
  489. #define COS3_1 FIXR(1.30656296487637652785)
  490. #define COS4_0 FIXR(0.70710678118654752439)
  491. /* butterfly operator */
  492. #define BF(a, b, c)\
  493. {\
  494. tmp0 = tab[a] + tab[b];\
  495. tmp1 = tab[a] - tab[b];\
  496. tab[a] = tmp0;\
  497. tab[b] = MULL(tmp1, c);\
  498. }
  499. #define BF1(a, b, c, d)\
  500. {\
  501. BF(a, b, COS4_0);\
  502. BF(c, d, -COS4_0);\
  503. tab[c] += tab[d];\
  504. }
  505. #define BF2(a, b, c, d)\
  506. {\
  507. BF(a, b, COS4_0);\
  508. BF(c, d, -COS4_0);\
  509. tab[c] += tab[d];\
  510. tab[a] += tab[c];\
  511. tab[c] += tab[b];\
  512. tab[b] += tab[d];\
  513. }
  514. #define ADD(a, b) tab[a] += tab[b]
  515. /* DCT32 without 1/sqrt(2) coef zero scaling. */
  516. static void dct32(INT32 *out, INT32 *tab)
  517. {
  518. int tmp0, tmp1;
  519. /* pass 1 */
  520. BF(0, 31, COS0_0);
  521. BF(1, 30, COS0_1);
  522. BF(2, 29, COS0_2);
  523. BF(3, 28, COS0_3);
  524. BF(4, 27, COS0_4);
  525. BF(5, 26, COS0_5);
  526. BF(6, 25, COS0_6);
  527. BF(7, 24, COS0_7);
  528. BF(8, 23, COS0_8);
  529. BF(9, 22, COS0_9);
  530. BF(10, 21, COS0_10);
  531. BF(11, 20, COS0_11);
  532. BF(12, 19, COS0_12);
  533. BF(13, 18, COS0_13);
  534. BF(14, 17, COS0_14);
  535. BF(15, 16, COS0_15);
  536. /* pass 2 */
  537. BF(0, 15, COS1_0);
  538. BF(1, 14, COS1_1);
  539. BF(2, 13, COS1_2);
  540. BF(3, 12, COS1_3);
  541. BF(4, 11, COS1_4);
  542. BF(5, 10, COS1_5);
  543. BF(6, 9, COS1_6);
  544. BF(7, 8, COS1_7);
  545. BF(16, 31, -COS1_0);
  546. BF(17, 30, -COS1_1);
  547. BF(18, 29, -COS1_2);
  548. BF(19, 28, -COS1_3);
  549. BF(20, 27, -COS1_4);
  550. BF(21, 26, -COS1_5);
  551. BF(22, 25, -COS1_6);
  552. BF(23, 24, -COS1_7);
  553. /* pass 3 */
  554. BF(0, 7, COS2_0);
  555. BF(1, 6, COS2_1);
  556. BF(2, 5, COS2_2);
  557. BF(3, 4, COS2_3);
  558. BF(8, 15, -COS2_0);
  559. BF(9, 14, -COS2_1);
  560. BF(10, 13, -COS2_2);
  561. BF(11, 12, -COS2_3);
  562. BF(16, 23, COS2_0);
  563. BF(17, 22, COS2_1);
  564. BF(18, 21, COS2_2);
  565. BF(19, 20, COS2_3);
  566. BF(24, 31, -COS2_0);
  567. BF(25, 30, -COS2_1);
  568. BF(26, 29, -COS2_2);
  569. BF(27, 28, -COS2_3);
  570. /* pass 4 */
  571. BF(0, 3, COS3_0);
  572. BF(1, 2, COS3_1);
  573. BF(4, 7, -COS3_0);
  574. BF(5, 6, -COS3_1);
  575. BF(8, 11, COS3_0);
  576. BF(9, 10, COS3_1);
  577. BF(12, 15, -COS3_0);
  578. BF(13, 14, -COS3_1);
  579. BF(16, 19, COS3_0);
  580. BF(17, 18, COS3_1);
  581. BF(20, 23, -COS3_0);
  582. BF(21, 22, -COS3_1);
  583. BF(24, 27, COS3_0);
  584. BF(25, 26, COS3_1);
  585. BF(28, 31, -COS3_0);
  586. BF(29, 30, -COS3_1);
  587. /* pass 5 */
  588. BF1(0, 1, 2, 3);
  589. BF2(4, 5, 6, 7);
  590. BF1(8, 9, 10, 11);
  591. BF2(12, 13, 14, 15);
  592. BF1(16, 17, 18, 19);
  593. BF2(20, 21, 22, 23);
  594. BF1(24, 25, 26, 27);
  595. BF2(28, 29, 30, 31);
  596. /* pass 6 */
  597. ADD( 8, 12);
  598. ADD(12, 10);
  599. ADD(10, 14);
  600. ADD(14, 9);
  601. ADD( 9, 13);
  602. ADD(13, 11);
  603. ADD(11, 15);
  604. out[ 0] = tab[0];
  605. out[16] = tab[1];
  606. out[ 8] = tab[2];
  607. out[24] = tab[3];
  608. out[ 4] = tab[4];
  609. out[20] = tab[5];
  610. out[12] = tab[6];
  611. out[28] = tab[7];
  612. out[ 2] = tab[8];
  613. out[18] = tab[9];
  614. out[10] = tab[10];
  615. out[26] = tab[11];
  616. out[ 6] = tab[12];
  617. out[22] = tab[13];
  618. out[14] = tab[14];
  619. out[30] = tab[15];
  620. ADD(24, 28);
  621. ADD(28, 26);
  622. ADD(26, 30);
  623. ADD(30, 25);
  624. ADD(25, 29);
  625. ADD(29, 27);
  626. ADD(27, 31);
  627. out[ 1] = tab[16] + tab[24];
  628. out[17] = tab[17] + tab[25];
  629. out[ 9] = tab[18] + tab[26];
  630. out[25] = tab[19] + tab[27];
  631. out[ 5] = tab[20] + tab[28];
  632. out[21] = tab[21] + tab[29];
  633. out[13] = tab[22] + tab[30];
  634. out[29] = tab[23] + tab[31];
  635. out[ 3] = tab[24] + tab[20];
  636. out[19] = tab[25] + tab[21];
  637. out[11] = tab[26] + tab[22];
  638. out[27] = tab[27] + tab[23];
  639. out[ 7] = tab[28] + tab[18];
  640. out[23] = tab[29] + tab[19];
  641. out[15] = tab[30] + tab[17];
  642. out[31] = tab[31];
  643. }
  644. #define OUT_SHIFT (WFRAC_BITS + FRAC_BITS - 15)
  645. #if FRAC_BITS <= 15
  646. #define OUT_SAMPLE(sum)\
  647. {\
  648. int sum1;\
  649. sum1 = (sum + (1 << (OUT_SHIFT - 1))) >> OUT_SHIFT;\
  650. if (sum1 < -32768)\
  651. sum1 = -32768;\
  652. else if (sum1 > 32767)\
  653. sum1 = 32767;\
  654. *samples = sum1;\
  655. samples += incr;\
  656. }
  657. #define SUM8(off, op) \
  658. { \
  659. sum op w[0 * 64 + off] * p[0 * 64];\
  660. sum op w[1 * 64 + off] * p[1 * 64];\
  661. sum op w[2 * 64 + off] * p[2 * 64];\
  662. sum op w[3 * 64 + off] * p[3 * 64];\
  663. sum op w[4 * 64 + off] * p[4 * 64];\
  664. sum op w[5 * 64 + off] * p[5 * 64];\
  665. sum op w[6 * 64 + off] * p[6 * 64];\
  666. sum op w[7 * 64 + off] * p[7 * 64];\
  667. }
  668. #else
  669. #define OUT_SAMPLE(sum)\
  670. {\
  671. int sum1;\
  672. sum1 = (int)((sum + (INT64_C(1) << (OUT_SHIFT - 1))) >> OUT_SHIFT);\
  673. if (sum1 < -32768)\
  674. sum1 = -32768;\
  675. else if (sum1 > 32767)\
  676. sum1 = 32767;\
  677. *samples = sum1;\
  678. samples += incr;\
  679. }
  680. #define SUM8(off, op) \
  681. { \
  682. sum op MUL64(w[0 * 64 + off], p[0 * 64]);\
  683. sum op MUL64(w[1 * 64 + off], p[1 * 64]);\
  684. sum op MUL64(w[2 * 64 + off], p[2 * 64]);\
  685. sum op MUL64(w[3 * 64 + off], p[3 * 64]);\
  686. sum op MUL64(w[4 * 64 + off], p[4 * 64]);\
  687. sum op MUL64(w[5 * 64 + off], p[5 * 64]);\
  688. sum op MUL64(w[6 * 64 + off], p[6 * 64]);\
  689. sum op MUL64(w[7 * 64 + off], p[7 * 64]);\
  690. }
  691. #endif
  692. /* 32 sub band synthesis filter. Input: 32 sub band samples, Output:
  693. 32 samples. */
  694. /* XXX: optimize by avoiding ring buffer usage */
  695. static void synth_filter(MPADecodeContext *s1,
  696. int ch, INT16 *samples, int incr,
  697. INT32 sb_samples[SBLIMIT])
  698. {
  699. INT32 tmp[32];
  700. register MPA_INT *synth_buf, *p;
  701. register MPA_INT *w;
  702. int j, offset, v;
  703. #if FRAC_BITS <= 15
  704. int sum;
  705. #else
  706. INT64 sum;
  707. #endif
  708. dct32(tmp, sb_samples);
  709. offset = s1->synth_buf_offset[ch];
  710. synth_buf = s1->synth_buf[ch] + offset;
  711. for(j=0;j<32;j++) {
  712. v = tmp[j];
  713. #if FRAC_BITS <= 15
  714. if (v > 32767)
  715. v = 32767;
  716. else if (v < -32768)
  717. v = -32768;
  718. #endif
  719. synth_buf[j] = v;
  720. }
  721. /* copy to avoid wrap */
  722. memcpy(synth_buf + 512, synth_buf, 32 * sizeof(MPA_INT));
  723. w = window;
  724. for(j=0;j<16;j++) {
  725. sum = 0;
  726. p = synth_buf + 16 + j; /* 0-15 */
  727. SUM8(0, +=);
  728. p = synth_buf + 48 - j; /* 32-47 */
  729. SUM8(32, -=);
  730. OUT_SAMPLE(sum);
  731. w++;
  732. }
  733. p = synth_buf + 32; /* 48 */
  734. sum = 0;
  735. SUM8(32, -=);
  736. OUT_SAMPLE(sum);
  737. w++;
  738. for(j=17;j<32;j++) {
