You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

4196 lines
144KB

  1. /*
  2. * VC-1 and WMV3 decoder
  3. * Copyright (c) 2006-2007 Konstantin Shishkov
  4. * Partly based on vc9.c (c) 2005 Anonymous, Alex Beregszaszi, Michael Niedermayer
  5. *
  6. * This file is part of FFmpeg.
  7. *
  8. * FFmpeg is free software; you can redistribute it and/or
  9. * modify it under the terms of the GNU Lesser General Public
  10. * License as published by the Free Software Foundation; either
  11. * version 2.1 of the License, or (at your option) any later version.
  12. *
  13. * FFmpeg is distributed in the hope that it will be useful,
  14. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  15. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  16. * Lesser General Public License for more details.
  17. *
  18. * You should have received a copy of the GNU Lesser General Public
  19. * License along with FFmpeg; if not, write to the Free Software
  20. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  21. */
  22. /**
  23. * @file vc1.c
  24. * VC-1 and WMV3 decoder
  25. *
  26. */
  27. #include "dsputil.h"
  28. #include "avcodec.h"
  29. #include "mpegvideo.h"
  30. #include "vc1.h"
  31. #include "vc1data.h"
  32. #include "vc1acdata.h"
  33. #include "msmpeg4data.h"
  34. #undef NDEBUG
  35. #include <assert.h>
  36. #define MB_INTRA_VLC_BITS 9
  37. #define DC_VLC_BITS 9
  38. #define AC_VLC_BITS 9
  39. static const uint16_t table_mb_intra[64][2];
  40. /**
  41. * Get unary code of limited length
  42. * @fixme FIXME Slow and ugly
  43. * @param gb GetBitContext
  44. * @param[in] stop The bitstop value (unary code of 1's or 0's)
  45. * @param[in] len Maximum length
  46. * @return Unary length/index
  47. */
  48. static int get_prefix(GetBitContext *gb, int stop, int len)
  49. {
  50. #if 1
  51. int i;
  52. for(i = 0; i < len && get_bits1(gb) != stop; i++);
  53. return i;
  54. /* int i = 0, tmp = !stop;
  55. while (i != len && tmp != stop)
  56. {
  57. tmp = get_bits(gb, 1);
  58. i++;
  59. }
  60. if (i == len && tmp != stop) return len+1;
  61. return i;*/
  62. #else
  63. unsigned int buf;
  64. int log;
  65. OPEN_READER(re, gb);
  66. UPDATE_CACHE(re, gb);
  67. buf=GET_CACHE(re, gb); //Still not sure
  68. if (stop) buf = ~buf;
  69. log= av_log2(-buf); //FIXME: -?
  70. if (log < limit){
  71. LAST_SKIP_BITS(re, gb, log+1);
  72. CLOSE_READER(re, gb);
  73. return log;
  74. }
  75. LAST_SKIP_BITS(re, gb, limit);
  76. CLOSE_READER(re, gb);
  77. return limit;
  78. #endif
  79. }
  80. static inline int decode210(GetBitContext *gb){
  81. int n;
  82. n = get_bits1(gb);
  83. if (n == 1)
  84. return 0;
  85. else
  86. return 2 - get_bits1(gb);
  87. }
  88. /**
  89. * Init VC-1 specific tables and VC1Context members
  90. * @param v The VC1Context to initialize
  91. * @return Status
  92. */
  93. static int vc1_init_common(VC1Context *v)
  94. {
  95. static int done = 0;
  96. int i = 0;
  97. v->hrd_rate = v->hrd_buffer = NULL;
  98. /* VLC tables */
  99. if(!done)
  100. {
  101. done = 1;
  102. init_vlc(&ff_vc1_bfraction_vlc, VC1_BFRACTION_VLC_BITS, 23,
  103. ff_vc1_bfraction_bits, 1, 1,
  104. ff_vc1_bfraction_codes, 1, 1, 1);
  105. init_vlc(&ff_vc1_norm2_vlc, VC1_NORM2_VLC_BITS, 4,
  106. ff_vc1_norm2_bits, 1, 1,
  107. ff_vc1_norm2_codes, 1, 1, 1);
  108. init_vlc(&ff_vc1_norm6_vlc, VC1_NORM6_VLC_BITS, 64,
  109. ff_vc1_norm6_bits, 1, 1,
  110. ff_vc1_norm6_codes, 2, 2, 1);
  111. init_vlc(&ff_vc1_imode_vlc, VC1_IMODE_VLC_BITS, 7,
  112. ff_vc1_imode_bits, 1, 1,
  113. ff_vc1_imode_codes, 1, 1, 1);
  114. for (i=0; i<3; i++)
  115. {
  116. init_vlc(&ff_vc1_ttmb_vlc[i], VC1_TTMB_VLC_BITS, 16,
  117. ff_vc1_ttmb_bits[i], 1, 1,
  118. ff_vc1_ttmb_codes[i], 2, 2, 1);
  119. init_vlc(&ff_vc1_ttblk_vlc[i], VC1_TTBLK_VLC_BITS, 8,
  120. ff_vc1_ttblk_bits[i], 1, 1,
  121. ff_vc1_ttblk_codes[i], 1, 1, 1);
  122. init_vlc(&ff_vc1_subblkpat_vlc[i], VC1_SUBBLKPAT_VLC_BITS, 15,
  123. ff_vc1_subblkpat_bits[i], 1, 1,
  124. ff_vc1_subblkpat_codes[i], 1, 1, 1);
  125. }
  126. for(i=0; i<4; i++)
  127. {
  128. init_vlc(&ff_vc1_4mv_block_pattern_vlc[i], VC1_4MV_BLOCK_PATTERN_VLC_BITS, 16,
  129. ff_vc1_4mv_block_pattern_bits[i], 1, 1,
  130. ff_vc1_4mv_block_pattern_codes[i], 1, 1, 1);
  131. init_vlc(&ff_vc1_cbpcy_p_vlc[i], VC1_CBPCY_P_VLC_BITS, 64,
  132. ff_vc1_cbpcy_p_bits[i], 1, 1,
  133. ff_vc1_cbpcy_p_codes[i], 2, 2, 1);
  134. init_vlc(&ff_vc1_mv_diff_vlc[i], VC1_MV_DIFF_VLC_BITS, 73,
  135. ff_vc1_mv_diff_bits[i], 1, 1,
  136. ff_vc1_mv_diff_codes[i], 2, 2, 1);
  137. }
  138. for(i=0; i<8; i++)
  139. init_vlc(&ff_vc1_ac_coeff_table[i], AC_VLC_BITS, vc1_ac_sizes[i],
  140. &vc1_ac_tables[i][0][1], 8, 4,
  141. &vc1_ac_tables[i][0][0], 8, 4, 1);
  142. init_vlc(&ff_msmp4_mb_i_vlc, MB_INTRA_VLC_BITS, 64,
  143. &ff_msmp4_mb_i_table[0][1], 4, 2,
  144. &ff_msmp4_mb_i_table[0][0], 4, 2, 1);
  145. }
  146. /* Other defaults */
  147. v->pq = -1;
  148. v->mvrange = 0; /* 7.1.1.18, p80 */
  149. return 0;
  150. }
  151. /***********************************************************************/
  152. /**
  153. * @defgroup bitplane VC9 Bitplane decoding
  154. * @see 8.7, p56
  155. * @{
  156. */
  157. /** @addtogroup bitplane
  158. * Imode types
  159. * @{
  160. */
  161. enum Imode {
  162. IMODE_RAW,
  163. IMODE_NORM2,
  164. IMODE_DIFF2,
  165. IMODE_NORM6,
  166. IMODE_DIFF6,
  167. IMODE_ROWSKIP,
  168. IMODE_COLSKIP
  169. };
  170. /** @} */ //imode defines
  171. /** Decode rows by checking if they are skipped
  172. * @param plane Buffer to store decoded bits
  173. * @param[in] width Width of this buffer
  174. * @param[in] height Height of this buffer
  175. * @param[in] stride of this buffer
  176. */
  177. static void decode_rowskip(uint8_t* plane, int width, int height, int stride, GetBitContext *gb){
  178. int x, y;
  179. for (y=0; y<height; y++){
  180. if (!get_bits(gb, 1)) //rowskip
  181. memset(plane, 0, width);
  182. else
  183. for (x=0; x<width; x++)
  184. plane[x] = get_bits(gb, 1);
  185. plane += stride;
  186. }
  187. }
  188. /** Decode columns by checking if they are skipped
  189. * @param plane Buffer to store decoded bits
  190. * @param[in] width Width of this buffer
  191. * @param[in] height Height of this buffer
  192. * @param[in] stride of this buffer
  193. * @fixme FIXME: Optimize
  194. */
  195. static void decode_colskip(uint8_t* plane, int width, int height, int stride, GetBitContext *gb){
  196. int x, y;
  197. for (x=0; x<width; x++){
  198. if (!get_bits(gb, 1)) //colskip
  199. for (y=0; y<height; y++)
  200. plane[y*stride] = 0;
  201. else
  202. for (y=0; y<height; y++)
  203. plane[y*stride] = get_bits(gb, 1);
  204. plane ++;
  205. }
  206. }
  207. /** Decode a bitplane's bits
  208. * @param bp Bitplane where to store the decode bits
  209. * @param v VC-1 context for bit reading and logging
  210. * @return Status
  211. * @fixme FIXME: Optimize
  212. */
  213. static int bitplane_decoding(uint8_t* data, int *raw_flag, VC1Context *v)
  214. {
  215. GetBitContext *gb = &v->s.gb;
  216. int imode, x, y, code, offset;
  217. uint8_t invert, *planep = data;
  218. int width, height, stride;
  219. width = v->s.mb_width;
  220. height = v->s.mb_height;
  221. stride = v->s.mb_stride;
  222. invert = get_bits(gb, 1);
  223. imode = get_vlc2(gb, ff_vc1_imode_vlc.table, VC1_IMODE_VLC_BITS, 1);
  224. *raw_flag = 0;
  225. switch (imode)
  226. {
  227. case IMODE_RAW:
  228. //Data is actually read in the MB layer (same for all tests == "raw")
  229. *raw_flag = 1; //invert ignored
  230. return invert;
  231. case IMODE_DIFF2:
  232. case IMODE_NORM2:
  233. if ((height * width) & 1)
  234. {
  235. *planep++ = get_bits(gb, 1);
  236. offset = 1;
  237. }
  238. else offset = 0;
  239. // decode bitplane as one long line
  240. for (y = offset; y < height * width; y += 2) {
  241. code = get_vlc2(gb, ff_vc1_norm2_vlc.table, VC1_NORM2_VLC_BITS, 1);
  242. *planep++ = code & 1;
  243. offset++;
  244. if(offset == width) {
  245. offset = 0;
  246. planep += stride - width;
  247. }
  248. *planep++ = code >> 1;
  249. offset++;
  250. if(offset == width) {
  251. offset = 0;
  252. planep += stride - width;
  253. }
  254. }
  255. break;
  256. case IMODE_DIFF6:
  257. case IMODE_NORM6:
  258. if(!(height % 3) && (width % 3)) { // use 2x3 decoding
  259. for(y = 0; y < height; y+= 3) {
  260. for(x = width & 1; x < width; x += 2) {
  261. code = get_vlc2(gb, ff_vc1_norm6_vlc.table, VC1_NORM6_VLC_BITS, 2);
  262. if(code < 0){
  263. av_log(v->s.avctx, AV_LOG_DEBUG, "invalid NORM-6 VLC\n");
  264. return -1;
  265. }
  266. planep[x + 0] = (code >> 0) & 1;
  267. planep[x + 1] = (code >> 1) & 1;
  268. planep[x + 0 + stride] = (code >> 2) & 1;
  269. planep[x + 1 + stride] = (code >> 3) & 1;
  270. planep[x + 0 + stride * 2] = (code >> 4) & 1;
  271. planep[x + 1 + stride * 2] = (code >> 5) & 1;
  272. }
  273. planep += stride * 3;
  274. }
  275. if(width & 1) decode_colskip(data, 1, height, stride, &v->s.gb);
  276. } else { // 3x2
  277. planep += (height & 1) * stride;
  278. for(y = height & 1; y < height; y += 2) {
  279. for(x = width % 3; x < width; x += 3) {
  280. code = get_vlc2(gb, ff_vc1_norm6_vlc.table, VC1_NORM6_VLC_BITS, 2);
  281. if(code < 0){
  282. av_log(v->s.avctx, AV_LOG_DEBUG, "invalid NORM-6 VLC\n");
  283. return -1;
  284. }
  285. planep[x + 0] = (code >> 0) & 1;
  286. planep[x + 1] = (code >> 1) & 1;
  287. planep[x + 2] = (code >> 2) & 1;
  288. planep[x + 0 + stride] = (code >> 3) & 1;
  289. planep[x + 1 + stride] = (code >> 4) & 1;
  290. planep[x + 2 + stride] = (code >> 5) & 1;
  291. }
  292. planep += stride * 2;
  293. }
  294. x = width % 3;
  295. if(x) decode_colskip(data , x, height , stride, &v->s.gb);
  296. if(height & 1) decode_rowskip(data+x, width - x, 1, stride, &v->s.gb);
  297. }
  298. break;
  299. case IMODE_ROWSKIP:
  300. decode_rowskip(data, width, height, stride, &v->s.gb);
  301. break;
  302. case IMODE_COLSKIP:
  303. decode_colskip(data, width, height, stride, &v->s.gb);
  304. break;
  305. default: break;
  306. }
  307. /* Applying diff operator */
  308. if (imode == IMODE_DIFF2 || imode == IMODE_DIFF6)
  309. {
  310. planep = data;
  311. planep[0] ^= invert;
  312. for (x=1; x<width; x++)
  313. planep[x] ^= planep[x-1];
  314. for (y=1; y<height; y++)
  315. {
  316. planep += stride;
  317. planep[0] ^= planep[-stride];
  318. for (x=1; x<width; x++)
  319. {
  320. if (planep[x-1] != planep[x-stride]) planep[x] ^= invert;
  321. else planep[x] ^= planep[x-1];
  322. }
  323. }
  324. }
  325. else if (invert)
  326. {
  327. planep = data;
  328. for (x=0; x<stride*height; x++) planep[x] = !planep[x]; //FIXME stride
  329. }
  330. return (imode<<1) + invert;
  331. }
  332. /** @} */ //Bitplane group
  333. /***********************************************************************/
  334. /** VOP Dquant decoding
  335. * @param v VC-1 Context
  336. */
  337. static int vop_dquant_decoding(VC1Context *v)
  338. {
  339. GetBitContext *gb = &v->s.gb;
  340. int pqdiff;
  341. //variable size
  342. if (v->dquant == 2)
  343. {
  344. pqdiff = get_bits(gb, 3);
  345. if (pqdiff == 7) v->altpq = get_bits(gb, 5);
  346. else v->altpq = v->pq + pqdiff + 1;
  347. }
  348. else
  349. {
  350. v->dquantfrm = get_bits(gb, 1);
  351. if ( v->dquantfrm )
  352. {
  353. v->dqprofile = get_bits(gb, 2);
  354. switch (v->dqprofile)
  355. {
  356. case DQPROFILE_SINGLE_EDGE:
  357. case DQPROFILE_DOUBLE_EDGES:
  358. v->dqsbedge = get_bits(gb, 2);
  359. break;
  360. case DQPROFILE_ALL_MBS:
  361. v->dqbilevel = get_bits(gb, 1);
  362. default: break; //Forbidden ?
  363. }
  364. if (v->dqbilevel || v->dqprofile != DQPROFILE_ALL_MBS)
  365. {
  366. pqdiff = get_bits(gb, 3);
  367. if (pqdiff == 7) v->altpq = get_bits(gb, 5);
  368. else v->altpq = v->pq + pqdiff + 1;
  369. }
  370. }
  371. }
  372. return 0;
  373. }
  374. /** Put block onto picture
  375. */
  376. static void vc1_put_block(VC1Context *v, DCTELEM block[6][64])
  377. {
  378. uint8_t *Y;
  379. int ys, us, vs;
  380. DSPContext *dsp = &v->s.dsp;
  381. if(v->rangeredfrm) {
  382. int i, j, k;
  383. for(k = 0; k < 6; k++)
  384. for(j = 0; j < 8; j++)
  385. for(i = 0; i < 8; i++)
  386. block[k][i + j*8] = ((block[k][i + j*8] - 128) << 1) + 128;
  387. }
  388. ys = v->s.current_picture.linesize[0];
  389. us = v->s.current_picture.linesize[1];
  390. vs = v->s.current_picture.linesize[2];
  391. Y = v->s.dest[0];
  392. dsp->put_pixels_clamped(block[0], Y, ys);
  393. dsp->put_pixels_clamped(block[1], Y + 8, ys);
  394. Y += ys * 8;
  395. dsp->put_pixels_clamped(block[2], Y, ys);
  396. dsp->put_pixels_clamped(block[3], Y + 8, ys);
  397. if(!(v->s.flags & CODEC_FLAG_GRAY)) {
  398. dsp->put_pixels_clamped(block[4], v->s.dest[1], us);
  399. dsp->put_pixels_clamped(block[5], v->s.dest[2], vs);
  400. }
  401. }
  402. /** Do motion compensation over 1 macroblock
  403. * Mostly adapted hpel_motion and qpel_motion from mpegvideo.c
  404. */
  405. static void vc1_mc_1mv(VC1Context *v, int dir)
  406. {
  407. MpegEncContext *s = &v->s;
  408. DSPContext *dsp = &v->s.dsp;
  409. uint8_t *srcY, *srcU, *srcV;
  410. int dxy, uvdxy, mx, my, uvmx, uvmy, src_x, src_y, uvsrc_x, uvsrc_y;
  411. if(!v->s.last_picture.data[0])return;
  412. mx = s->mv[dir][0][0];
  413. my = s->mv[dir][0][1];
  414. // store motion vectors for further use in B frames
  415. if(s->pict_type == P_TYPE) {
  416. s->current_picture.motion_val[1][s->block_index[0]][0] = mx;
  417. s->current_picture.motion_val[1][s->block_index[0]][1] = my;
  418. }
  419. uvmx = (mx + ((mx & 3) == 3)) >> 1;
  420. uvmy = (my + ((my & 3) == 3)) >> 1;
  421. if(v->fastuvmc) {
  422. uvmx = uvmx + ((uvmx<0)?(uvmx&1):-(uvmx&1));
  423. uvmy = uvmy + ((uvmy<0)?(uvmy&1):-(uvmy&1));
  424. }
  425. if(!dir) {
  426. srcY = s->last_picture.data[0];
  427. srcU = s->last_picture.data[1];
  428. srcV = s->last_picture.data[2];
  429. } else {
  430. srcY = s->next_picture.data[0];
  431. srcU = s->next_picture.data[1];
  432. srcV = s->next_picture.data[2];
  433. }
  434. src_x = s->mb_x * 16 + (mx >> 2);
  435. src_y = s->mb_y * 16 + (my >> 2);
  436. uvsrc_x = s->mb_x * 8 + (uvmx >> 2);
  437. uvsrc_y = s->mb_y * 8 + (uvmy >> 2);
  438. if(v->profile != PROFILE_ADVANCED){
  439. src_x = av_clip( src_x, -16, s->mb_width * 16);
  440. src_y = av_clip( src_y, -16, s->mb_height * 16);
  441. uvsrc_x = av_clip(uvsrc_x, -8, s->mb_width * 8);
  442. uvsrc_y = av_clip(uvsrc_y, -8, s->mb_height * 8);
  443. }else{
  444. src_x = av_clip( src_x, -17, s->avctx->coded_width);
  445. src_y = av_clip( src_y, -18, s->avctx->coded_height + 1);
  446. uvsrc_x = av_clip(uvsrc_x, -8, s->avctx->coded_width >> 1);
  447. uvsrc_y = av_clip(uvsrc_y, -8, s->avctx->coded_height >> 1);
  448. }
  449. srcY += src_y * s->linesize + src_x;
  450. srcU += uvsrc_y * s->uvlinesize + uvsrc_x;
  451. srcV += uvsrc_y * s->uvlinesize + uvsrc_x;
  452. /* for grayscale we should not try to read from unknown area */
  453. if(s->flags & CODEC_FLAG_GRAY) {
  454. srcU = s->edge_emu_buffer + 18 * s->linesize;
  455. srcV = s->edge_emu_buffer + 18 * s->linesize;
  456. }
  457. if(v->rangeredfrm || (v->mv_mode == MV_PMODE_INTENSITY_COMP)
  458. || (unsigned)(src_x - s->mspel) > s->h_edge_pos - (mx&3) - 16 - s->mspel*3
  459. || (unsigned)(src_y - s->mspel) > s->v_edge_pos - (my&3) - 16 - s->mspel*3){
  460. uint8_t *uvbuf= s->edge_emu_buffer + 19 * s->linesize;
  461. srcY -= s->mspel * (1 + s->linesize);
  462. ff_emulated_edge_mc(s->edge_emu_buffer, srcY, s->linesize, 17+s->mspel*2, 17+s->mspel*2,
  463. src_x - s->mspel, src_y - s->mspel, s->h_edge_pos, s->v_edge_pos);
  464. srcY = s->edge_emu_buffer;
  465. ff_emulated_edge_mc(uvbuf , srcU, s->uvlinesize, 8+1, 8+1,
  466. uvsrc_x, uvsrc_y, s->h_edge_pos >> 1, s->v_edge_pos >> 1);
  467. ff_emulated_edge_mc(uvbuf + 16, srcV, s->uvlinesize, 8+1, 8+1,
  468. uvsrc_x, uvsrc_y, s->h_edge_pos >> 1, s->v_edge_pos >> 1);
  469. srcU = uvbuf;
  470. srcV = uvbuf + 16;
  471. /* if we deal with range reduction we need to scale source blocks */
  472. if(v->rangeredfrm) {
  473. int i, j;
  474. uint8_t *src, *src2;
  475. src = srcY;
  476. for(j = 0; j < 17 + s->mspel*2; j++) {
  477. for(i = 0; i < 17 + s->mspel*2; i++) src[i] = ((src[i] - 128) >> 1) + 128;
  478. src += s->linesize;
  479. }
  480. src = srcU; src2 = srcV;
  481. for(j = 0; j < 9; j++) {
  482. for(i = 0; i < 9; i++) {
