You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

901 lines
29KB

  1. /*
  2. * RTP input format
  3. * Copyright (c) 2002 Fabrice Bellard
  4. *
  5. * This file is part of FFmpeg.
  6. *
  7. * FFmpeg is free software; you can redistribute it and/or
  8. * modify it under the terms of the GNU Lesser General Public
  9. * License as published by the Free Software Foundation; either
  10. * version 2.1 of the License, or (at your option) any later version.
  11. *
  12. * FFmpeg is distributed in the hope that it will be useful,
  13. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  14. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  15. * Lesser General Public License for more details.
  16. *
  17. * You should have received a copy of the GNU Lesser General Public
  18. * License along with FFmpeg; if not, write to the Free Software
  19. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  20. */
  21. #include "libavutil/mathematics.h"
  22. #include "libavutil/avstring.h"
  23. #include "libavutil/time.h"
  24. #include "libavcodec/get_bits.h"
  25. #include "avformat.h"
  26. #include "network.h"
  27. #include "srtp.h"
  28. #include "url.h"
  29. #include "rtpdec.h"
  30. #include "rtpdec_formats.h"
  31. #define MIN_FEEDBACK_INTERVAL 200000 /* 200 ms in us */
  32. static RTPDynamicProtocolHandler gsm_dynamic_handler = {
  33. .enc_name = "GSM",
  34. .codec_type = AVMEDIA_TYPE_AUDIO,
  35. .codec_id = AV_CODEC_ID_GSM,
  36. };
  37. static RTPDynamicProtocolHandler realmedia_mp3_dynamic_handler = {
  38. .enc_name = "X-MP3-draft-00",
  39. .codec_type = AVMEDIA_TYPE_AUDIO,
  40. .codec_id = AV_CODEC_ID_MP3ADU,
  41. };
  42. static RTPDynamicProtocolHandler speex_dynamic_handler = {
  43. .enc_name = "speex",
  44. .codec_type = AVMEDIA_TYPE_AUDIO,
  45. .codec_id = AV_CODEC_ID_SPEEX,
  46. };
  47. static RTPDynamicProtocolHandler opus_dynamic_handler = {
  48. .enc_name = "opus",
  49. .codec_type = AVMEDIA_TYPE_AUDIO,
  50. .codec_id = AV_CODEC_ID_OPUS,
  51. };
  52. static RTPDynamicProtocolHandler ff_t140_dynamic_handler = {
  53. .enc_name = "t140",
  54. .codec_type = AVMEDIA_TYPE_SUBTITLE,
  55. .codec_id = AV_CODEC_ID_SUBRIP,
  56. };
  57. static RTPDynamicProtocolHandler *rtp_first_dynamic_payload_handler = NULL;
  58. void ff_register_dynamic_payload_handler(RTPDynamicProtocolHandler *handler)
  59. {
  60. handler->next = rtp_first_dynamic_payload_handler;
  61. rtp_first_dynamic_payload_handler = handler;
  62. }
  63. void ff_register_rtp_dynamic_payload_handlers(void)
  64. {
  65. ff_register_dynamic_payload_handler(&ff_ac3_dynamic_handler);
  66. ff_register_dynamic_payload_handler(&ff_amr_nb_dynamic_handler);
  67. ff_register_dynamic_payload_handler(&ff_amr_wb_dynamic_handler);
  68. ff_register_dynamic_payload_handler(&ff_dv_dynamic_handler);
  69. ff_register_dynamic_payload_handler(&ff_g726_16_dynamic_handler);
  70. ff_register_dynamic_payload_handler(&ff_g726_24_dynamic_handler);
  71. ff_register_dynamic_payload_handler(&ff_g726_32_dynamic_handler);
  72. ff_register_dynamic_payload_handler(&ff_g726_40_dynamic_handler);
  73. ff_register_dynamic_payload_handler(&ff_h261_dynamic_handler);
  74. ff_register_dynamic_payload_handler(&ff_h263_1998_dynamic_handler);
  75. ff_register_dynamic_payload_handler(&ff_h263_2000_dynamic_handler);
  76. ff_register_dynamic_payload_handler(&ff_h263_rfc2190_dynamic_handler);
  77. ff_register_dynamic_payload_handler(&ff_h264_dynamic_handler);
  78. ff_register_dynamic_payload_handler(&ff_hevc_dynamic_handler);
  79. ff_register_dynamic_payload_handler(&ff_ilbc_dynamic_handler);
  80. ff_register_dynamic_payload_handler(&ff_jpeg_dynamic_handler);
  81. ff_register_dynamic_payload_handler(&ff_mp4a_latm_dynamic_handler);
  82. ff_register_dynamic_payload_handler(&ff_mp4v_es_dynamic_handler);
