You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

1206 lines
43KB

  1. /*
  2. * Copyright (c) 2003 The FFmpeg Project
  3. *
  4. * This file is part of FFmpeg.
  5. *
  6. * FFmpeg is free software; you can redistribute it and/or
  7. * modify it under the terms of the GNU Lesser General Public
  8. * License as published by the Free Software Foundation; either
  9. * version 2.1 of the License, or (at your option) any later version.
  10. *
  11. * FFmpeg is distributed in the hope that it will be useful,
  12. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  13. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  14. * Lesser General Public License for more details.
  15. *
  16. * You should have received a copy of the GNU Lesser General Public
  17. * License along with FFmpeg; if not, write to the Free Software
  18. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  19. */
  20. /*
  21. * How to use this decoder:
  22. * SVQ3 data is transported within Apple Quicktime files. Quicktime files
  23. * have stsd atoms to describe media trak properties. A stsd atom for a
  24. * video trak contains 1 or more ImageDescription atoms. These atoms begin
  25. * with the 4-byte length of the atom followed by the codec fourcc. Some
  26. * decoders need information in this atom to operate correctly. Such
  27. * is the case with SVQ3. In order to get the best use out of this decoder,
  28. * the calling app must make the SVQ3 ImageDescription atom available
  29. * via the AVCodecContext's extradata[_size] field:
  30. *
  31. * AVCodecContext.extradata = pointer to ImageDescription, first characters
  32. * are expected to be 'S', 'V', 'Q', and '3', NOT the 4-byte atom length
  33. * AVCodecContext.extradata_size = size of ImageDescription atom memory
  34. * buffer (which will be the same as the ImageDescription atom size field
  35. * from the QT file, minus 4 bytes since the length is missing)
  36. *
  37. * You will know you have these parameters passed correctly when the decoder
  38. * correctly decodes this file:
  39. * http://samples.mplayerhq.hu/V-codecs/SVQ3/Vertical400kbit.sorenson3.mov
  40. */
  41. #include "internal.h"
  42. #include "dsputil.h"
  43. #include "avcodec.h"
  44. #include "mpegvideo.h"
  45. #include "h264.h"
  46. #include "h264data.h" // FIXME FIXME FIXME
  47. #include "h264_mvpred.h"
  48. #include "golomb.h"
  49. #include "rectangle.h"
  50. #include "vdpau_internal.h"
  51. #if CONFIG_ZLIB
  52. #include <zlib.h>
  53. #endif
  54. #include "svq1.h"
  55. /**
  56. * @file
  57. * svq3 decoder.
  58. */
  59. typedef struct {
  60. H264Context h;
  61. int halfpel_flag;
  62. int thirdpel_flag;
  63. int unknown_flag;
  64. int next_slice_index;
  65. uint32_t watermark_key;
  66. uint8_t *buf;