  483. src[i] = ((src[i] - 128) >> 1) + 128;
  484. src2[i] = ((src2[i] - 128) >> 1) + 128;
  485. }
  486. src += s->uvlinesize;
  487. src2 += s->uvlinesize;
  488. }
  489. }
  490. /* if we deal with intensity compensation we need to scale source blocks */
  491. if(v->mv_mode == MV_PMODE_INTENSITY_COMP) {
  492. int i, j;
  493. uint8_t *src, *src2;
  494. src = srcY;
  495. for(j = 0; j < 17 + s->mspel*2; j++) {
  496. for(i = 0; i < 17 + s->mspel*2; i++) src[i] = v->luty[src[i]];
  497. src += s->linesize;
  498. }
  499. src = srcU; src2 = srcV;
  500. for(j = 0; j < 9; j++) {
  501. for(i = 0; i < 9; i++) {
  502. src[i] = v->lutuv[src[i]];
  503. src2[i] = v->lutuv[src2[i]];
  504. }
  505. src += s->uvlinesize;
  506. src2 += s->uvlinesize;
  507. }
  508. }
  509. srcY += s->mspel * (1 + s->linesize);
  510. }
  511. if(s->mspel) {
  512. dxy = ((my & 3) << 2) | (mx & 3);
  513. dsp->put_vc1_mspel_pixels_tab[dxy](s->dest[0] , srcY , s->linesize, v->rnd);
  514. dsp->put_vc1_mspel_pixels_tab[dxy](s->dest[0] + 8, srcY + 8, s->linesize, v->rnd);
  515. srcY += s->linesize * 8;
  516. dsp->put_vc1_mspel_pixels_tab[dxy](s->dest[0] + 8 * s->linesize , srcY , s->linesize, v->rnd);
  517. dsp->put_vc1_mspel_pixels_tab[dxy](s->dest[0] + 8 * s->linesize + 8, srcY + 8, s->linesize, v->rnd);
  518. } else { // hpel mc - always used for luma
  519. dxy = (my & 2) | ((mx & 2) >> 1);
  520. if(!v->rnd)
  521. dsp->put_pixels_tab[0][dxy](s->dest[0], srcY, s->linesize, 16);
  522. else
  523. dsp->put_no_rnd_pixels_tab[0][dxy](s->dest[0], srcY, s->linesize, 16);
  524. }
  525. if(s->flags & CODEC_FLAG_GRAY) return;
  526. /* Chroma MC always uses qpel bilinear */
  527. uvdxy = ((uvmy & 3) << 2) | (uvmx & 3);
  528. uvmx = (uvmx&3)<<1;
  529. uvmy = (uvmy&3)<<1;
  530. if(!v->rnd){
  531. dsp->put_h264_chroma_pixels_tab[0](s->dest[1], srcU, s->uvlinesize, 8, uvmx, uvmy);
  532. dsp->put_h264_chroma_pixels_tab[0](s->dest[2], srcV, s->uvlinesize, 8, uvmx, uvmy);
  533. }else{
  534. dsp->put_no_rnd_h264_chroma_pixels_tab[0](s->dest[1], srcU, s->uvlinesize, 8, uvmx, uvmy);
  535. dsp->put_no_rnd_h264_chroma_pixels_tab[0](s->dest[2], srcV, s->uvlinesize, 8, uvmx, uvmy);
  536. }
  537. }
  538. /** Do motion compensation for 4-MV macroblock - luminance block
  539. */
  540. static void vc1_mc_4mv_luma(VC1Context *v, int n)
  541. {
  542. MpegEncContext *s = &v->s;
  543. DSPContext *dsp = &v->s.dsp;
  544. uint8_t *srcY;
  545. int dxy, mx, my, src_x, src_y;
  546. int off;
  547. if(!v->s.last_picture.data[0])return;
  548. mx = s->mv[0][n][0];
  549. my = s->mv[0][n][1];
  550. srcY = s->last_picture.data[0];
  551. off = s->linesize * 4 * (n&2) + (n&1) * 8;
  552. src_x = s->mb_x * 16 + (n&1) * 8 + (mx >> 2);
  553. src_y = s->mb_y * 16 + (n&2) * 4 + (my >> 2);
  554. if(v->profile != PROFILE_ADVANCED){
  555. src_x = av_clip( src_x, -16, s->mb_width * 16);
  556. src_y = av_clip( src_y, -16, s->mb_height * 16);
  557. }else{
  558. src_x = av_clip( src_x, -17, s->avctx->coded_width);
  559. src_y = av_clip( src_y, -18, s->avctx->coded_height + 1);
  560. }
  561. srcY += src_y * s->linesize + src_x;
  562. if(v->rangeredfrm || (v->mv_mode == MV_PMODE_INTENSITY_COMP)
  563. || (unsigned)(src_x - s->mspel) > s->h_edge_pos - (mx&3) - 8 - s->mspel*2
  564. || (unsigned)(src_y - s->mspel) > s->v_edge_pos - (my&3) - 8 - s->mspel*2){
  565. srcY -= s->mspel * (1 + s->linesize);
  566. ff_emulated_edge_mc(s->edge_emu_buffer, srcY, s->linesize, 9+s->mspel*2, 9+s->mspel*2,
  567. src_x - s->mspel, src_y - s->mspel, s->h_edge_pos, s->v_edge_pos);
  568. srcY = s->edge_emu_buffer;
  569. /* if we deal with range reduction we need to scale source blocks */
  570. if(v->rangeredfrm) {
  571. int i, j;
  572. uint8_t *src;
  573. src = srcY;
  574. for(j = 0; j < 9 + s->mspel*2; j++) {
  575. for(i = 0; i < 9 + s->mspel*2; i++) src[i] = ((src[i] - 128) >> 1) + 128;
  576. src += s->linesize;
  577. }
  578. }
  579. /* if we deal with intensity compensation we need to scale source blocks */
  580. if(v->mv_mode == MV_PMODE_INTENSITY_COMP) {
  581. int i, j;
  582. uint8_t *src;
  583. src = srcY;
  584. for(j = 0; j < 9 + s->mspel*2; j++) {
  585. for(i = 0; i < 9 + s->mspel*2; i++) src[i] = v->luty[src[i]];
  586. src += s->linesize;
  587. }
  588. }
  589. srcY += s->mspel * (1 + s->linesize);
  590. }
  591. if(s->mspel) {
  592. dxy = ((my & 3) << 2) | (mx & 3);
  593. dsp->put_vc1_mspel_pixels_tab[dxy](s->dest[0] + off, srcY, s->linesize, v->rnd);
  594. } else { // hpel mc - always used for luma
  595. dxy = (my & 2) | ((mx & 2) >> 1);
  596. if(!v->rnd)
  597. dsp->put_pixels_tab[1][dxy](s->dest[0] + off, srcY, s->linesize, 8);
  598. else
  599. dsp->put_no_rnd_pixels_tab[1][dxy](s->dest[0] + off, srcY, s->linesize, 8);
  600. }
  601. }
  602. static inline int median4(int a, int b, int c, int d)
  603. {
  604. if(a < b) {
  605. if(c < d) return (FFMIN(b, d) + FFMAX(a, c)) / 2;
  606. else return (FFMIN(b, c) + FFMAX(a, d)) / 2;
  607. } else {
  608. if(c < d) return (FFMIN(a, d) + FFMAX(b, c)) / 2;
  609. else return (FFMIN(a, c) + FFMAX(b, d)) / 2;
  610. }
  611. }
  612. /** Do motion compensation for 4-MV macroblock - both chroma blocks
  613. */
  614. static void vc1_mc_4mv_chroma(VC1Context *v)
  615. {
  616. MpegEncContext *s = &v->s;
  617. DSPContext *dsp = &v->s.dsp;
  618. uint8_t *srcU, *srcV;
  619. int uvdxy, uvmx, uvmy, uvsrc_x, uvsrc_y;
  620. int i, idx, tx = 0, ty = 0;
  621. int mvx[4], mvy[4], intra[4];
  622. static const int count[16] = { 0, 1, 1, 2, 1, 2, 2, 3, 1, 2, 2, 3, 2, 3, 3, 4};
  623. if(!v->s.last_picture.data[0])return;
  624. if(s->flags & CODEC_FLAG_GRAY) return;
  625. for(i = 0; i < 4; i++) {
  626. mvx[i] = s->mv[0][i][0];
  627. mvy[i] = s->mv[0][i][1];
  628. intra[i] = v->mb_type[0][s->block_index[i]];
  629. }
  630. /* calculate chroma MV vector from four luma MVs */
  631. idx = (intra[3] << 3) | (intra[2] << 2) | (intra[1] << 1) | intra[0];
  632. if(!idx) { // all blocks are inter
  633. tx = median4(mvx[0], mvx[1], mvx[2], mvx[3]);
  634. ty = median4(mvy[0], mvy[1], mvy[2], mvy[3]);
  635. } else if(count[idx] == 1) { // 3 inter blocks
  636. switch(idx) {
  637. case 0x1:
  638. tx = mid_pred(mvx[1], mvx[2], mvx[3]);
  639. ty = mid_pred(mvy[1], mvy[2], mvy[3]);
  640. break;
  641. case 0x2:
  642. tx = mid_pred(mvx[0], mvx[2], mvx[3]);
  643. ty = mid_pred(mvy[0], mvy[2], mvy[3]);
  644. break;
  645. case 0x4:
  646. tx = mid_pred(mvx[0], mvx[1], mvx[3]);
  647. ty = mid_pred(mvy[0], mvy[1], mvy[3]);
  648. break;
  649. case 0x8:
  650. tx = mid_pred(mvx[0], mvx[1], mvx[2]);
  651. ty = mid_pred(mvy[0], mvy[1], mvy[2]);
  652. break;
  653. }
  654. } else if(count[idx] == 2) {
  655. int t1 = 0, t2 = 0;
  656. for(i=0; i<3;i++) if(!intra[i]) {t1 = i; break;}
  657. for(i= t1+1; i<4; i++)if(!intra[i]) {t2 = i; break;}
  658. tx = (mvx[t1] + mvx[t2]) / 2;
  659. ty = (mvy[t1] + mvy[t2]) / 2;
  660. } else {
  661. s->current_picture.motion_val[1][s->block_index[0]][0] = 0;
  662. s->current_picture.motion_val[1][s->block_index[0]][1] = 0;
  663. return; //no need to do MC for inter blocks
  664. }
  665. s->current_picture.motion_val[1][s->block_index[0]][0] = tx;
  666. s->current_picture.motion_val[1][s->block_index[0]][1] = ty;
  667. uvmx = (tx + ((tx&3) == 3)) >> 1;
  668. uvmy = (ty + ((ty&3) == 3)) >> 1;
  669. if(v->fastuvmc) {
  670. uvmx = uvmx + ((uvmx<0)?(uvmx&1):-(uvmx&1));
  671. uvmy = uvmy + ((uvmy<0)?(uvmy&1):-(uvmy&1));
  672. }
  673. uvsrc_x = s->mb_x * 8 + (uvmx >> 2);
  674. uvsrc_y = s->mb_y * 8 + (uvmy >> 2);
  675. if(v->profile != PROFILE_ADVANCED){
  676. uvsrc_x = av_clip(uvsrc_x, -8, s->mb_width * 8);
  677. uvsrc_y = av_clip(uvsrc_y, -8, s->mb_height * 8);
  678. }else{
  679. uvsrc_x = av_clip(uvsrc_x, -8, s->avctx->coded_width >> 1);
  680. uvsrc_y = av_clip(uvsrc_y, -8, s->avctx->coded_height >> 1);
  681. }
  682. srcU = s->last_picture.data[1] + uvsrc_y * s->uvlinesize + uvsrc_x;
  683. srcV = s->last_picture.data[2] + uvsrc_y * s->uvlinesize + uvsrc_x;
  684. if(v->rangeredfrm || (v->mv_mode == MV_PMODE_INTENSITY_COMP)
  685. || (unsigned)uvsrc_x > (s->h_edge_pos >> 1) - 9
  686. || (unsigned)uvsrc_y > (s->v_edge_pos >> 1) - 9){
  687. ff_emulated_edge_mc(s->edge_emu_buffer , srcU, s->uvlinesize, 8+1, 8+1,
  688. uvsrc_x, uvsrc_y, s->h_edge_pos >> 1, s->v_edge_pos >> 1);
  689. ff_emulated_edge_mc(s->edge_emu_buffer + 16, srcV, s->uvlinesize, 8+1, 8+1,
  690. uvsrc_x, uvsrc_y, s->h_edge_pos >> 1, s->v_edge_pos >> 1);
  691. srcU = s->edge_emu_buffer;
  692. srcV = s->edge_emu_buffer + 16;
  693. /* if we deal with range reduction we need to scale source blocks */
  694. if(v->rangeredfrm) {
  695. int i, j;
  696. uint8_t *src, *src2;
  697. src = srcU; src2 = srcV;
  698. for(j = 0; j < 9; j++) {
  699. for(i = 0; i < 9; i++) {
  700. src[i] = ((src[i] - 128) >> 1) + 128;
  701. src2[i] = ((src2[i] - 128) >> 1) + 128;
  702. }
  703. src += s->uvlinesize;
  704. src2 += s->uvlinesize;
  705. }
  706. }
  707. /* if we deal with intensity compensation we need to scale source blocks */
  708. if(v->mv_mode == MV_PMODE_INTENSITY_COMP) {
  709. int i, j;
  710. uint8_t *src, *src2;
  711. src = srcU; src2 = srcV;
  712. for(j = 0; j < 9; j++) {
  713. for(i = 0; i < 9; i++) {
  714. src[i] = v->lutuv[src[i]];
  715. src2[i] = v->lutuv[src2[i]];
  716. }
  717. src += s->uvlinesize;
  718. src2 += s->uvlinesize;
  719. }
  720. }
  721. }
  722. /* Chroma MC always uses qpel bilinear */
  723. uvdxy = ((uvmy & 3) << 2) | (uvmx & 3);
  724. uvmx = (uvmx&3)<<1;
  725. uvmy = (uvmy&3)<<1;
  726. if(!v->rnd){
  727. dsp->put_h264_chroma_pixels_tab[0](s->dest[1], srcU, s->uvlinesize, 8, uvmx, uvmy);
  728. dsp->put_h264_chroma_pixels_tab[0](s->dest[2], srcV, s->uvlinesize, 8, uvmx, uvmy);
  729. }else{
  730. dsp->put_no_rnd_h264_chroma_pixels_tab[0](s->dest[1], srcU, s->uvlinesize, 8, uvmx, uvmy);
  731. dsp->put_no_rnd_h264_chroma_pixels_tab[0](s->dest[2], srcV, s->uvlinesize, 8, uvmx, uvmy);
  732. }
  733. }
  734. static int decode_sequence_header_adv(VC1Context *v, GetBitContext *gb);
  735. /**
  736. * Decode Simple/Main Profiles sequence header
  737. * @see Figure 7-8, p16-17
  738. * @param avctx Codec context
  739. * @param gb GetBit context initialized from Codec context extra_data
  740. * @return Status
  741. */
  742. static int decode_sequence_header(AVCodecContext *avctx, GetBitContext *gb)
  743. {
  744. VC1Context *v = avctx->priv_data;
  745. av_log(avctx, AV_LOG_DEBUG, "Header: %0X\n", show_bits(gb, 32));
  746. v->profile = get_bits(gb, 2);
  747. if (v->profile == PROFILE_COMPLEX)
  748. {
  749. av_log(avctx, AV_LOG_ERROR, "WMV3 Complex Profile is not fully supported\n");
  750. }
  751. if (v->profile == PROFILE_ADVANCED)
  752. {
  753. return decode_sequence_header_adv(v, gb);
  754. }
  755. else
  756. {
  757. v->res_sm = get_bits(gb, 2); //reserved
  758. if (v->res_sm)
  759. {
  760. av_log(avctx, AV_LOG_ERROR,
  761. "Reserved RES_SM=%i is forbidden\n", v->res_sm);
  762. return -1;
  763. }
  764. }
  765. // (fps-2)/4 (->30)
  766. v->frmrtq_postproc = get_bits(gb, 3); //common
  767. // (bitrate-32kbps)/64kbps
  768. v->bitrtq_postproc = get_bits(gb, 5); //common
  769. v->s.loop_filter = get_bits(gb, 1); //common
  770. if(v->s.loop_filter == 1 && v->profile == PROFILE_SIMPLE)
  771. {
  772. av_log(avctx, AV_LOG_ERROR,
  773. "LOOPFILTER shell not be enabled in simple profile\n");
  774. }
  775. v->res_x8 = get_bits(gb, 1); //reserved
  776. if (v->res_x8)
  777. {
  778. av_log(avctx, AV_LOG_ERROR,
  779. "1 for reserved RES_X8 is forbidden\n");
  780. //return -1;
  781. }
  782. v->multires = get_bits(gb, 1);
  783. v->res_fasttx = get_bits(gb, 1);
  784. if (!v->res_fasttx)
  785. {
  786. av_log(avctx, AV_LOG_ERROR,
  787. "0 for reserved RES_FASTTX is forbidden\n");
  788. //return -1;
  789. }
  790. v->fastuvmc = get_bits(gb, 1); //common
  791. if (!v->profile && !v->fastuvmc)
  792. {
  793. av_log(avctx, AV_LOG_ERROR,
  794. "FASTUVMC unavailable in Simple Profile\n");
  795. return -1;
  796. }
  797. v->extended_mv = get_bits(gb, 1); //common
  798. if (!v->profile && v->extended_mv)
  799. {
  800. av_log(avctx, AV_LOG_ERROR,
  801. "Extended MVs unavailable in Simple Profile\n");
  802. return -1;
  803. }
  804. v->dquant = get_bits(gb, 2); //common
  805. v->vstransform = get_bits(gb, 1); //common
  806. v->res_transtab = get_bits(gb, 1);
  807. if (v->res_transtab)
  808. {
  809. av_log(avctx, AV_LOG_ERROR,
  810. "1 for reserved RES_TRANSTAB is forbidden\n");
  811. return -1;
  812. }
  813. v->overlap = get_bits(gb, 1); //common
  814. v->s.resync_marker = get_bits(gb, 1);
  815. v->rangered = get_bits(gb, 1);
  816. if (v->rangered && v->profile == PROFILE_SIMPLE)
  817. {
  818. av_log(avctx, AV_LOG_INFO,
  819. "RANGERED should be set to 0 in simple profile\n");
  820. }
  821. v->s.max_b_frames = avctx->max_b_frames = get_bits(gb, 3); //common
  822. v->quantizer_mode = get_bits(gb, 2); //common
  823. v->finterpflag = get_bits(gb, 1); //common
  824. v->res_rtm_flag = get_bits(gb, 1); //reserved
  825. if (!v->res_rtm_flag)
  826. {
  827. // av_log(avctx, AV_LOG_ERROR,
  828. // "0 for reserved RES_RTM_FLAG is forbidden\n");
  829. av_log(avctx, AV_LOG_ERROR,
  830. "Old WMV3 version detected, only I-frames will be decoded\n");
  831. //return -1;
  832. }
  833. //TODO: figure out what they mean (always 0x402F)
  834. if(!v->res_fasttx) skip_bits(gb, 16);
  835. av_log(avctx, AV_LOG_DEBUG,
  836. "Profile %i:\nfrmrtq_postproc=%i, bitrtq_postproc=%i\n"
  837. "LoopFilter=%i, MultiRes=%i, FastUVMC=%i, Extended MV=%i\n"
  838. "Rangered=%i, VSTransform=%i, Overlap=%i, SyncMarker=%i\n"
  839. "DQuant=%i, Quantizer mode=%i, Max B frames=%i\n",
  840. v->profile, v->frmrtq_postproc, v->bitrtq_postproc,
  841. v->s.loop_filter, v->multires, v->fastuvmc, v->extended_mv,
  842. v->rangered, v->vstransform, v->overlap, v->s.resync_marker,
  843. v->dquant, v->quantizer_mode, avctx->max_b_frames
  844. );
  845. return 0;
  846. }
  847. static int decode_sequence_header_adv(VC1Context *v, GetBitContext *gb)
  848. {
  849. v->res_rtm_flag = 1;
  850. v->level = get_bits(gb, 3);
  851. if(v->level >= 5)
  852. {
  853. av_log(v->s.avctx, AV_LOG_ERROR, "Reserved LEVEL %i\n",v->level);
  854. }
  855. v->chromaformat = get_bits(gb, 2);
  856. if (v->chromaformat != 1)
  857. {
  858. av_log(v->s.avctx, AV_LOG_ERROR,
  859. "Only 4:2:0 chroma format supported\n");
  860. return -1;
  861. }
  862. // (fps-2)/4 (->30)
  863. v->frmrtq_postproc = get_bits(gb, 3); //common
  864. // (bitrate-32kbps)/64kbps
  865. v->bitrtq_postproc = get_bits(gb, 5); //common
  866. v->postprocflag = get_bits(gb, 1); //common
  867. v->s.avctx->coded_width = (get_bits(gb, 12) + 1) << 1;
  868. v->s.avctx->coded_height = (get_bits(gb, 12) + 1) << 1;
  869. v->s.avctx->width = v->s.avctx->coded_width;
  870. v->s.avctx->height = v->s.avctx->coded_height;
  871. v->broadcast = get_bits1(gb);
  872. v->interlace = get_bits1(gb);
  873. v->tfcntrflag = get_bits1(gb);
  874. v->finterpflag = get_bits1(gb);
  875. get_bits1(gb); // reserved
  876. v->s.h_edge_pos = v->s.avctx->coded_width;
  877. v->s.v_edge_pos = v->s.avctx->coded_height;
  878. av_log(v->s.avctx, AV_LOG_DEBUG,
  879. "Advanced Profile level %i:\nfrmrtq_postproc=%i, bitrtq_postproc=%i\n"
  880. "LoopFilter=%i, ChromaFormat=%i, Pulldown=%i, Interlace: %i\n"
  881. "TFCTRflag=%i, FINTERPflag=%i\n",
  882. v->level, v->frmrtq_postproc, v->bitrtq_postproc,
  883. v->s.loop_filter, v->chromaformat, v->broadcast, v->interlace,
  884. v->tfcntrflag, v->finterpflag
  885. );
  886. v->psf = get_bits1(gb);
  887. if(v->psf) { //PsF, 6.1.13
  888. av_log(v->s.avctx, AV_LOG_ERROR, "Progressive Segmented Frame mode: not supported (yet)\n");
  889. return -1;
  890. }
  891. v->s.max_b_frames = v->s.avctx->max_b_frames = 7;
  892. if(get_bits1(gb)) { //Display Info - decoding is not affected by it
  893. int w, h, ar = 0;
  894. av_log(v->s.avctx, AV_LOG_DEBUG, "Display extended info:\n");
  895. v->s.avctx->width = v->s.width = w = get_bits(gb, 14) + 1;
  896. v->s.avctx->height = v->s.height = h = get_bits(gb, 14) + 1;
  897. av_log(v->s.avctx, AV_LOG_DEBUG, "Display dimensions: %ix%i\n", w, h);
  898. if(get_bits1(gb))
  899. ar = get_bits(gb, 4);
  900. if(ar && ar < 14){
  901. v->s.avctx->sample_aspect_ratio = ff_vc1_pixel_aspect[ar];
  902. }else if(ar == 15){
  903. w = get_bits(gb, 8);
  904. h = get_bits(gb, 8);
  905. v->s.avctx->sample_aspect_ratio = (AVRational){w, h};