  83. ff_register_dynamic_payload_handler(&ff_mpeg_audio_dynamic_handler);
  84. ff_register_dynamic_payload_handler(&ff_mpeg_audio_robust_dynamic_handler);
  85. ff_register_dynamic_payload_handler(&ff_mpeg_video_dynamic_handler);
  86. ff_register_dynamic_payload_handler(&ff_mpeg4_generic_dynamic_handler);
  87. ff_register_dynamic_payload_handler(&ff_mpegts_dynamic_handler);
  88. ff_register_dynamic_payload_handler(&ff_ms_rtp_asf_pfa_handler);
  89. ff_register_dynamic_payload_handler(&ff_ms_rtp_asf_pfv_handler);
  90. ff_register_dynamic_payload_handler(&ff_qcelp_dynamic_handler);
  91. ff_register_dynamic_payload_handler(&ff_qdm2_dynamic_handler);
  92. ff_register_dynamic_payload_handler(&ff_qt_rtp_aud_handler);
  93. ff_register_dynamic_payload_handler(&ff_qt_rtp_vid_handler);
  94. ff_register_dynamic_payload_handler(&ff_quicktime_rtp_aud_handler);
  95. ff_register_dynamic_payload_handler(&ff_quicktime_rtp_vid_handler);
  96. ff_register_dynamic_payload_handler(&ff_svq3_dynamic_handler);
  97. ff_register_dynamic_payload_handler(&ff_t140_dynamic_handler);
  98. ff_register_dynamic_payload_handler(&ff_theora_dynamic_handler);
  99. ff_register_dynamic_payload_handler(&ff_vorbis_dynamic_handler);
  100. ff_register_dynamic_payload_handler(&ff_vp8_dynamic_handler);
  101. ff_register_dynamic_payload_handler(&ff_vp9_dynamic_handler);
  102. ff_register_dynamic_payload_handler(&gsm_dynamic_handler);
  103. ff_register_dynamic_payload_handler(&opus_dynamic_handler);
  104. ff_register_dynamic_payload_handler(&realmedia_mp3_dynamic_handler);
  105. ff_register_dynamic_payload_handler(&speex_dynamic_handler);
  106. }
  107. RTPDynamicProtocolHandler *ff_rtp_handler_find_by_name(const char *name,
  108. enum AVMediaType codec_type)
  109. {
  110. RTPDynamicProtocolHandler *handler;
  111. for (handler = rtp_first_dynamic_payload_handler;
  112. handler; handler = handler->next)
  113. if (!av_strcasecmp(name, handler->enc_name) &&
  114. codec_type == handler->codec_type)
  115. return handler;
  116. return NULL;
  117. }
  118. RTPDynamicProtocolHandler *ff_rtp_handler_find_by_id(int id,
  119. enum AVMediaType codec_type)
  120. {
  121. RTPDynamicProtocolHandler *handler;
  122. for (handler = rtp_first_dynamic_payload_handler;
  123. handler; handler = handler->next)
  124. if (handler->static_payload_id && handler->static_payload_id == id &&
  125. codec_type == handler->codec_type)
  126. return handler;
  127. return NULL;
  128. }
  129. static int rtcp_parse_packet(RTPDemuxContext *s, const unsigned char *buf,
  130. int len)
  131. {
  132. int payload_len;
  133. while (len >= 4) {
  134. payload_len = FFMIN(len, (AV_RB16(buf + 2) + 1) * 4);
  135. switch (buf[1]) {
  136. case RTCP_SR:
  137. if (payload_len < 20) {
  138. av_log(NULL, AV_LOG_ERROR,
  139. "Invalid length for RTCP SR packet\n");
  140. return AVERROR_INVALIDDATA;
  141. }
  142. s->last_rtcp_reception_time = av_gettime_relative();
  143. s->last_rtcp_ntp_time = AV_RB64(buf + 8);
  144. s->last_rtcp_timestamp = AV_RB32(buf + 16);
  145. if (s->first_rtcp_ntp_time == AV_NOPTS_VALUE) {
  146. s->first_rtcp_ntp_time = s->last_rtcp_ntp_time;
  147. if (!s->base_timestamp)
  148. s->base_timestamp = s->last_rtcp_timestamp;
  149. s->rtcp_ts_offset = s->last_rtcp_timestamp - s->base_timestamp;
  150. }
  151. break;
  152. case RTCP_BYE:
  153. return -RTCP_BYE;
  154. }
  155. buf += payload_len;
  156. len -= payload_len;
  157. }
  158. return -1;
  159. }
  160. #define RTP_SEQ_MOD (1 << 16)
  161. static void rtp_init_statistics(RTPStatistics *s, uint16_t base_sequence)
  162. {
  163. memset(s, 0, sizeof(RTPStatistics));
  164. s->max_seq = base_sequence;
  165. s->probation = 1;
  166. }
  167. /*
  168. * Called whenever there is a large jump in sequence numbers,
  169. * or when they get out of probation...