  67. int buf_size;
  68. } SVQ3Context;
  69. #define FULLPEL_MODE 1
  70. #define HALFPEL_MODE 2
  71. #define THIRDPEL_MODE 3
  72. #define PREDICT_MODE 4
  73. /* dual scan (from some older h264 draft)
  74. * o-->o-->o o
  75. * | /|
  76. * o o o / o
  77. * | / | |/ |
  78. * o o o o
  79. * /
  80. * o-->o-->o-->o
  81. */
  82. static const uint8_t svq3_scan[16] = {
  83. 0 + 0 * 4, 1 + 0 * 4, 2 + 0 * 4, 2 + 1 * 4,
  84. 2 + 2 * 4, 3 + 0 * 4, 3 + 1 * 4, 3 + 2 * 4,
  85. 0 + 1 * 4, 0 + 2 * 4, 1 + 1 * 4, 1 + 2 * 4,
  86. 0 + 3 * 4, 1 + 3 * 4, 2 + 3 * 4, 3 + 3 * 4,
  87. };
  88. static const uint8_t svq3_pred_0[25][2] = {
  89. { 0, 0 },
  90. { 1, 0 }, { 0, 1 },
  91. { 0, 2 }, { 1, 1 }, { 2, 0 },
  92. { 3, 0 }, { 2, 1 }, { 1, 2 }, { 0, 3 },
  93. { 0, 4 }, { 1, 3 }, { 2, 2 }, { 3, 1 }, { 4, 0 },
  94. { 4, 1 }, { 3, 2 }, { 2, 3 }, { 1, 4 },
  95. { 2, 4 }, { 3, 3 }, { 4, 2 },
  96. { 4, 3 }, { 3, 4 },
  97. { 4, 4 }
  98. };
  99. static const int8_t svq3_pred_1[6][6][5] = {
  100. { { 2, -1, -1, -1, -1 }, { 2, 1, -1, -1, -1 }, { 1, 2, -1, -1, -1 },
  101. { 2, 1, -1, -1, -1 }, { 1, 2, -1, -1, -1 }, { 1, 2, -1, -1, -1 } },
  102. { { 0, 2, -1, -1, -1 }, { 0, 2, 1, 4, 3 }, { 0, 1, 2, 4, 3 },
  103. { 0, 2, 1, 4, 3 }, { 2, 0, 1, 3, 4 }, { 0, 4, 2, 1, 3 } },
  104. { { 2, 0, -1, -1, -1 }, { 2, 1, 0, 4, 3 }, { 1, 2, 4, 0, 3 },
  105. { 2, 1, 0, 4, 3 }, { 2, 1, 4, 3, 0 }, { 1, 2, 4, 0, 3 } },
  106. { { 2, 0, -1, -1, -1 }, { 2, 0, 1, 4, 3 }, { 1, 2, 0, 4, 3 },
  107. { 2, 1, 0, 4, 3 }, { 2, 1, 3, 4, 0 }, { 2, 4, 1, 0, 3 } },
  108. { { 0, 2, -1, -1, -1 }, { 0, 2, 1, 3, 4 }, { 1, 2, 3, 0, 4 },
  109. { 2, 0, 1, 3, 4 }, { 2, 1, 3, 0, 4 }, { 2, 0, 4, 3, 1 } },
  110. { { 0, 2, -1, -1, -1 }, { 0, 2, 4, 1, 3 }, { 1, 4, 2, 0, 3 },
  111. { 4, 2, 0, 1, 3 }, { 2, 0, 1, 4, 3 }, { 4, 2, 1, 0, 3 } },
  112. };
  113. static const struct {
  114. uint8_t run;
  115. uint8_t level;
  116. } svq3_dct_tables[2][16] = {
  117. { { 0, 0 }, { 0, 1 }, { 1, 1 }, { 2, 1 }, { 0, 2 }, { 3, 1 }, { 4, 1 }, { 5, 1 },
  118. { 0, 3 }, { 1, 2 }, { 2, 2 }, { 6, 1 }, { 7, 1 }, { 8, 1 }, { 9, 1 }, { 0, 4 } },
  119. { { 0, 0 }, { 0, 1 }, { 1, 1 }, { 0, 2 }, { 2, 1 }, { 0, 3 }, { 0, 4 }, { 0, 5 },
  120. { 3, 1 }, { 4, 1 }, { 1, 2 }, { 1, 3 }, { 0, 6 }, { 0, 7 }, { 0, 8 }, { 0, 9 } }
  121. };
  122. static const uint32_t svq3_dequant_coeff[32] = {
  123. 3881, 4351, 4890, 5481, 6154, 6914, 7761, 8718,
  124. 9781, 10987, 12339, 13828, 15523, 17435, 19561, 21873,
  125. 24552, 27656, 30847, 34870, 38807, 43747, 49103, 54683,
  126. 61694, 68745, 77615, 89113, 100253, 109366, 126635, 141533
  127. };
  128. void ff_svq3_luma_dc_dequant_idct_c(DCTELEM *output, DCTELEM *input, int qp)
  129. {
  130. const int qmul = svq3_dequant_coeff[qp];
  131. #define stride 16
  132. int i;