  906. }
  907. if(get_bits1(gb)){ //framerate stuff
  908. if(get_bits1(gb)) {
  909. v->s.avctx->time_base.num = 32;
  910. v->s.avctx->time_base.den = get_bits(gb, 16) + 1;
  911. } else {
  912. int nr, dr;
  913. nr = get_bits(gb, 8);
  914. dr = get_bits(gb, 4);
  915. if(nr && nr < 8 && dr && dr < 3){
  916. v->s.avctx->time_base.num = ff_vc1_fps_dr[dr - 1];
  917. v->s.avctx->time_base.den = ff_vc1_fps_nr[nr - 1] * 1000;
  918. }
  919. }
  920. }
  921. if(get_bits1(gb)){
  922. v->color_prim = get_bits(gb, 8);
  923. v->transfer_char = get_bits(gb, 8);
  924. v->matrix_coef = get_bits(gb, 8);
  925. }
  926. }
  927. v->hrd_param_flag = get_bits1(gb);
  928. if(v->hrd_param_flag) {
  929. int i;
  930. v->hrd_num_leaky_buckets = get_bits(gb, 5);
  931. get_bits(gb, 4); //bitrate exponent
  932. get_bits(gb, 4); //buffer size exponent
  933. for(i = 0; i < v->hrd_num_leaky_buckets; i++) {
  934. get_bits(gb, 16); //hrd_rate[n]
  935. get_bits(gb, 16); //hrd_buffer[n]
  936. }
  937. }
  938. return 0;
  939. }
  940. static int decode_entry_point(AVCodecContext *avctx, GetBitContext *gb)
  941. {
  942. VC1Context *v = avctx->priv_data;
  943. int i, blink, clentry, refdist;
  944. av_log(avctx, AV_LOG_DEBUG, "Entry point: %08X\n", show_bits_long(gb, 32));
  945. blink = get_bits1(gb); // broken link
  946. clentry = get_bits1(gb); // closed entry
  947. v->panscanflag = get_bits1(gb);
  948. refdist = get_bits1(gb); // refdist flag
  949. v->s.loop_filter = get_bits1(gb);
  950. v->fastuvmc = get_bits1(gb);
  951. v->extended_mv = get_bits1(gb);
  952. v->dquant = get_bits(gb, 2);
  953. v->vstransform = get_bits1(gb);
  954. v->overlap = get_bits1(gb);
  955. v->quantizer_mode = get_bits(gb, 2);
  956. if(v->hrd_param_flag){
  957. for(i = 0; i < v->hrd_num_leaky_buckets; i++) {
  958. get_bits(gb, 8); //hrd_full[n]
  959. }
  960. }
  961. if(get_bits1(gb)){
  962. avctx->coded_width = (get_bits(gb, 12)+1)<<1;
  963. avctx->coded_height = (get_bits(gb, 12)+1)<<1;
  964. }
  965. if(v->extended_mv)
  966. v->extended_dmv = get_bits1(gb);
  967. if(get_bits1(gb)) {
  968. av_log(avctx, AV_LOG_ERROR, "Luma scaling is not supported, expect wrong picture\n");
  969. skip_bits(gb, 3); // Y range, ignored for now
  970. }
  971. if(get_bits1(gb)) {
  972. av_log(avctx, AV_LOG_ERROR, "Chroma scaling is not supported, expect wrong picture\n");
  973. skip_bits(gb, 3); // UV range, ignored for now
  974. }
  975. av_log(avctx, AV_LOG_DEBUG, "Entry point info:\n"
  976. "BrokenLink=%i, ClosedEntry=%i, PanscanFlag=%i\n"
  977. "RefDist=%i, Postproc=%i, FastUVMC=%i, ExtMV=%i\n"
  978. "DQuant=%i, VSTransform=%i, Overlap=%i, Qmode=%i\n",
  979. blink, clentry, v->panscanflag, refdist, v->s.loop_filter,
  980. v->fastuvmc, v->extended_mv, v->dquant, v->vstransform, v->overlap, v->quantizer_mode);
  981. return 0;
  982. }
  983. static int vc1_parse_frame_header(VC1Context *v, GetBitContext* gb)
  984. {
  985. int pqindex, lowquant, status;
  986. if(v->finterpflag) v->interpfrm = get_bits(gb, 1);
  987. skip_bits(gb, 2); //framecnt unused
  988. v->rangeredfrm = 0;
  989. if (v->rangered) v->rangeredfrm = get_bits(gb, 1);
  990. v->s.pict_type = get_bits(gb, 1);
  991. if (v->s.avctx->max_b_frames) {
  992. if (!v->s.pict_type) {
  993. if (get_bits(gb, 1)) v->s.pict_type = I_TYPE;
  994. else v->s.pict_type = B_TYPE;
  995. } else v->s.pict_type = P_TYPE;
  996. } else v->s.pict_type = v->s.pict_type ? P_TYPE : I_TYPE;
  997. v->bi_type = 0;
  998. if(v->s.pict_type == B_TYPE) {
  999. v->bfraction = get_vlc2(gb, ff_vc1_bfraction_vlc.table, VC1_BFRACTION_VLC_BITS, 1);
  1000. v->bfraction = ff_vc1_bfraction_lut[v->bfraction];
  1001. if(v->bfraction == 0) {
  1002. v->s.pict_type = BI_TYPE;
  1003. }
  1004. }
  1005. if(v->s.pict_type == I_TYPE || v->s.pict_type == BI_TYPE)
  1006. get_bits(gb, 7); // skip buffer fullness
  1007. /* calculate RND */
  1008. if(v->s.pict_type == I_TYPE || v->s.pict_type == BI_TYPE)
  1009. v->rnd = 1;
  1010. if(v->s.pict_type == P_TYPE)
  1011. v->rnd ^= 1;
  1012. /* Quantizer stuff */
  1013. pqindex = get_bits(gb, 5);
  1014. if (v->quantizer_mode == QUANT_FRAME_IMPLICIT)
  1015. v->pq = ff_vc1_pquant_table[0][pqindex];
  1016. else
  1017. v->pq = ff_vc1_pquant_table[1][pqindex];
  1018. v->pquantizer = 1;
  1019. if (v->quantizer_mode == QUANT_FRAME_IMPLICIT)
  1020. v->pquantizer = pqindex < 9;
  1021. if (v->quantizer_mode == QUANT_NON_UNIFORM)
  1022. v->pquantizer = 0;
  1023. v->pqindex = pqindex;
  1024. if (pqindex < 9) v->halfpq = get_bits(gb, 1);
  1025. else v->halfpq = 0;
  1026. if (v->quantizer_mode == QUANT_FRAME_EXPLICIT)
  1027. v->pquantizer = get_bits(gb, 1);
  1028. v->dquantfrm = 0;
  1029. if (v->extended_mv == 1) v->mvrange = get_prefix(gb, 0, 3);
  1030. v->k_x = v->mvrange + 9 + (v->mvrange >> 1); //k_x can be 9 10 12 13
  1031. v->k_y = v->mvrange + 8; //k_y can be 8 9 10 11
  1032. v->range_x = 1 << (v->k_x - 1);
  1033. v->range_y = 1 << (v->k_y - 1);
  1034. if (v->profile == PROFILE_ADVANCED)
  1035. {
  1036. if (v->postprocflag) v->postproc = get_bits(gb, 1);
  1037. }
  1038. else
  1039. if (v->multires && v->s.pict_type != B_TYPE) v->respic = get_bits(gb, 2);
  1040. if(v->res_x8 && (v->s.pict_type == I_TYPE || v->s.pict_type == BI_TYPE)){
  1041. if(get_bits1(gb))return -1;
  1042. }
  1043. //av_log(v->s.avctx, AV_LOG_INFO, "%c Frame: QP=[%i]%i (+%i/2) %i\n",
  1044. // (v->s.pict_type == P_TYPE) ? 'P' : ((v->s.pict_type == I_TYPE) ? 'I' : 'B'), pqindex, v->pq, v->halfpq, v->rangeredfrm);
  1045. if(v->s.pict_type == I_TYPE || v->s.pict_type == P_TYPE) v->use_ic = 0;
  1046. switch(v->s.pict_type) {
  1047. case P_TYPE:
  1048. if (v->pq < 5) v->tt_index = 0;
  1049. else if(v->pq < 13) v->tt_index = 1;
  1050. else v->tt_index = 2;
  1051. lowquant = (v->pq > 12) ? 0 : 1;
  1052. v->mv_mode = ff_vc1_mv_pmode_table[lowquant][get_prefix(gb, 1, 4)];
  1053. if (v->mv_mode == MV_PMODE_INTENSITY_COMP)
  1054. {
  1055. int scale, shift, i;
  1056. v->mv_mode2 = ff_vc1_mv_pmode_table2[lowquant][get_prefix(gb, 1, 3)];
  1057. v->lumscale = get_bits(gb, 6);
  1058. v->lumshift = get_bits(gb, 6);
  1059. v->use_ic = 1;
  1060. /* fill lookup tables for intensity compensation */
  1061. if(!v->lumscale) {
  1062. scale = -64;
  1063. shift = (255 - v->lumshift * 2) << 6;
  1064. if(v->lumshift > 31)
  1065. shift += 128 << 6;
  1066. } else {
  1067. scale = v->lumscale + 32;
  1068. if(v->lumshift > 31)
  1069. shift = (v->lumshift - 64) << 6;
  1070. else
  1071. shift = v->lumshift << 6;
  1072. }
  1073. for(i = 0; i < 256; i++) {
  1074. v->luty[i] = av_clip_uint8((scale * i + shift + 32) >> 6);
  1075. v->lutuv[i] = av_clip_uint8((scale * (i - 128) + 128*64 + 32) >> 6);
  1076. }
  1077. }
  1078. if(v->mv_mode == MV_PMODE_1MV_HPEL || v->mv_mode == MV_PMODE_1MV_HPEL_BILIN)
  1079. v->s.quarter_sample = 0;
  1080. else if(v->mv_mode == MV_PMODE_INTENSITY_COMP) {
  1081. if(v->mv_mode2 == MV_PMODE_1MV_HPEL || v->mv_mode2 == MV_PMODE_1MV_HPEL_BILIN)
  1082. v->s.quarter_sample = 0;
  1083. else
  1084. v->s.quarter_sample = 1;
  1085. } else
  1086. v->s.quarter_sample = 1;
  1087. v->s.mspel = !(v->mv_mode == MV_PMODE_1MV_HPEL_BILIN || (v->mv_mode == MV_PMODE_INTENSITY_COMP && v->mv_mode2 == MV_PMODE_1MV_HPEL_BILIN));
  1088. if ((v->mv_mode == MV_PMODE_INTENSITY_COMP &&
  1089. v->mv_mode2 == MV_PMODE_MIXED_MV)
  1090. || v->mv_mode == MV_PMODE_MIXED_MV)
  1091. {
  1092. status = bitplane_decoding(v->mv_type_mb_plane, &v->mv_type_is_raw, v);
  1093. if (status < 0) return -1;
  1094. av_log(v->s.avctx, AV_LOG_DEBUG, "MB MV Type plane encoding: "
  1095. "Imode: %i, Invert: %i\n", status>>1, status&1);
  1096. } else {
  1097. v->mv_type_is_raw = 0;
  1098. memset(v->mv_type_mb_plane, 0, v->s.mb_stride * v->s.mb_height);
  1099. }
  1100. status = bitplane_decoding(v->s.mbskip_table, &v->skip_is_raw, v);
  1101. if (status < 0) return -1;
  1102. av_log(v->s.avctx, AV_LOG_DEBUG, "MB Skip plane encoding: "
  1103. "Imode: %i, Invert: %i\n", status>>1, status&1);
  1104. /* Hopefully this is correct for P frames */
  1105. v->s.mv_table_index = get_bits(gb, 2); //but using ff_vc1_ tables
  1106. v->cbpcy_vlc = &ff_vc1_cbpcy_p_vlc[get_bits(gb, 2)];
  1107. if (v->dquant)
  1108. {
  1109. av_log(v->s.avctx, AV_LOG_DEBUG, "VOP DQuant info\n");
  1110. vop_dquant_decoding(v);
  1111. }
  1112. v->ttfrm = 0; //FIXME Is that so ?
  1113. if (v->vstransform)
  1114. {
  1115. v->ttmbf = get_bits(gb, 1);
  1116. if (v->ttmbf)
  1117. {
  1118. v->ttfrm = ff_vc1_ttfrm_to_tt[get_bits(gb, 2)];
  1119. }
  1120. } else {
  1121. v->ttmbf = 1;
  1122. v->ttfrm = TT_8X8;
  1123. }
  1124. break;
  1125. case B_TYPE:
  1126. if (v->pq < 5) v->tt_index = 0;
  1127. else if(v->pq < 13) v->tt_index = 1;
  1128. else v->tt_index = 2;
  1129. lowquant = (v->pq > 12) ? 0 : 1;
  1130. v->mv_mode = get_bits1(gb) ? MV_PMODE_1MV : MV_PMODE_1MV_HPEL_BILIN;
  1131. v->s.quarter_sample = (v->mv_mode == MV_PMODE_1MV);
  1132. v->s.mspel = v->s.quarter_sample;
  1133. status = bitplane_decoding(v->direct_mb_plane, &v->dmb_is_raw, v);
  1134. if (status < 0) return -1;
  1135. av_log(v->s.avctx, AV_LOG_DEBUG, "MB Direct Type plane encoding: "
  1136. "Imode: %i, Invert: %i\n", status>>1, status&1);
  1137. status = bitplane_decoding(v->s.mbskip_table, &v->skip_is_raw, v);
  1138. if (status < 0) return -1;
  1139. av_log(v->s.avctx, AV_LOG_DEBUG, "MB Skip plane encoding: "
  1140. "Imode: %i, Invert: %i\n", status>>1, status&1);
  1141. v->s.mv_table_index = get_bits(gb, 2);
  1142. v->cbpcy_vlc = &ff_vc1_cbpcy_p_vlc[get_bits(gb, 2)];
  1143. if (v->dquant)
  1144. {
  1145. av_log(v->s.avctx, AV_LOG_DEBUG, "VOP DQuant info\n");
  1146. vop_dquant_decoding(v);
  1147. }
  1148. v->ttfrm = 0;
  1149. if (v->vstransform)
  1150. {
  1151. v->ttmbf = get_bits(gb, 1);
  1152. if (v->ttmbf)
  1153. {
  1154. v->ttfrm = ff_vc1_ttfrm_to_tt[get_bits(gb, 2)];
  1155. }
  1156. } else {
  1157. v->ttmbf = 1;
  1158. v->ttfrm = TT_8X8;
  1159. }
  1160. break;
  1161. }
  1162. /* AC Syntax */
  1163. v->c_ac_table_index = decode012(gb);
  1164. if (v->s.pict_type == I_TYPE || v->s.pict_type == BI_TYPE)
  1165. {
  1166. v->y_ac_table_index = decode012(gb);
  1167. }
  1168. /* DC Syntax */
  1169. v->s.dc_table_index = get_bits(gb, 1);
  1170. if(v->s.pict_type == BI_TYPE) {
  1171. v->s.pict_type = B_TYPE;
  1172. v->bi_type = 1;
  1173. }
  1174. return 0;
  1175. }
  1176. static int vc1_parse_frame_header_adv(VC1Context *v, GetBitContext* gb)
  1177. {
  1178. int pqindex, lowquant;
  1179. int status;
  1180. v->p_frame_skipped = 0;
  1181. if(v->interlace){
  1182. v->fcm = decode012(gb);
  1183. if(v->fcm) return -1; // interlaced frames/fields are not implemented
  1184. }
  1185. switch(get_prefix(gb, 0, 4)) {
  1186. case 0:
  1187. v->s.pict_type = P_TYPE;
  1188. break;
  1189. case 1:
  1190. v->s.pict_type = B_TYPE;
  1191. break;
  1192. case 2:
  1193. v->s.pict_type = I_TYPE;
  1194. break;
  1195. case 3:
  1196. v->s.pict_type = BI_TYPE;
  1197. break;
  1198. case 4:
  1199. v->s.pict_type = P_TYPE; // skipped pic
  1200. v->p_frame_skipped = 1;
  1201. return 0;
  1202. }
  1203. if(v->tfcntrflag)
  1204. get_bits(gb, 8);
  1205. if(v->broadcast) {
  1206. if(!v->interlace || v->psf) {
  1207. v->rptfrm = get_bits(gb, 2);
  1208. } else {
  1209. v->tff = get_bits1(gb);
  1210. v->rptfrm = get_bits1(gb);
  1211. }
  1212. }
  1213. if(v->panscanflag) {
  1214. //...
  1215. }
  1216. v->rnd = get_bits1(gb);
  1217. if(v->interlace)
  1218. v->uvsamp = get_bits1(gb);
  1219. if(v->finterpflag) v->interpfrm = get_bits(gb, 1);
  1220. if(v->s.pict_type == B_TYPE) {
  1221. v->bfraction = get_vlc2(gb, ff_vc1_bfraction_vlc.table, VC1_BFRACTION_VLC_BITS, 1);
  1222. v->bfraction = ff_vc1_bfraction_lut[v->bfraction];
  1223. if(v->bfraction == 0) {
  1224. v->s.pict_type = BI_TYPE; /* XXX: should not happen here */
  1225. }
  1226. }
  1227. pqindex = get_bits(gb, 5);
  1228. v->pqindex = pqindex;
  1229. if (v->quantizer_mode == QUANT_FRAME_IMPLICIT)
  1230. v->pq = ff_vc1_pquant_table[0][pqindex];
  1231. else
  1232. v->pq = ff_vc1_pquant_table[1][pqindex];
  1233. v->pquantizer = 1;
  1234. if (v->quantizer_mode == QUANT_FRAME_IMPLICIT)
  1235. v->pquantizer = pqindex < 9;
  1236. if (v->quantizer_mode == QUANT_NON_UNIFORM)
  1237. v->pquantizer = 0;
  1238. v->pqindex = pqindex;
  1239. if (pqindex < 9) v->halfpq = get_bits(gb, 1);
  1240. else v->halfpq = 0;
  1241. if (v->quantizer_mode == QUANT_FRAME_EXPLICIT)
  1242. v->pquantizer = get_bits(gb, 1);
  1243. if(v->s.pict_type == I_TYPE || v->s.pict_type == P_TYPE) v->use_ic = 0;
  1244. switch(v->s.pict_type) {
  1245. case I_TYPE:
  1246. case BI_TYPE:
  1247. status = bitplane_decoding(v->acpred_plane, &v->acpred_is_raw, v);
  1248. if (status < 0) return -1;
  1249. av_log(v->s.avctx, AV_LOG_DEBUG, "ACPRED plane encoding: "
  1250. "Imode: %i, Invert: %i\n", status>>1, status&1);
  1251. v->condover = CONDOVER_NONE;
  1252. if(v->overlap && v->pq <= 8) {
  1253. v->condover = decode012(gb);
  1254. if(v->condover == CONDOVER_SELECT) {
  1255. status = bitplane_decoding(v->over_flags_plane, &v->overflg_is_raw, v);
  1256. if (status < 0) return -1;
  1257. av_log(v->s.avctx, AV_LOG_DEBUG, "CONDOVER plane encoding: "
  1258. "Imode: %i, Invert: %i\n", status>>1, status&1);
  1259. }
  1260. }
  1261. break;
  1262. case P_TYPE:
  1263. if(v->postprocflag)
  1264. v->postproc = get_bits1(gb);
  1265. if (v->extended_mv) v->mvrange = get_prefix(gb, 0, 3);
  1266. else v->mvrange = 0;
  1267. v->k_x = v->mvrange + 9 + (v->mvrange >> 1); //k_x can be 9 10 12 13
  1268. v->k_y = v->mvrange + 8; //k_y can be 8 9 10 11
  1269. v->range_x = 1 << (v->k_x - 1);
  1270. v->range_y = 1 << (v->k_y - 1);
  1271. if (v->pq < 5) v->tt_index = 0;
  1272. else if(v->pq < 13) v->tt_index = 1;
  1273. else v->tt_index = 2;
  1274. lowquant = (v->pq > 12) ? 0 : 1;
  1275. v->mv_mode = ff_vc1_mv_pmode_table[lowquant][get_prefix(gb, 1, 4)];
  1276. if (v->mv_mode == MV_PMODE_INTENSITY_COMP)
  1277. {
  1278. int scale, shift, i;
  1279. v->mv_mode2 = ff_vc1_mv_pmode_table2[lowquant][get_prefix(gb, 1, 3)];
  1280. v->lumscale = get_bits(gb, 6);
  1281. v->lumshift = get_bits(gb, 6);
  1282. /* fill lookup tables for intensity compensation */
  1283. if(!v->lumscale) {
  1284. scale = -64;
  1285. shift = (255 - v->lumshift * 2) << 6;
  1286. if(v->lumshift > 31)
  1287. shift += 128 << 6;
  1288. } else {
  1289. scale = v->lumscale + 32;
  1290. if(v->lumshift > 31)
  1291. shift = (v->lumshift - 64) << 6;
  1292. else
  1293. shift = v->lumshift << 6;
  1294. }
  1295. for(i = 0; i < 256; i++) {
  1296. v->luty[i] = av_clip_uint8((scale * i + shift + 32) >> 6);
  1297. v->lutuv[i] = av_clip_uint8((scale * (i - 128) + 128*64 + 32) >> 6);
  1298. }
  1299. v->use_ic = 1;
  1300. }
  1301. if(v->mv_mode == MV_PMODE_1MV_HPEL || v->mv_mode == MV_PMODE_1MV_HPEL_BILIN)
  1302. v->s.quarter_sample = 0;
  1303. else if(v->mv_mode == MV_PMODE_INTENSITY_COMP) {
  1304. if(v->mv_mode2 == MV_PMODE_1MV_HPEL || v->mv_mode2 == MV_PMODE_1MV_HPEL_BILIN)
  1305. v->s.quarter_sample = 0;
  1306. else
  1307. v->s.quarter_sample = 1;
  1308. } else
  1309. v->s.quarter_sample = 1;
  1310. v->s.mspel = !(v->mv_mode == MV_PMODE_1MV_HPEL_BILIN || (v->mv_mode == MV_PMODE_INTENSITY_COMP && v->mv_mode2 == MV_PMODE_1MV_HPEL_BILIN));
  1311. if ((v->mv_mode == MV_PMODE_INTENSITY_COMP &&
  1312. v->mv_mode2 == MV_PMODE_MIXED_MV)
  1313. || v->mv_mode == MV_PMODE_MIXED_MV)
  1314. {
  1315. status = bitplane_decoding(v->mv_type_mb_plane, &v->mv_type_is_raw, v);
  1316. if (status < 0) return -1;
  1317. av_log(v->s.avctx, AV_LOG_DEBUG, "MB MV Type plane encoding: "
  1318. "Imode: %i, Invert: %i\n", status>>1, status&1);
  1319. } else {
  1320. v->mv_type_is_raw = 0;
  1321. memset(v->mv_type_mb_plane, 0, v->s.mb_stride * v->s.mb_height);
  1322. }
  1323. status = bitplane_decoding(v->s.mbskip_table, &v->skip_is_raw, v);
  1324. if (status < 0) return -1;
  1325. av_log(v->s.avctx, AV_LOG_DEBUG, "MB Skip plane encoding: "
  1326. "Imode: %i, Invert: %i\n", status>>1, status&1);
  1327. /* Hopefully this is correct for P frames */
  1328. v->s.mv_table_index = get_bits(gb, 2); //but using ff_vc1_ tables
  1329. v->cbpcy_vlc = &ff_vc1_cbpcy_p_vlc[get_bits(gb, 2)];
  1330. if (v->dquant)
  1331. {
  1332. av_log(v->s.avctx, AV_LOG_DEBUG, "VOP DQuant info\n");
  1333. vop_dquant_decoding(v);
  1334. }
  1335. v->ttfrm = 0; //FIXME Is that so ?