  170. */
  171. static void rtp_init_sequence(RTPStatistics *s, uint16_t seq)
  172. {
  173. s->max_seq = seq;
  174. s->cycles = 0;
  175. s->base_seq = seq - 1;
  176. s->bad_seq = RTP_SEQ_MOD + 1;
  177. s->received = 0;
  178. s->expected_prior = 0;
  179. s->received_prior = 0;
  180. s->jitter = 0;
  181. s->transit = 0;
  182. }
  183. /* Returns 1 if we should handle this packet. */
  184. static int rtp_valid_packet_in_sequence(RTPStatistics *s, uint16_t seq)
  185. {
  186. uint16_t udelta = seq - s->max_seq;
  187. const int MAX_DROPOUT = 3000;
  188. const int MAX_MISORDER = 100;
  189. const int MIN_SEQUENTIAL = 2;
  190. /* source not valid until MIN_SEQUENTIAL packets with sequence
  191. * seq. numbers have been received */
  192. if (s->probation) {
  193. if (seq == s->max_seq + 1) {
  194. s->probation--;
  195. s->max_seq = seq;
  196. if (s->probation == 0) {
  197. rtp_init_sequence(s, seq);
  198. s->received++;
  199. return 1;
  200. }
  201. } else {
  202. s->probation = MIN_SEQUENTIAL - 1;
  203. s->max_seq = seq;
  204. }
  205. } else if (udelta < MAX_DROPOUT) {
  206. // in order, with permissible gap
  207. if (seq < s->max_seq) {
  208. // sequence number wrapped; count another 64k cycles
  209. s->cycles += RTP_SEQ_MOD;
  210. }
  211. s->max_seq = seq;
  212. } else if (udelta <= RTP_SEQ_MOD - MAX_MISORDER) {
  213. // sequence made a large jump...
  214. if (seq == s->bad_seq) {
  215. /* two sequential packets -- assume that the other side
  216. * restarted without telling us; just resync. */
  217. rtp_init_sequence(s, seq);
  218. } else {
  219. s->bad_seq = (seq + 1) & (RTP_SEQ_MOD - 1);
  220. return 0;
  221. }
  222. } else {
  223. // duplicate or reordered packet...
  224. }
  225. s->received++;
  226. return 1;
  227. }
  228. static void rtcp_update_jitter(RTPStatistics *s, uint32_t sent_timestamp,
  229. uint32_t arrival_timestamp)
  230. {
  231. // Most of this is pretty straight from RFC 3550 appendix A.8
  232. uint32_t transit = arrival_timestamp - sent_timestamp;
  233. uint32_t prev_transit = s->transit;
  234. int32_t d = transit - prev_transit;
  235. // Doing the FFABS() call directly on the "transit - prev_transit"
  236. // expression doesn't work, since it's an unsigned expression. Doing the
  237. // transit calculation in unsigned is desired though, since it most
  238. // probably will need to wrap around.
  239. d = FFABS(d);
  240. s->transit = transit;
  241. if (!prev_transit)
  242. return;
  243. s->jitter += d - (int32_t) ((s->jitter + 8) >> 4);
  244. }
  245. int ff_rtp_check_and_send_back_rr(RTPDemuxContext *s, URLContext *fd,
  246. AVIOContext *avio, int count)
  247. {
  248. AVIOContext *pb;
  249. uint8_t *buf;
  250. int len;
  251. int rtcp_bytes;
  252. RTPStatistics *stats = &s->statistics;
  253. uint32_t lost;
  254. uint32_t extended_max;
  255. uint32_t expected_interval;
  256. uint32_t received_interval;
  257. int32_t lost_interval;
  258. uint32_t expected;
  259. uint32_t fraction;
  260. if ((!fd && !avio) || (count < 1))
  261. return -1;
  262. /* TODO: I think this is way too often; RFC 1889 has algorithm for this */
  263. /* XXX: MPEG pts hardcoded. RTCP send every 0.5 seconds */
  264. s->octet_count += count;
  265. rtcp_bytes = ((s->octet_count - s->last_octet_count) * RTCP_TX_RATIO_NUM) /
  266. RTCP_TX_RATIO_DEN;
  267. rtcp_bytes /= 50; // mmu_man: that's enough for me... VLC sends much less btw !?