  739. sum = 0;
  740. p = synth_buf + 48 - j; /* 17-31 */
  741. SUM8(0, -=);
  742. p = synth_buf + 16 + j; /* 49-63 */
  743. SUM8(32, -=);
  744. OUT_SAMPLE(sum);
  745. w++;
  746. }
  747. offset = (offset - 32) & 511;
  748. s1->synth_buf_offset[ch] = offset;
  749. }
  750. /* cos(pi*i/24) */
  751. #define C1 FIXR(0.99144486137381041114)
  752. #define C3 FIXR(0.92387953251128675612)
  753. #define C5 FIXR(0.79335334029123516458)
  754. #define C7 FIXR(0.60876142900872063941)
  755. #define C9 FIXR(0.38268343236508977173)
  756. #define C11 FIXR(0.13052619222005159154)
  757. /* 12 points IMDCT. We compute it "by hand" by factorizing obvious
  758. cases. */
  759. static void imdct12(int *out, int *in)
  760. {
  761. int tmp;
  762. INT64 in1_3, in1_9, in4_3, in4_9;
  763. in1_3 = MUL64(in[1], C3);
  764. in1_9 = MUL64(in[1], C9);
  765. in4_3 = MUL64(in[4], C3);
  766. in4_9 = MUL64(in[4], C9);
  767. tmp = FRAC_RND(MUL64(in[0], C7) - in1_3 - MUL64(in[2], C11) +
  768. MUL64(in[3], C1) - in4_9 - MUL64(in[5], C5));
  769. out[0] = tmp;
  770. out[5] = -tmp;
  771. tmp = FRAC_RND(MUL64(in[0] - in[3], C9) - in1_3 +
  772. MUL64(in[2] + in[5], C3) - in4_9);
  773. out[1] = tmp;
  774. out[4] = -tmp;
  775. tmp = FRAC_RND(MUL64(in[0], C11) - in1_9 + MUL64(in[2], C7) -
  776. MUL64(in[3], C5) + in4_3 - MUL64(in[5], C1));
  777. out[2] = tmp;
  778. out[3] = -tmp;
  779. tmp = FRAC_RND(MUL64(-in[0], C5) + in1_9 + MUL64(in[2], C1) +
  780. MUL64(in[3], C11) - in4_3 - MUL64(in[5], C7));
  781. out[6] = tmp;
  782. out[11] = tmp;
  783. tmp = FRAC_RND(MUL64(-in[0] + in[3], C3) - in1_9 +
  784. MUL64(in[2] + in[5], C9) + in4_3);
  785. out[7] = tmp;
  786. out[10] = tmp;
  787. tmp = FRAC_RND(-MUL64(in[0], C1) - in1_3 - MUL64(in[2], C5) -
  788. MUL64(in[3], C7) - in4_9 - MUL64(in[5], C11));
  789. out[8] = tmp;
  790. out[9] = tmp;
  791. }
  792. #undef C1
  793. #undef C3
  794. #undef C5
  795. #undef C7
  796. #undef C9
  797. #undef C11
  798. /* cos(pi*i/18) */
  799. #define C1 FIXR(0.98480775301220805936)
  800. #define C2 FIXR(0.93969262078590838405)
  801. #define C3 FIXR(0.86602540378443864676)
  802. #define C4 FIXR(0.76604444311897803520)
  803. #define C5 FIXR(0.64278760968653932632)
  804. #define C6 FIXR(0.5)
  805. #define C7 FIXR(0.34202014332566873304)
  806. #define C8 FIXR(0.17364817766693034885)
  807. /* 0.5 / cos(pi*(2*i+1)/36) */
  808. static const int icos36[9] = {
  809. FIXR(0.50190991877167369479),
  810. FIXR(0.51763809020504152469),
  811. FIXR(0.55168895948124587824),
  812. FIXR(0.61038729438072803416),
  813. FIXR(0.70710678118654752439),
  814. FIXR(0.87172339781054900991),
  815. FIXR(1.18310079157624925896),
  816. FIXR(1.93185165257813657349),
  817. FIXR(5.73685662283492756461),
  818. };
  819. static const int icos72[18] = {
  820. /* 0.5 / cos(pi*(2*i+19)/72) */
  821. FIXR(0.74009361646113053152),
  822. FIXR(0.82133981585229078570),
  823. FIXR(0.93057949835178895673),
  824. FIXR(1.08284028510010010928),
  825. FIXR(1.30656296487637652785),
  826. FIXR(1.66275476171152078719),
  827. FIXR(2.31011315767264929558),
  828. FIXR(3.83064878777019433457),
  829. FIXR(11.46279281302667383546),
  830. /* 0.5 / cos(pi*(2*(i + 18) +19)/72) */
  831. FIXR(-0.67817085245462840086),
  832. FIXR(-0.63023620700513223342),
  833. FIXR(-0.59284452371708034528),
  834. FIXR(-0.56369097343317117734),
  835. FIXR(-0.54119610014619698439),
  836. FIXR(-0.52426456257040533932),
  837. FIXR(-0.51213975715725461845),
  838. FIXR(-0.50431448029007636036),
  839. FIXR(-0.50047634258165998492),
  840. };
  841. /* using Lee like decomposition followed by hand coded 9 points DCT */
  842. static void imdct36(int *out, int *in)
  843. {
  844. int i, j, t0, t1, t2, t3, s0, s1, s2, s3;
  845. int tmp[18], *tmp1, *in1;
  846. INT64 in3_3, in6_6;
  847. for(i=17;i>=1;i--)
  848. in[i] += in[i-1];
  849. for(i=17;i>=3;i-=2)
  850. in[i] += in[i-2];
  851. for(j=0;j<2;j++) {
  852. tmp1 = tmp + j;
  853. in1 = in + j;
  854. in3_3 = MUL64(in1[2*3], C3);
  855. in6_6 = MUL64(in1[2*6], C6);
  856. tmp1[0] = FRAC_RND(MUL64(in1[2*1], C1) + in3_3 +
  857. MUL64(in1[2*5], C5) + MUL64(in1[2*7], C7));
  858. tmp1[2] = in1[2*0] + FRAC_RND(MUL64(in1[2*2], C2) +
  859. MUL64(in1[2*4], C4) + in6_6 +
  860. MUL64(in1[2*8], C8));
  861. tmp1[4] = FRAC_RND(MUL64(in1[2*1] - in1[2*5] - in1[2*7], C3));
  862. tmp1[6] = FRAC_RND(MUL64(in1[2*2] - in1[2*4] - in1[2*8], C6)) -
  863. in1[2*6] + in1[2*0];
  864. tmp1[8] = FRAC_RND(MUL64(in1[2*1], C5) - in3_3 -
  865. MUL64(in1[2*5], C7) + MUL64(in1[2*7], C1));
  866. tmp1[10] = in1[2*0] + FRAC_RND(MUL64(-in1[2*2], C8) -
  867. MUL64(in1[2*4], C2) + in6_6 +
  868. MUL64(in1[2*8], C4));
  869. tmp1[12] = FRAC_RND(MUL64(in1[2*1], C7) - in3_3 +
  870. MUL64(in1[2*5], C1) -
  871. MUL64(in1[2*7], C5));
  872. tmp1[14] = in1[2*0] + FRAC_RND(MUL64(-in1[2*2], C4) +
  873. MUL64(in1[2*4], C8) + in6_6 -
  874. MUL64(in1[2*8], C2));
  875. tmp1[16] = in1[2*0] - in1[2*2] + in1[2*4] - in1[2*6] + in1[2*8];
  876. }
  877. i = 0;
  878. for(j=0;j<4;j++) {
  879. t0 = tmp[i];
  880. t1 = tmp[i + 2];
  881. s0 = t1 + t0;
  882. s2 = t1 - t0;
  883. t2 = tmp[i + 1];
  884. t3 = tmp[i + 3];
  885. s1 = MULL(t3 + t2, icos36[j]);
  886. s3 = MULL(t3 - t2, icos36[8 - j]);
  887. t0 = MULL(s0 + s1, icos72[9 + 8 - j]);
  888. t1 = MULL(s0 - s1, icos72[8 - j]);
  889. out[18 + 9 + j] = t0;
  890. out[18 + 8 - j] = t0;
  891. out[9 + j] = -t1;
  892. out[8 - j] = t1;
  893. t0 = MULL(s2 + s3, icos72[9+j]);
  894. t1 = MULL(s2 - s3, icos72[j]);
  895. out[18 + 9 + (8 - j)] = t0;
  896. out[18 + j] = t0;
  897. out[9 + (8 - j)] = -t1;
  898. out[j] = t1;
  899. i += 4;
  900. }
  901. s0 = tmp[16];
  902. s1 = MULL(tmp[17], icos36[4]);
  903. t0 = MULL(s0 + s1, icos72[9 + 4]);
  904. t1 = MULL(s0 - s1, icos72[4]);
  905. out[18 + 9 + 4] = t0;
  906. out[18 + 8 - 4] = t0;
  907. out[9 + 4] = -t1;
  908. out[8 - 4] = t1;
  909. }
  910. /* fast header check for resync */
  911. static int check_header(UINT32 header)
  912. {
  913. /* header */
  914. if ((header & 0xffe00000) != 0xffe00000)
  915. return -1;
  916. /* layer check */
  917. if (((header >> 17) & 3) == 0)
  918. return -1;
  919. /* bit rate */
  920. if (((header >> 12) & 0xf) == 0xf)
  921. return -1;
  922. /* frequency */
  923. if (((header >> 10) & 3) == 3)
  924. return -1;
  925. return 0;
  926. }
  927. /* header + layer + bitrate + freq + lsf/mpeg25 */
  928. #define SAME_HEADER_MASK \
  929. (0xffe00000 | (3 << 17) | (0xf << 12) | (3 << 10) | (3 << 19))
  930. /* header decoding. MUST check the header before because no
  931. consistency check is done there. Return 1 if free format found and
  932. that the frame size must be computed externally */
  933. static int decode_header(MPADecodeContext *s, UINT32 header)
  934. {
  935. int sample_rate, frame_size, mpeg25, padding;
  936. int sample_rate_index, bitrate_index;
  937. if (header & (1<<20)) {