  1336. if (v->vstransform)
  1337. {
  1338. v->ttmbf = get_bits(gb, 1);
  1339. if (v->ttmbf)
  1340. {
  1341. v->ttfrm = ff_vc1_ttfrm_to_tt[get_bits(gb, 2)];
  1342. }
  1343. } else {
  1344. v->ttmbf = 1;
  1345. v->ttfrm = TT_8X8;
  1346. }
  1347. break;
  1348. case B_TYPE:
  1349. if(v->postprocflag)
  1350. v->postproc = get_bits1(gb);
  1351. if (v->extended_mv) v->mvrange = get_prefix(gb, 0, 3);
  1352. else v->mvrange = 0;
  1353. v->k_x = v->mvrange + 9 + (v->mvrange >> 1); //k_x can be 9 10 12 13
  1354. v->k_y = v->mvrange + 8; //k_y can be 8 9 10 11
  1355. v->range_x = 1 << (v->k_x - 1);
  1356. v->range_y = 1 << (v->k_y - 1);
  1357. if (v->pq < 5) v->tt_index = 0;
  1358. else if(v->pq < 13) v->tt_index = 1;
  1359. else v->tt_index = 2;
  1360. lowquant = (v->pq > 12) ? 0 : 1;
  1361. v->mv_mode = get_bits1(gb) ? MV_PMODE_1MV : MV_PMODE_1MV_HPEL_BILIN;
  1362. v->s.quarter_sample = (v->mv_mode == MV_PMODE_1MV);
  1363. v->s.mspel = v->s.quarter_sample;
  1364. status = bitplane_decoding(v->direct_mb_plane, &v->dmb_is_raw, v);
  1365. if (status < 0) return -1;
  1366. av_log(v->s.avctx, AV_LOG_DEBUG, "MB Direct Type plane encoding: "
  1367. "Imode: %i, Invert: %i\n", status>>1, status&1);
  1368. status = bitplane_decoding(v->s.mbskip_table, &v->skip_is_raw, v);
  1369. if (status < 0) return -1;
  1370. av_log(v->s.avctx, AV_LOG_DEBUG, "MB Skip plane encoding: "
  1371. "Imode: %i, Invert: %i\n", status>>1, status&1);
  1372. v->s.mv_table_index = get_bits(gb, 2);
  1373. v->cbpcy_vlc = &ff_vc1_cbpcy_p_vlc[get_bits(gb, 2)];
  1374. if (v->dquant)
  1375. {
  1376. av_log(v->s.avctx, AV_LOG_DEBUG, "VOP DQuant info\n");
  1377. vop_dquant_decoding(v);
  1378. }
  1379. v->ttfrm = 0;
  1380. if (v->vstransform)
  1381. {
  1382. v->ttmbf = get_bits(gb, 1);
  1383. if (v->ttmbf)
  1384. {
  1385. v->ttfrm = ff_vc1_ttfrm_to_tt[get_bits(gb, 2)];
  1386. }
  1387. } else {
  1388. v->ttmbf = 1;
  1389. v->ttfrm = TT_8X8;
  1390. }
  1391. break;
  1392. }
  1393. /* AC Syntax */
  1394. v->c_ac_table_index = decode012(gb);
  1395. if (v->s.pict_type == I_TYPE || v->s.pict_type == BI_TYPE)
  1396. {
  1397. v->y_ac_table_index = decode012(gb);
  1398. }
  1399. /* DC Syntax */
  1400. v->s.dc_table_index = get_bits(gb, 1);
  1401. if ((v->s.pict_type == I_TYPE || v->s.pict_type == BI_TYPE) && v->dquant) {
  1402. av_log(v->s.avctx, AV_LOG_DEBUG, "VOP DQuant info\n");
  1403. vop_dquant_decoding(v);
  1404. }
  1405. v->bi_type = 0;
  1406. if(v->s.pict_type == BI_TYPE) {
  1407. v->s.pict_type = B_TYPE;
  1408. v->bi_type = 1;
  1409. }
  1410. return 0;
  1411. }
  1412. /***********************************************************************/
  1413. /**
  1414. * @defgroup block VC-1 Block-level functions
  1415. * @see 7.1.4, p91 and 8.1.1.7, p(1)04
  1416. * @{
  1417. */
  1418. /**
  1419. * @def GET_MQUANT
  1420. * @brief Get macroblock-level quantizer scale
  1421. */
  1422. #define GET_MQUANT() \
  1423. if (v->dquantfrm) \
  1424. { \
  1425. int edges = 0; \
  1426. if (v->dqprofile == DQPROFILE_ALL_MBS) \
  1427. { \
  1428. if (v->dqbilevel) \
  1429. { \
  1430. mquant = (get_bits(gb, 1)) ? v->altpq : v->pq; \
  1431. } \
  1432. else \
  1433. { \
  1434. mqdiff = get_bits(gb, 3); \
  1435. if (mqdiff != 7) mquant = v->pq + mqdiff; \
  1436. else mquant = get_bits(gb, 5); \
  1437. } \
  1438. } \
  1439. if(v->dqprofile == DQPROFILE_SINGLE_EDGE) \
  1440. edges = 1 << v->dqsbedge; \
  1441. else if(v->dqprofile == DQPROFILE_DOUBLE_EDGES) \
  1442. edges = (3 << v->dqsbedge) % 15; \
  1443. else if(v->dqprofile == DQPROFILE_FOUR_EDGES) \
  1444. edges = 15; \
  1445. if((edges&1) && !s->mb_x) \
  1446. mquant = v->altpq; \
  1447. if((edges&2) && s->first_slice_line) \
  1448. mquant = v->altpq; \
  1449. if((edges&4) && s->mb_x == (s->mb_width - 1)) \
  1450. mquant = v->altpq; \
  1451. if((edges&8) && s->mb_y == (s->mb_height - 1)) \
  1452. mquant = v->altpq; \
  1453. }
  1454. /**
  1455. * @def GET_MVDATA(_dmv_x, _dmv_y)
  1456. * @brief Get MV differentials
  1457. * @see MVDATA decoding from 8.3.5.2, p(1)20
  1458. * @param _dmv_x Horizontal differential for decoded MV
  1459. * @param _dmv_y Vertical differential for decoded MV
  1460. */
  1461. #define GET_MVDATA(_dmv_x, _dmv_y) \
  1462. index = 1 + get_vlc2(gb, ff_vc1_mv_diff_vlc[s->mv_table_index].table,\
  1463. VC1_MV_DIFF_VLC_BITS, 2); \
  1464. if (index > 36) \
  1465. { \
  1466. mb_has_coeffs = 1; \
  1467. index -= 37; \
  1468. } \
  1469. else mb_has_coeffs = 0; \
  1470. s->mb_intra = 0; \
  1471. if (!index) { _dmv_x = _dmv_y = 0; } \
  1472. else if (index == 35) \
  1473. { \
  1474. _dmv_x = get_bits(gb, v->k_x - 1 + s->quarter_sample); \
  1475. _dmv_y = get_bits(gb, v->k_y - 1 + s->quarter_sample); \
  1476. } \
  1477. else if (index == 36) \
  1478. { \
  1479. _dmv_x = 0; \
  1480. _dmv_y = 0; \
  1481. s->mb_intra = 1; \
  1482. } \
  1483. else \
  1484. { \
  1485. index1 = index%6; \
  1486. if (!s->quarter_sample && index1 == 5) val = 1; \
  1487. else val = 0; \
  1488. if(size_table[index1] - val > 0) \
  1489. val = get_bits(gb, size_table[index1] - val); \
  1490. else val = 0; \
  1491. sign = 0 - (val&1); \
  1492. _dmv_x = (sign ^ ((val>>1) + offset_table[index1])) - sign; \
  1493. \
  1494. index1 = index/6; \
  1495. if (!s->quarter_sample && index1 == 5) val = 1; \
  1496. else val = 0; \
  1497. if(size_table[index1] - val > 0) \
  1498. val = get_bits(gb, size_table[index1] - val); \
  1499. else val = 0; \
  1500. sign = 0 - (val&1); \
  1501. _dmv_y = (sign ^ ((val>>1) + offset_table[index1])) - sign; \
  1502. }
  1503. /** Predict and set motion vector
  1504. */
  1505. static inline void vc1_pred_mv(MpegEncContext *s, int n, int dmv_x, int dmv_y, int mv1, int r_x, int r_y, uint8_t* is_intra)
  1506. {
  1507. int xy, wrap, off = 0;
  1508. int16_t *A, *B, *C;
  1509. int px, py;
  1510. int sum;
  1511. /* scale MV difference to be quad-pel */
  1512. dmv_x <<= 1 - s->quarter_sample;
  1513. dmv_y <<= 1 - s->quarter_sample;
  1514. wrap = s->b8_stride;
  1515. xy = s->block_index[n];
  1516. if(s->mb_intra){
  1517. s->mv[0][n][0] = s->current_picture.motion_val[0][xy][0] = 0;
  1518. s->mv[0][n][1] = s->current_picture.motion_val[0][xy][1] = 0;
  1519. s->current_picture.motion_val[1][xy][0] = 0;
  1520. s->current_picture.motion_val[1][xy][1] = 0;
  1521. if(mv1) { /* duplicate motion data for 1-MV block */
  1522. s->current_picture.motion_val[0][xy + 1][0] = 0;
  1523. s->current_picture.motion_val[0][xy + 1][1] = 0;
  1524. s->current_picture.motion_val[0][xy + wrap][0] = 0;
  1525. s->current_picture.motion_val[0][xy + wrap][1] = 0;
  1526. s->current_picture.motion_val[0][xy + wrap + 1][0] = 0;
  1527. s->current_picture.motion_val[0][xy + wrap + 1][1] = 0;
  1528. s->current_picture.motion_val[1][xy + 1][0] = 0;
  1529. s->current_picture.motion_val[1][xy + 1][1] = 0;
  1530. s->current_picture.motion_val[1][xy + wrap][0] = 0;
  1531. s->current_picture.motion_val[1][xy + wrap][1] = 0;
  1532. s->current_picture.motion_val[1][xy + wrap + 1][0] = 0;
  1533. s->current_picture.motion_val[1][xy + wrap + 1][1] = 0;
  1534. }
  1535. return;
  1536. }
  1537. C = s->current_picture.motion_val[0][xy - 1];
  1538. A = s->current_picture.motion_val[0][xy - wrap];
  1539. if(mv1)
  1540. off = (s->mb_x == (s->mb_width - 1)) ? -1 : 2;
  1541. else {
  1542. //in 4-MV mode different blocks have different B predictor position
  1543. switch(n){
  1544. case 0:
  1545. off = (s->mb_x > 0) ? -1 : 1;
  1546. break;
  1547. case 1:
  1548. off = (s->mb_x == (s->mb_width - 1)) ? -1 : 1;
  1549. break;
  1550. case 2:
  1551. off = 1;
  1552. break;
  1553. case 3:
  1554. off = -1;
  1555. }
  1556. }
  1557. B = s->current_picture.motion_val[0][xy - wrap + off];
  1558. if(!s->first_slice_line || (n==2 || n==3)) { // predictor A is not out of bounds
  1559. if(s->mb_width == 1) {
  1560. px = A[0];
  1561. py = A[1];
  1562. } else {
  1563. px = mid_pred(A[0], B[0], C[0]);
  1564. py = mid_pred(A[1], B[1], C[1]);
  1565. }
  1566. } else if(s->mb_x || (n==1 || n==3)) { // predictor C is not out of bounds
  1567. px = C[0];
  1568. py = C[1];
  1569. } else {
  1570. px = py = 0;
  1571. }
  1572. /* Pullback MV as specified in 8.3.5.3.4 */
  1573. {
  1574. int qx, qy, X, Y;
  1575. qx = (s->mb_x << 6) + ((n==1 || n==3) ? 32 : 0);
  1576. qy = (s->mb_y << 6) + ((n==2 || n==3) ? 32 : 0);
  1577. X = (s->mb_width << 6) - 4;
  1578. Y = (s->mb_height << 6) - 4;
  1579. if(mv1) {
  1580. if(qx + px < -60) px = -60 - qx;
  1581. if(qy + py < -60) py = -60 - qy;
  1582. } else {
  1583. if(qx + px < -28) px = -28 - qx;
  1584. if(qy + py < -28) py = -28 - qy;
  1585. }
  1586. if(qx + px > X) px = X - qx;
  1587. if(qy + py > Y) py = Y - qy;
  1588. }
  1589. /* Calculate hybrid prediction as specified in 8.3.5.3.5 */
  1590. if((!s->first_slice_line || (n==2 || n==3)) && (s->mb_x || (n==1 || n==3))) {
  1591. if(is_intra[xy - wrap])
  1592. sum = FFABS(px) + FFABS(py);
  1593. else
  1594. sum = FFABS(px - A[0]) + FFABS(py - A[1]);
  1595. if(sum > 32) {
  1596. if(get_bits1(&s->gb)) {
  1597. px = A[0];
  1598. py = A[1];
  1599. } else {
  1600. px = C[0];
  1601. py = C[1];
  1602. }
  1603. } else {
  1604. if(is_intra[xy - 1])
  1605. sum = FFABS(px) + FFABS(py);
  1606. else
  1607. sum = FFABS(px - C[0]) + FFABS(py - C[1]);
  1608. if(sum > 32) {
  1609. if(get_bits1(&s->gb)) {
  1610. px = A[0];
  1611. py = A[1];
  1612. } else {
  1613. px = C[0];
  1614. py = C[1];
  1615. }
  1616. }
  1617. }
  1618. }
  1619. /* store MV using signed modulus of MV range defined in 4.11 */
  1620. s->mv[0][n][0] = s->current_picture.motion_val[0][xy][0] = ((px + dmv_x + r_x) & ((r_x << 1) - 1)) - r_x;
  1621. s->mv[0][n][1] = s->current_picture.motion_val[0][xy][1] = ((py + dmv_y + r_y) & ((r_y << 1) - 1)) - r_y;
  1622. if(mv1) { /* duplicate motion data for 1-MV block */
  1623. s->current_picture.motion_val[0][xy + 1][0] = s->current_picture.motion_val[0][xy][0];
  1624. s->current_picture.motion_val[0][xy + 1][1] = s->current_picture.motion_val[0][xy][1];
  1625. s->current_picture.motion_val[0][xy + wrap][0] = s->current_picture.motion_val[0][xy][0];
  1626. s->current_picture.motion_val[0][xy + wrap][1] = s->current_picture.motion_val[0][xy][1];
  1627. s->current_picture.motion_val[0][xy + wrap + 1][0] = s->current_picture.motion_val[0][xy][0];
  1628. s->current_picture.motion_val[0][xy + wrap + 1][1] = s->current_picture.motion_val[0][xy][1];
  1629. }
  1630. }
  1631. /** Motion compensation for direct or interpolated blocks in B-frames
  1632. */
  1633. static void vc1_interp_mc(VC1Context *v)
  1634. {
  1635. MpegEncContext *s = &v->s;
  1636. DSPContext *dsp = &v->s.dsp;
  1637. uint8_t *srcY, *srcU, *srcV;
  1638. int dxy, uvdxy, mx, my, uvmx, uvmy, src_x, src_y, uvsrc_x, uvsrc_y;
  1639. if(!v->s.next_picture.data[0])return;
  1640. mx = s->mv[1][0][0];
  1641. my = s->mv[1][0][1];
  1642. uvmx = (mx + ((mx & 3) == 3)) >> 1;
  1643. uvmy = (my + ((my & 3) == 3)) >> 1;
  1644. if(v->fastuvmc) {
  1645. uvmx = uvmx + ((uvmx<0)?-(uvmx&1):(uvmx&1));
  1646. uvmy = uvmy + ((uvmy<0)?-(uvmy&1):(uvmy&1));
  1647. }
  1648. srcY = s->next_picture.data[0];
  1649. srcU = s->next_picture.data[1];
  1650. srcV = s->next_picture.data[2];
  1651. src_x = s->mb_x * 16 + (mx >> 2);
  1652. src_y = s->mb_y * 16 + (my >> 2);
  1653. uvsrc_x = s->mb_x * 8 + (uvmx >> 2);
  1654. uvsrc_y = s->mb_y * 8 + (uvmy >> 2);
  1655. if(v->profile != PROFILE_ADVANCED){
  1656. src_x = av_clip( src_x, -16, s->mb_width * 16);
  1657. src_y = av_clip( src_y, -16, s->mb_height * 16);
  1658. uvsrc_x = av_clip(uvsrc_x, -8, s->mb_width * 8);
  1659. uvsrc_y = av_clip(uvsrc_y, -8, s->mb_height * 8);
  1660. }else{
  1661. src_x = av_clip( src_x, -17, s->avctx->coded_width);
  1662. src_y = av_clip( src_y, -18, s->avctx->coded_height + 1);
  1663. uvsrc_x = av_clip(uvsrc_x, -8, s->avctx->coded_width >> 1);
  1664. uvsrc_y = av_clip(uvsrc_y, -8, s->avctx->coded_height >> 1);
  1665. }
  1666. srcY += src_y * s->linesize + src_x;
  1667. srcU += uvsrc_y * s->uvlinesize + uvsrc_x;
  1668. srcV += uvsrc_y * s->uvlinesize + uvsrc_x;
  1669. /* for grayscale we should not try to read from unknown area */
  1670. if(s->flags & CODEC_FLAG_GRAY) {
  1671. srcU = s->edge_emu_buffer + 18 * s->linesize;
  1672. srcV = s->edge_emu_buffer + 18 * s->linesize;
  1673. }
  1674. if(v->rangeredfrm
  1675. || (unsigned)src_x > s->h_edge_pos - (mx&3) - 16
  1676. || (unsigned)src_y > s->v_edge_pos - (my&3) - 16){
  1677. uint8_t *uvbuf= s->edge_emu_buffer + 19 * s->linesize;
  1678. srcY -= s->mspel * (1 + s->linesize);
  1679. ff_emulated_edge_mc(s->edge_emu_buffer, srcY, s->linesize, 17+s->mspel*2, 17+s->mspel*2,
  1680. src_x - s->mspel, src_y - s->mspel, s->h_edge_pos, s->v_edge_pos);
  1681. srcY = s->edge_emu_buffer;
  1682. ff_emulated_edge_mc(uvbuf , srcU, s->uvlinesize, 8+1, 8+1,
  1683. uvsrc_x, uvsrc_y, s->h_edge_pos >> 1, s->v_edge_pos >> 1);
  1684. ff_emulated_edge_mc(uvbuf + 16, srcV, s->uvlinesize, 8+1, 8+1,
  1685. uvsrc_x, uvsrc_y, s->h_edge_pos >> 1, s->v_edge_pos >> 1);
  1686. srcU = uvbuf;
  1687. srcV = uvbuf + 16;
  1688. /* if we deal with range reduction we need to scale source blocks */
  1689. if(v->rangeredfrm) {
  1690. int i, j;
  1691. uint8_t *src, *src2;
  1692. src = srcY;
  1693. for(j = 0; j < 17 + s->mspel*2; j++) {
  1694. for(i = 0; i < 17 + s->mspel*2; i++) src[i] = ((src[i] - 128) >> 1) + 128;
  1695. src += s->linesize;
  1696. }
  1697. src = srcU; src2 = srcV;
  1698. for(j = 0; j < 9; j++) {
  1699. for(i = 0; i < 9; i++) {
  1700. src[i] = ((src[i] - 128) >> 1) + 128;
  1701. src2[i] = ((src2[i] - 128) >> 1) + 128;
  1702. }
  1703. src += s->uvlinesize;
  1704. src2 += s->uvlinesize;
  1705. }
  1706. }
  1707. srcY += s->mspel * (1 + s->linesize);
  1708. }
  1709. mx >>= 1;
  1710. my >>= 1;
  1711. dxy = ((my & 1) << 1) | (mx & 1);
  1712. dsp->avg_pixels_tab[0][dxy](s->dest[0], srcY, s->linesize, 16);
  1713. if(s->flags & CODEC_FLAG_GRAY) return;
  1714. /* Chroma MC always uses qpel blilinear */
  1715. uvdxy = ((uvmy & 3) << 2) | (uvmx & 3);
  1716. uvmx = (uvmx&3)<<1;
  1717. uvmy = (uvmy&3)<<1;
  1718. dsp->avg_h264_chroma_pixels_tab[0](s->dest[1], srcU, s->uvlinesize, 8, uvmx, uvmy);
  1719. dsp->avg_h264_chroma_pixels_tab[0](s->dest[2], srcV, s->uvlinesize, 8, uvmx, uvmy);
  1720. }
  1721. static av_always_inline int scale_mv(int value, int bfrac, int inv, int qs)
  1722. {
  1723. int n = bfrac;
  1724. #if B_FRACTION_DEN==256
  1725. if(inv)
  1726. n -= 256;
  1727. if(!qs)
  1728. return 2 * ((value * n + 255) >> 9);
  1729. return (value * n + 128) >> 8;
  1730. #else
  1731. if(inv)
  1732. n -= B_FRACTION_DEN;
  1733. if(!qs)
  1734. return 2 * ((value * n + B_FRACTION_DEN - 1) / (2 * B_FRACTION_DEN));
  1735. return (value * n + B_FRACTION_DEN/2) / B_FRACTION_DEN;
  1736. #endif
  1737. }
  1738. /** Reconstruct motion vector for B-frame and do motion compensation
  1739. */
  1740. static inline void vc1_b_mc(VC1Context *v, int dmv_x[2], int dmv_y[2], int direct, int mode)
  1741. {
  1742. if(v->use_ic) {
  1743. v->mv_mode2 = v->mv_mode;
  1744. v->mv_mode = MV_PMODE_INTENSITY_COMP;
  1745. }
  1746. if(direct) {
  1747. vc1_mc_1mv(v, 0);
  1748. vc1_interp_mc(v);
  1749. if(v->use_ic) v->mv_mode = v->mv_mode2;
  1750. return;
  1751. }
  1752. if(mode == BMV_TYPE_INTERPOLATED) {
  1753. vc1_mc_1mv(v, 0);
  1754. vc1_interp_mc(v);
  1755. if(v->use_ic) v->mv_mode = v->mv_mode2;
  1756. return;
  1757. }
  1758. if(v->use_ic && (mode == BMV_TYPE_BACKWARD)) v->mv_mode = v->mv_mode2;
  1759. vc1_mc_1mv(v, (mode == BMV_TYPE_BACKWARD));
  1760. if(v->use_ic) v->mv_mode = v->mv_mode2;
  1761. }
  1762. static inline void vc1_pred_b_mv(VC1Context *v, int dmv_x[2], int dmv_y[2], int direct, int mvtype)
  1763. {
  1764. MpegEncContext *s = &v->s;
  1765. int xy, wrap, off = 0;
  1766. int16_t *A, *B, *C;
  1767. int px, py;
  1768. int sum;
  1769. int r_x, r_y;
  1770. const uint8_t *is_intra = v->mb_type[0];
  1771. r_x = v->range_x;
  1772. r_y = v->range_y;
  1773. /* scale MV difference to be quad-pel */
  1774. dmv_x[0] <<= 1 - s->quarter_sample;
  1775. dmv_y[0] <<= 1 - s->quarter_sample;
  1776. dmv_x[1] <<= 1 - s->quarter_sample;
  1777. dmv_y[1] <<= 1 - s->quarter_sample;
  1778. wrap = s->b8_stride;
  1779. xy = s->block_index[0];
  1780. if(s->mb_intra) {
  1781. s->current_picture.motion_val[0][xy][0] =
  1782. s->current_picture.motion_val[0][xy][1] =
  1783. s->current_picture.motion_val[1][xy][0] =
  1784. s->current_picture.motion_val[1][xy][1] = 0;
  1785. return;
  1786. }
  1787. s->mv[0][0][0] = scale_mv(s->next_picture.motion_val[1][xy][0], v->bfraction, 0, s->quarter_sample);
  1788. s->mv[0][0][1] = scale_mv(s->next_picture.motion_val[1][xy][1], v->bfraction, 0, s->quarter_sample);
  1789. s->mv[1][0][0] = scale_mv(s->next_picture.motion_val[1][xy][0], v->bfraction, 1, s->quarter_sample);
  1790. s->mv[1][0][1] = scale_mv(s->next_picture.motion_val[1][xy][1], v->bfraction, 1, s->quarter_sample);
  1791. /* Pullback predicted motion vectors as specified in 8.4.5.4 */
  1792. s->mv[0][0][0] = av_clip(s->mv[0][0][0], -60 - (s->mb_x << 6), (s->mb_width << 6) - 4 - (s->mb_x << 6));
  1793. s->mv[0][0][1] = av_clip(s->mv[0][0][1], -60 - (s->mb_y << 6), (s->mb_height << 6) - 4 - (s->mb_y << 6));
  1794. s->mv[1][0][0] = av_clip(s->mv[1][0][0], -60 - (s->mb_x << 6), (s->mb_width << 6) - 4 - (s->mb_x << 6));
  1795. s->mv[1][0][1] = av_clip(s->mv[1][0][1], -60 - (s->mb_y << 6), (s->mb_height << 6) - 4 - (s->mb_y << 6));
  1796. if(direct) {
  1797. s->current_picture.motion_val[0][xy][0] = s->mv[0][0][0];
  1798. s->current_picture.motion_val[0][xy][1] = s->mv[0][0][1];
  1799. s->current_picture.motion_val[1][xy][0] = s->mv[1][0][0];
  1800. s->current_picture.motion_val[1][xy][1] = s->mv[1][0][1];
  1801. return;
  1802. }
  1803. if((mvtype == BMV_TYPE_FORWARD) || (mvtype == BMV_TYPE_INTERPOLATED)) {