  133. int temp[16];
  134. static const uint8_t x_offset[4] = { 0, 1 * stride, 4 * stride, 5 * stride };
  135. for (i = 0; i < 4; i++) {
  136. const int z0 = 13 * (input[4 * i + 0] + input[4 * i + 2]);
  137. const int z1 = 13 * (input[4 * i + 0] - input[4 * i + 2]);
  138. const int z2 = 7 * input[4 * i + 1] - 17 * input[4 * i + 3];
  139. const int z3 = 17 * input[4 * i + 1] + 7 * input[4 * i + 3];
  140. temp[4 * i + 0] = z0 + z3;
  141. temp[4 * i + 1] = z1 + z2;
  142. temp[4 * i + 2] = z1 - z2;
  143. temp[4 * i + 3] = z0 - z3;
  144. }
  145. for (i = 0; i < 4; i++) {
  146. const int offset = x_offset[i];
  147. const int z0 = 13 * (temp[4 * 0 + i] + temp[4 * 2 + i]);
  148. const int z1 = 13 * (temp[4 * 0 + i] - temp[4 * 2 + i]);
  149. const int z2 = 7 * temp[4 * 1 + i] - 17 * temp[4 * 3 + i];
  150. const int z3 = 17 * temp[4 * 1 + i] + 7 * temp[4 * 3 + i];
  151. output[stride * 0 + offset] = (z0 + z3) * qmul + 0x80000 >> 20;
  152. output[stride * 2 + offset] = (z1 + z2) * qmul + 0x80000 >> 20;
  153. output[stride * 8 + offset] = (z1 - z2) * qmul + 0x80000 >> 20;
  154. output[stride * 10 + offset] = (z0 - z3) * qmul + 0x80000 >> 20;
  155. }
  156. }
  157. #undef stride
  158. void ff_svq3_add_idct_c(uint8_t *dst, DCTELEM *block,
  159. int stride, int qp, int dc)
  160. {
  161. const int qmul = svq3_dequant_coeff[qp];
  162. int i;
  163. if (dc) {
  164. dc = 13 * 13 * (dc == 1 ? 1538 * block[0]
  165. : qmul * (block[0] >> 3) / 2);
  166. block[0] = 0;
  167. }
  168. for (i = 0; i < 4; i++) {
  169. const int z0 = 13 * (block[0 + 4 * i] + block[2 + 4 * i]);
  170. const int z1 = 13 * (block[0 + 4 * i] - block[2 + 4 * i]);
  171. const int z2 = 7 * block[1 + 4 * i] - 17 * block[3 + 4 * i];
  172. const int z3 = 17 * block[1 + 4 * i] + 7 * block[3 + 4 * i];
  173. block[0 + 4 * i] = z0 + z3;
  174. block[1 + 4 * i] = z1 + z2;
  175. block[2 + 4 * i] = z1 - z2;
  176. block[3 + 4 * i] = z0 - z3;
  177. }
  178. for (i = 0; i < 4; i++) {
  179. const int z0 = 13 * (block[i + 4 * 0] + block[i + 4 * 2]);
  180. const int z1 = 13 * (block[i + 4 * 0] - block[i + 4 * 2]);
  181. const int z2 = 7 * block[i + 4 * 1] - 17 * block[i + 4 * 3];
  182. const int z3 = 17 * block[i + 4 * 1] + 7 * block[i + 4 * 3];
  183. const int rr = (dc + 0x80000);
  184. dst[i + stride * 0] = av_clip_uint8(dst[i + stride * 0] + ((z0 + z3) * qmul + rr >> 20));
  185. dst[i + stride * 1] = av_clip_uint8(dst[i + stride * 1] + ((z1 + z2) * qmul + rr >> 20));
  186. dst[i + stride * 2] = av_clip_uint8(dst[i + stride * 2] + ((z1 - z2) * qmul + rr >> 20));
  187. dst[i + stride * 3] = av_clip_uint8(dst[i + stride * 3] + ((z0 - z3) * qmul + rr >> 20));
  188. }
  189. }
  190. static inline int svq3_decode_block(GetBitContext *gb, DCTELEM *block,
  191. int index, const int type)