  268. if (rtcp_bytes < 28)
  269. return -1;
  270. s->last_octet_count = s->octet_count;
  271. if (!fd)
  272. pb = avio;
  273. else if (avio_open_dyn_buf(&pb) < 0)
  274. return -1;
  275. // Receiver Report
  276. avio_w8(pb, (RTP_VERSION << 6) + 1); /* 1 report block */
  277. avio_w8(pb, RTCP_RR);
  278. avio_wb16(pb, 7); /* length in words - 1 */
  279. // our own SSRC: we use the server's SSRC + 1 to avoid conflicts
  280. avio_wb32(pb, s->ssrc + 1);
  281. avio_wb32(pb, s->ssrc); // server SSRC
  282. // some placeholders we should really fill...
  283. // RFC 1889/p64
  284. extended_max = stats->cycles + stats->max_seq;
  285. expected = extended_max - stats->base_seq;
  286. lost = expected - stats->received;
  287. lost = FFMIN(lost, 0xffffff); // clamp it since it's only 24 bits...
  288. expected_interval = expected - stats->expected_prior;
  289. stats->expected_prior = expected;
  290. received_interval = stats->received - stats->received_prior;
  291. stats->received_prior = stats->received;
  292. lost_interval = expected_interval - received_interval;
  293. if (expected_interval == 0 || lost_interval <= 0)
  294. fraction = 0;
  295. else
  296. fraction = (lost_interval << 8) / expected_interval;
  297. fraction = (fraction << 24) | lost;
  298. avio_wb32(pb, fraction); /* 8 bits of fraction, 24 bits of total packets lost */
  299. avio_wb32(pb, extended_max); /* max sequence received */
  300. avio_wb32(pb, stats->jitter >> 4); /* jitter */
  301. if (s->last_rtcp_ntp_time == AV_NOPTS_VALUE) {
  302. avio_wb32(pb, 0); /* last SR timestamp */
  303. avio_wb32(pb, 0); /* delay since last SR */
  304. } else {
  305. uint32_t middle_32_bits = s->last_rtcp_ntp_time >> 16; // this is valid, right? do we need to handle 64 bit values special?
  306. uint32_t delay_since_last = av_rescale(av_gettime_relative() - s->last_rtcp_reception_time,
  307. 65536, AV_TIME_BASE);
  308. avio_wb32(pb, middle_32_bits); /* last SR timestamp */
  309. avio_wb32(pb, delay_since_last); /* delay since last SR */
  310. }
  311. // CNAME
  312. avio_w8(pb, (RTP_VERSION << 6) + 1); /* 1 report block */
  313. avio_w8(pb, RTCP_SDES);
  314. len = strlen(s->hostname);
  315. avio_wb16(pb, (7 + len + 3) / 4); /* length in words - 1 */
  316. avio_wb32(pb, s->ssrc + 1);
  317. avio_w8(pb, 0x01);
  318. avio_w8(pb, len);
  319. avio_write(pb, s->hostname, len);
  320. avio_w8(pb, 0); /* END */
  321. // padding
  322. for (len = (7 + len) % 4; len % 4; len++)
  323. avio_w8(pb, 0);
  324. avio_flush(pb);
  325. if (!fd)
  326. return 0;
  327. len = avio_close_dyn_buf(pb, &buf);
  328. if ((len > 0) && buf) {
  329. int av_unused result;
  330. av_dlog(s->ic, "sending %d bytes of RR\n", len);
  331. result = ffurl_write(fd, buf, len);
  332. av_dlog(s->ic, "result from ffurl_write: %d\n", result);
  333. av_free(buf);
  334. }
  335. return 0;
  336. }
  337. void ff_rtp_send_punch_packets(URLContext *rtp_handle)
  338. {
  339. AVIOContext *pb;
  340. uint8_t *buf;
  341. int len;
  342. /* Send a small RTP packet */
  343. if (avio_open_dyn_buf(&pb) < 0)
  344. return;
  345. avio_w8(pb, (RTP_VERSION << 6));
  346. avio_w8(pb, 0); /* Payload type */
  347. avio_wb16(pb, 0); /* Seq */
  348. avio_wb32(pb, 0); /* Timestamp */
  349. avio_wb32(pb, 0); /* SSRC */
  350. avio_flush(pb);
  351. len = avio_close_dyn_buf(pb, &buf);
  352. if ((len > 0) && buf)
  353. ffurl_write(rtp_handle, buf, len);
  354. av_free(buf);
  355. /* Send a minimal RTCP RR */
  356. if (avio_open_dyn_buf(&pb) < 0)
  357. return;
  358. avio_w8(pb, (RTP_VERSION << 6));
  359. avio_w8(pb, RTCP_RR); /* receiver report */
  360. avio_wb16(pb, 1); /* length in words - 1 */
  361. avio_wb32(pb, 0); /* our own SSRC */
  362. avio_flush(pb);
  363. len = avio_close_dyn_buf(pb, &buf);
  364. if ((len > 0) && buf)
  365. ffurl_write(rtp_handle, buf, len);
  366. av_free(buf);
  367. }
  368. static int find_missing_packets(RTPDemuxContext *s, uint16_t *first_missing,
  369. uint16_t *missing_mask)