  1804. C = s->current_picture.motion_val[0][xy - 2];
  1805. A = s->current_picture.motion_val[0][xy - wrap*2];
  1806. off = (s->mb_x == (s->mb_width - 1)) ? -2 : 2;
  1807. B = s->current_picture.motion_val[0][xy - wrap*2 + off];
  1808. if(!s->mb_x) C[0] = C[1] = 0;
  1809. if(!s->first_slice_line) { // predictor A is not out of bounds
  1810. if(s->mb_width == 1) {
  1811. px = A[0];
  1812. py = A[1];
  1813. } else {
  1814. px = mid_pred(A[0], B[0], C[0]);
  1815. py = mid_pred(A[1], B[1], C[1]);
  1816. }
  1817. } else if(s->mb_x) { // predictor C is not out of bounds
  1818. px = C[0];
  1819. py = C[1];
  1820. } else {
  1821. px = py = 0;
  1822. }
  1823. /* Pullback MV as specified in 8.3.5.3.4 */
  1824. {
  1825. int qx, qy, X, Y;
  1826. if(v->profile < PROFILE_ADVANCED) {
  1827. qx = (s->mb_x << 5);
  1828. qy = (s->mb_y << 5);
  1829. X = (s->mb_width << 5) - 4;
  1830. Y = (s->mb_height << 5) - 4;
  1831. if(qx + px < -28) px = -28 - qx;
  1832. if(qy + py < -28) py = -28 - qy;
  1833. if(qx + px > X) px = X - qx;
  1834. if(qy + py > Y) py = Y - qy;
  1835. } else {
  1836. qx = (s->mb_x << 6);
  1837. qy = (s->mb_y << 6);
  1838. X = (s->mb_width << 6) - 4;
  1839. Y = (s->mb_height << 6) - 4;
  1840. if(qx + px < -60) px = -60 - qx;
  1841. if(qy + py < -60) py = -60 - qy;
  1842. if(qx + px > X) px = X - qx;
  1843. if(qy + py > Y) py = Y - qy;
  1844. }
  1845. }
  1846. /* Calculate hybrid prediction as specified in 8.3.5.3.5 */
  1847. if(0 && !s->first_slice_line && s->mb_x) {
  1848. if(is_intra[xy - wrap])
  1849. sum = FFABS(px) + FFABS(py);
  1850. else
  1851. sum = FFABS(px - A[0]) + FFABS(py - A[1]);
  1852. if(sum > 32) {
  1853. if(get_bits1(&s->gb)) {
  1854. px = A[0];
  1855. py = A[1];
  1856. } else {
  1857. px = C[0];
  1858. py = C[1];
  1859. }
  1860. } else {
  1861. if(is_intra[xy - 2])
  1862. sum = FFABS(px) + FFABS(py);
  1863. else
  1864. sum = FFABS(px - C[0]) + FFABS(py - C[1]);
  1865. if(sum > 32) {
  1866. if(get_bits1(&s->gb)) {
  1867. px = A[0];
  1868. py = A[1];
  1869. } else {
  1870. px = C[0];
  1871. py = C[1];
  1872. }
  1873. }
  1874. }
  1875. }
  1876. /* store MV using signed modulus of MV range defined in 4.11 */
  1877. s->mv[0][0][0] = ((px + dmv_x[0] + r_x) & ((r_x << 1) - 1)) - r_x;
  1878. s->mv[0][0][1] = ((py + dmv_y[0] + r_y) & ((r_y << 1) - 1)) - r_y;
  1879. }
  1880. if((mvtype == BMV_TYPE_BACKWARD) || (mvtype == BMV_TYPE_INTERPOLATED)) {
  1881. C = s->current_picture.motion_val[1][xy - 2];
  1882. A = s->current_picture.motion_val[1][xy - wrap*2];
  1883. off = (s->mb_x == (s->mb_width - 1)) ? -2 : 2;
  1884. B = s->current_picture.motion_val[1][xy - wrap*2 + off];
  1885. if(!s->mb_x) C[0] = C[1] = 0;
  1886. if(!s->first_slice_line) { // predictor A is not out of bounds
  1887. if(s->mb_width == 1) {
  1888. px = A[0];
  1889. py = A[1];
  1890. } else {
  1891. px = mid_pred(A[0], B[0], C[0]);
  1892. py = mid_pred(A[1], B[1], C[1]);
  1893. }
  1894. } else if(s->mb_x) { // predictor C is not out of bounds
  1895. px = C[0];
  1896. py = C[1];
  1897. } else {
  1898. px = py = 0;
  1899. }
  1900. /* Pullback MV as specified in 8.3.5.3.4 */
  1901. {
  1902. int qx, qy, X, Y;
  1903. if(v->profile < PROFILE_ADVANCED) {
  1904. qx = (s->mb_x << 5);
  1905. qy = (s->mb_y << 5);
  1906. X = (s->mb_width << 5) - 4;
  1907. Y = (s->mb_height << 5) - 4;
  1908. if(qx + px < -28) px = -28 - qx;
  1909. if(qy + py < -28) py = -28 - qy;
  1910. if(qx + px > X) px = X - qx;
  1911. if(qy + py > Y) py = Y - qy;
  1912. } else {
  1913. qx = (s->mb_x << 6);
  1914. qy = (s->mb_y << 6);
  1915. X = (s->mb_width << 6) - 4;
  1916. Y = (s->mb_height << 6) - 4;
  1917. if(qx + px < -60) px = -60 - qx;
  1918. if(qy + py < -60) py = -60 - qy;
  1919. if(qx + px > X) px = X - qx;
  1920. if(qy + py > Y) py = Y - qy;
  1921. }
  1922. }
  1923. /* Calculate hybrid prediction as specified in 8.3.5.3.5 */
  1924. if(0 && !s->first_slice_line && s->mb_x) {
  1925. if(is_intra[xy - wrap])
  1926. sum = FFABS(px) + FFABS(py);
  1927. else
  1928. sum = FFABS(px - A[0]) + FFABS(py - A[1]);
  1929. if(sum > 32) {
  1930. if(get_bits1(&s->gb)) {
  1931. px = A[0];
  1932. py = A[1];
  1933. } else {
  1934. px = C[0];
  1935. py = C[1];
  1936. }
  1937. } else {
  1938. if(is_intra[xy - 2])
  1939. sum = FFABS(px) + FFABS(py);
  1940. else
  1941. sum = FFABS(px - C[0]) + FFABS(py - C[1]);
  1942. if(sum > 32) {
  1943. if(get_bits1(&s->gb)) {
  1944. px = A[0];
  1945. py = A[1];
  1946. } else {
  1947. px = C[0];
  1948. py = C[1];
  1949. }
  1950. }
  1951. }
  1952. }
  1953. /* store MV using signed modulus of MV range defined in 4.11 */
  1954. s->mv[1][0][0] = ((px + dmv_x[1] + r_x) & ((r_x << 1) - 1)) - r_x;
  1955. s->mv[1][0][1] = ((py + dmv_y[1] + r_y) & ((r_y << 1) - 1)) - r_y;
  1956. }
  1957. s->current_picture.motion_val[0][xy][0] = s->mv[0][0][0];
  1958. s->current_picture.motion_val[0][xy][1] = s->mv[0][0][1];
  1959. s->current_picture.motion_val[1][xy][0] = s->mv[1][0][0];
  1960. s->current_picture.motion_val[1][xy][1] = s->mv[1][0][1];
  1961. }
  1962. /** Get predicted DC value for I-frames only
  1963. * prediction dir: left=0, top=1
  1964. * @param s MpegEncContext
  1965. * @param[in] n block index in the current MB
  1966. * @param dc_val_ptr Pointer to DC predictor
  1967. * @param dir_ptr Prediction direction for use in AC prediction
  1968. */
  1969. static inline int vc1_i_pred_dc(MpegEncContext *s, int overlap, int pq, int n,
  1970. int16_t **dc_val_ptr, int *dir_ptr)
  1971. {
  1972. int a, b, c, wrap, pred, scale;
  1973. int16_t *dc_val;
  1974. static const uint16_t dcpred[32] = {
  1975. -1, 1024, 512, 341, 256, 205, 171, 146, 128,
  1976. 114, 102, 93, 85, 79, 73, 68, 64,
  1977. 60, 57, 54, 51, 49, 47, 45, 43,
  1978. 41, 39, 38, 37, 35, 34, 33
  1979. };
  1980. /* find prediction - wmv3_dc_scale always used here in fact */
  1981. if (n < 4) scale = s->y_dc_scale;
  1982. else scale = s->c_dc_scale;
  1983. wrap = s->block_wrap[n];
  1984. dc_val= s->dc_val[0] + s->block_index[n];
  1985. /* B A
  1986. * C X
  1987. */
  1988. c = dc_val[ - 1];
  1989. b = dc_val[ - 1 - wrap];
  1990. a = dc_val[ - wrap];
  1991. if (pq < 9 || !overlap)
  1992. {
  1993. /* Set outer values */
  1994. if (s->first_slice_line && (n!=2 && n!=3)) b=a=dcpred[scale];
  1995. if (s->mb_x == 0 && (n!=1 && n!=3)) b=c=dcpred[scale];
  1996. }
  1997. else
  1998. {
  1999. /* Set outer values */
  2000. if (s->first_slice_line && (n!=2 && n!=3)) b=a=0;
  2001. if (s->mb_x == 0 && (n!=1 && n!=3)) b=c=0;
  2002. }
  2003. if (abs(a - b) <= abs(b - c)) {
  2004. pred = c;
  2005. *dir_ptr = 1;//left
  2006. } else {
  2007. pred = a;
  2008. *dir_ptr = 0;//top
  2009. }
  2010. /* update predictor */
  2011. *dc_val_ptr = &dc_val[0];
  2012. return pred;
  2013. }
  2014. /** Get predicted DC value
  2015. * prediction dir: left=0, top=1
  2016. * @param s MpegEncContext
  2017. * @param[in] n block index in the current MB
  2018. * @param dc_val_ptr Pointer to DC predictor
  2019. * @param dir_ptr Prediction direction for use in AC prediction
  2020. */
  2021. static inline int vc1_pred_dc(MpegEncContext *s, int overlap, int pq, int n,
  2022. int a_avail, int c_avail,
  2023. int16_t **dc_val_ptr, int *dir_ptr)
  2024. {
  2025. int a, b, c, wrap, pred, scale;
  2026. int16_t *dc_val;
  2027. int mb_pos = s->mb_x + s->mb_y * s->mb_stride;
  2028. int q1, q2 = 0;
  2029. /* find prediction - wmv3_dc_scale always used here in fact */
  2030. if (n < 4) scale = s->y_dc_scale;
  2031. else scale = s->c_dc_scale;
  2032. wrap = s->block_wrap[n];
  2033. dc_val= s->dc_val[0] + s->block_index[n];
  2034. /* B A
  2035. * C X
  2036. */
  2037. c = dc_val[ - 1];
  2038. b = dc_val[ - 1 - wrap];
  2039. a = dc_val[ - wrap];
  2040. /* scale predictors if needed */
  2041. q1 = s->current_picture.qscale_table[mb_pos];
  2042. if(c_avail && (n!= 1 && n!=3)) {
  2043. q2 = s->current_picture.qscale_table[mb_pos - 1];
  2044. if(q2 && q2 != q1)
  2045. c = (c * s->y_dc_scale_table[q2] * ff_vc1_dqscale[s->y_dc_scale_table[q1] - 1] + 0x20000) >> 18;
  2046. }
  2047. if(a_avail && (n!= 2 && n!=3)) {
  2048. q2 = s->current_picture.qscale_table[mb_pos - s->mb_stride];
  2049. if(q2 && q2 != q1)
  2050. a = (a * s->y_dc_scale_table[q2] * ff_vc1_dqscale[s->y_dc_scale_table[q1] - 1] + 0x20000) >> 18;
  2051. }
  2052. if(a_avail && c_avail && (n!=3)) {
  2053. int off = mb_pos;
  2054. if(n != 1) off--;
  2055. if(n != 2) off -= s->mb_stride;
  2056. q2 = s->current_picture.qscale_table[off];
  2057. if(q2 && q2 != q1)
  2058. b = (b * s->y_dc_scale_table[q2] * ff_vc1_dqscale[s->y_dc_scale_table[q1] - 1] + 0x20000) >> 18;
  2059. }
  2060. if(a_avail && c_avail) {
  2061. if(abs(a - b) <= abs(b - c)) {
  2062. pred = c;
  2063. *dir_ptr = 1;//left
  2064. } else {
  2065. pred = a;
  2066. *dir_ptr = 0;//top
  2067. }
  2068. } else if(a_avail) {
  2069. pred = a;
  2070. *dir_ptr = 0;//top
  2071. } else if(c_avail) {
  2072. pred = c;
  2073. *dir_ptr = 1;//left
  2074. } else {
  2075. pred = 0;
  2076. *dir_ptr = 1;//left
  2077. }
  2078. /* update predictor */
  2079. *dc_val_ptr = &dc_val[0];
  2080. return pred;
  2081. }
  2082. /**
  2083. * @defgroup std_mb VC1 Macroblock-level functions in Simple/Main Profiles
  2084. * @see 7.1.4, p91 and 8.1.1.7, p(1)04
  2085. * @{
  2086. */
  2087. static inline int vc1_coded_block_pred(MpegEncContext * s, int n, uint8_t **coded_block_ptr)
  2088. {
  2089. int xy, wrap, pred, a, b, c;
  2090. xy = s->block_index[n];
  2091. wrap = s->b8_stride;
  2092. /* B C
  2093. * A X
  2094. */
  2095. a = s->coded_block[xy - 1 ];
  2096. b = s->coded_block[xy - 1 - wrap];
  2097. c = s->coded_block[xy - wrap];
  2098. if (b == c) {
  2099. pred = a;
  2100. } else {
  2101. pred = c;
  2102. }
  2103. /* store value */
  2104. *coded_block_ptr = &s->coded_block[xy];
  2105. return pred;
  2106. }
  2107. /**
  2108. * Decode one AC coefficient
  2109. * @param v The VC1 context
  2110. * @param last Last coefficient
  2111. * @param skip How much zero coefficients to skip
  2112. * @param value Decoded AC coefficient value
  2113. * @see 8.1.3.4
  2114. */
  2115. static void vc1_decode_ac_coeff(VC1Context *v, int *last, int *skip, int *value, int codingset)
  2116. {
  2117. GetBitContext *gb = &v->s.gb;
  2118. int index, escape, run = 0, level = 0, lst = 0;
  2119. index = get_vlc2(gb, ff_vc1_ac_coeff_table[codingset].table, AC_VLC_BITS, 3);
  2120. if (index != vc1_ac_sizes[codingset] - 1) {
  2121. run = vc1_index_decode_table[codingset][index][0];
  2122. level = vc1_index_decode_table[codingset][index][1];
  2123. lst = index >= vc1_last_decode_table[codingset];
  2124. if(get_bits(gb, 1))
  2125. level = -level;
  2126. } else {
  2127. escape = decode210(gb);
  2128. if (escape != 2) {
  2129. index = get_vlc2(gb, ff_vc1_ac_coeff_table[codingset].table, AC_VLC_BITS, 3);
  2130. run = vc1_index_decode_table[codingset][index][0];
  2131. level = vc1_index_decode_table[codingset][index][1];
  2132. lst = index >= vc1_last_decode_table[codingset];
  2133. if(escape == 0) {
  2134. if(lst)
  2135. level += vc1_last_delta_level_table[codingset][run];
  2136. else
  2137. level += vc1_delta_level_table[codingset][run];
  2138. } else {
  2139. if(lst)
  2140. run += vc1_last_delta_run_table[codingset][level] + 1;
  2141. else
  2142. run += vc1_delta_run_table[codingset][level] + 1;
  2143. }
  2144. if(get_bits(gb, 1))
  2145. level = -level;
  2146. } else {
  2147. int sign;
  2148. lst = get_bits(gb, 1);
  2149. if(v->s.esc3_level_length == 0) {
  2150. if(v->pq < 8 || v->dquantfrm) { // table 59
  2151. v->s.esc3_level_length = get_bits(gb, 3);
  2152. if(!v->s.esc3_level_length)
  2153. v->s.esc3_level_length = get_bits(gb, 2) + 8;
  2154. } else { //table 60
  2155. v->s.esc3_level_length = get_prefix(gb, 1, 6) + 2;
  2156. }
  2157. v->s.esc3_run_length = 3 + get_bits(gb, 2);
  2158. }
  2159. run = get_bits(gb, v->s.esc3_run_length);
  2160. sign = get_bits(gb, 1);
  2161. level = get_bits(gb, v->s.esc3_level_length);
  2162. if(sign)
  2163. level = -level;
  2164. }
  2165. }
  2166. *last = lst;
  2167. *skip = run;
  2168. *value = level;
  2169. }
  2170. /** Decode intra block in intra frames - should be faster than decode_intra_block
  2171. * @param v VC1Context
  2172. * @param block block to decode
  2173. * @param coded are AC coeffs present or not
  2174. * @param codingset set of VLC to decode data
  2175. */
  2176. static int vc1_decode_i_block(VC1Context *v, DCTELEM block[64], int n, int coded, int codingset)
  2177. {
  2178. GetBitContext *gb = &v->s.gb;
  2179. MpegEncContext *s = &v->s;
  2180. int dc_pred_dir = 0; /* Direction of the DC prediction used */
  2181. int run_diff, i;
  2182. int16_t *dc_val;
  2183. int16_t *ac_val, *ac_val2;
  2184. int dcdiff;
  2185. /* Get DC differential */
  2186. if (n < 4) {
  2187. dcdiff = get_vlc2(&s->gb, ff_msmp4_dc_luma_vlc[s->dc_table_index].table, DC_VLC_BITS, 3);
  2188. } else {
  2189. dcdiff = get_vlc2(&s->gb, ff_msmp4_dc_chroma_vlc[s->dc_table_index].table, DC_VLC_BITS, 3);
  2190. }
  2191. if (dcdiff < 0){
  2192. av_log(s->avctx, AV_LOG_ERROR, "Illegal DC VLC\n");
  2193. return -1;
  2194. }
  2195. if (dcdiff)
  2196. {
  2197. if (dcdiff == 119 /* ESC index value */)
  2198. {
  2199. /* TODO: Optimize */
  2200. if (v->pq == 1) dcdiff = get_bits(gb, 10);
  2201. else if (v->pq == 2) dcdiff = get_bits(gb, 9);
  2202. else dcdiff = get_bits(gb, 8);
  2203. }
  2204. else
  2205. {
  2206. if (v->pq == 1)
  2207. dcdiff = (dcdiff<<2) + get_bits(gb, 2) - 3;
  2208. else if (v->pq == 2)
  2209. dcdiff = (dcdiff<<1) + get_bits(gb, 1) - 1;
  2210. }
  2211. if (get_bits(gb, 1))
  2212. dcdiff = -dcdiff;
  2213. }
  2214. /* Prediction */
  2215. dcdiff += vc1_i_pred_dc(&v->s, v->overlap, v->pq, n, &dc_val, &dc_pred_dir);
  2216. *dc_val = dcdiff;
  2217. /* Store the quantized DC coeff, used for prediction */
  2218. if (n < 4) {
  2219. block[0] = dcdiff * s->y_dc_scale;
  2220. } else {
  2221. block[0] = dcdiff * s->c_dc_scale;
  2222. }
  2223. /* Skip ? */
  2224. run_diff = 0;
  2225. i = 0;
  2226. if (!coded) {
  2227. goto not_coded;
  2228. }
  2229. //AC Decoding
  2230. i = 1;
  2231. {
  2232. int last = 0, skip, value;
  2233. const int8_t *zz_table;
  2234. int scale;
  2235. int k;
  2236. scale = v->pq * 2 + v->halfpq;
  2237. if(v->s.ac_pred) {
  2238. if(!dc_pred_dir)
  2239. zz_table = ff_vc1_horizontal_zz;
  2240. else
  2241. zz_table = ff_vc1_vertical_zz;
  2242. } else
  2243. zz_table = ff_vc1_normal_zz;
  2244. ac_val = s->ac_val[0][0] + s->block_index[n] * 16;
  2245. ac_val2 = ac_val;
  2246. if(dc_pred_dir) //left
  2247. ac_val -= 16;
  2248. else //top
  2249. ac_val -= 16 * s->block_wrap[n];
  2250. while (!last) {
  2251. vc1_decode_ac_coeff(v, &last, &skip, &value, codingset);
  2252. i += skip;
  2253. if(i > 63)
  2254. break;
  2255. block[zz_table[i++]] = value;
  2256. }
  2257. /* apply AC prediction if needed */
  2258. if(s->ac_pred) {
  2259. if(dc_pred_dir) { //left
  2260. for(k = 1; k < 8; k++)
  2261. block[k << 3] += ac_val[k];
  2262. } else { //top
  2263. for(k = 1; k < 8; k++)
  2264. block[k] += ac_val[k + 8];
  2265. }
  2266. }
  2267. /* save AC coeffs for further prediction */
  2268. for(k = 1; k < 8; k++) {
  2269. ac_val2[k] = block[k << 3];
  2270. ac_val2[k + 8] = block[k];
  2271. }
  2272. /* scale AC coeffs */
  2273. for(k = 1; k < 64; k++)
  2274. if(block[k]) {
  2275. block[k] *= scale;
  2276. if(!v->pquantizer)
  2277. block[k] += (block[k] < 0) ? -v->pq : v->pq;
  2278. }
  2279. if(s->ac_pred) i = 63;
  2280. }
  2281. not_coded:
  2282. if(!coded) {
  2283. int k, scale;
  2284. ac_val = s->ac_val[0][0] + s->block_index[n] * 16;
  2285. ac_val2 = ac_val;
  2286. scale = v->pq * 2 + v->halfpq;
  2287. memset(ac_val2, 0, 16 * 2);
  2288. if(dc_pred_dir) {//left
  2289. ac_val -= 16;
  2290. if(s->ac_pred)
  2291. memcpy(ac_val2, ac_val, 8 * 2);
  2292. } else {//top
  2293. ac_val -= 16 * s->block_wrap[n];
  2294. if(s->ac_pred)
  2295. memcpy(ac_val2 + 8, ac_val + 8, 8 * 2);
  2296. }
  2297. /* apply AC prediction if needed */
  2298. if(s->ac_pred) {
  2299. if(dc_pred_dir) { //left
  2300. for(k = 1; k < 8; k++) {
  2301. block[k << 3] = ac_val[k] * scale;
  2302. if(!v->pquantizer && block[k << 3])
  2303. block[k << 3] += (block[k << 3] < 0) ? -v->pq : v->pq;
  2304. }
  2305. } else { //top
  2306. for(k = 1; k < 8; k++) {
  2307. block[k] = ac_val[k + 8] * scale;
  2308. if(!v->pquantizer && block[k])
  2309. block[k] += (block[k] < 0) ? -v->pq : v->pq;
  2310. }
  2311. }
  2312. i = 63;
  2313. }
  2314. }
  2315. s->block_last_index[n] = i;
  2316. return 0;
  2317. }
  2318. /** Decode intra block in intra frames - should be faster than decode_intra_block
  2319. * @param v VC1Context
  2320. * @param block block to decode
  2321. * @param coded are AC coeffs present or not
  2322. * @param codingset set of VLC to decode data
  2323. */
  2324. static int vc1_decode_i_block_adv(VC1Context *v, DCTELEM block[64], int n, int coded, int codingset, int mquant)
  2325. {
  2326. GetBitContext *gb = &v->s.gb;
  2327. MpegEncContext *s = &v->s;
  2328. int dc_pred_dir = 0; /* Direction of the DC prediction used */
  2329. int run_diff, i;
  2330. int16_t *dc_val;
  2331. int16_t *ac_val, *ac_val2;
  2332. int dcdiff;
  2333. int a_avail = v->a_avail, c_avail = v->c_avail;
  2334. int use_pred = s->ac_pred;
  2335. int scale;
  2336. int q1, q2 = 0;
  2337. int mb_pos = s->mb_x + s->mb_y * s->mb_stride;
  2338. /* Get DC differential */
  2339. if (n < 4) {
  2340. dcdiff = get_vlc2(&s->gb, ff_msmp4_dc_luma_vlc[s->dc_table_index].table, DC_VLC_BITS, 3);
  2341. } else {
  2342. dcdiff = get_vlc2(&s->gb, ff_msmp4_dc_chroma_vlc[s->dc_table_index].table, DC_VLC_BITS, 3);
  2343. }
  2344. if (dcdiff < 0){