  192. {
  193. static const uint8_t *const scan_patterns[4] =
  194. { luma_dc_zigzag_scan, zigzag_scan, svq3_scan, chroma_dc_scan };
  195. int run, level, sign, vlc, limit;
  196. const int intra = 3 * type >> 2;
  197. const uint8_t *const scan = scan_patterns[type];
  198. for (limit = (16 >> intra); index < 16; index = limit, limit += 8) {
  199. for (; (vlc = svq3_get_ue_golomb(gb)) != 0; index++) {
  200. if (vlc < 0)
  201. return -1;
  202. sign = (vlc & 0x1) - 1;
  203. vlc = vlc + 1 >> 1;
  204. if (type == 3) {
  205. if (vlc < 3) {
  206. run = 0;
  207. level = vlc;
  208. } else if (vlc < 4) {
  209. run = 1;
  210. level = 1;
  211. } else {
  212. run = vlc & 0x3;
  213. level = (vlc + 9 >> 2) - run;
  214. }
  215. } else {
  216. if (vlc < 16U) {
  217. run = svq3_dct_tables[intra][vlc].run;
  218. level = svq3_dct_tables[intra][vlc].level;
  219. } else if (intra) {
  220. run = vlc & 0x7;
  221. level = (vlc >> 3) + ((run == 0) ? 8 : ((run < 2) ? 2 : ((run < 5) ? 0 : -1)));
  222. } else {
  223. run = vlc & 0xF;
  224. level = (vlc >> 4) + ((run == 0) ? 4 : ((run < 3) ? 2 : ((run < 10) ? 1 : 0)));
  225. }
  226. }
  227. if ((index += run) >= limit)
  228. return -1;
  229. block[scan[index]] = (level ^ sign) - sign;
  230. }
  231. if (type != 2) {
  232. break;
  233. }
  234. }
  235. return 0;
  236. }
  237. static inline void svq3_mc_dir_part(MpegEncContext *s,
  238. int x, int y, int width, int height,
  239. int mx, int my, int dxy,
  240. int thirdpel, int dir, int avg)
  241. {
  242. const Picture *pic = (dir == 0) ? &s->last_picture : &s->next_picture;
  243. uint8_t *src, *dest;
  244. int i, emu = 0;
  245. int blocksize = 2 - (width >> 3); // 16->0, 8->1, 4->2
  246. mx += x;
  247. my += y;
  248. if (mx < 0 || mx >= s->h_edge_pos - width - 1 ||
  249. my < 0 || my >= s->v_edge_pos - height - 1) {
  250. if ((s->flags & CODEC_FLAG_EMU_EDGE))
  251. emu = 1;
  252. mx = av_clip(mx, -16, s->h_edge_pos - width + 15);
  253. my = av_clip(my, -16, s->v_edge_pos - height + 15);
  254. }
  255. /* form component predictions */
  256. dest = s->current_picture.f.data[0] + x + y * s->linesize;
  257. src = pic->f.data[0] + mx + my * s->linesize;
  258. if (emu) {
  259. s->dsp.emulated_edge_mc(s->edge_emu_buffer, src, s->linesize,
  260. width + 1, height + 1,
  261. mx, my, s->h_edge_pos, s->v_edge_pos);
  262. src = s->edge_emu_buffer;
  263. }
  264. if (thirdpel)
  265. (avg ? s->dsp.avg_tpel_pixels_tab
  266. : s->dsp.put_tpel_pixels_tab)[dxy](dest, src, s->linesize,
  267. width, height);
  268. else
  269. (avg ? s->dsp.avg_pixels_tab
  270. : s->dsp.put_pixels_tab)[blocksize][dxy](dest, src, s->linesize,
  271. height);
  272. if (!(s->flags & CODEC_FLAG_GRAY)) {
  273. mx = mx + (mx < (int) x) >> 1;