  938. s->lsf = (header & (1<<19)) ? 0 : 1;
  939. mpeg25 = 0;
  940. } else {
  941. s->lsf = 1;
  942. mpeg25 = 1;
  943. }
  944. s->layer = 4 - ((header >> 17) & 3);
  945. /* extract frequency */
  946. sample_rate_index = (header >> 10) & 3;
  947. sample_rate = mpa_freq_tab[sample_rate_index] >> (s->lsf + mpeg25);
  948. if (sample_rate == 0)
  949. return 1;
  950. sample_rate_index += 3 * (s->lsf + mpeg25);
  951. s->sample_rate_index = sample_rate_index;
  952. s->error_protection = ((header >> 16) & 1) ^ 1;
  953. bitrate_index = (header >> 12) & 0xf;
  954. padding = (header >> 9) & 1;
  955. //extension = (header >> 8) & 1;
  956. s->mode = (header >> 6) & 3;
  957. s->mode_ext = (header >> 4) & 3;
  958. //copyright = (header >> 3) & 1;
  959. //original = (header >> 2) & 1;
  960. //emphasis = header & 3;
  961. if (s->mode == MPA_MONO)
  962. s->nb_channels = 1;
  963. else
  964. s->nb_channels = 2;
  965. if (bitrate_index != 0) {
  966. frame_size = mpa_bitrate_tab[s->lsf][s->layer - 1][bitrate_index];
  967. s->bit_rate = frame_size * 1000;
  968. switch(s->layer) {
  969. case 1:
  970. frame_size = (frame_size * 12000) / sample_rate;
  971. frame_size = (frame_size + padding) * 4;
  972. break;
  973. case 2:
  974. frame_size = (frame_size * 144000) / sample_rate;
  975. frame_size += padding;
  976. break;
  977. default:
  978. case 3:
  979. frame_size = (frame_size * 144000) / (sample_rate << s->lsf);
  980. frame_size += padding;
  981. break;
  982. }
  983. s->frame_size = frame_size;
  984. } else {
  985. /* if no frame size computed, signal it */
  986. if (!s->free_format_frame_size)
  987. return 1;
  988. /* free format: compute bitrate and real frame size from the
  989. frame size we extracted by reading the bitstream */
  990. s->frame_size = s->free_format_frame_size;
  991. switch(s->layer) {
  992. case 1:
  993. s->frame_size += padding * 4;
  994. s->bit_rate = (s->frame_size * sample_rate) / 48000;
  995. break;
  996. case 2:
  997. s->frame_size += padding;
  998. s->bit_rate = (s->frame_size * sample_rate) / 144000;
  999. break;
  1000. default:
  1001. case 3:
  1002. s->frame_size += padding;
  1003. s->bit_rate = (s->frame_size * (sample_rate << s->lsf)) / 144000;
  1004. break;
  1005. }
  1006. }
  1007. s->sample_rate = sample_rate;
  1008. #if defined(DEBUG)
  1009. printf("layer%d, %d Hz, %d kbits/s, ",
  1010. s->layer, s->sample_rate, s->bit_rate);
  1011. if (s->nb_channels == 2) {
  1012. if (s->layer == 3) {
  1013. if (s->mode_ext & MODE_EXT_MS_STEREO)
  1014. printf("ms-");
  1015. if (s->mode_ext & MODE_EXT_I_STEREO)
  1016. printf("i-");
  1017. }
  1018. printf("stereo");
  1019. } else {
  1020. printf("mono");
  1021. }
  1022. printf("\n");
  1023. #endif
  1024. return 0;
  1025. }
  1026. /* return the number of decoded frames */
  1027. static int mp_decode_layer1(MPADecodeContext *s)
  1028. {
  1029. int bound, i, v, n, ch, j, mant;
  1030. UINT8 allocation[MPA_MAX_CHANNELS][SBLIMIT];
  1031. UINT8 scale_factors[MPA_MAX_CHANNELS][SBLIMIT];
  1032. if (s->mode == MPA_JSTEREO)
  1033. bound = (s->mode_ext + 1) * 4;
  1034. else
  1035. bound = SBLIMIT;
  1036. /* allocation bits */
  1037. for(i=0;i<bound;i++) {
  1038. for(ch=0;ch<s->nb_channels;ch++) {
  1039. allocation[ch][i] = get_bits(&s->gb, 4);
  1040. }
  1041. }
  1042. for(i=bound;i<SBLIMIT;i++) {
  1043. allocation[0][i] = get_bits(&s->gb, 4);
  1044. }
  1045. /* scale factors */
  1046. for(i=0;i<bound;i++) {
  1047. for(ch=0;ch<s->nb_channels;ch++) {
  1048. if (allocation[ch][i])
  1049. scale_factors[ch][i] = get_bits(&s->gb, 6);
  1050. }
  1051. }
  1052. for(i=bound;i<SBLIMIT;i++) {
  1053. if (allocation[0][i]) {
  1054. scale_factors[0][i] = get_bits(&s->gb, 6);
  1055. scale_factors[1][i] = get_bits(&s->gb, 6);
  1056. }
  1057. }
  1058. /* compute samples */
  1059. for(j=0;j<12;j++) {
  1060. for(i=0;i<bound;i++) {
  1061. for(ch=0;ch<s->nb_channels;ch++) {
  1062. n = allocation[ch][i];
  1063. if (n) {
  1064. mant = get_bits(&s->gb, n + 1);
  1065. v = l1_unscale(n, mant, scale_factors[ch][i]);
  1066. } else {
  1067. v = 0;
  1068. }
  1069. s->sb_samples[ch][j][i] = v;
  1070. }
  1071. }
  1072. for(i=bound;i<SBLIMIT;i++) {
  1073. n = allocation[0][i];
  1074. if (n) {
  1075. mant = get_bits(&s->gb, n + 1);
  1076. v = l1_unscale(n, mant, scale_factors[0][i]);
  1077. s->sb_samples[0][j][i] = v;
  1078. v = l1_unscale(n, mant, scale_factors[1][i]);
  1079. s->sb_samples[1][j][i] = v;
  1080. } else {
  1081. s->sb_samples[0][j][i] = 0;
  1082. s->sb_samples[1][j][i] = 0;
  1083. }
  1084. }
  1085. }
  1086. return 12;
  1087. }
  1088. /* bitrate is in kb/s */
  1089. int l2_select_table(int bitrate, int nb_channels, int freq, int lsf)
  1090. {
  1091. int ch_bitrate, table;
  1092. ch_bitrate = bitrate / nb_channels;
  1093. if (!lsf) {
  1094. if ((freq == 48000 && ch_bitrate >= 56) ||
  1095. (ch_bitrate >= 56 && ch_bitrate <= 80))
  1096. table = 0;
  1097. else if (freq != 48000 && ch_bitrate >= 96)
  1098. table = 1;
  1099. else if (freq != 32000 && ch_bitrate <= 48)
  1100. table = 2;
  1101. else
  1102. table = 3;
  1103. } else {
  1104. table = 4;
  1105. }
  1106. return table;
  1107. }
  1108. static int mp_decode_layer2(MPADecodeContext *s)
  1109. {
  1110. int sblimit; /* number of used subbands */
  1111. const unsigned char *alloc_table;
  1112. int table, bit_alloc_bits, i, j, ch, bound, v;
  1113. unsigned char bit_alloc[MPA_MAX_CHANNELS][SBLIMIT];
  1114. unsigned char scale_code[MPA_MAX_CHANNELS][SBLIMIT];
  1115. unsigned char scale_factors[MPA_MAX_CHANNELS][SBLIMIT][3], *sf;
  1116. int scale, qindex, bits, steps, k, l, m, b;
  1117. /* select decoding table */
  1118. table = l2_select_table(s->bit_rate / 1000, s->nb_channels,
  1119. s->sample_rate, s->lsf);
  1120. sblimit = sblimit_table[table];
  1121. alloc_table = alloc_tables[table];
  1122. if (s->mode == MPA_JSTEREO)
  1123. bound = (s->mode_ext + 1) * 4;
  1124. else
  1125. bound = sblimit;
  1126. dprintf("bound=%d sblimit=%d\n", bound, sblimit);
  1127. /* parse bit allocation */
  1128. j = 0;
  1129. for(i=0;i<bound;i++) {
  1130. bit_alloc_bits = alloc_table[j];
  1131. for(ch=0;ch<s->nb_channels;ch++) {
  1132. bit_alloc[ch][i] = get_bits(&s->gb, bit_alloc_bits);
  1133. }
  1134. j += 1 << bit_alloc_bits;
  1135. }
  1136. for(i=bound;i<sblimit;i++) {
  1137. bit_alloc_bits = alloc_table[j];
  1138. v = get_bits(&s->gb, bit_alloc_bits);
  1139. bit_alloc[0][i] = v;
  1140. bit_alloc[1][i] = v;
  1141. j += 1 << bit_alloc_bits;
  1142. }
  1143. #ifdef DEBUG
  1144. {
  1145. for(ch=0;ch<s->nb_channels;ch++) {
  1146. for(i=0;i<sblimit;i++)
  1147. printf(" %d", bit_alloc[ch][i]);
  1148. printf("\n");
  1149. }
  1150. }
  1151. #endif
  1152. /* scale codes */
  1153. for(i=0;i<sblimit;i++) {
  1154. for(ch=0;ch<s->nb_channels;ch++) {
  1155. if (bit_alloc[ch][i])