  2345. av_log(s->avctx, AV_LOG_ERROR, "Illegal DC VLC\n");
  2346. return -1;
  2347. }
  2348. if (dcdiff)
  2349. {
  2350. if (dcdiff == 119 /* ESC index value */)
  2351. {
  2352. /* TODO: Optimize */
  2353. if (mquant == 1) dcdiff = get_bits(gb, 10);
  2354. else if (mquant == 2) dcdiff = get_bits(gb, 9);
  2355. else dcdiff = get_bits(gb, 8);
  2356. }
  2357. else
  2358. {
  2359. if (mquant == 1)
  2360. dcdiff = (dcdiff<<2) + get_bits(gb, 2) - 3;
  2361. else if (mquant == 2)
  2362. dcdiff = (dcdiff<<1) + get_bits(gb, 1) - 1;
  2363. }
  2364. if (get_bits(gb, 1))
  2365. dcdiff = -dcdiff;
  2366. }
  2367. /* Prediction */
  2368. dcdiff += vc1_pred_dc(&v->s, v->overlap, mquant, n, v->a_avail, v->c_avail, &dc_val, &dc_pred_dir);
  2369. *dc_val = dcdiff;
  2370. /* Store the quantized DC coeff, used for prediction */
  2371. if (n < 4) {
  2372. block[0] = dcdiff * s->y_dc_scale;
  2373. } else {
  2374. block[0] = dcdiff * s->c_dc_scale;
  2375. }
  2376. /* Skip ? */
  2377. run_diff = 0;
  2378. i = 0;
  2379. //AC Decoding
  2380. i = 1;
  2381. /* check if AC is needed at all */
  2382. if(!a_avail && !c_avail) use_pred = 0;
  2383. ac_val = s->ac_val[0][0] + s->block_index[n] * 16;
  2384. ac_val2 = ac_val;
  2385. scale = mquant * 2 + v->halfpq;
  2386. if(dc_pred_dir) //left
  2387. ac_val -= 16;
  2388. else //top
  2389. ac_val -= 16 * s->block_wrap[n];
  2390. q1 = s->current_picture.qscale_table[mb_pos];
  2391. if(dc_pred_dir && c_avail && mb_pos) q2 = s->current_picture.qscale_table[mb_pos - 1];
  2392. if(!dc_pred_dir && a_avail && mb_pos >= s->mb_stride) q2 = s->current_picture.qscale_table[mb_pos - s->mb_stride];
  2393. if(dc_pred_dir && n==1) q2 = q1;
  2394. if(!dc_pred_dir && n==2) q2 = q1;
  2395. if(n==3) q2 = q1;
  2396. if(coded) {
  2397. int last = 0, skip, value;
  2398. const int8_t *zz_table;
  2399. int k;
  2400. if(v->s.ac_pred) {
  2401. if(!dc_pred_dir)
  2402. zz_table = ff_vc1_horizontal_zz;
  2403. else
  2404. zz_table = ff_vc1_vertical_zz;
  2405. } else
  2406. zz_table = ff_vc1_normal_zz;
  2407. while (!last) {
  2408. vc1_decode_ac_coeff(v, &last, &skip, &value, codingset);
  2409. i += skip;
  2410. if(i > 63)
  2411. break;
  2412. block[zz_table[i++]] = value;
  2413. }
  2414. /* apply AC prediction if needed */
  2415. if(use_pred) {
  2416. /* scale predictors if needed*/
  2417. if(q2 && q1!=q2) {
  2418. q1 = q1 * 2 + ((q1 == v->pq) ? v->halfpq : 0) - 1;
  2419. q2 = q2 * 2 + ((q2 == v->pq) ? v->halfpq : 0) - 1;
  2420. if(dc_pred_dir) { //left
  2421. for(k = 1; k < 8; k++)
  2422. block[k << 3] += (ac_val[k] * q2 * ff_vc1_dqscale[q1 - 1] + 0x20000) >> 18;
  2423. } else { //top
  2424. for(k = 1; k < 8; k++)
  2425. block[k] += (ac_val[k + 8] * q2 * ff_vc1_dqscale[q1 - 1] + 0x20000) >> 18;
  2426. }
  2427. } else {
  2428. if(dc_pred_dir) { //left
  2429. for(k = 1; k < 8; k++)
  2430. block[k << 3] += ac_val[k];
  2431. } else { //top
  2432. for(k = 1; k < 8; k++)
  2433. block[k] += ac_val[k + 8];
  2434. }
  2435. }
  2436. }
  2437. /* save AC coeffs for further prediction */
  2438. for(k = 1; k < 8; k++) {
  2439. ac_val2[k] = block[k << 3];
  2440. ac_val2[k + 8] = block[k];
  2441. }
  2442. /* scale AC coeffs */
  2443. for(k = 1; k < 64; k++)
  2444. if(block[k]) {
  2445. block[k] *= scale;
  2446. if(!v->pquantizer)
  2447. block[k] += (block[k] < 0) ? -mquant : mquant;
  2448. }
  2449. if(use_pred) i = 63;
  2450. } else { // no AC coeffs
  2451. int k;
  2452. memset(ac_val2, 0, 16 * 2);
  2453. if(dc_pred_dir) {//left
  2454. if(use_pred) {
  2455. memcpy(ac_val2, ac_val, 8 * 2);
  2456. if(q2 && q1!=q2) {
  2457. q1 = q1 * 2 + ((q1 == v->pq) ? v->halfpq : 0) - 1;
  2458. q2 = q2 * 2 + ((q2 == v->pq) ? v->halfpq : 0) - 1;
  2459. for(k = 1; k < 8; k++)
  2460. ac_val2[k] = (ac_val2[k] * q2 * ff_vc1_dqscale[q1 - 1] + 0x20000) >> 18;
  2461. }
  2462. }
  2463. } else {//top
  2464. if(use_pred) {
  2465. memcpy(ac_val2 + 8, ac_val + 8, 8 * 2);
  2466. if(q2 && q1!=q2) {
  2467. q1 = q1 * 2 + ((q1 == v->pq) ? v->halfpq : 0) - 1;
  2468. q2 = q2 * 2 + ((q2 == v->pq) ? v->halfpq : 0) - 1;
  2469. for(k = 1; k < 8; k++)
  2470. ac_val2[k + 8] = (ac_val2[k + 8] * q2 * ff_vc1_dqscale[q1 - 1] + 0x20000) >> 18;
  2471. }
  2472. }
  2473. }
  2474. /* apply AC prediction if needed */
  2475. if(use_pred) {
  2476. if(dc_pred_dir) { //left
  2477. for(k = 1; k < 8; k++) {
  2478. block[k << 3] = ac_val2[k] * scale;
  2479. if(!v->pquantizer && block[k << 3])
  2480. block[k << 3] += (block[k << 3] < 0) ? -mquant : mquant;
  2481. }
  2482. } else { //top
  2483. for(k = 1; k < 8; k++) {
  2484. block[k] = ac_val2[k + 8] * scale;
  2485. if(!v->pquantizer && block[k])
  2486. block[k] += (block[k] < 0) ? -mquant : mquant;
  2487. }
  2488. }
  2489. i = 63;
  2490. }
  2491. }
  2492. s->block_last_index[n] = i;
  2493. return 0;
  2494. }
  2495. /** Decode intra block in inter frames - more generic version than vc1_decode_i_block
  2496. * @param v VC1Context
  2497. * @param block block to decode
  2498. * @param coded are AC coeffs present or not
  2499. * @param mquant block quantizer
  2500. * @param codingset set of VLC to decode data
  2501. */
  2502. static int vc1_decode_intra_block(VC1Context *v, DCTELEM block[64], int n, int coded, int mquant, int codingset)
  2503. {
  2504. GetBitContext *gb = &v->s.gb;
  2505. MpegEncContext *s = &v->s;
  2506. int dc_pred_dir = 0; /* Direction of the DC prediction used */
  2507. int run_diff, i;
  2508. int16_t *dc_val;
  2509. int16_t *ac_val, *ac_val2;
  2510. int dcdiff;
  2511. int mb_pos = s->mb_x + s->mb_y * s->mb_stride;
  2512. int a_avail = v->a_avail, c_avail = v->c_avail;
  2513. int use_pred = s->ac_pred;
  2514. int scale;
  2515. int q1, q2 = 0;
  2516. /* XXX: Guard against dumb values of mquant */
  2517. mquant = (mquant < 1) ? 0 : ( (mquant>31) ? 31 : mquant );
  2518. /* Set DC scale - y and c use the same */
  2519. s->y_dc_scale = s->y_dc_scale_table[mquant];
  2520. s->c_dc_scale = s->c_dc_scale_table[mquant];
  2521. /* Get DC differential */
  2522. if (n < 4) {
  2523. dcdiff = get_vlc2(&s->gb, ff_msmp4_dc_luma_vlc[s->dc_table_index].table, DC_VLC_BITS, 3);
  2524. } else {
  2525. dcdiff = get_vlc2(&s->gb, ff_msmp4_dc_chroma_vlc[s->dc_table_index].table, DC_VLC_BITS, 3);
  2526. }
  2527. if (dcdiff < 0){
  2528. av_log(s->avctx, AV_LOG_ERROR, "Illegal DC VLC\n");
  2529. return -1;
  2530. }
  2531. if (dcdiff)
  2532. {
  2533. if (dcdiff == 119 /* ESC index value */)
  2534. {
  2535. /* TODO: Optimize */
  2536. if (mquant == 1) dcdiff = get_bits(gb, 10);
  2537. else if (mquant == 2) dcdiff = get_bits(gb, 9);
  2538. else dcdiff = get_bits(gb, 8);
  2539. }
  2540. else
  2541. {
  2542. if (mquant == 1)
  2543. dcdiff = (dcdiff<<2) + get_bits(gb, 2) - 3;
  2544. else if (mquant == 2)
  2545. dcdiff = (dcdiff<<1) + get_bits(gb, 1) - 1;
  2546. }
  2547. if (get_bits(gb, 1))
  2548. dcdiff = -dcdiff;
  2549. }
  2550. /* Prediction */
  2551. dcdiff += vc1_pred_dc(&v->s, v->overlap, mquant, n, a_avail, c_avail, &dc_val, &dc_pred_dir);
  2552. *dc_val = dcdiff;
  2553. /* Store the quantized DC coeff, used for prediction */
  2554. if (n < 4) {
  2555. block[0] = dcdiff * s->y_dc_scale;
  2556. } else {
  2557. block[0] = dcdiff * s->c_dc_scale;
  2558. }
  2559. /* Skip ? */
  2560. run_diff = 0;
  2561. i = 0;
  2562. //AC Decoding
  2563. i = 1;
  2564. /* check if AC is needed at all and adjust direction if needed */
  2565. if(!a_avail) dc_pred_dir = 1;
  2566. if(!c_avail) dc_pred_dir = 0;
  2567. if(!a_avail && !c_avail) use_pred = 0;
  2568. ac_val = s->ac_val[0][0] + s->block_index[n] * 16;
  2569. ac_val2 = ac_val;
  2570. scale = mquant * 2 + v->halfpq;
  2571. if(dc_pred_dir) //left
  2572. ac_val -= 16;
  2573. else //top
  2574. ac_val -= 16 * s->block_wrap[n];
  2575. q1 = s->current_picture.qscale_table[mb_pos];
  2576. if(dc_pred_dir && c_avail && mb_pos) q2 = s->current_picture.qscale_table[mb_pos - 1];
  2577. if(!dc_pred_dir && a_avail && mb_pos >= s->mb_stride) q2 = s->current_picture.qscale_table[mb_pos - s->mb_stride];
  2578. if(dc_pred_dir && n==1) q2 = q1;
  2579. if(!dc_pred_dir && n==2) q2 = q1;
  2580. if(n==3) q2 = q1;
  2581. if(coded) {
  2582. int last = 0, skip, value;
  2583. const int8_t *zz_table;
  2584. int k;
  2585. zz_table = ff_vc1_simple_progressive_8x8_zz;
  2586. while (!last) {
  2587. vc1_decode_ac_coeff(v, &last, &skip, &value, codingset);
  2588. i += skip;
  2589. if(i > 63)
  2590. break;
  2591. block[zz_table[i++]] = value;
  2592. }
  2593. /* apply AC prediction if needed */
  2594. if(use_pred) {
  2595. /* scale predictors if needed*/
  2596. if(q2 && q1!=q2) {
  2597. q1 = q1 * 2 + ((q1 == v->pq) ? v->halfpq : 0) - 1;
  2598. q2 = q2 * 2 + ((q2 == v->pq) ? v->halfpq : 0) - 1;
  2599. if(dc_pred_dir) { //left
  2600. for(k = 1; k < 8; k++)
  2601. block[k << 3] += (ac_val[k] * q2 * ff_vc1_dqscale[q1 - 1] + 0x20000) >> 18;
  2602. } else { //top
  2603. for(k = 1; k < 8; k++)
  2604. block[k] += (ac_val[k + 8] * q2 * ff_vc1_dqscale[q1 - 1] + 0x20000) >> 18;
  2605. }
  2606. } else {
  2607. if(dc_pred_dir) { //left
  2608. for(k = 1; k < 8; k++)
  2609. block[k << 3] += ac_val[k];
  2610. } else { //top
  2611. for(k = 1; k < 8; k++)
  2612. block[k] += ac_val[k + 8];
  2613. }
  2614. }
  2615. }
  2616. /* save AC coeffs for further prediction */
  2617. for(k = 1; k < 8; k++) {
  2618. ac_val2[k] = block[k << 3];
  2619. ac_val2[k + 8] = block[k];
  2620. }
  2621. /* scale AC coeffs */
  2622. for(k = 1; k < 64; k++)
  2623. if(block[k]) {
  2624. block[k] *= scale;
  2625. if(!v->pquantizer)
  2626. block[k] += (block[k] < 0) ? -mquant : mquant;
  2627. }
  2628. if(use_pred) i = 63;
  2629. } else { // no AC coeffs
  2630. int k;
  2631. memset(ac_val2, 0, 16 * 2);
  2632. if(dc_pred_dir) {//left
  2633. if(use_pred) {
  2634. memcpy(ac_val2, ac_val, 8 * 2);
  2635. if(q2 && q1!=q2) {
  2636. q1 = q1 * 2 + ((q1 == v->pq) ? v->halfpq : 0) - 1;
  2637. q2 = q2 * 2 + ((q2 == v->pq) ? v->halfpq : 0) - 1;
  2638. for(k = 1; k < 8; k++)
  2639. ac_val2[k] = (ac_val2[k] * q2 * ff_vc1_dqscale[q1 - 1] + 0x20000) >> 18;
  2640. }
  2641. }
  2642. } else {//top
  2643. if(use_pred) {
  2644. memcpy(ac_val2 + 8, ac_val + 8, 8 * 2);
  2645. if(q2 && q1!=q2) {
  2646. q1 = q1 * 2 + ((q1 == v->pq) ? v->halfpq : 0) - 1;
  2647. q2 = q2 * 2 + ((q2 == v->pq) ? v->halfpq : 0) - 1;
  2648. for(k = 1; k < 8; k++)
  2649. ac_val2[k + 8] = (ac_val2[k + 8] * q2 * ff_vc1_dqscale[q1 - 1] + 0x20000) >> 18;
  2650. }
  2651. }
  2652. }
  2653. /* apply AC prediction if needed */
  2654. if(use_pred) {
  2655. if(dc_pred_dir) { //left
  2656. for(k = 1; k < 8; k++) {
  2657. block[k << 3] = ac_val2[k] * scale;
  2658. if(!v->pquantizer && block[k << 3])
  2659. block[k << 3] += (block[k << 3] < 0) ? -mquant : mquant;
  2660. }
  2661. } else { //top
  2662. for(k = 1; k < 8; k++) {
  2663. block[k] = ac_val2[k + 8] * scale;
  2664. if(!v->pquantizer && block[k])
  2665. block[k] += (block[k] < 0) ? -mquant : mquant;
  2666. }
  2667. }
  2668. i = 63;
  2669. }
  2670. }
  2671. s->block_last_index[n] = i;
  2672. return 0;
  2673. }
  2674. /** Decode P block
  2675. */
  2676. static int vc1_decode_p_block(VC1Context *v, DCTELEM block[64], int n, int mquant, int ttmb, int first_block)
  2677. {
  2678. MpegEncContext *s = &v->s;
  2679. GetBitContext *gb = &s->gb;
  2680. int i, j;
  2681. int subblkpat = 0;
  2682. int scale, off, idx, last, skip, value;
  2683. int ttblk = ttmb & 7;
  2684. if(ttmb == -1) {
  2685. ttblk = ff_vc1_ttblk_to_tt[v->tt_index][get_vlc2(gb, ff_vc1_ttblk_vlc[v->tt_index].table, VC1_TTBLK_VLC_BITS, 1)];
  2686. }
  2687. if(ttblk == TT_4X4) {
  2688. subblkpat = ~(get_vlc2(gb, ff_vc1_subblkpat_vlc[v->tt_index].table, VC1_SUBBLKPAT_VLC_BITS, 1) + 1);
  2689. }
  2690. if((ttblk != TT_8X8 && ttblk != TT_4X4) && (v->ttmbf || (ttmb != -1 && (ttmb & 8) && !first_block))) {
  2691. subblkpat = decode012(gb);
  2692. if(subblkpat) subblkpat ^= 3; //swap decoded pattern bits
  2693. if(ttblk == TT_8X4_TOP || ttblk == TT_8X4_BOTTOM) ttblk = TT_8X4;
  2694. if(ttblk == TT_4X8_RIGHT || ttblk == TT_4X8_LEFT) ttblk = TT_4X8;
  2695. }
  2696. scale = 2 * mquant + ((v->pq == mquant) ? v->halfpq : 0);
  2697. // convert transforms like 8X4_TOP to generic TT and SUBBLKPAT
  2698. if(ttblk == TT_8X4_TOP || ttblk == TT_8X4_BOTTOM) {
  2699. subblkpat = 2 - (ttblk == TT_8X4_TOP);
  2700. ttblk = TT_8X4;
  2701. }
  2702. if(ttblk == TT_4X8_RIGHT || ttblk == TT_4X8_LEFT) {
  2703. subblkpat = 2 - (ttblk == TT_4X8_LEFT);
  2704. ttblk = TT_4X8;
  2705. }
  2706. switch(ttblk) {
  2707. case TT_8X8:
  2708. i = 0;
  2709. last = 0;
  2710. while (!last) {
  2711. vc1_decode_ac_coeff(v, &last, &skip, &value, v->codingset2);
  2712. i += skip;
  2713. if(i > 63)
  2714. break;
  2715. idx = ff_vc1_simple_progressive_8x8_zz[i++];
  2716. block[idx] = value * scale;
  2717. if(!v->pquantizer)
  2718. block[idx] += (block[idx] < 0) ? -mquant : mquant;
  2719. }
  2720. s->dsp.vc1_inv_trans_8x8(block);
  2721. break;
  2722. case TT_4X4:
  2723. for(j = 0; j < 4; j++) {
  2724. last = subblkpat & (1 << (3 - j));
  2725. i = 0;
  2726. off = (j & 1) * 4 + (j & 2) * 16;
  2727. while (!last) {
  2728. vc1_decode_ac_coeff(v, &last, &skip, &value, v->codingset2);
  2729. i += skip;
  2730. if(i > 15)
  2731. break;
  2732. idx = ff_vc1_simple_progressive_4x4_zz[i++];
  2733. block[idx + off] = value * scale;
  2734. if(!v->pquantizer)
  2735. block[idx + off] += (block[idx + off] < 0) ? -mquant : mquant;
  2736. }
  2737. if(!(subblkpat & (1 << (3 - j))))
  2738. s->dsp.vc1_inv_trans_4x4(block, j);
  2739. }
  2740. break;
  2741. case TT_8X4:
  2742. for(j = 0; j < 2; j++) {
  2743. last = subblkpat & (1 << (1 - j));
  2744. i = 0;
  2745. off = j * 32;
  2746. while (!last) {
  2747. vc1_decode_ac_coeff(v, &last, &skip, &value, v->codingset2);
  2748. i += skip;
  2749. if(i > 31)
  2750. break;
  2751. if(v->profile < PROFILE_ADVANCED)
  2752. idx = ff_vc1_simple_progressive_8x4_zz[i++];
  2753. else
  2754. idx = ff_vc1_adv_progressive_8x4_zz[i++];
  2755. block[idx + off] = value * scale;
  2756. if(!v->pquantizer)
  2757. block[idx + off] += (block[idx + off] < 0) ? -mquant : mquant;
  2758. }
  2759. if(!(subblkpat & (1 << (1 - j))))
  2760. s->dsp.vc1_inv_trans_8x4(block, j);
  2761. }
  2762. break;
  2763. case TT_4X8:
  2764. for(j = 0; j < 2; j++) {
  2765. last = subblkpat & (1 << (1 - j));
  2766. i = 0;
  2767. off = j * 4;
  2768. while (!last) {
  2769. vc1_decode_ac_coeff(v, &last, &skip, &value, v->codingset2);
  2770. i += skip;
  2771. if(i > 31)
  2772. break;
  2773. if(v->profile < PROFILE_ADVANCED)
  2774. idx = ff_vc1_simple_progressive_4x8_zz[i++];
  2775. else
  2776. idx = ff_vc1_adv_progressive_4x8_zz[i++];
  2777. block[idx + off] = value * scale;
  2778. if(!v->pquantizer)
  2779. block[idx + off] += (block[idx + off] < 0) ? -mquant : mquant;
  2780. }
  2781. if(!(subblkpat & (1 << (1 - j))))
  2782. s->dsp.vc1_inv_trans_4x8(block, j);
  2783. }
  2784. break;
  2785. }
  2786. return 0;
  2787. }
  2788. /** Decode one P-frame MB (in Simple/Main profile)
  2789. */
  2790. static int vc1_decode_p_mb(VC1Context *v)
  2791. {
  2792. MpegEncContext *s = &v->s;
  2793. GetBitContext *gb = &s->gb;
  2794. int i, j;
  2795. int mb_pos = s->mb_x + s->mb_y * s->mb_stride;
  2796. int cbp; /* cbp decoding stuff */
  2797. int mqdiff, mquant; /* MB quantization */
  2798. int ttmb = v->ttfrm; /* MB Transform type */
  2799. int status;
  2800. static const int size_table[6] = { 0, 2, 3, 4, 5, 8 },
  2801. offset_table[6] = { 0, 1, 3, 7, 15, 31 };
  2802. int mb_has_coeffs = 1; /* last_flag */
  2803. int dmv_x, dmv_y; /* Differential MV components */
  2804. int index, index1; /* LUT indices */
  2805. int val, sign; /* temp values */
  2806. int first_block = 1;
  2807. int dst_idx, off;
  2808. int skipped, fourmv;
  2809. mquant = v->pq; /* Loosy initialization */
  2810. if (v->mv_type_is_raw)
  2811. fourmv = get_bits1(gb);
  2812. else
  2813. fourmv = v->mv_type_mb_plane[mb_pos];
  2814. if (v->skip_is_raw)
  2815. skipped = get_bits1(gb);
  2816. else
  2817. skipped = v->s.mbskip_table[mb_pos];
  2818. s->dsp.clear_blocks(s->block[0]);
  2819. if (!fourmv) /* 1MV mode */
  2820. {
  2821. if (!skipped)
  2822. {
  2823. GET_MVDATA(dmv_x, dmv_y);
  2824. if (s->mb_intra) {
  2825. s->current_picture.motion_val[1][s->block_index[0]][0] = 0;
  2826. s->current_picture.motion_val[1][s->block_index[0]][1] = 0;
  2827. }
  2828. s->current_picture.mb_type[mb_pos] = s->mb_intra ? MB_TYPE_INTRA : MB_TYPE_16x16;
  2829. vc1_pred_mv(s, 0, dmv_x, dmv_y, 1, v->range_x, v->range_y, v->mb_type[0]);
  2830. /* FIXME Set DC val for inter block ? */
  2831. if (s->mb_intra && !mb_has_coeffs)
  2832. {
  2833. GET_MQUANT();
  2834. s->ac_pred = get_bits(gb, 1);
  2835. cbp = 0;
  2836. }
  2837. else if (mb_has_coeffs)
  2838. {
  2839. if (s->mb_intra) s->ac_pred = get_bits(gb, 1);
  2840. cbp = get_vlc2(&v->s.gb, v->cbpcy_vlc->table, VC1_CBPCY_P_VLC_BITS, 2);
  2841. GET_MQUANT();
  2842. }
  2843. else
  2844. {
  2845. mquant = v->pq;
  2846. cbp = 0;
  2847. }
  2848. s->current_picture.qscale_table[mb_pos] = mquant;
  2849. if (!v->ttmbf && !s->mb_intra && mb_has_coeffs)
  2850. ttmb = get_vlc2(gb, ff_vc1_ttmb_vlc[v->tt_index].table,
  2851. VC1_TTMB_VLC_BITS, 2);
  2852. if(!s->mb_intra) vc1_mc_1mv(v, 0);
  2853. dst_idx = 0;
  2854. for (i=0; i<6; i++)
  2855. {
  2856. s->dc_val[0][s->block_index[i]] = 0;
  2857. dst_idx += i >> 2;
  2858. val = ((cbp >> (5 - i)) & 1);
  2859. off = (i & 4) ? 0 : ((i & 1) * 8 + (i & 2) * 4 * s->linesize);
  2860. v->mb_type[0][s->block_index[i]] = s->mb_intra;
  2861. if(s->mb_intra) {
  2862. /* check if prediction blocks A and C are available */
  2863. v->a_avail = v->c_avail = 0;
  2864. if(i == 2 || i == 3 || !s->first_slice_line)
  2865. v->a_avail = v->mb_type[0][s->block_index[i] - s->block_wrap[i]];