  370. {
  371. int i;
  372. uint16_t next_seq = s->seq + 1;
  373. RTPPacket *pkt = s->queue;
  374. if (!pkt || pkt->seq == next_seq)
  375. return 0;
  376. *missing_mask = 0;
  377. for (i = 1; i <= 16; i++) {
  378. uint16_t missing_seq = next_seq + i;
  379. while (pkt) {
  380. int16_t diff = pkt->seq - missing_seq;
  381. if (diff >= 0)
  382. break;
  383. pkt = pkt->next;
  384. }
  385. if (!pkt)
  386. break;
  387. if (pkt->seq == missing_seq)
  388. continue;
  389. *missing_mask |= 1 << (i - 1);
  390. }
  391. *first_missing = next_seq;
  392. return 1;
  393. }
  394. int ff_rtp_send_rtcp_feedback(RTPDemuxContext *s, URLContext *fd,
  395. AVIOContext *avio)
  396. {
  397. int len, need_keyframe, missing_packets;
  398. AVIOContext *pb;
  399. uint8_t *buf;
  400. int64_t now;
  401. uint16_t first_missing = 0, missing_mask = 0;
  402. if (!fd && !avio)
  403. return -1;
  404. need_keyframe = s->handler && s->handler->need_keyframe &&
  405. s->handler->need_keyframe(s->dynamic_protocol_context);
  406. missing_packets = find_missing_packets(s, &first_missing, &missing_mask);
  407. if (!need_keyframe && !missing_packets)
  408. return 0;
  409. /* Send new feedback if enough time has elapsed since the last
  410. * feedback packet. */
  411. now = av_gettime_relative();
  412. if (s->last_feedback_time &&
  413. (now - s->last_feedback_time) < MIN_FEEDBACK_INTERVAL)
  414. return 0;
  415. s->last_feedback_time = now;
  416. if (!fd)
  417. pb = avio;
  418. else if (avio_open_dyn_buf(&pb) < 0)
  419. return -1;
  420. if (need_keyframe) {
  421. avio_w8(pb, (RTP_VERSION << 6) | 1); /* PLI */
  422. avio_w8(pb, RTCP_PSFB);
  423. avio_wb16(pb, 2); /* length in words - 1 */
  424. // our own SSRC: we use the server's SSRC + 1 to avoid conflicts
  425. avio_wb32(pb, s->ssrc + 1);
  426. avio_wb32(pb, s->ssrc); // server SSRC
  427. }
  428. if (missing_packets) {
  429. avio_w8(pb, (RTP_VERSION << 6) | 1); /* NACK */
  430. avio_w8(pb, RTCP_RTPFB);
  431. avio_wb16(pb, 3); /* length in words - 1 */
  432. avio_wb32(pb, s->ssrc + 1);
  433. avio_wb32(pb, s->ssrc); // server SSRC
  434. avio_wb16(pb, first_missing);
  435. avio_wb16(pb, missing_mask);
  436. }
  437. avio_flush(pb);
  438. if (!fd)
  439. return 0;
  440. len = avio_close_dyn_buf(pb, &buf);
  441. if (len > 0 && buf) {
  442. ffurl_write(fd, buf, len);
  443. av_free(buf);
  444. }
  445. return 0;
  446. }
  447. /**
  448. * open a new RTP parse context for stream 'st'. 'st' can be NULL for
  449. * MPEG2-TS streams.
  450. */
  451. RTPDemuxContext *ff_rtp_parse_open(AVFormatContext *s1, AVStream *st,
  452. int payload_type, int queue_size)
  453. {
  454. RTPDemuxContext *s;
  455. s = av_mallocz(sizeof(RTPDemuxContext));
  456. if (!s)
  457. return NULL;
  458. s->payload_type = payload_type;
  459. s->last_rtcp_ntp_time = AV_NOPTS_VALUE;
  460. s->first_rtcp_ntp_time = AV_NOPTS_VALUE;
  461. s->ic = s1;
  462. s->st = st;
  463. s->queue_size = queue_size;
  464. rtp_init_statistics(&s->statistics, 0);
  465. if (st) {
  466. switch (st->codec->codec_id) {
  467. case AV_CODEC_ID_ADPCM_G722:
  468. /* According to RFC 3551, the stream clock rate is 8000
  469. * even if the sample rate is 16000. */
  470. if (st->codec->sample_rate == 8000)
  471. st->codec->sample_rate = 16000;
  472. break;
  473. default:
  474. break;
  475. }
  476. }
  477. // needed to send back RTCP RR in RTSP sessions
  478. gethostname(s->hostname, sizeof(s->hostname));
  479. return s;
  480. }
  481. void ff_rtp_parse_set_dynamic_protocol(RTPDemuxContext *s, PayloadContext *ctx,
  482. RTPDynamicProtocolHandler *handler)
  483. {
  484. s->dynamic_protocol_context = ctx;
  485. s->handler = handler;
  486. }
  487. void ff_rtp_parse_set_crypto(RTPDemuxContext *s, const char *suite,
  488. const char *params)
  489. {
  490. if (!ff_srtp_set_crypto(&s->srtp, suite, params))
  491. s->srtp_enabled = 1;
  492. }
  493. /**
  494. * This was the second switch in rtp_parse packet.