  1156. scale_code[ch][i] = get_bits(&s->gb, 2);
  1157. }
  1158. }
  1159. /* scale factors */
  1160. for(i=0;i<sblimit;i++) {
  1161. for(ch=0;ch<s->nb_channels;ch++) {
  1162. if (bit_alloc[ch][i]) {
  1163. sf = scale_factors[ch][i];
  1164. switch(scale_code[ch][i]) {
  1165. default:
  1166. case 0:
  1167. sf[0] = get_bits(&s->gb, 6);
  1168. sf[1] = get_bits(&s->gb, 6);
  1169. sf[2] = get_bits(&s->gb, 6);
  1170. break;
  1171. case 2:
  1172. sf[0] = get_bits(&s->gb, 6);
  1173. sf[1] = sf[0];
  1174. sf[2] = sf[0];
  1175. break;
  1176. case 1:
  1177. sf[0] = get_bits(&s->gb, 6);
  1178. sf[2] = get_bits(&s->gb, 6);
  1179. sf[1] = sf[0];
  1180. break;
  1181. case 3:
  1182. sf[0] = get_bits(&s->gb, 6);
  1183. sf[2] = get_bits(&s->gb, 6);
  1184. sf[1] = sf[2];
  1185. break;
  1186. }
  1187. }
  1188. }
  1189. }
  1190. #ifdef DEBUG
  1191. for(ch=0;ch<s->nb_channels;ch++) {
  1192. for(i=0;i<sblimit;i++) {
  1193. if (bit_alloc[ch][i]) {
  1194. sf = scale_factors[ch][i];
  1195. printf(" %d %d %d", sf[0], sf[1], sf[2]);
  1196. } else {
  1197. printf(" -");
  1198. }
  1199. }
  1200. printf("\n");
  1201. }
  1202. #endif
  1203. /* samples */
  1204. for(k=0;k<3;k++) {
  1205. for(l=0;l<12;l+=3) {
  1206. j = 0;
  1207. for(i=0;i<bound;i++) {
  1208. bit_alloc_bits = alloc_table[j];
  1209. for(ch=0;ch<s->nb_channels;ch++) {
  1210. b = bit_alloc[ch][i];
  1211. if (b) {
  1212. scale = scale_factors[ch][i][k];
  1213. qindex = alloc_table[j+b];
  1214. bits = quant_bits[qindex];
  1215. if (bits < 0) {
  1216. /* 3 values at the same time */
  1217. v = get_bits(&s->gb, -bits);
  1218. steps = quant_steps[qindex];
  1219. s->sb_samples[ch][k * 12 + l + 0][i] =
  1220. l2_unscale_group(steps, v % steps, scale);
  1221. v = v / steps;
  1222. s->sb_samples[ch][k * 12 + l + 1][i] =
  1223. l2_unscale_group(steps, v % steps, scale);
  1224. v = v / steps;
  1225. s->sb_samples[ch][k * 12 + l + 2][i] =
  1226. l2_unscale_group(steps, v, scale);
  1227. } else {
  1228. for(m=0;m<3;m++) {
  1229. v = get_bits(&s->gb, bits);
  1230. v = l1_unscale(bits - 1, v, scale);
  1231. s->sb_samples[ch][k * 12 + l + m][i] = v;
  1232. }
  1233. }
  1234. } else {
  1235. s->sb_samples[ch][k * 12 + l + 0][i] = 0;
  1236. s->sb_samples[ch][k * 12 + l + 1][i] = 0;
  1237. s->sb_samples[ch][k * 12 + l + 2][i] = 0;
  1238. }
  1239. }
  1240. /* next subband in alloc table */
  1241. j += 1 << bit_alloc_bits;
  1242. }
  1243. /* XXX: find a way to avoid this duplication of code */
  1244. for(i=bound;i<sblimit;i++) {
  1245. bit_alloc_bits = alloc_table[j];
  1246. b = bit_alloc[0][i];
  1247. if (b) {
  1248. int mant, scale0, scale1;
  1249. scale0 = scale_factors[0][i][k];
  1250. scale1 = scale_factors[1][i][k];
  1251. qindex = alloc_table[j+b];
  1252. bits = quant_bits[qindex];
  1253. if (bits < 0) {
  1254. /* 3 values at the same time */
  1255. v = get_bits(&s->gb, -bits);
  1256. steps = quant_steps[qindex];
  1257. mant = v % steps;
  1258. v = v / steps;
  1259. s->sb_samples[0][k * 12 + l + 0][i] =
  1260. l2_unscale_group(steps, mant, scale0);
  1261. s->sb_samples[1][k * 12 + l + 0][i] =
  1262. l2_unscale_group(steps, mant, scale1);
  1263. mant = v % steps;
  1264. v = v / steps;
  1265. s->sb_samples[0][k * 12 + l + 1][i] =
  1266. l2_unscale_group(steps, mant, scale0);
  1267. s->sb_samples[1][k * 12 + l + 1][i] =
  1268. l2_unscale_group(steps, mant, scale1);
  1269. s->sb_samples[0][k * 12 + l + 2][i] =
  1270. l2_unscale_group(steps, v, scale0);
  1271. s->sb_samples[1][k * 12 + l + 2][i] =
  1272. l2_unscale_group(steps, v, scale1);
  1273. } else {
  1274. for(m=0;m<3;m++) {
  1275. mant = get_bits(&s->gb, bits);
  1276. s->sb_samples[0][k * 12 + l + m][i] =
  1277. l1_unscale(bits - 1, mant, scale0);
  1278. s->sb_samples[1][k * 12 + l + m][i] =
  1279. l1_unscale(bits - 1, mant, scale1);
  1280. }
  1281. }
  1282. } else {
  1283. s->sb_samples[0][k * 12 + l + 0][i] = 0;
  1284. s->sb_samples[0][k * 12 + l + 1][i] = 0;
  1285. s->sb_samples[0][k * 12 + l + 2][i] = 0;
  1286. s->sb_samples[1][k * 12 + l + 0][i] = 0;
  1287. s->sb_samples[1][k * 12 + l + 1][i] = 0;
  1288. s->sb_samples[1][k * 12 + l + 2][i] = 0;
  1289. }
  1290. /* next subband in alloc table */
  1291. j += 1 << bit_alloc_bits;
  1292. }
  1293. /* fill remaining samples to zero */
  1294. for(i=sblimit;i<SBLIMIT;i++) {
  1295. for(ch=0;ch<s->nb_channels;ch++) {
  1296. s->sb_samples[ch][k * 12 + l + 0][i] = 0;
  1297. s->sb_samples[ch][k * 12 + l + 1][i] = 0;
  1298. s->sb_samples[ch][k * 12 + l + 2][i] = 0;
  1299. }
  1300. }
  1301. }
  1302. }
  1303. return 3 * 12;
  1304. }
  1305. /*
  1306. * Seek back in the stream for backstep bytes (at most 511 bytes)
  1307. */
  1308. static void seek_to_maindata(MPADecodeContext *s, long backstep)
  1309. {
  1310. UINT8 *ptr;
  1311. /* compute current position in stream */
  1312. #ifdef ALT_BITSTREAM_READER
  1313. ptr = s->gb.buffer + (s->gb.index>>3);
  1314. #else
  1315. ptr = s->gb.buf_ptr - (s->gb.bit_cnt >> 3);
  1316. #endif
  1317. /* copy old data before current one */
  1318. ptr -= backstep;
  1319. memcpy(ptr, s->inbuf1[s->inbuf_index ^ 1] +
  1320. BACKSTEP_SIZE + s->old_frame_size - backstep, backstep);
  1321. /* init get bits again */
  1322. init_get_bits(&s->gb, ptr, s->frame_size + backstep);
  1323. /* prepare next buffer */
  1324. s->inbuf_index ^= 1;
  1325. s->inbuf = &s->inbuf1[s->inbuf_index][BACKSTEP_SIZE];
  1326. s->old_frame_size = s->frame_size;
  1327. }
  1328. static inline void lsf_sf_expand(int *slen,
  1329. int sf, int n1, int n2, int n3)
  1330. {
  1331. if (n3) {
  1332. slen[3] = sf % n3;
  1333. sf /= n3;
  1334. } else {
  1335. slen[3] = 0;
  1336. }
  1337. if (n2) {
  1338. slen[2] = sf % n2;
  1339. sf /= n2;
  1340. } else {
  1341. slen[2] = 0;
  1342. }
  1343. slen[1] = sf % n1;
  1344. sf /= n1;
  1345. slen[0] = sf;
  1346. }
  1347. static void exponents_from_scale_factors(MPADecodeContext *s,
  1348. GranuleDef *g,
  1349. INT16 *exponents)
  1350. {
  1351. const UINT8 *bstab, *pretab;
  1352. int len, i, j, k, l, v0, shift, gain, gains[3];
  1353. INT16 *exp_ptr;
  1354. exp_ptr = exponents;
  1355. gain = g->global_gain - 210;
  1356. shift = g->scalefac_scale + 1;
  1357. bstab = band_size_long[s->sample_rate_index];
  1358. pretab = mpa_pretab[g->preflag];
  1359. for(i=0;i<g->long_end;i++) {
  1360. v0 = gain - ((g->scale_factors[i] + pretab[i]) << shift);
  1361. len = bstab[i];
  1362. for(j=len;j>0;j--)
  1363. *exp_ptr++ = v0;
  1364. }
  1365. if (g->short_start < 13) {
  1366. bstab = band_size_short[s->sample_rate_index];
  1367. gains[0] = gain - (g->subblock_gain[0] << 3);
  1368. gains[1] = gain - (g->subblock_gain[1] << 3);
  1369. gains[2] = gain - (g->subblock_gain[2] << 3);
  1370. k = g->long_end;
  1371. for(i=g->short_start;i<13;i++) {
  1372. len = bstab[i];
  1373. for(l=0;l<3;l++) {