  274. my = my + (my < (int) y) >> 1;
  275. width = width >> 1;
  276. height = height >> 1;
  277. blocksize++;
  278. for (i = 1; i < 3; i++) {
  279. dest = s->current_picture.f.data[i] + (x >> 1) + (y >> 1) * s->uvlinesize;
  280. src = pic->f.data[i] + mx + my * s->uvlinesize;
  281. if (emu) {
  282. s->dsp.emulated_edge_mc(s->edge_emu_buffer, src, s->uvlinesize,
  283. width + 1, height + 1,
  284. mx, my, (s->h_edge_pos >> 1),
  285. s->v_edge_pos >> 1);
  286. src = s->edge_emu_buffer;
  287. }
  288. if (thirdpel)
  289. (avg ? s->dsp.avg_tpel_pixels_tab
  290. : s->dsp.put_tpel_pixels_tab)[dxy](dest, src,
  291. s->uvlinesize,
  292. width, height);
  293. else
  294. (avg ? s->dsp.avg_pixels_tab
  295. : s->dsp.put_pixels_tab)[blocksize][dxy](dest, src,
  296. s->uvlinesize,
  297. height);
  298. }
  299. }
  300. }
  301. static inline int svq3_mc_dir(H264Context *h, int size, int mode,
  302. int dir, int avg)
  303. {
  304. int i, j, k, mx, my, dx, dy, x, y;
  305. MpegEncContext *const s = (MpegEncContext *)h;
  306. const int part_width = ((size & 5) == 4) ? 4 : 16 >> (size & 1);
  307. const int part_height = 16 >> ((unsigned)(size + 1) / 3);
  308. const int extra_width = (mode == PREDICT_MODE) ? -16 * 6 : 0;
  309. const int h_edge_pos = 6 * (s->h_edge_pos - part_width) - extra_width;
  310. const int v_edge_pos = 6 * (s->v_edge_pos - part_height) - extra_width;
  311. for (i = 0; i < 16; i += part_height)
  312. for (j = 0; j < 16; j += part_width) {
  313. const int b_xy = (4 * s->mb_x + (j >> 2)) +
  314. (4 * s->mb_y + (i >> 2)) * h->b_stride;
  315. int dxy;
  316. x = 16 * s->mb_x + j;
  317. y = 16 * s->mb_y + i;
  318. k = (j >> 2 & 1) + (i >> 1 & 2) +
  319. (j >> 1 & 4) + (i & 8);
  320. if (mode != PREDICT_MODE) {
  321. pred_motion(h, k, part_width >> 2, dir, 1, &mx, &my);
  322. } else {
  323. mx = s->next_picture.f.motion_val[0][b_xy][0] << 1;
  324. my = s->next_picture.f.motion_val[0][b_xy][1] << 1;
  325. if (dir == 0) {
  326. mx = mx * h->frame_num_offset /
  327. h->prev_frame_num_offset + 1 >> 1;
  328. my = my * h->frame_num_offset /
  329. h->prev_frame_num_offset + 1 >> 1;
  330. } else {
  331. mx = mx * (h->frame_num_offset - h->prev_frame_num_offset) /
  332. h->prev_frame_num_offset + 1 >> 1;
  333. my = my * (h->frame_num_offset - h->prev_frame_num_offset) /
  334. h->prev_frame_num_offset + 1 >> 1;
  335. }
  336. }
  337. /* clip motion vector prediction to frame border */
  338. mx = av_clip(mx, extra_width - 6 * x, h_edge_pos - 6 * x);
  339. my = av_clip(my, extra_width - 6 * y, v_edge_pos - 6 * y);
  340. /* get (optional) motion vector differential */
  341. if (mode == PREDICT_MODE) {
  342. dx = dy = 0;
  343. } else {
  344. dy = svq3_get_se_golomb(&s->gb);
  345. dx = svq3_get_se_golomb(&s->gb);