  495. * Normalizes time, if required, sets stream_index, etc.
  496. */
  497. static void finalize_packet(RTPDemuxContext *s, AVPacket *pkt, uint32_t timestamp)
  498. {
  499. if (pkt->pts != AV_NOPTS_VALUE || pkt->dts != AV_NOPTS_VALUE)
  500. return; /* Timestamp already set by depacketizer */
  501. if (timestamp == RTP_NOTS_VALUE)
  502. return;
  503. if (s->last_rtcp_ntp_time != AV_NOPTS_VALUE && s->ic->nb_streams > 1) {
  504. int64_t addend;
  505. int delta_timestamp;
  506. /* compute pts from timestamp with received ntp_time */
  507. delta_timestamp = timestamp - s->last_rtcp_timestamp;
  508. /* convert to the PTS timebase */
  509. addend = av_rescale(s->last_rtcp_ntp_time - s->first_rtcp_ntp_time,
  510. s->st->time_base.den,
  511. (uint64_t) s->st->time_base.num << 32);
  512. pkt->pts = s->range_start_offset + s->rtcp_ts_offset + addend +
  513. delta_timestamp;
  514. return;
  515. }
  516. if (!s->base_timestamp)
  517. s->base_timestamp = timestamp;
  518. /* assume that the difference is INT32_MIN < x < INT32_MAX,
  519. * but allow the first timestamp to exceed INT32_MAX */
  520. if (!s->timestamp)
  521. s->unwrapped_timestamp += timestamp;
  522. else
  523. s->unwrapped_timestamp += (int32_t)(timestamp - s->timestamp);
  524. s->timestamp = timestamp;
  525. pkt->pts = s->unwrapped_timestamp + s->range_start_offset -
  526. s->base_timestamp;
  527. }
  528. static int rtp_parse_packet_internal(RTPDemuxContext *s, AVPacket *pkt,
  529. const uint8_t *buf, int len)
  530. {
  531. unsigned int ssrc;
  532. int payload_type, seq, flags = 0;
  533. int ext, csrc;
  534. AVStream *st;
  535. uint32_t timestamp;
  536. int rv = 0;
  537. csrc = buf[0] & 0x0f;
  538. ext = buf[0] & 0x10;
  539. payload_type = buf[1] & 0x7f;
  540. if (buf[1] & 0x80)
  541. flags |= RTP_FLAG_MARKER;
  542. seq = AV_RB16(buf + 2);
  543. timestamp = AV_RB32(buf + 4);
  544. ssrc = AV_RB32(buf + 8);
  545. /* store the ssrc in the RTPDemuxContext */
  546. s->ssrc = ssrc;
  547. /* NOTE: we can handle only one payload type */
  548. if (s->payload_type != payload_type)
  549. return -1;
  550. st = s->st;
  551. // only do something with this if all the rtp checks pass...
  552. if (!rtp_valid_packet_in_sequence(&s->statistics, seq)) {
  553. av_log(st ? st->codec : NULL, AV_LOG_ERROR,
  554. "RTP: PT=%02x: bad cseq %04x expected=%04x\n",
  555. payload_type, seq, ((s->seq + 1) & 0xffff));
  556. return -1;
  557. }
  558. if (buf[0] & 0x20) {
  559. int padding = buf[len - 1];
  560. if (len >= 12 + padding)
  561. len -= padding;
  562. }
  563. s->seq = seq;
  564. len -= 12;
  565. buf += 12;
  566. len -= 4 * csrc;
  567. buf += 4 * csrc;
  568. if (len < 0)
  569. return AVERROR_INVALIDDATA;
  570. /* RFC 3550 Section 5.3.1 RTP Header Extension handling */
  571. if (ext) {
  572. if (len < 4)
  573. return -1;
  574. /* calculate the header extension length (stored as number
  575. * of 32-bit words) */
  576. ext = (AV_RB16(buf + 2) + 1) << 2;
  577. if (len < ext)
  578. return -1;
  579. // skip past RTP header extension
  580. len -= ext;
  581. buf += ext;
  582. }
  583. if (s->handler && s->handler->parse_packet) {
  584. rv = s->handler->parse_packet(s->ic, s->dynamic_protocol_context,
  585. s->st, pkt, &timestamp, buf, len, seq,
  586. flags);
  587. } else if (st) {
  588. if ((rv = av_new_packet(pkt, len)) < 0)
  589. return rv;
  590. memcpy(pkt->data, buf, len);
  591. pkt->stream_index = st->index;
  592. } else {
  593. return AVERROR(EINVAL);
  594. }
  595. // now perform timestamp things....