  1374. v0 = gains[l] - (g->scale_factors[k++] << shift);
  1375. for(j=len;j>0;j--)
  1376. *exp_ptr++ = v0;
  1377. }
  1378. }
  1379. }
  1380. }
  1381. /* handle n = 0 too */
  1382. static inline int get_bitsz(GetBitContext *s, int n)
  1383. {
  1384. if (n == 0)
  1385. return 0;
  1386. else
  1387. return get_bits(s, n);
  1388. }
  1389. static int huffman_decode(MPADecodeContext *s, GranuleDef *g,
  1390. INT16 *exponents, int end_pos)
  1391. {
  1392. int s_index;
  1393. int linbits, code, x, y, l, v, i, j, k, pos;
  1394. UINT8 *last_buf_ptr;
  1395. UINT32 last_bit_buf;
  1396. int last_bit_cnt;
  1397. VLC *vlc;
  1398. UINT8 *code_table;
  1399. /* low frequencies (called big values) */
  1400. s_index = 0;
  1401. for(i=0;i<3;i++) {
  1402. j = g->region_size[i];
  1403. if (j == 0)
  1404. continue;
  1405. /* select vlc table */
  1406. k = g->table_select[i];
  1407. l = mpa_huff_data[k][0];
  1408. linbits = mpa_huff_data[k][1];
  1409. vlc = &huff_vlc[l];
  1410. code_table = huff_code_table[l];
  1411. /* read huffcode and compute each couple */
  1412. for(;j>0;j--) {
  1413. if (get_bits_count(&s->gb) >= end_pos)
  1414. break;
  1415. if (code_table) {
  1416. code = get_vlc(&s->gb, vlc);
  1417. if (code < 0)
  1418. return -1;
  1419. y = code_table[code];
  1420. x = y >> 4;
  1421. y = y & 0x0f;
  1422. } else {
  1423. x = 0;
  1424. y = 0;
  1425. }
  1426. dprintf("region=%d n=%d x=%d y=%d exp=%d\n",
  1427. i, g->region_size[i] - j, x, y, exponents[s_index]);
  1428. if (x) {
  1429. if (x == 15)
  1430. x += get_bitsz(&s->gb, linbits);
  1431. v = l3_unscale(x, exponents[s_index]);
  1432. if (get_bits1(&s->gb))
  1433. v = -v;
  1434. } else {
  1435. v = 0;
  1436. }
  1437. g->sb_hybrid[s_index++] = v;
  1438. if (y) {
  1439. if (y == 15)
  1440. y += get_bitsz(&s->gb, linbits);
  1441. v = l3_unscale(y, exponents[s_index]);
  1442. if (get_bits1(&s->gb))
  1443. v = -v;
  1444. } else {
  1445. v = 0;
  1446. }
  1447. g->sb_hybrid[s_index++] = v;
  1448. }
  1449. }
  1450. /* high frequencies */
  1451. vlc = &huff_quad_vlc[g->count1table_select];
  1452. last_buf_ptr = NULL;
  1453. last_bit_buf = 0;
  1454. last_bit_cnt = 0;
  1455. while (s_index <= 572) {
  1456. pos = get_bits_count(&s->gb);
  1457. if (pos >= end_pos) {
  1458. if (pos > end_pos && last_buf_ptr != NULL) {
  1459. /* some encoders generate an incorrect size for this
  1460. part. We must go back into the data */
  1461. s_index -= 4;
  1462. #ifdef ALT_BITSTREAM_READER
  1463. s->gb.buffer = last_buf_ptr;
  1464. s->gb.index = last_bit_cnt;
  1465. #else
  1466. s->gb.buf_ptr = last_buf_ptr;
  1467. s->gb.bit_buf = last_bit_buf;
  1468. s->gb.bit_cnt = last_bit_cnt;
  1469. #endif
  1470. }
  1471. break;
  1472. }
  1473. #ifdef ALT_BITSTREAM_READER
  1474. last_buf_ptr = s->gb.buffer;
  1475. last_bit_cnt = s->gb.index;
  1476. #else
  1477. last_buf_ptr = s->gb.buf_ptr;
  1478. last_bit_buf = s->gb.bit_buf;
  1479. last_bit_cnt = s->gb.bit_cnt;
  1480. #endif
  1481. code = get_vlc(&s->gb, vlc);
  1482. dprintf("t=%d code=%d\n", g->count1table_select, code);
  1483. if (code < 0)
  1484. return -1;
  1485. for(i=0;i<4;i++) {
  1486. if (code & (8 >> i)) {
  1487. /* non zero value. Could use a hand coded function for
  1488. 'one' value */
  1489. v = l3_unscale(1, exponents[s_index]);
  1490. if(get_bits1(&s->gb))
  1491. v = -v;
  1492. } else {
  1493. v = 0;
  1494. }
  1495. g->sb_hybrid[s_index++] = v;
  1496. }
  1497. }
  1498. while (s_index < 576)
  1499. g->sb_hybrid[s_index++] = 0;
  1500. return 0;
  1501. }
  1502. /* Reorder short blocks from bitstream order to interleaved order. It
  1503. would be faster to do it in parsing, but the code would be far more
  1504. complicated */
  1505. static void reorder_block(MPADecodeContext *s, GranuleDef *g)
  1506. {
  1507. int i, j, k, len;
  1508. INT32 *ptr, *dst, *ptr1;
  1509. INT32 tmp[576];
  1510. if (g->block_type != 2)
  1511. return;
  1512. if (g->switch_point) {
  1513. if (s->sample_rate_index != 8) {
  1514. ptr = g->sb_hybrid + 36;
  1515. } else {
  1516. ptr = g->sb_hybrid + 48;
  1517. }
  1518. } else {
  1519. ptr = g->sb_hybrid;
  1520. }
  1521. for(i=g->short_start;i<13;i++) {
  1522. len = band_size_short[s->sample_rate_index][i];
  1523. ptr1 = ptr;
  1524. for(k=0;k<3;k++) {
  1525. dst = tmp + k;
  1526. for(j=len;j>0;j--) {
  1527. *dst = *ptr++;
  1528. dst += 3;
  1529. }
  1530. }
  1531. memcpy(ptr1, tmp, len * 3 * sizeof(INT32));
  1532. }
  1533. }
  1534. #define ISQRT2 FIXR(0.70710678118654752440)
  1535. static void compute_stereo(MPADecodeContext *s,
  1536. GranuleDef *g0, GranuleDef *g1)
  1537. {
  1538. int i, j, k, l;
  1539. INT32 v1, v2;
  1540. int sf_max, tmp0, tmp1, sf, len, non_zero_found;
  1541. INT32 (*is_tab)[16];
  1542. INT32 *tab0, *tab1;
  1543. int non_zero_found_short[3];
  1544. /* intensity stereo */
  1545. if (s->mode_ext & MODE_EXT_I_STEREO) {
  1546. if (!s->lsf) {
  1547. is_tab = is_table;
  1548. sf_max = 7;
  1549. } else {
  1550. is_tab = is_table_lsf[g1->scalefac_compress & 1];
  1551. sf_max = 16;
  1552. }
  1553. tab0 = g0->sb_hybrid + 576;
  1554. tab1 = g1->sb_hybrid + 576;
  1555. non_zero_found_short[0] = 0;
  1556. non_zero_found_short[1] = 0;
  1557. non_zero_found_short[2] = 0;
  1558. k = (13 - g1->short_start) * 3 + g1->long_end - 3;
  1559. for(i = 12;i >= g1->short_start;i--) {
  1560. /* for last band, use previous scale factor */
  1561. if (i != 11)
  1562. k -= 3;
  1563. len = band_size_short[s->sample_rate_index][i];
  1564. for(l=2;l>=0;l--) {
  1565. tab0 -= len;
  1566. tab1 -= len;
  1567. if (!non_zero_found_short[l]) {
  1568. /* test if non zero band. if so, stop doing i-stereo */
  1569. for(j=0;j<len;j++) {
  1570. if (tab1[j] != 0) {
  1571. non_zero_found_short[l] = 1;
  1572. goto found1;
  1573. }
  1574. }
  1575. sf = g1->scale_factors[k + l];
  1576. if (sf >= sf_max)
  1577. goto found1;
  1578. v1 = is_tab[0][sf];
  1579. v2 = is_tab[1][sf];
  1580. for(j=0;j<len;j++) {
  1581. tmp0 = tab0[j];
  1582. tab0[j] = MULL(tmp0, v1);
  1583. tab1[j] = MULL(tmp0, v2);
  1584. }
  1585. } else {
  1586. found1:
  1587. if (s->mode_ext & MODE_EXT_MS_STEREO) {
  1588. /* lower part of the spectrum : do ms stereo
  1589. if enabled */
  1590. for(j=0;j<len;j++) {
  1591. tmp0 = tab0[j];
  1592. tmp1 = tab1[j];
  1593. tab0[j] = MULL(tmp0 + tmp1, ISQRT2);
  1594. tab1[j] = MULL(tmp0 - tmp1, ISQRT2);
  1595. }
  1596. }
  1597. }
  1598. }
  1599. }
  1600. non_zero_found = non_zero_found_short[0] |
  1601. non_zero_found_short[1] |
  1602. non_zero_found_short[2];
  1603. for(i = g1->long_end - 1;i >= 0;i--) {
  1604. len = band_size_long[s->sample_rate_index][i];
  1605. tab0 -= len;
  1606. tab1 -= len;
  1607. /* test if non zero band. if so, stop doing i-stereo */
  1608. if (!non_zero_found) {
  1609. for(j=0;j<len;j++) {
  1610. if (tab1[j] != 0) {
  1611. non_zero_found = 1;