  2866. if(i == 1 || i == 3 || s->mb_x)
  2867. v->c_avail = v->mb_type[0][s->block_index[i] - 1];
  2868. vc1_decode_intra_block(v, s->block[i], i, val, mquant, (i&4)?v->codingset2:v->codingset);
  2869. if((i>3) && (s->flags & CODEC_FLAG_GRAY)) continue;
  2870. s->dsp.vc1_inv_trans_8x8(s->block[i]);
  2871. if(v->rangeredfrm) for(j = 0; j < 64; j++) s->block[i][j] <<= 1;
  2872. for(j = 0; j < 64; j++) s->block[i][j] += 128;
  2873. if(!v->res_fasttx && v->res_x8) for(j = 0; j < 64; j++) s->block[i][j] += 16;
  2874. s->dsp.put_pixels_clamped(s->block[i], s->dest[dst_idx] + off, s->linesize >> ((i & 4) >> 2));
  2875. if(v->pq >= 9 && v->overlap) {
  2876. if(v->c_avail)
  2877. s->dsp.vc1_h_overlap(s->dest[dst_idx] + off, s->linesize >> ((i & 4) >> 2));
  2878. if(v->a_avail)
  2879. s->dsp.vc1_v_overlap(s->dest[dst_idx] + off, s->linesize >> ((i & 4) >> 2));
  2880. }
  2881. } else if(val) {
  2882. vc1_decode_p_block(v, s->block[i], i, mquant, ttmb, first_block);
  2883. if(!v->ttmbf && ttmb < 8) ttmb = -1;
  2884. first_block = 0;
  2885. if((i<4) || !(s->flags & CODEC_FLAG_GRAY))
  2886. s->dsp.add_pixels_clamped(s->block[i], s->dest[dst_idx] + off, (i&4)?s->uvlinesize:s->linesize);
  2887. }
  2888. }
  2889. }
  2890. else //Skipped
  2891. {
  2892. s->mb_intra = 0;
  2893. for(i = 0; i < 6; i++) {
  2894. v->mb_type[0][s->block_index[i]] = 0;
  2895. s->dc_val[0][s->block_index[i]] = 0;
  2896. }
  2897. s->current_picture.mb_type[mb_pos] = MB_TYPE_SKIP;
  2898. s->current_picture.qscale_table[mb_pos] = 0;
  2899. vc1_pred_mv(s, 0, 0, 0, 1, v->range_x, v->range_y, v->mb_type[0]);
  2900. vc1_mc_1mv(v, 0);
  2901. return 0;
  2902. }
  2903. } //1MV mode
  2904. else //4MV mode
  2905. {
  2906. if (!skipped /* unskipped MB */)
  2907. {
  2908. int intra_count = 0, coded_inter = 0;
  2909. int is_intra[6], is_coded[6];
  2910. /* Get CBPCY */
  2911. cbp = get_vlc2(&v->s.gb, v->cbpcy_vlc->table, VC1_CBPCY_P_VLC_BITS, 2);
  2912. for (i=0; i<6; i++)
  2913. {
  2914. val = ((cbp >> (5 - i)) & 1);
  2915. s->dc_val[0][s->block_index[i]] = 0;
  2916. s->mb_intra = 0;
  2917. if(i < 4) {
  2918. dmv_x = dmv_y = 0;
  2919. s->mb_intra = 0;
  2920. mb_has_coeffs = 0;
  2921. if(val) {
  2922. GET_MVDATA(dmv_x, dmv_y);
  2923. }
  2924. vc1_pred_mv(s, i, dmv_x, dmv_y, 0, v->range_x, v->range_y, v->mb_type[0]);
  2925. if(!s->mb_intra) vc1_mc_4mv_luma(v, i);
  2926. intra_count += s->mb_intra;
  2927. is_intra[i] = s->mb_intra;
  2928. is_coded[i] = mb_has_coeffs;
  2929. }
  2930. if(i&4){
  2931. is_intra[i] = (intra_count >= 3);
  2932. is_coded[i] = val;
  2933. }
  2934. if(i == 4) vc1_mc_4mv_chroma(v);
  2935. v->mb_type[0][s->block_index[i]] = is_intra[i];
  2936. if(!coded_inter) coded_inter = !is_intra[i] & is_coded[i];
  2937. }
  2938. // if there are no coded blocks then don't do anything more
  2939. if(!intra_count && !coded_inter) return 0;
  2940. dst_idx = 0;
  2941. GET_MQUANT();
  2942. s->current_picture.qscale_table[mb_pos] = mquant;
  2943. /* test if block is intra and has pred */
  2944. {
  2945. int intrapred = 0;
  2946. for(i=0; i<6; i++)
  2947. if(is_intra[i]) {
  2948. if(((!s->first_slice_line || (i==2 || i==3)) && v->mb_type[0][s->block_index[i] - s->block_wrap[i]])
  2949. || ((s->mb_x || (i==1 || i==3)) && v->mb_type[0][s->block_index[i] - 1])) {
  2950. intrapred = 1;
  2951. break;
  2952. }
  2953. }
  2954. if(intrapred)s->ac_pred = get_bits(gb, 1);
  2955. else s->ac_pred = 0;
  2956. }
  2957. if (!v->ttmbf && coded_inter)
  2958. ttmb = get_vlc2(gb, ff_vc1_ttmb_vlc[v->tt_index].table, VC1_TTMB_VLC_BITS, 2);
  2959. for (i=0; i<6; i++)
  2960. {
  2961. dst_idx += i >> 2;
  2962. off = (i & 4) ? 0 : ((i & 1) * 8 + (i & 2) * 4 * s->linesize);
  2963. s->mb_intra = is_intra[i];
  2964. if (is_intra[i]) {
  2965. /* check if prediction blocks A and C are available */
  2966. v->a_avail = v->c_avail = 0;
  2967. if(i == 2 || i == 3 || !s->first_slice_line)
  2968. v->a_avail = v->mb_type[0][s->block_index[i] - s->block_wrap[i]];
  2969. if(i == 1 || i == 3 || s->mb_x)
  2970. v->c_avail = v->mb_type[0][s->block_index[i] - 1];
  2971. vc1_decode_intra_block(v, s->block[i], i, is_coded[i], mquant, (i&4)?v->codingset2:v->codingset);
  2972. if((i>3) && (s->flags & CODEC_FLAG_GRAY)) continue;
  2973. s->dsp.vc1_inv_trans_8x8(s->block[i]);
  2974. if(v->rangeredfrm) for(j = 0; j < 64; j++) s->block[i][j] <<= 1;
  2975. for(j = 0; j < 64; j++) s->block[i][j] += 128;
  2976. if(!v->res_fasttx && v->res_x8) for(j = 0; j < 64; j++) s->block[i][j] += 16;
  2977. s->dsp.put_pixels_clamped(s->block[i], s->dest[dst_idx] + off, (i&4)?s->uvlinesize:s->linesize);
  2978. if(v->pq >= 9 && v->overlap) {
  2979. if(v->c_avail)
  2980. s->dsp.vc1_h_overlap(s->dest[dst_idx] + off, s->linesize >> ((i & 4) >> 2));
  2981. if(v->a_avail)
  2982. s->dsp.vc1_v_overlap(s->dest[dst_idx] + off, s->linesize >> ((i & 4) >> 2));
  2983. }
  2984. } else if(is_coded[i]) {
  2985. status = vc1_decode_p_block(v, s->block[i], i, mquant, ttmb, first_block);
  2986. if(!v->ttmbf && ttmb < 8) ttmb = -1;
  2987. first_block = 0;
  2988. if((i<4) || !(s->flags & CODEC_FLAG_GRAY))
  2989. s->dsp.add_pixels_clamped(s->block[i], s->dest[dst_idx] + off, (i&4)?s->uvlinesize:s->linesize);
  2990. }
  2991. }
  2992. return status;
  2993. }
  2994. else //Skipped MB
  2995. {
  2996. s->mb_intra = 0;
  2997. s->current_picture.qscale_table[mb_pos] = 0;
  2998. for (i=0; i<6; i++) {
  2999. v->mb_type[0][s->block_index[i]] = 0;
  3000. s->dc_val[0][s->block_index[i]] = 0;
  3001. }
  3002. for (i=0; i<4; i++)
  3003. {
  3004. vc1_pred_mv(s, i, 0, 0, 0, v->range_x, v->range_y, v->mb_type[0]);
  3005. vc1_mc_4mv_luma(v, i);
  3006. }
  3007. vc1_mc_4mv_chroma(v);
  3008. s->current_picture.qscale_table[mb_pos] = 0;
  3009. return 0;
  3010. }
  3011. }
  3012. /* Should never happen */
  3013. return -1;
  3014. }
  3015. /** Decode one B-frame MB (in Main profile)
  3016. */
  3017. static void vc1_decode_b_mb(VC1Context *v)
  3018. {
  3019. MpegEncContext *s = &v->s;
  3020. GetBitContext *gb = &s->gb;
  3021. int i, j;
  3022. int mb_pos = s->mb_x + s->mb_y * s->mb_stride;
  3023. int cbp = 0; /* cbp decoding stuff */
  3024. int mqdiff, mquant; /* MB quantization */
  3025. int ttmb = v->ttfrm; /* MB Transform type */
  3026. static const int size_table[6] = { 0, 2, 3, 4, 5, 8 },
  3027. offset_table[6] = { 0, 1, 3, 7, 15, 31 };
  3028. int mb_has_coeffs = 0; /* last_flag */
  3029. int index, index1; /* LUT indices */
  3030. int val, sign; /* temp values */
  3031. int first_block = 1;
  3032. int dst_idx, off;
  3033. int skipped, direct;
  3034. int dmv_x[2], dmv_y[2];
  3035. int bmvtype = BMV_TYPE_BACKWARD;
  3036. mquant = v->pq; /* Loosy initialization */
  3037. s->mb_intra = 0;
  3038. if (v->dmb_is_raw)
  3039. direct = get_bits1(gb);
  3040. else
  3041. direct = v->direct_mb_plane[mb_pos];
  3042. if (v->skip_is_raw)
  3043. skipped = get_bits1(gb);
  3044. else
  3045. skipped = v->s.mbskip_table[mb_pos];
  3046. s->dsp.clear_blocks(s->block[0]);
  3047. dmv_x[0] = dmv_x[1] = dmv_y[0] = dmv_y[1] = 0;
  3048. for(i = 0; i < 6; i++) {
  3049. v->mb_type[0][s->block_index[i]] = 0;
  3050. s->dc_val[0][s->block_index[i]] = 0;
  3051. }
  3052. s->current_picture.qscale_table[mb_pos] = 0;
  3053. if (!direct) {
  3054. if (!skipped) {
  3055. GET_MVDATA(dmv_x[0], dmv_y[0]);
  3056. dmv_x[1] = dmv_x[0];
  3057. dmv_y[1] = dmv_y[0];
  3058. }
  3059. if(skipped || !s->mb_intra) {
  3060. bmvtype = decode012(gb);
  3061. switch(bmvtype) {
  3062. case 0:
  3063. bmvtype = (v->bfraction >= (B_FRACTION_DEN/2)) ? BMV_TYPE_BACKWARD : BMV_TYPE_FORWARD;
  3064. break;
  3065. case 1:
  3066. bmvtype = (v->bfraction >= (B_FRACTION_DEN/2)) ? BMV_TYPE_FORWARD : BMV_TYPE_BACKWARD;
  3067. break;
  3068. case 2:
  3069. bmvtype = BMV_TYPE_INTERPOLATED;
  3070. dmv_x[0] = dmv_y[0] = 0;
  3071. }
  3072. }
  3073. }
  3074. for(i = 0; i < 6; i++)
  3075. v->mb_type[0][s->block_index[i]] = s->mb_intra;
  3076. if (skipped) {
  3077. if(direct) bmvtype = BMV_TYPE_INTERPOLATED;
  3078. vc1_pred_b_mv(v, dmv_x, dmv_y, direct, bmvtype);
  3079. vc1_b_mc(v, dmv_x, dmv_y, direct, bmvtype);
  3080. return;
  3081. }
  3082. if (direct) {
  3083. cbp = get_vlc2(&v->s.gb, v->cbpcy_vlc->table, VC1_CBPCY_P_VLC_BITS, 2);
  3084. GET_MQUANT();
  3085. s->mb_intra = 0;
  3086. mb_has_coeffs = 0;
  3087. s->current_picture.qscale_table[mb_pos] = mquant;
  3088. if(!v->ttmbf)
  3089. ttmb = get_vlc2(gb, ff_vc1_ttmb_vlc[v->tt_index].table, VC1_TTMB_VLC_BITS, 2);
  3090. dmv_x[0] = dmv_y[0] = dmv_x[1] = dmv_y[1] = 0;
  3091. vc1_pred_b_mv(v, dmv_x, dmv_y, direct, bmvtype);
  3092. vc1_b_mc(v, dmv_x, dmv_y, direct, bmvtype);
  3093. } else {
  3094. if(!mb_has_coeffs && !s->mb_intra) {
  3095. /* no coded blocks - effectively skipped */
  3096. vc1_pred_b_mv(v, dmv_x, dmv_y, direct, bmvtype);
  3097. vc1_b_mc(v, dmv_x, dmv_y, direct, bmvtype);
  3098. return;
  3099. }
  3100. if(s->mb_intra && !mb_has_coeffs) {
  3101. GET_MQUANT();
  3102. s->current_picture.qscale_table[mb_pos] = mquant;
  3103. s->ac_pred = get_bits1(gb);
  3104. cbp = 0;
  3105. vc1_pred_b_mv(v, dmv_x, dmv_y, direct, bmvtype);
  3106. } else {
  3107. if(bmvtype == BMV_TYPE_INTERPOLATED) {
  3108. GET_MVDATA(dmv_x[0], dmv_y[0]);
  3109. if(!mb_has_coeffs) {
  3110. /* interpolated skipped block */
  3111. vc1_pred_b_mv(v, dmv_x, dmv_y, direct, bmvtype);
  3112. vc1_b_mc(v, dmv_x, dmv_y, direct, bmvtype);
  3113. return;
  3114. }
  3115. }
  3116. vc1_pred_b_mv(v, dmv_x, dmv_y, direct, bmvtype);
  3117. if(!s->mb_intra) {
  3118. vc1_b_mc(v, dmv_x, dmv_y, direct, bmvtype);
  3119. }
  3120. if(s->mb_intra)
  3121. s->ac_pred = get_bits1(gb);
  3122. cbp = get_vlc2(&v->s.gb, v->cbpcy_vlc->table, VC1_CBPCY_P_VLC_BITS, 2);
  3123. GET_MQUANT();
  3124. s->current_picture.qscale_table[mb_pos] = mquant;
  3125. if(!v->ttmbf && !s->mb_intra && mb_has_coeffs)
  3126. ttmb = get_vlc2(gb, ff_vc1_ttmb_vlc[v->tt_index].table, VC1_TTMB_VLC_BITS, 2);
  3127. }
  3128. }
  3129. dst_idx = 0;
  3130. for (i=0; i<6; i++)
  3131. {
  3132. s->dc_val[0][s->block_index[i]] = 0;
  3133. dst_idx += i >> 2;
  3134. val = ((cbp >> (5 - i)) & 1);
  3135. off = (i & 4) ? 0 : ((i & 1) * 8 + (i & 2) * 4 * s->linesize);
  3136. v->mb_type[0][s->block_index[i]] = s->mb_intra;
  3137. if(s->mb_intra) {
  3138. /* check if prediction blocks A and C are available */
  3139. v->a_avail = v->c_avail = 0;
  3140. if(i == 2 || i == 3 || !s->first_slice_line)
  3141. v->a_avail = v->mb_type[0][s->block_index[i] - s->block_wrap[i]];
  3142. if(i == 1 || i == 3 || s->mb_x)
  3143. v->c_avail = v->mb_type[0][s->block_index[i] - 1];
  3144. vc1_decode_intra_block(v, s->block[i], i, val, mquant, (i&4)?v->codingset2:v->codingset);
  3145. if((i>3) && (s->flags & CODEC_FLAG_GRAY)) continue;
  3146. s->dsp.vc1_inv_trans_8x8(s->block[i]);
  3147. if(v->rangeredfrm) for(j = 0; j < 64; j++) s->block[i][j] <<= 1;
  3148. for(j = 0; j < 64; j++) s->block[i][j] += 128;
  3149. s->dsp.put_pixels_clamped(s->block[i], s->dest[dst_idx] + off, s->linesize >> ((i & 4) >> 2));
  3150. } else if(val) {
  3151. vc1_decode_p_block(v, s->block[i], i, mquant, ttmb, first_block);
  3152. if(!v->ttmbf && ttmb < 8) ttmb = -1;
  3153. first_block = 0;
  3154. if((i<4) || !(s->flags & CODEC_FLAG_GRAY))
  3155. s->dsp.add_pixels_clamped(s->block[i], s->dest[dst_idx] + off, (i&4)?s->uvlinesize:s->linesize);
  3156. }
  3157. }
  3158. }
  3159. /** Decode blocks of I-frame
  3160. */
  3161. static void vc1_decode_i_blocks(VC1Context *v)
  3162. {
  3163. int k, j;
  3164. MpegEncContext *s = &v->s;
  3165. int cbp, val;
  3166. uint8_t *coded_val;
  3167. int mb_pos;
  3168. /* select codingmode used for VLC tables selection */
  3169. switch(v->y_ac_table_index){
  3170. case 0:
  3171. v->codingset = (v->pqindex <= 8) ? CS_HIGH_RATE_INTRA : CS_LOW_MOT_INTRA;
  3172. break;
  3173. case 1:
  3174. v->codingset = CS_HIGH_MOT_INTRA;
  3175. break;
  3176. case 2:
  3177. v->codingset = CS_MID_RATE_INTRA;
  3178. break;
  3179. }
  3180. switch(v->c_ac_table_index){
  3181. case 0:
  3182. v->codingset2 = (v->pqindex <= 8) ? CS_HIGH_RATE_INTER : CS_LOW_MOT_INTER;
  3183. break;
  3184. case 1:
  3185. v->codingset2 = CS_HIGH_MOT_INTER;
  3186. break;
  3187. case 2:
  3188. v->codingset2 = CS_MID_RATE_INTER;
  3189. break;
  3190. }
  3191. /* Set DC scale - y and c use the same */
  3192. s->y_dc_scale = s->y_dc_scale_table[v->pq];
  3193. s->c_dc_scale = s->c_dc_scale_table[v->pq];
  3194. //do frame decode
  3195. s->mb_x = s->mb_y = 0;
  3196. s->mb_intra = 1;
  3197. s->first_slice_line = 1;
  3198. ff_er_add_slice(s, 0, 0, s->mb_width - 1, s->mb_height - 1, (AC_END|DC_END|MV_END));
  3199. for(s->mb_y = 0; s->mb_y < s->mb_height; s->mb_y++) {
  3200. for(s->mb_x = 0; s->mb_x < s->mb_width; s->mb_x++) {
  3201. ff_init_block_index(s);
  3202. ff_update_block_index(s);
  3203. s->dsp.clear_blocks(s->block[0]);
  3204. mb_pos = s->mb_x + s->mb_y * s->mb_width;
  3205. s->current_picture.mb_type[mb_pos] = MB_TYPE_INTRA;
  3206. s->current_picture.qscale_table[mb_pos] = v->pq;
  3207. s->current_picture.motion_val[1][s->block_index[0]][0] = 0;
  3208. s->current_picture.motion_val[1][s->block_index[0]][1] = 0;
  3209. // do actual MB decoding and displaying
  3210. cbp = get_vlc2(&v->s.gb, ff_msmp4_mb_i_vlc.table, MB_INTRA_VLC_BITS, 2);
  3211. v->s.ac_pred = get_bits(&v->s.gb, 1);
  3212. for(k = 0; k < 6; k++) {
  3213. val = ((cbp >> (5 - k)) & 1);
  3214. if (k < 4) {
  3215. int pred = vc1_coded_block_pred(&v->s, k, &coded_val);
  3216. val = val ^ pred;
  3217. *coded_val = val;
  3218. }
  3219. cbp |= val << (5 - k);
  3220. vc1_decode_i_block(v, s->block[k], k, val, (k<4)? v->codingset : v->codingset2);
  3221. s->dsp.vc1_inv_trans_8x8(s->block[k]);
  3222. if(!v->res_fasttx && !v->res_x8) for(j = 0; j < 64; j++) s->block[k][j] -= 16;
  3223. if(v->pq >= 9 && v->overlap) {
  3224. for(j = 0; j < 64; j++) s->block[k][j] += 128;
  3225. }
  3226. }
  3227. vc1_put_block(v, s->block);
  3228. if(v->pq >= 9 && v->overlap) {
  3229. if(s->mb_x) {
  3230. s->dsp.vc1_h_overlap(s->dest[0], s->linesize);
  3231. s->dsp.vc1_h_overlap(s->dest[0] + 8 * s->linesize, s->linesize);
  3232. if(!(s->flags & CODEC_FLAG_GRAY)) {
  3233. s->dsp.vc1_h_overlap(s->dest[1], s->uvlinesize);
  3234. s->dsp.vc1_h_overlap(s->dest[2], s->uvlinesize);
  3235. }
  3236. }
  3237. s->dsp.vc1_h_overlap(s->dest[0] + 8, s->linesize);
  3238. s->dsp.vc1_h_overlap(s->dest[0] + 8 * s->linesize + 8, s->linesize);
  3239. if(!s->first_slice_line) {
  3240. s->dsp.vc1_v_overlap(s->dest[0], s->linesize);
  3241. s->dsp.vc1_v_overlap(s->dest[0] + 8, s->linesize);
  3242. if(!(s->flags & CODEC_FLAG_GRAY)) {
  3243. s->dsp.vc1_v_overlap(s->dest[1], s->uvlinesize);
  3244. s->dsp.vc1_v_overlap(s->dest[2], s->uvlinesize);
  3245. }
  3246. }
  3247. s->dsp.vc1_v_overlap(s->dest[0] + 8 * s->linesize, s->linesize);
  3248. s->dsp.vc1_v_overlap(s->dest[0] + 8 * s->linesize + 8, s->linesize);
  3249. }
  3250. if(get_bits_count(&s->gb) > v->bits) {
  3251. av_log(s->avctx, AV_LOG_ERROR, "Bits overconsumption: %i > %i\n", get_bits_count(&s->gb), v->bits);
  3252. return;
  3253. }
  3254. }
  3255. ff_draw_horiz_band(s, s->mb_y * 16, 16);
  3256. s->first_slice_line = 0;
  3257. }
  3258. }
  3259. /** Decode blocks of I-frame for advanced profile
  3260. */
  3261. static void vc1_decode_i_blocks_adv(VC1Context *v)
  3262. {
  3263. int k, j;
  3264. MpegEncContext *s = &v->s;
  3265. int cbp, val;
  3266. uint8_t *coded_val;
  3267. int mb_pos;
  3268. int mquant = v->pq;
  3269. int mqdiff;
  3270. int overlap;
  3271. GetBitContext *gb = &s->gb;
  3272. /* select codingmode used for VLC tables selection */
  3273. switch(v->y_ac_table_index){
  3274. case 0:
  3275. v->codingset = (v->pqindex <= 8) ? CS_HIGH_RATE_INTRA : CS_LOW_MOT_INTRA;
  3276. break;
  3277. case 1:
  3278. v->codingset = CS_HIGH_MOT_INTRA;
  3279. break;
  3280. case 2:
  3281. v->codingset = CS_MID_RATE_INTRA;
  3282. break;
  3283. }
  3284. switch(v->c_ac_table_index){
  3285. case 0:
  3286. v->codingset2 = (v->pqindex <= 8) ? CS_HIGH_RATE_INTER : CS_LOW_MOT_INTER;
  3287. break;
  3288. case 1:
  3289. v->codingset2 = CS_HIGH_MOT_INTER;
  3290. break;
  3291. case 2:
  3292. v->codingset2 = CS_MID_RATE_INTER;
  3293. break;
  3294. }
  3295. //do frame decode
  3296. s->mb_x = s->mb_y = 0;
  3297. s->mb_intra = 1;
  3298. s->first_slice_line = 1;
  3299. ff_er_add_slice(s, 0, 0, s->mb_width - 1, s->mb_height - 1, (AC_END|DC_END|MV_END));
  3300. for(s->mb_y = 0; s->mb_y < s->mb_height; s->mb_y++) {
  3301. for(s->mb_x = 0; s->mb_x < s->mb_width; s->mb_x++) {
  3302. ff_init_block_index(s);
  3303. ff_update_block_index(s);
  3304. s->dsp.clear_blocks(s->block[0]);
  3305. mb_pos = s->mb_x + s->mb_y * s->mb_stride;
  3306. s->current_picture.mb_type[mb_pos] = MB_TYPE_INTRA;
  3307. s->current_picture.motion_val[1][s->block_index[0]][0] = 0;
  3308. s->current_picture.motion_val[1][s->block_index[0]][1] = 0;
  3309. // do actual MB decoding and displaying
  3310. cbp = get_vlc2(&v->s.gb, ff_msmp4_mb_i_vlc.table, MB_INTRA_VLC_BITS, 2);
  3311. if(v->acpred_is_raw)
  3312. v->s.ac_pred = get_bits(&v->s.gb, 1);
  3313. else
  3314. v->s.ac_pred = v->acpred_plane[mb_pos];
  3315. if(v->condover == CONDOVER_SELECT) {
  3316. if(v->overflg_is_raw)
  3317. overlap = get_bits(&v->s.gb, 1);
  3318. else
  3319. overlap = v->over_flags_plane[mb_pos];
  3320. } else
  3321. overlap = (v->condover == CONDOVER_ALL);
  3322. GET_MQUANT();
  3323. s->current_picture.qscale_table[mb_pos] = mquant;
  3324. /* Set DC scale - y and c use the same */
  3325. s->y_dc_scale = s->y_dc_scale_table[mquant];
  3326. s->c_dc_scale = s->c_dc_scale_table[mquant];
  3327. for(k = 0; k < 6; k++) {
  3328. val = ((cbp >> (5 - k)) & 1);
  3329. if (k < 4) {
  3330. int pred = vc1_coded_block_pred(&v->s, k, &coded_val);
  3331. val = val ^ pred;