  596. finalize_packet(s, pkt, timestamp);
  597. return rv;
  598. }
  599. void ff_rtp_reset_packet_queue(RTPDemuxContext *s)
  600. {
  601. while (s->queue) {
  602. RTPPacket *next = s->queue->next;
  603. av_freep(&s->queue->buf);
  604. av_freep(&s->queue);
  605. s->queue = next;
  606. }
  607. s->seq = 0;
  608. s->queue_len = 0;
  609. s->prev_ret = 0;
  610. }
  611. static void enqueue_packet(RTPDemuxContext *s, uint8_t *buf, int len)
  612. {
  613. uint16_t seq = AV_RB16(buf + 2);
  614. RTPPacket **cur = &s->queue, *packet;
  615. /* Find the correct place in the queue to insert the packet */
  616. while (*cur) {
  617. int16_t diff = seq - (*cur)->seq;
  618. if (diff < 0)
  619. break;
  620. cur = &(*cur)->next;
  621. }
  622. packet = av_mallocz(sizeof(*packet));
  623. if (!packet)
  624. return;
  625. packet->recvtime = av_gettime_relative();
  626. packet->seq = seq;
  627. packet->len = len;
  628. packet->buf = buf;
  629. packet->next = *cur;
  630. *cur = packet;
  631. s->queue_len++;
  632. }
  633. static int has_next_packet(RTPDemuxContext *s)
  634. {
  635. return s->queue && s->queue->seq == (uint16_t) (s->seq + 1);
  636. }
  637. int64_t ff_rtp_queued_packet_time(RTPDemuxContext *s)
  638. {
  639. return s->queue ? s->queue->recvtime : 0;
  640. }
  641. static int rtp_parse_queued_packet(RTPDemuxContext *s, AVPacket *pkt)
  642. {
  643. int rv;
  644. RTPPacket *next;
  645. if (s->queue_len <= 0)
  646. return -1;
  647. if (!has_next_packet(s))
  648. av_log(s->st ? s->st->codec : NULL, AV_LOG_WARNING,
  649. "RTP: missed %d packets\n", s->queue->seq - s->seq - 1);
  650. /* Parse the first packet in the queue, and dequeue it */
  651. rv = rtp_parse_packet_internal(s, pkt, s->queue->buf, s->queue->len);
  652. next = s->queue->next;
  653. av_freep(&s->queue->buf);
  654. av_freep(&s->queue);
  655. s->queue = next;
  656. s->queue_len--;
  657. return rv;
  658. }
  659. static int rtp_parse_one_packet(RTPDemuxContext *s, AVPacket *pkt,
  660. uint8_t **bufptr, int len)
  661. {
  662. uint8_t *buf = bufptr ? *bufptr : NULL;
  663. int flags = 0;
  664. uint32_t timestamp;
  665. int rv = 0;
  666. if (!buf) {
  667. /* If parsing of the previous packet actually returned 0 or an error,
  668. * there's nothing more to be parsed from that packet, but we may have
  669. * indicated that we can return the next enqueued packet. */
  670. if (s->prev_ret <= 0)
  671. return rtp_parse_queued_packet(s, pkt);
  672. /* return the next packets, if any */
  673. if (s->handler && s->handler->parse_packet) {
  674. /* timestamp should be overwritten by parse_packet, if not,
  675. * the packet is left with pts == AV_NOPTS_VALUE */
  676. timestamp = RTP_NOTS_VALUE;
  677. rv = s->handler->parse_packet(s->ic, s->dynamic_protocol_context,
  678. s->st, pkt, &timestamp, NULL, 0, 0,
  679. flags);
  680. finalize_packet(s, pkt, timestamp);
  681. return rv;
  682. }
  683. }
  684. if (len < 12)
  685. return -1;
  686. if ((buf[0] & 0xc0) != (RTP_VERSION << 6))
  687. return -1;
  688. if (RTP_PT_IS_RTCP(buf[1])) {
  689. return rtcp_parse_packet(s, buf, len);
  690. }
  691. if (s->st) {
  692. int64_t received = av_gettime_relative();
  693. uint32_t arrival_ts = av_rescale_q(received, AV_TIME_BASE_Q,
  694. s->st->time_base);
  695. timestamp = AV_RB32(buf + 4);
  696. // Calculate the jitter immediately, before queueing the packet
  697. // into the reordering queue.