  1612. goto found2;
  1613. }
  1614. }
  1615. /* for last band, use previous scale factor */
  1616. k = (i == 21) ? 20 : i;
  1617. sf = g1->scale_factors[k];
  1618. if (sf >= sf_max)
  1619. goto found2;
  1620. v1 = is_tab[0][sf];
  1621. v2 = is_tab[1][sf];
  1622. for(j=0;j<len;j++) {
  1623. tmp0 = tab0[j];
  1624. tab0[j] = MULL(tmp0, v1);
  1625. tab1[j] = MULL(tmp0, v2);
  1626. }
  1627. } else {
  1628. found2:
  1629. if (s->mode_ext & MODE_EXT_MS_STEREO) {
  1630. /* lower part of the spectrum : do ms stereo
  1631. if enabled */
  1632. for(j=0;j<len;j++) {
  1633. tmp0 = tab0[j];
  1634. tmp1 = tab1[j];
  1635. tab0[j] = MULL(tmp0 + tmp1, ISQRT2);
  1636. tab1[j] = MULL(tmp0 - tmp1, ISQRT2);
  1637. }
  1638. }
  1639. }
  1640. }
  1641. } else if (s->mode_ext & MODE_EXT_MS_STEREO) {
  1642. /* ms stereo ONLY */
  1643. /* NOTE: the 1/sqrt(2) normalization factor is included in the
  1644. global gain */
  1645. tab0 = g0->sb_hybrid;
  1646. tab1 = g1->sb_hybrid;
  1647. for(i=0;i<576;i++) {
  1648. tmp0 = tab0[i];
  1649. tmp1 = tab1[i];
  1650. tab0[i] = tmp0 + tmp1;
  1651. tab1[i] = tmp0 - tmp1;
  1652. }
  1653. }
  1654. }
  1655. static void compute_antialias(MPADecodeContext *s,
  1656. GranuleDef *g)
  1657. {
  1658. INT32 *ptr, *p0, *p1, *csa;
  1659. int n, tmp0, tmp1, i, j;
  1660. /* we antialias only "long" bands */
  1661. if (g->block_type == 2) {
  1662. if (!g->switch_point)
  1663. return;
  1664. /* XXX: check this for 8000Hz case */
  1665. n = 1;
  1666. } else {
  1667. n = SBLIMIT - 1;
  1668. }
  1669. ptr = g->sb_hybrid + 18;
  1670. for(i = n;i > 0;i--) {
  1671. p0 = ptr - 1;
  1672. p1 = ptr;
  1673. csa = &csa_table[0][0];
  1674. for(j=0;j<8;j++) {
  1675. tmp0 = *p0;
  1676. tmp1 = *p1;
  1677. *p0 = FRAC_RND(MUL64(tmp0, csa[0]) - MUL64(tmp1, csa[1]));
  1678. *p1 = FRAC_RND(MUL64(tmp0, csa[1]) + MUL64(tmp1, csa[0]));
  1679. p0--;
  1680. p1++;
  1681. csa += 2;
  1682. }
  1683. ptr += 18;
  1684. }
  1685. }
  1686. static void compute_imdct(MPADecodeContext *s,
  1687. GranuleDef *g,
  1688. INT32 *sb_samples,
  1689. INT32 *mdct_buf)
  1690. {
  1691. INT32 *ptr, *win, *win1, *buf, *buf2, *out_ptr, *ptr1;
  1692. INT32 in[6];
  1693. INT32 out[36];
  1694. INT32 out2[12];
  1695. int i, j, k, mdct_long_end, v, sblimit;
  1696. /* find last non zero block */
  1697. ptr = g->sb_hybrid + 576;
  1698. ptr1 = g->sb_hybrid + 2 * 18;
  1699. while (ptr >= ptr1) {
  1700. ptr -= 6;
  1701. v = ptr[0] | ptr[1] | ptr[2] | ptr[3] | ptr[4] | ptr[5];
  1702. if (v != 0)
  1703. break;
  1704. }
  1705. sblimit = ((ptr - g->sb_hybrid) / 18) + 1;
  1706. if (g->block_type == 2) {
  1707. /* XXX: check for 8000 Hz */
  1708. if (g->switch_point)
  1709. mdct_long_end = 2;
  1710. else
  1711. mdct_long_end = 0;
  1712. } else {
  1713. mdct_long_end = sblimit;
  1714. }
  1715. buf = mdct_buf;
  1716. ptr = g->sb_hybrid;
  1717. for(j=0;j<mdct_long_end;j++) {
  1718. imdct36(out, ptr);
  1719. /* apply window & overlap with previous buffer */
  1720. out_ptr = sb_samples + j;
  1721. /* select window */
  1722. if (g->switch_point && j < 2)
  1723. win1 = mdct_win[0];
  1724. else
  1725. win1 = mdct_win[g->block_type];
  1726. /* select frequency inversion */
  1727. win = win1 + ((4 * 36) & -(j & 1));
  1728. for(i=0;i<18;i++) {
  1729. *out_ptr = MULL(out[i], win[i]) + buf[i];
  1730. buf[i] = MULL(out[i + 18], win[i + 18]);
  1731. out_ptr += SBLIMIT;
  1732. }
  1733. ptr += 18;
  1734. buf += 18;
  1735. }
  1736. for(j=mdct_long_end;j<sblimit;j++) {
  1737. for(i=0;i<6;i++) {
  1738. out[i] = 0;
  1739. out[6 + i] = 0;
  1740. out[30+i] = 0;
  1741. }
  1742. /* select frequency inversion */
  1743. win = mdct_win[2] + ((4 * 36) & -(j & 1));
  1744. buf2 = out + 6;
  1745. for(k=0;k<3;k++) {
  1746. /* reorder input for short mdct */
  1747. ptr1 = ptr + k;
  1748. for(i=0;i<6;i++) {
  1749. in[i] = *ptr1;
  1750. ptr1 += 3;
  1751. }
  1752. imdct12(out2, in);
  1753. /* apply 12 point window and do small overlap */
  1754. for(i=0;i<6;i++) {
  1755. buf2[i] = MULL(out2[i], win[i]) + buf2[i];
  1756. buf2[i + 6] = MULL(out2[i + 6], win[i + 6]);
  1757. }
  1758. buf2 += 6;
  1759. }
  1760. /* overlap */
  1761. out_ptr = sb_samples + j;
  1762. for(i=0;i<18;i++) {
  1763. *out_ptr = out[i] + buf[i];
  1764. buf[i] = out[i + 18];
  1765. out_ptr += SBLIMIT;
  1766. }
  1767. ptr += 18;
  1768. buf += 18;
  1769. }
  1770. /* zero bands */
  1771. for(j=sblimit;j<SBLIMIT;j++) {
  1772. /* overlap */
  1773. out_ptr = sb_samples + j;
  1774. for(i=0;i<18;i++) {
  1775. *out_ptr = buf[i];
  1776. buf[i] = 0;
  1777. out_ptr += SBLIMIT;
  1778. }
  1779. buf += 18;
  1780. }
  1781. }
  1782. #if defined(DEBUG)
  1783. void sample_dump(int fnum, INT32 *tab, int n)
  1784. {
  1785. static FILE *files[16], *f;
  1786. char buf[512];
  1787. f = files[fnum];
  1788. if (!f) {
  1789. sprintf(buf, "/tmp/out%d.pcm", fnum);
  1790. f = fopen(buf, "w");
  1791. if (!f)
  1792. return;
  1793. files[fnum] = f;
  1794. }
  1795. if (fnum == 0) {
  1796. int i;
  1797. static int pos = 0;
  1798. printf("pos=%d\n", pos);
  1799. for(i=0;i<n;i++) {
  1800. printf(" %f", (double)tab[i] / 32768.0);
  1801. if ((i % 18) == 17)
  1802. printf("\n");
  1803. }
  1804. pos += n;
  1805. }
  1806. fwrite(tab, 1, n * sizeof(INT32), f);
  1807. }
  1808. #endif
  1809. /* main layer3 decoding function */
  1810. static int mp_decode_layer3(MPADecodeContext *s)
  1811. {
  1812. int nb_granules, main_data_begin, private_bits;
  1813. int gr, ch, blocksplit_flag, i, j, k, n, bits_pos, bits_left;
  1814. GranuleDef granules[2][2], *g;
  1815. INT16 exponents[576];
  1816. /* read side info */
  1817. if (s->lsf) {
  1818. main_data_begin = get_bits(&s->gb, 8);
  1819. if (s->nb_channels == 2)
  1820. private_bits = get_bits(&s->gb, 2);
  1821. else
  1822. private_bits = get_bits(&s->gb, 1);
  1823. nb_granules = 1;
  1824. } else {
  1825. main_data_begin = get_bits(&s->gb, 9);
  1826. if (s->nb_channels == 2)
  1827. private_bits = get_bits(&s->gb, 3);
  1828. else
  1829. private_bits = get_bits(&s->gb, 5);
  1830. nb_granules = 2;
  1831. for(ch=0;ch<s->nb_channels;ch++) {
  1832. granules[ch][0].scfsi = 0; /* all scale factors are transmitted */
  1833. granules[ch][1].scfsi = get_bits(&s->gb, 4);
  1834. }
  1835. }
  1836. for(gr=0;gr<nb_granules;gr++) {
  1837. for(ch=0;ch<s->nb_channels;ch++) {
  1838. dprintf("gr=%d ch=%d: side_info\n", gr, ch);
  1839. g = &granules[ch][gr];
  1840. g->part2_3_length = get_bits(&s->gb, 12);
  1841. g->big_values = get_bits(&s->gb, 9);
  1842. g->global_gain = get_bits(&s->gb, 8);
  1843. /* if MS stereo only is selected, we precompute the
  1844. 1/sqrt(2) renormalization factor */
  1845. if ((s->mode_ext & (MODE_EXT_MS_STEREO | MODE_EXT_I_STEREO)) ==
  1846. MODE_EXT_MS_STEREO)
  1847. g->global_gain -= 2;
  1848. if (s->lsf)
  1849. g->scalefac_compress = get_bits(&s->gb, 9);