  3332. *coded_val = val;
  3333. }
  3334. cbp |= val << (5 - k);
  3335. v->a_avail = !s->first_slice_line || (k==2 || k==3);
  3336. v->c_avail = !!s->mb_x || (k==1 || k==3);
  3337. vc1_decode_i_block_adv(v, s->block[k], k, val, (k<4)? v->codingset : v->codingset2, mquant);
  3338. s->dsp.vc1_inv_trans_8x8(s->block[k]);
  3339. for(j = 0; j < 64; j++) s->block[k][j] += 128;
  3340. }
  3341. vc1_put_block(v, s->block);
  3342. if(overlap) {
  3343. if(s->mb_x) {
  3344. s->dsp.vc1_h_overlap(s->dest[0], s->linesize);
  3345. s->dsp.vc1_h_overlap(s->dest[0] + 8 * s->linesize, s->linesize);
  3346. if(!(s->flags & CODEC_FLAG_GRAY)) {
  3347. s->dsp.vc1_h_overlap(s->dest[1], s->uvlinesize);
  3348. s->dsp.vc1_h_overlap(s->dest[2], s->uvlinesize);
  3349. }
  3350. }
  3351. s->dsp.vc1_h_overlap(s->dest[0] + 8, s->linesize);
  3352. s->dsp.vc1_h_overlap(s->dest[0] + 8 * s->linesize + 8, s->linesize);
  3353. if(!s->first_slice_line) {
  3354. s->dsp.vc1_v_overlap(s->dest[0], s->linesize);
  3355. s->dsp.vc1_v_overlap(s->dest[0] + 8, s->linesize);
  3356. if(!(s->flags & CODEC_FLAG_GRAY)) {
  3357. s->dsp.vc1_v_overlap(s->dest[1], s->uvlinesize);
  3358. s->dsp.vc1_v_overlap(s->dest[2], s->uvlinesize);
  3359. }
  3360. }
  3361. s->dsp.vc1_v_overlap(s->dest[0] + 8 * s->linesize, s->linesize);
  3362. s->dsp.vc1_v_overlap(s->dest[0] + 8 * s->linesize + 8, s->linesize);
  3363. }
  3364. if(get_bits_count(&s->gb) > v->bits) {
  3365. av_log(s->avctx, AV_LOG_ERROR, "Bits overconsumption: %i > %i\n", get_bits_count(&s->gb), v->bits);
  3366. return;
  3367. }
  3368. }
  3369. ff_draw_horiz_band(s, s->mb_y * 16, 16);
  3370. s->first_slice_line = 0;
  3371. }
  3372. }
  3373. static void vc1_decode_p_blocks(VC1Context *v)
  3374. {
  3375. MpegEncContext *s = &v->s;
  3376. /* select codingmode used for VLC tables selection */
  3377. switch(v->c_ac_table_index){
  3378. case 0:
  3379. v->codingset = (v->pqindex <= 8) ? CS_HIGH_RATE_INTRA : CS_LOW_MOT_INTRA;
  3380. break;
  3381. case 1:
  3382. v->codingset = CS_HIGH_MOT_INTRA;
  3383. break;
  3384. case 2:
  3385. v->codingset = CS_MID_RATE_INTRA;
  3386. break;
  3387. }
  3388. switch(v->c_ac_table_index){
  3389. case 0:
  3390. v->codingset2 = (v->pqindex <= 8) ? CS_HIGH_RATE_INTER : CS_LOW_MOT_INTER;
  3391. break;
  3392. case 1:
  3393. v->codingset2 = CS_HIGH_MOT_INTER;
  3394. break;
  3395. case 2:
  3396. v->codingset2 = CS_MID_RATE_INTER;
  3397. break;
  3398. }
  3399. ff_er_add_slice(s, 0, 0, s->mb_width - 1, s->mb_height - 1, (AC_END|DC_END|MV_END));
  3400. s->first_slice_line = 1;
  3401. for(s->mb_y = 0; s->mb_y < s->mb_height; s->mb_y++) {
  3402. for(s->mb_x = 0; s->mb_x < s->mb_width; s->mb_x++) {
  3403. ff_init_block_index(s);
  3404. ff_update_block_index(s);
  3405. s->dsp.clear_blocks(s->block[0]);
  3406. vc1_decode_p_mb(v);
  3407. if(get_bits_count(&s->gb) > v->bits || get_bits_count(&s->gb) < 0) {
  3408. av_log(s->avctx, AV_LOG_ERROR, "Bits overconsumption: %i > %i at %ix%i\n", get_bits_count(&s->gb), v->bits,s->mb_x,s->mb_y);
  3409. return;
  3410. }
  3411. }
  3412. ff_draw_horiz_band(s, s->mb_y * 16, 16);
  3413. s->first_slice_line = 0;
  3414. }
  3415. }
  3416. static void vc1_decode_b_blocks(VC1Context *v)
  3417. {
  3418. MpegEncContext *s = &v->s;
  3419. /* select codingmode used for VLC tables selection */
  3420. switch(v->c_ac_table_index){
  3421. case 0:
  3422. v->codingset = (v->pqindex <= 8) ? CS_HIGH_RATE_INTRA : CS_LOW_MOT_INTRA;
  3423. break;
  3424. case 1:
  3425. v->codingset = CS_HIGH_MOT_INTRA;
  3426. break;
  3427. case 2:
  3428. v->codingset = CS_MID_RATE_INTRA;
  3429. break;
  3430. }
  3431. switch(v->c_ac_table_index){
  3432. case 0:
  3433. v->codingset2 = (v->pqindex <= 8) ? CS_HIGH_RATE_INTER : CS_LOW_MOT_INTER;
  3434. break;
  3435. case 1:
  3436. v->codingset2 = CS_HIGH_MOT_INTER;
  3437. break;
  3438. case 2:
  3439. v->codingset2 = CS_MID_RATE_INTER;
  3440. break;
  3441. }
  3442. ff_er_add_slice(s, 0, 0, s->mb_width - 1, s->mb_height - 1, (AC_END|DC_END|MV_END));
  3443. s->first_slice_line = 1;
  3444. for(s->mb_y = 0; s->mb_y < s->mb_height; s->mb_y++) {
  3445. for(s->mb_x = 0; s->mb_x < s->mb_width; s->mb_x++) {
  3446. ff_init_block_index(s);
  3447. ff_update_block_index(s);
  3448. s->dsp.clear_blocks(s->block[0]);
  3449. vc1_decode_b_mb(v);
  3450. if(get_bits_count(&s->gb) > v->bits || get_bits_count(&s->gb) < 0) {
  3451. av_log(s->avctx, AV_LOG_ERROR, "Bits overconsumption: %i > %i at %ix%i\n", get_bits_count(&s->gb), v->bits,s->mb_x,s->mb_y);
  3452. return;
  3453. }
  3454. }
  3455. ff_draw_horiz_band(s, s->mb_y * 16, 16);
  3456. s->first_slice_line = 0;
  3457. }
  3458. }
  3459. static void vc1_decode_skip_blocks(VC1Context *v)
  3460. {
  3461. MpegEncContext *s = &v->s;
  3462. ff_er_add_slice(s, 0, 0, s->mb_width - 1, s->mb_height - 1, (AC_END|DC_END|MV_END));
  3463. s->first_slice_line = 1;
  3464. for(s->mb_y = 0; s->mb_y < s->mb_height; s->mb_y++) {
  3465. s->mb_x = 0;
  3466. ff_init_block_index(s);
  3467. ff_update_block_index(s);
  3468. memcpy(s->dest[0], s->last_picture.data[0] + s->mb_y * 16 * s->linesize, s->linesize * 16);
  3469. memcpy(s->dest[1], s->last_picture.data[1] + s->mb_y * 8 * s->uvlinesize, s->uvlinesize * 8);
  3470. memcpy(s->dest[2], s->last_picture.data[2] + s->mb_y * 8 * s->uvlinesize, s->uvlinesize * 8);
  3471. ff_draw_horiz_band(s, s->mb_y * 16, 16);
  3472. s->first_slice_line = 0;
  3473. }
  3474. s->pict_type = P_TYPE;
  3475. }
  3476. static void vc1_decode_blocks(VC1Context *v)
  3477. {
  3478. v->s.esc3_level_length = 0;
  3479. switch(v->s.pict_type) {
  3480. case I_TYPE:
  3481. if(v->profile == PROFILE_ADVANCED)
  3482. vc1_decode_i_blocks_adv(v);
  3483. else
  3484. vc1_decode_i_blocks(v);
  3485. break;
  3486. case P_TYPE:
  3487. if(v->p_frame_skipped)
  3488. vc1_decode_skip_blocks(v);
  3489. else
  3490. vc1_decode_p_blocks(v);
  3491. break;
  3492. case B_TYPE:
  3493. if(v->bi_type){
  3494. if(v->profile == PROFILE_ADVANCED)
  3495. vc1_decode_i_blocks_adv(v);
  3496. else
  3497. vc1_decode_i_blocks(v);
  3498. }else
  3499. vc1_decode_b_blocks(v);
  3500. break;
  3501. }
  3502. }
  3503. /** Find VC-1 marker in buffer
  3504. * @return position where next marker starts or end of buffer if no marker found
  3505. */
  3506. static av_always_inline uint8_t* find_next_marker(uint8_t *src, uint8_t *end)
  3507. {
  3508. uint32_t mrk = 0xFFFFFFFF;
  3509. if(end-src < 4) return end;
  3510. while(src < end){
  3511. mrk = (mrk << 8) | *src++;
  3512. if(IS_MARKER(mrk))
  3513. return src-4;
  3514. }
  3515. return end;
  3516. }
  3517. static av_always_inline int vc1_unescape_buffer(uint8_t *src, int size, uint8_t *dst)
  3518. {
  3519. int dsize = 0, i;
  3520. if(size < 4){
  3521. for(dsize = 0; dsize < size; dsize++) *dst++ = *src++;
  3522. return size;
  3523. }
  3524. for(i = 0; i < size; i++, src++) {
  3525. if(src[0] == 3 && i >= 2 && !src[-1] && !src[-2] && i < size-1 && src[1] < 4) {
  3526. dst[dsize++] = src[1];
  3527. src++;
  3528. i++;
  3529. } else
  3530. dst[dsize++] = *src;
  3531. }
  3532. return dsize;
  3533. }
  3534. /** Initialize a VC1/WMV3 decoder
  3535. * @todo TODO: Handle VC-1 IDUs (Transport level?)
  3536. * @todo TODO: Decypher remaining bits in extra_data
  3537. */
  3538. static int vc1_decode_init(AVCodecContext *avctx)
  3539. {
  3540. VC1Context *v = avctx->priv_data;
  3541. MpegEncContext *s = &v->s;
  3542. GetBitContext gb;
  3543. if (!avctx->extradata_size || !avctx->extradata) return -1;
  3544. if (!(avctx->flags & CODEC_FLAG_GRAY))
  3545. avctx->pix_fmt = PIX_FMT_YUV420P;
  3546. else
  3547. avctx->pix_fmt = PIX_FMT_GRAY8;
  3548. v->s.avctx = avctx;
  3549. avctx->flags |= CODEC_FLAG_EMU_EDGE;
  3550. v->s.flags |= CODEC_FLAG_EMU_EDGE;
  3551. if(ff_h263_decode_init(avctx) < 0)
  3552. return -1;
  3553. if (vc1_init_common(v) < 0) return -1;
  3554. avctx->coded_width = avctx->width;
  3555. avctx->coded_height = avctx->height;
  3556. if (avctx->codec_id == CODEC_ID_WMV3)
  3557. {
  3558. int count = 0;
  3559. // looks like WMV3 has a sequence header stored in the extradata
  3560. // advanced sequence header may be before the first frame
  3561. // the last byte of the extradata is a version number, 1 for the
  3562. // samples we can decode
  3563. init_get_bits(&gb, avctx->extradata, avctx->extradata_size*8);
  3564. if (decode_sequence_header(avctx, &gb) < 0)
  3565. return -1;
  3566. count = avctx->extradata_size*8 - get_bits_count(&gb);
  3567. if (count>0)
  3568. {
  3569. av_log(avctx, AV_LOG_INFO, "Extra data: %i bits left, value: %X\n",
  3570. count, get_bits(&gb, count));
  3571. }
  3572. else if (count < 0)
  3573. {
  3574. av_log(avctx, AV_LOG_INFO, "Read %i bits in overflow\n", -count);
  3575. }
  3576. } else { // VC1/WVC1
  3577. uint8_t *start = avctx->extradata, *end = avctx->extradata + avctx->extradata_size;
  3578. uint8_t *next; int size, buf2_size;
  3579. uint8_t *buf2 = NULL;
  3580. int seq_inited = 0, ep_inited = 0;
  3581. if(avctx->extradata_size < 16) {
  3582. av_log(avctx, AV_LOG_ERROR, "Extradata size too small: %i\n", avctx->extradata_size);
  3583. return -1;
  3584. }
  3585. buf2 = av_mallocz(avctx->extradata_size + FF_INPUT_BUFFER_PADDING_SIZE);
  3586. if(start[0]) start++; // in WVC1 extradata first byte is its size
  3587. next = start;
  3588. for(; next < end; start = next){
  3589. next = find_next_marker(start + 4, end);
  3590. size = next - start - 4;
  3591. if(size <= 0) continue;
  3592. buf2_size = vc1_unescape_buffer(start + 4, size, buf2);
  3593. init_get_bits(&gb, buf2, buf2_size * 8);
  3594. switch(AV_RB32(start)){
  3595. case VC1_CODE_SEQHDR:
  3596. if(decode_sequence_header(avctx, &gb) < 0){
  3597. av_free(buf2);
  3598. return -1;
  3599. }
  3600. seq_inited = 1;
  3601. break;
  3602. case VC1_CODE_ENTRYPOINT:
  3603. if(decode_entry_point(avctx, &gb) < 0){
  3604. av_free(buf2);
  3605. return -1;
  3606. }
  3607. ep_inited = 1;
  3608. break;
  3609. }
  3610. }
  3611. av_free(buf2);
  3612. if(!seq_inited || !ep_inited){
  3613. av_log(avctx, AV_LOG_ERROR, "Incomplete extradata\n");
  3614. return -1;
  3615. }
  3616. }
  3617. avctx->has_b_frames= !!(avctx->max_b_frames);
  3618. s->low_delay = !avctx->has_b_frames;
  3619. s->mb_width = (avctx->coded_width+15)>>4;
  3620. s->mb_height = (avctx->coded_height+15)>>4;
  3621. /* Allocate mb bitplanes */
  3622. v->mv_type_mb_plane = av_malloc(s->mb_stride * s->mb_height);
  3623. v->direct_mb_plane = av_malloc(s->mb_stride * s->mb_height);
  3624. v->acpred_plane = av_malloc(s->mb_stride * s->mb_height);
  3625. v->over_flags_plane = av_malloc(s->mb_stride * s->mb_height);
  3626. /* allocate block type info in that way so it could be used with s->block_index[] */
  3627. v->mb_type_base = av_malloc(s->b8_stride * (s->mb_height * 2 + 1) + s->mb_stride * (s->mb_height + 1) * 2);
  3628. v->mb_type[0] = v->mb_type_base + s->b8_stride + 1;
  3629. v->mb_type[1] = v->mb_type_base + s->b8_stride * (s->mb_height * 2 + 1) + s->mb_stride + 1;
  3630. v->mb_type[2] = v->mb_type[1] + s->mb_stride * (s->mb_height + 1);
  3631. /* Init coded blocks info */
  3632. if (v->profile == PROFILE_ADVANCED)
  3633. {
  3634. // if (alloc_bitplane(&v->over_flags_plane, s->mb_width, s->mb_height) < 0)
  3635. // return -1;
  3636. // if (alloc_bitplane(&v->ac_pred_plane, s->mb_width, s->mb_height) < 0)
  3637. // return -1;
  3638. }
  3639. return 0;
  3640. }
  3641. /** Decode a VC1/WMV3 frame
  3642. * @todo TODO: Handle VC-1 IDUs (Transport level?)
  3643. */
  3644. static int vc1_decode_frame(AVCodecContext *avctx,
  3645. void *data, int *data_size,
  3646. uint8_t *buf, int buf_size)
  3647. {
  3648. VC1Context *v = avctx->priv_data;
  3649. MpegEncContext *s = &v->s;
  3650. AVFrame *pict = data;
  3651. uint8_t *buf2 = NULL;
  3652. /* no supplementary picture */
  3653. if (buf_size == 0) {
  3654. /* special case for last picture */
  3655. if (s->low_delay==0 && s->next_picture_ptr) {
  3656. *pict= *(AVFrame*)s->next_picture_ptr;
  3657. s->next_picture_ptr= NULL;
  3658. *data_size = sizeof(AVFrame);
  3659. }
  3660. return 0;
  3661. }
  3662. /* We need to set current_picture_ptr before reading the header,
  3663. * otherwise we cannot store anything in there. */
  3664. if(s->current_picture_ptr==NULL || s->current_picture_ptr->data[0]){
  3665. int i= ff_find_unused_picture(s, 0);
  3666. s->current_picture_ptr= &s->picture[i];
  3667. }
  3668. //for advanced profile we may need to parse and unescape data
  3669. if (avctx->codec_id == CODEC_ID_VC1) {
  3670. int buf_size2 = 0;
  3671. buf2 = av_mallocz(buf_size + FF_INPUT_BUFFER_PADDING_SIZE);
  3672. if(IS_MARKER(AV_RB32(buf))){ /* frame starts with marker and needs to be parsed */
  3673. uint8_t *start, *end, *next;
  3674. int size;
  3675. next = buf;
  3676. for(start = buf, end = buf + buf_size; next < end; start = next){
  3677. next = find_next_marker(start + 4, end);
  3678. size = next - start - 4;
  3679. if(size <= 0) continue;
  3680. switch(AV_RB32(start)){
  3681. case VC1_CODE_FRAME:
  3682. buf_size2 = vc1_unescape_buffer(start + 4, size, buf2);
  3683. break;
  3684. case VC1_CODE_ENTRYPOINT: /* it should be before frame data */
  3685. buf_size2 = vc1_unescape_buffer(start + 4, size, buf2);
  3686. init_get_bits(&s->gb, buf2, buf_size2*8);
  3687. decode_entry_point(avctx, &s->gb);
  3688. break;
  3689. case VC1_CODE_SLICE:
  3690. av_log(avctx, AV_LOG_ERROR, "Sliced decoding is not implemented (yet)\n");
  3691. av_free(buf2);
  3692. return -1;
  3693. }
  3694. }
  3695. }else if(v->interlace && ((buf[0] & 0xC0) == 0xC0)){ /* WVC1 interlaced stores both fields divided by marker */
  3696. uint8_t *divider;
  3697. divider = find_next_marker(buf, buf + buf_size);
  3698. if((divider == (buf + buf_size)) || AV_RB32(divider) != VC1_CODE_FIELD){
  3699. av_log(avctx, AV_LOG_ERROR, "Error in WVC1 interlaced frame\n");
  3700. return -1;
  3701. }
  3702. buf_size2 = vc1_unescape_buffer(buf, divider - buf, buf2);
  3703. // TODO
  3704. av_free(buf2);return -1;
  3705. }else{
  3706. buf_size2 = vc1_unescape_buffer(buf, buf_size, buf2);
  3707. }
  3708. init_get_bits(&s->gb, buf2, buf_size2*8);
  3709. } else
  3710. init_get_bits(&s->gb, buf, buf_size*8);
  3711. // do parse frame header
  3712. if(v->profile < PROFILE_ADVANCED) {
  3713. if(vc1_parse_frame_header(v, &s->gb) == -1) {
  3714. av_free(buf2);
  3715. return -1;
  3716. }
  3717. } else {
  3718. if(vc1_parse_frame_header_adv(v, &s->gb) == -1) {
  3719. av_free(buf2);
  3720. return -1;
  3721. }
  3722. }
  3723. if(s->pict_type != I_TYPE && !v->res_rtm_flag){
  3724. av_free(buf2);
  3725. return -1;
  3726. }
  3727. // for hurry_up==5
  3728. s->current_picture.pict_type= s->pict_type;
  3729. s->current_picture.key_frame= s->pict_type == I_TYPE;
  3730. /* skip B-frames if we don't have reference frames */
  3731. if(s->last_picture_ptr==NULL && (s->pict_type==B_TYPE || s->dropable)){
  3732. av_free(buf2);
  3733. return -1;//buf_size;
  3734. }
  3735. /* skip b frames if we are in a hurry */
  3736. if(avctx->hurry_up && s->pict_type==B_TYPE) return -1;//buf_size;
  3737. if( (avctx->skip_frame >= AVDISCARD_NONREF && s->pict_type==B_TYPE)
  3738. || (avctx->skip_frame >= AVDISCARD_NONKEY && s->pict_type!=I_TYPE)
  3739. || avctx->skip_frame >= AVDISCARD_ALL) {
  3740. av_free(buf2);
  3741. return buf_size;
  3742. }
  3743. /* skip everything if we are in a hurry>=5 */
  3744. if(avctx->hurry_up>=5) {
  3745. av_free(buf2);
  3746. return -1;//buf_size;
  3747. }
  3748. if(s->next_p_frame_damaged){
  3749. if(s->pict_type==B_TYPE)
  3750. return buf_size;
  3751. else
  3752. s->next_p_frame_damaged=0;
  3753. }
  3754. if(MPV_frame_start(s, avctx) < 0) {
  3755. av_free(buf2);
  3756. return -1;
  3757. }
  3758. ff_er_frame_start(s);
  3759. v->bits = buf_size * 8;
  3760. vc1_decode_blocks(v);
  3761. //av_log(s->avctx, AV_LOG_INFO, "Consumed %i/%i bits\n", get_bits_count(&s->gb), buf_size*8);
  3762. // if(get_bits_count(&s->gb) > buf_size * 8)
  3763. // return -1;
  3764. ff_er_frame_end(s);
  3765. MPV_frame_end(s);
  3766. assert(s->current_picture.pict_type == s->current_picture_ptr->pict_type);
  3767. assert(s->current_picture.pict_type == s->pict_type);
  3768. if (s->pict_type == B_TYPE || s->low_delay) {
  3769. *pict= *(AVFrame*)s->current_picture_ptr;
  3770. } else if (s->last_picture_ptr != NULL) {
  3771. *pict= *(AVFrame*)s->last_picture_ptr;
  3772. }
  3773. if(s->last_picture_ptr || s->low_delay){
  3774. *data_size = sizeof(AVFrame);
  3775. ff_print_debug_info(s, pict);
  3776. }
  3777. /* Return the Picture timestamp as the frame number */
  3778. /* we substract 1 because it is added on utils.c */
  3779. avctx->frame_number = s->picture_number - 1;
  3780. av_free(buf2);
  3781. return buf_size;
  3782. }
  3783. /** Close a VC1/WMV3 decoder
  3784. * @warning Initial try at using MpegEncContext stuff
  3785. */
  3786. static int vc1_decode_end(AVCodecContext *avctx)
  3787. {
  3788. VC1Context *v = avctx->priv_data;
  3789. av_freep(&v->hrd_rate);
  3790. av_freep(&v->hrd_buffer);
  3791. MPV_common_end(&v->s);
  3792. av_freep(&v->mv_type_mb_plane);
  3793. av_freep(&v->direct_mb_plane);
  3794. av_freep(&v->acpred_plane);
  3795. av_freep(&v->over_flags_plane);
  3796. av_freep(&v->mb_type_base);
  3797. return 0;
  3798. }
  3799. AVCodec vc1_decoder = {
  3800. "vc1",
  3801. CODEC_TYPE_VIDEO,
  3802. CODEC_ID_VC1,
  3803. sizeof(VC1Context),
  3804. vc1_decode_init,
  3805. NULL,
  3806. vc1_decode_end,
  3807. vc1_decode_frame,
  3808. CODEC_CAP_DELAY,
  3809. NULL
  3810. };
  3811. AVCodec wmv3_decoder = {
  3812. "wmv3",
  3813. CODEC_TYPE_VIDEO,
  3814. CODEC_ID_WMV3,
  3815. sizeof(VC1Context),
  3816. vc1_decode_init,
  3817. NULL,
  3818. vc1_decode_end,
  3819. vc1_decode_frame,
  3820. CODEC_CAP_DELAY,
  3821. NULL
  3822. };