  698. rtcp_update_jitter(&s->statistics, timestamp, arrival_ts);
  699. }
  700. if ((s->seq == 0 && !s->queue) || s->queue_size <= 1) {
  701. /* First packet, or no reordering */
  702. return rtp_parse_packet_internal(s, pkt, buf, len);
  703. } else {
  704. uint16_t seq = AV_RB16(buf + 2);
  705. int16_t diff = seq - s->seq;
  706. if (diff < 0) {
  707. /* Packet older than the previously emitted one, drop */
  708. av_log(s->st ? s->st->codec : NULL, AV_LOG_WARNING,
  709. "RTP: dropping old packet received too late\n");
  710. return -1;
  711. } else if (diff <= 1) {
  712. /* Correct packet */
  713. rv = rtp_parse_packet_internal(s, pkt, buf, len);
  714. return rv;
  715. } else {
  716. /* Still missing some packet, enqueue this one. */
  717. enqueue_packet(s, buf, len);
  718. *bufptr = NULL;
  719. /* Return the first enqueued packet if the queue is full,
  720. * even if we're missing something */
  721. if (s->queue_len >= s->queue_size)
  722. return rtp_parse_queued_packet(s, pkt);
  723. return -1;
  724. }
  725. }
  726. }
  727. /**
  728. * Parse an RTP or RTCP packet directly sent as a buffer.
  729. * @param s RTP parse context.
  730. * @param pkt returned packet
  731. * @param bufptr pointer to the input buffer or NULL to read the next packets
  732. * @param len buffer len
  733. * @return 0 if a packet is returned, 1 if a packet is returned and more can follow
  734. * (use buf as NULL to read the next). -1 if no packet (error or no more packet).
  735. */
  736. int ff_rtp_parse_packet(RTPDemuxContext *s, AVPacket *pkt,
  737. uint8_t **bufptr, int len)
  738. {
  739. int rv;
  740. if (s->srtp_enabled && bufptr && ff_srtp_decrypt(&s->srtp, *bufptr, &len) < 0)
  741. return -1;
  742. rv = rtp_parse_one_packet(s, pkt, bufptr, len);
  743. s->prev_ret = rv;
  744. while (rv == AVERROR(EAGAIN) && has_next_packet(s))
  745. rv = rtp_parse_queued_packet(s, pkt);
  746. return rv ? rv : has_next_packet(s);
  747. }
  748. void ff_rtp_parse_close(RTPDemuxContext *s)
  749. {
  750. ff_rtp_reset_packet_queue(s);
  751. ff_srtp_free(&s->srtp);
  752. av_free(s);
  753. }
  754. int ff_parse_fmtp(AVFormatContext *s,
  755. AVStream *stream, PayloadContext *data, const char *p,
  756. int (*parse_fmtp)(AVFormatContext *s,
  757. AVStream *stream,
  758. PayloadContext *data,
  759. char *attr, char *value))
  760. {
  761. char attr[256];
  762. char *value;
  763. int res;
  764. int value_size = strlen(p) + 1;
  765. if (!(value = av_malloc(value_size))) {
  766. av_log(NULL, AV_LOG_ERROR, "Failed to allocate data for FMTP.\n");
  767. return AVERROR(ENOMEM);
  768. }
  769. // remove protocol identifier
  770. while (*p && *p == ' ')
  771. p++; // strip spaces
  772. while (*p && *p != ' ')
  773. p++; // eat protocol identifier
  774. while (*p && *p == ' ')
  775. p++; // strip trailing spaces
  776. while (ff_rtsp_next_attr_and_value(&p,
  777. attr, sizeof(attr),
  778. value, value_size)) {
  779. res = parse_fmtp(s, stream, data, attr, value);
  780. if (res < 0 && res != AVERROR_PATCHWELCOME) {
  781. av_free(value);
  782. return res;
  783. }
  784. }
  785. av_free(value);
  786. return 0;
  787. }
  788. int ff_rtp_finalize_packet(AVPacket *pkt, AVIOContext **dyn_buf, int stream_idx)
  789. {
  790. int ret;
  791. av_init_packet(pkt);
  792. pkt->size = avio_close_dyn_buf(*dyn_buf, &pkt->data);
  793. pkt->stream_index = stream_idx;
  794. *dyn_buf = NULL;
  795. if ((ret = av_packet_from_data(pkt, pkt->data, pkt->size)) < 0) {
  796. av_freep(&pkt->data);
  797. return ret;
  798. }
  799. return pkt->size;
  800. }