  1850. else
  1851. g->scalefac_compress = get_bits(&s->gb, 4);
  1852. blocksplit_flag = get_bits(&s->gb, 1);
  1853. if (blocksplit_flag) {
  1854. g->block_type = get_bits(&s->gb, 2);
  1855. if (g->block_type == 0)
  1856. return -1;
  1857. g->switch_point = get_bits(&s->gb, 1);
  1858. for(i=0;i<2;i++)
  1859. g->table_select[i] = get_bits(&s->gb, 5);
  1860. for(i=0;i<3;i++)
  1861. g->subblock_gain[i] = get_bits(&s->gb, 3);
  1862. /* compute huffman coded region sizes */
  1863. if (g->block_type == 2)
  1864. g->region_size[0] = (36 / 2);
  1865. else {
  1866. if (s->sample_rate_index <= 2)
  1867. g->region_size[0] = (36 / 2);
  1868. else if (s->sample_rate_index != 8)
  1869. g->region_size[0] = (54 / 2);
  1870. else
  1871. g->region_size[0] = (108 / 2);
  1872. }
  1873. g->region_size[1] = (576 / 2);
  1874. } else {
  1875. int region_address1, region_address2, l;
  1876. g->block_type = 0;
  1877. g->switch_point = 0;
  1878. for(i=0;i<3;i++)
  1879. g->table_select[i] = get_bits(&s->gb, 5);
  1880. /* compute huffman coded region sizes */
  1881. region_address1 = get_bits(&s->gb, 4);
  1882. region_address2 = get_bits(&s->gb, 3);
  1883. dprintf("region1=%d region2=%d\n",
  1884. region_address1, region_address2);
  1885. g->region_size[0] =
  1886. band_index_long[s->sample_rate_index][region_address1 + 1] >> 1;
  1887. l = region_address1 + region_address2 + 2;
  1888. /* should not overflow */
  1889. if (l > 22)
  1890. l = 22;
  1891. g->region_size[1] =
  1892. band_index_long[s->sample_rate_index][l] >> 1;
  1893. }
  1894. /* convert region offsets to region sizes and truncate
  1895. size to big_values */
  1896. g->region_size[2] = (576 / 2);
  1897. j = 0;
  1898. for(i=0;i<3;i++) {
  1899. k = g->region_size[i];
  1900. if (k > g->big_values)
  1901. k = g->big_values;
  1902. g->region_size[i] = k - j;
  1903. j = k;
  1904. }
  1905. /* compute band indexes */
  1906. if (g->block_type == 2) {
  1907. if (g->switch_point) {
  1908. /* if switched mode, we handle the 36 first samples as
  1909. long blocks. For 8000Hz, we handle the 48 first
  1910. exponents as long blocks (XXX: check this!) */
  1911. if (s->sample_rate_index <= 2)
  1912. g->long_end = 8;
  1913. else if (s->sample_rate_index != 8)
  1914. g->long_end = 6;
  1915. else
  1916. g->long_end = 4; /* 8000 Hz */
  1917. if (s->sample_rate_index != 8)
  1918. g->short_start = 3;
  1919. else
  1920. g->short_start = 2;
  1921. } else {
  1922. g->long_end = 0;
  1923. g->short_start = 0;
  1924. }
  1925. } else {
  1926. g->short_start = 13;
  1927. g->long_end = 22;
  1928. }
  1929. g->preflag = 0;
  1930. if (!s->lsf)
  1931. g->preflag = get_bits(&s->gb, 1);
  1932. g->scalefac_scale = get_bits(&s->gb, 1);
  1933. g->count1table_select = get_bits(&s->gb, 1);
  1934. dprintf("block_type=%d switch_point=%d\n",
  1935. g->block_type, g->switch_point);
  1936. }
  1937. }
  1938. /* now we get bits from the main_data_begin offset */
  1939. dprintf("seekback: %d\n", main_data_begin);
  1940. seek_to_maindata(s, main_data_begin);
  1941. for(gr=0;gr<nb_granules;gr++) {
  1942. for(ch=0;ch<s->nb_channels;ch++) {
  1943. g = &granules[ch][gr];
  1944. bits_pos = get_bits_count(&s->gb);
  1945. if (!s->lsf) {
  1946. UINT8 *sc;
  1947. int slen, slen1, slen2;
  1948. /* MPEG1 scale factors */
  1949. slen1 = slen_table[0][g->scalefac_compress];
  1950. slen2 = slen_table[1][g->scalefac_compress];
  1951. dprintf("slen1=%d slen2=%d\n", slen1, slen2);
  1952. if (g->block_type == 2) {
  1953. n = g->switch_point ? 17 : 18;
  1954. j = 0;
  1955. for(i=0;i<n;i++)
  1956. g->scale_factors[j++] = get_bitsz(&s->gb, slen1);
  1957. for(i=0;i<18;i++)
  1958. g->scale_factors[j++] = get_bitsz(&s->gb, slen2);
  1959. for(i=0;i<3;i++)
  1960. g->scale_factors[j++] = 0;
  1961. } else {
  1962. sc = granules[ch][0].scale_factors;
  1963. j = 0;
  1964. for(k=0;k<4;k++) {
  1965. n = (k == 0 ? 6 : 5);
  1966. if ((g->scfsi & (0x8 >> k)) == 0) {
  1967. slen = (k < 2) ? slen1 : slen2;
  1968. for(i=0;i<n;i++)
  1969. g->scale_factors[j++] = get_bitsz(&s->gb, slen);
  1970. } else {
  1971. /* simply copy from last granule */
  1972. for(i=0;i<n;i++) {
  1973. g->scale_factors[j] = sc[j];
  1974. j++;
  1975. }
  1976. }
  1977. }
  1978. g->scale_factors[j++] = 0;
  1979. }
  1980. #if defined(DEBUG)
  1981. {
  1982. printf("scfsi=%x gr=%d ch=%d scale_factors:\n",
  1983. g->scfsi, gr, ch);
  1984. for(i=0;i<j;i++)
  1985. printf(" %d", g->scale_factors[i]);
  1986. printf("\n");
  1987. }
  1988. #endif
  1989. } else {
  1990. int tindex, tindex2, slen[4], sl, sf;
  1991. /* LSF scale factors */
  1992. if (g->block_type == 2) {
  1993. tindex = g->switch_point ? 2 : 1;
  1994. } else {
  1995. tindex = 0;
  1996. }
  1997. sf = g->scalefac_compress;
  1998. if ((s->mode_ext & MODE_EXT_I_STEREO) && ch == 1) {
  1999. /* intensity stereo case */
  2000. sf >>= 1;
  2001. if (sf < 180) {
  2002. lsf_sf_expand(slen, sf, 6, 6, 0);
  2003. tindex2 = 3;
  2004. } else if (sf < 244) {
  2005. lsf_sf_expand(slen, sf - 180, 4, 4, 0);
  2006. tindex2 = 4;
  2007. } else {
  2008. lsf_sf_expand(slen, sf - 244, 3, 0, 0);
  2009. tindex2 = 5;
  2010. }
  2011. } else {
  2012. /* normal case */
  2013. if (sf < 400) {
  2014. lsf_sf_expand(slen, sf, 5, 4, 4);
  2015. tindex2 = 0;
  2016. } else if (sf < 500) {
  2017. lsf_sf_expand(slen, sf - 400, 5, 4, 0);
  2018. tindex2 = 1;
  2019. } else {
  2020. lsf_sf_expand(slen, sf - 500, 3, 0, 0);
  2021. tindex2 = 2;
  2022. g->preflag = 1;
  2023. }
  2024. }
  2025. j = 0;
  2026. for(k=0;k<4;k++) {
  2027. n = lsf_nsf_table[tindex2][tindex][k];
  2028. sl = slen[k];
  2029. for(i=0;i<n;i++)
  2030. g->scale_factors[j++] = get_bitsz(&s->gb, sl);
  2031. }
  2032. /* XXX: should compute exact size */
  2033. for(;j<40;j++)
  2034. g->scale_factors[j] = 0;
  2035. #if defined(DEBUG)
  2036. {
  2037. printf("gr=%d ch=%d scale_factors:\n",
  2038. gr, ch);
  2039. for(i=0;i<40;i++)
  2040. printf(" %d", g->scale_factors[i]);
  2041. printf("\n");
  2042. }
  2043. #endif
  2044. }
  2045. exponents_from_scale_factors(s, g, exponents);
  2046. /* read Huffman coded residue */
  2047. if (huffman_decode(s, g, exponents,
  2048. bits_pos + g->part2_3_length) < 0)
  2049. return -1;
  2050. #if defined(DEBUG)
  2051. sample_dump(0, g->sb_hybrid, 576);
  2052. #endif
  2053. /* skip extension bits */
  2054. bits_left = g->part2_3_length - (get_bits_count(&s->gb) - bits_pos);
  2055. if (bits_left < 0) {
  2056. dprintf("bits_left=%d\n", bits_left);
  2057. return -1;
  2058. }
  2059. while (bits_left >= 16) {
  2060. skip_bits(&s->gb, 16);
  2061. bits_left -= 16;
  2062. }
  2063. if (bits_left > 0)
  2064. skip_bits(&s->gb, bits_left);
  2065. } /* ch */
  2066. if (s->nb_channels == 2)
  2067. compute_stereo(s, &granules[0][gr], &granules[1][gr]);
  2068. for(ch=0;ch<s->nb_channels;ch++) {
  2069. g = &granules[ch][gr];
  2070. reorder_block(s, g);
  2071. #if defined(DEBUG)
  2072. sample_dump(0, g->sb_hybrid, 576);
  2073. #endif
  2074. compute_antialias(s, g);
  2075. #ifdef DEBUG
  2076. sample_dump(1, g->sb_hybrid, 576);
  2077. #endif
  2078. compute_imdct(s, g, &s->sb_samples[ch][18 * gr][0], s->mdct_buf[ch]);
  2079. #ifdef DEBUG
  2080. sample_dump(2, &s->sb_samples[ch][18 * gr][0], 576);
  2081. #endif
  2082. }
  2083. } /* gr */
  2084. return nb_granules * 18;
  2085. }
  2086. static int mp_decode_frame(MPADecodeContext *s,
  2087. short *samples)
  2088. {
  2089. int i, nb_frames, ch;
  2090. short *samples_ptr;
  2091. init_get_bits(&s->gb, s->inbuf + HEADER_SIZE,
  2092. s->inbuf_ptr - s->inbuf - HEADER_SIZE);
  2093. /* skip error protection field */
  2094. if (s->error_protection)
  2095. get_bits(&s->gb, 16);
  2096. dprintf("frame %d:\n", s->frame_count);
  2097. switch(s->layer) {
  2098. case 1:
  2099. nb_frames = mp_decode_layer1(s);
  2100. break;
  2101. case 2:
  2102. nb_frames = mp_decode_layer2(s);
  2103. break;
  2104. case 3:
  2105. default:
  2106. nb_frames = mp_decode_layer3(s);
  2107. break;
  2108. }
  2109. #if defined(DEBUG)
  2110. for(i=0;i<nb_frames;i++) {
  2111. for(ch=0;ch<s->nb_channels;ch++) {
  2112. int j;
  2113. printf("%d-%d:", i, ch);
  2114. for(j=0;j<SBLIMIT;j++)
  2115. printf(" %0.6f", (double)s->sb_samples[ch][i][j] / FRAC_ONE);
  2116. printf("\n");
  2117. }
  2118. }
  2119. #endif
  2120. /* apply the synthesis filter */
  2121. for(ch=0;ch<s->nb_channels;ch++) {
  2122. samples_ptr = samples + ch;
  2123. for(i=0;i<nb_frames;i++) {
  2124. synth_filter(s, ch, samples_ptr, s->nb_channels,
  2125. s->sb_samples[ch][i]);
  2126. samples_ptr += 32 * s->nb_channels;
  2127. }
  2128. }
  2129. #ifdef DEBUG
  2130. s->frame_count++;
  2131. #endif
  2132. return nb_frames * 32 * sizeof(short) * s->nb_channels;
  2133. }
  2134. static int decode_frame(AVCodecContext * avctx,
  2135. void *data, int *data_size,
  2136. UINT8 * buf, int buf_size)
  2137. {
  2138. MPADecodeContext *s = avctx->priv_data;
  2139. UINT32 header;
  2140. UINT8 *buf_ptr;
  2141. int len, out_size;
  2142. short *out_samples = data;
  2143. *data_size = 0;
  2144. buf_ptr = buf;
  2145. while (buf_size > 0) {
  2146. len = s->inbuf_ptr - s->inbuf;
  2147. if (s->frame_size == 0) {
  2148. /* special case for next header for first frame in free
  2149. format case (XXX: find a simpler method) */
  2150. if (s->free_format_next_header != 0) {
  2151. s->inbuf[0] = s->free_format_next_header >> 24;
  2152. s->inbuf[1] = s->free_format_next_header >> 16;
  2153. s->inbuf[2] = s->free_format_next_header >> 8;
  2154. s->inbuf[3] = s->free_format_next_header;
  2155. s->inbuf_ptr = s->inbuf + 4;
  2156. s->free_format_next_header = 0;
  2157. goto got_header;
  2158. }
  2159. /* no header seen : find one. We need at least HEADER_SIZE
  2160. bytes to parse it */
  2161. len = HEADER_SIZE - len;
  2162. if (len > buf_size)
  2163. len = buf_size;
  2164. if (len > 0) {
  2165. memcpy(s->inbuf_ptr, buf_ptr, len);
  2166. buf_ptr += len;
  2167. buf_size -= len;
  2168. s->inbuf_ptr += len;
  2169. }
  2170. if ((s->inbuf_ptr - s->inbuf) >= HEADER_SIZE) {
  2171. got_header:
  2172. header = (s->inbuf[0] << 24) | (s->inbuf[1] << 16) |
  2173. (s->inbuf[2] << 8) | s->inbuf[3];
  2174. if (check_header(header) < 0) {
  2175. /* no sync found : move by one byte (inefficient, but simple!) */
  2176. memcpy(s->inbuf, s->inbuf + 1, s->inbuf_ptr - s->inbuf - 1);
  2177. s->inbuf_ptr--;
  2178. dprintf("skip %x\n", header);
  2179. /* reset free format frame size to give a chance
  2180. to get a new bitrate */
  2181. s->free_format_frame_size = 0;
  2182. } else {
  2183. if (decode_header(s, header) == 1) {
  2184. /* free format: compute frame size */
  2185. s->frame_size = -1;
  2186. memcpy(s->inbuf, s->inbuf + 1, s->inbuf_ptr - s->inbuf - 1);
  2187. s->inbuf_ptr--;
  2188. } else {
  2189. /* update codec info */
  2190. avctx->sample_rate = s->sample_rate;
  2191. avctx->channels = s->nb_channels;
  2192. avctx->bit_rate = s->bit_rate;
  2193. avctx->frame_size = s->frame_size;
  2194. }
  2195. }
  2196. }
  2197. } else if (s->frame_size == -1) {
  2198. /* free format : find next sync to compute frame size */
  2199. len = MPA_MAX_CODED_FRAME_SIZE - len;
  2200. if (len > buf_size)
  2201. len = buf_size;
  2202. if (len == 0) {
  2203. /* frame too long: resync */
  2204. s->frame_size = 0;
  2205. } else {
  2206. UINT8 *p, *pend;
  2207. UINT32 header1;
  2208. int padding;
  2209. memcpy(s->inbuf_ptr, buf_ptr, len);
  2210. /* check for header */
  2211. p = s->inbuf_ptr - 3;
  2212. pend = s->inbuf_ptr + len - 4;
  2213. while (p <= pend) {
  2214. header = (p[0] << 24) | (p[1] << 16) |
  2215. (p[2] << 8) | p[3];
  2216. header1 = (s->inbuf[0] << 24) | (s->inbuf[1] << 16) |
  2217. (s->inbuf[2] << 8) | s->inbuf[3];
  2218. /* check with high probability that we have a
  2219. valid header */
  2220. if ((header & SAME_HEADER_MASK) ==
  2221. (header1 & SAME_HEADER_MASK)) {
  2222. /* header found: update pointers */
  2223. len = (p + 4) - s->inbuf_ptr;
  2224. buf_ptr += len;
  2225. buf_size -= len;
  2226. s->inbuf_ptr = p;
  2227. /* compute frame size */
  2228. s->free_format_next_header = header;
  2229. s->free_format_frame_size = s->inbuf_ptr - s->inbuf;
  2230. padding = (header1 >> 9) & 1;
  2231. if (s->layer == 1)
  2232. s->free_format_frame_size -= padding * 4;
  2233. else
  2234. s->free_format_frame_size -= padding;
  2235. dprintf("free frame size=%d padding=%d\n",
  2236. s->free_format_frame_size, padding);
  2237. decode_header(s, header1);
  2238. goto next_data;
  2239. }
  2240. p++;
  2241. }
  2242. /* not found: simply increase pointers */
  2243. buf_ptr += len;
  2244. s->inbuf_ptr += len;
  2245. buf_size -= len;
  2246. }
  2247. } else if (len < s->frame_size) {
  2248. if (s->frame_size > MPA_MAX_CODED_FRAME_SIZE)
  2249. s->frame_size = MPA_MAX_CODED_FRAME_SIZE;
  2250. len = s->frame_size - len;
  2251. if (len > buf_size)
  2252. len = buf_size;
  2253. memcpy(s->inbuf_ptr, buf_ptr, len);
  2254. buf_ptr += len;
  2255. s->inbuf_ptr += len;
  2256. buf_size -= len;
  2257. } else {
  2258. out_size = mp_decode_frame(s, out_samples);
  2259. s->inbuf_ptr = s->inbuf;
  2260. s->frame_size = 0;
  2261. *data_size = out_size;
  2262. break;
  2263. }
  2264. next_data:
  2265. }
  2266. return buf_ptr - buf;
  2267. }
  2268. AVCodec mp2_decoder =
  2269. {
  2270. "mp2",
  2271. CODEC_TYPE_AUDIO,
  2272. CODEC_ID_MP2,
  2273. sizeof(MPADecodeContext),
  2274. decode_init,
  2275. NULL,
  2276. NULL,
  2277. decode_frame,
  2278. };
  2279. AVCodec mp3_decoder =
  2280. {
  2281. "mp3",
  2282. CODEC_TYPE_AUDIO,
  2283. CODEC_ID_MP3LAME,
  2284. sizeof(MPADecodeContext),
  2285. decode_init,
  2286. NULL,
  2287. NULL,
  2288. decode_frame,
  2289. };