  346. if (dx == INVALID_VLC || dy == INVALID_VLC) {
  347. av_log(h->s.avctx, AV_LOG_ERROR, "invalid MV vlc\n");
  348. return -1;
  349. }
  350. }
  351. /* compute motion vector */
  352. if (mode == THIRDPEL_MODE) {
  353. int fx, fy;
  354. mx = (mx + 1 >> 1) + dx;
  355. my = (my + 1 >> 1) + dy;
  356. fx = (unsigned)(mx + 0x3000) / 3 - 0x1000;
  357. fy = (unsigned)(my + 0x3000) / 3 - 0x1000;
  358. dxy = (mx - 3 * fx) + 4 * (my - 3 * fy);
  359. svq3_mc_dir_part(s, x, y, part_width, part_height,
  360. fx, fy, dxy, 1, dir, avg);
  361. mx += mx;
  362. my += my;
  363. } else if (mode == HALFPEL_MODE || mode == PREDICT_MODE) {
  364. mx = (unsigned)(mx + 1 + 0x3000) / 3 + dx - 0x1000;
  365. my = (unsigned)(my + 1 + 0x3000) / 3 + dy - 0x1000;
  366. dxy = (mx & 1) + 2 * (my & 1);
  367. svq3_mc_dir_part(s, x, y, part_width, part_height,
  368. mx >> 1, my >> 1, dxy, 0, dir, avg);
  369. mx *= 3;
  370. my *= 3;
  371. } else {
  372. mx = (unsigned)(mx + 3 + 0x6000) / 6 + dx - 0x1000;
  373. my = (unsigned)(my + 3 + 0x6000) / 6 + dy - 0x1000;
  374. svq3_mc_dir_part(s, x, y, part_width, part_height,
  375. mx, my, 0, 0, dir, avg);
  376. mx *= 6;
  377. my *= 6;
  378. }
  379. /* update mv_cache */
  380. if (mode != PREDICT_MODE) {
  381. int32_t mv = pack16to32(mx, my);
  382. if (part_height == 8 && i < 8) {
  383. AV_WN32A(h->mv_cache[dir][scan8[k] + 1 * 8], mv);
  384. if (part_width == 8 && j < 8)
  385. AV_WN32A(h->mv_cache[dir][scan8[k] + 1 + 1 * 8], mv);
  386. }
  387. if (part_width == 8 && j < 8)
  388. AV_WN32A(h->mv_cache[dir][scan8[k] + 1], mv);
  389. if (part_width == 4 || part_height == 4)
  390. AV_WN32A(h->mv_cache[dir][scan8[k]], mv);
  391. }
  392. /* write back motion vectors */
  393. fill_rectangle(s->current_picture.f.motion_val[dir][b_xy],
  394. part_width >> 2, part_height >> 2, h->b_stride,
  395. pack16to32(mx, my), 4);
  396. }
  397. return 0;
  398. }
  399. static int svq3_decode_mb(SVQ3Context *svq3, unsigned int mb_type)
  400. {
  401. H264Context *h = &svq3->h;
  402. int i, j, k, m, dir, mode;
  403. int cbp = 0;
  404. uint32_t vlc;
  405. int8_t *top, *left;
  406. MpegEncContext *const s = (MpegEncContext *)h;
  407. const int mb_xy = h->mb_xy;
  408. const int b_xy = 4 * s->mb_x + 4 * s->mb_y * h->b_stride;
  409. h->top_samples_available = (s->mb_y == 0) ? 0x33FF : 0xFFFF;
  410. h->left_samples_available = (s->mb_x == 0) ? 0x5F5F : 0xFFFF;
  411. h->topright_samples_available = 0xFFFF;
  412. if (mb_type == 0) { /* SKIP */
  413. if (s->pict_type == AV_PICTURE_TYPE_P ||
  414. s->next_picture.f.mb_type[mb_xy] == -1) {
  415. svq3_mc_dir_part(s, 16 * s->mb_x, 16 * s->mb_y, 16, 16,
  416. 0, 0, 0, 0, 0, 0);
  417. if (s->pict_type == AV_PICTURE_TYPE_B)
  418. svq3_mc_dir_part(s, 16 * s->mb_x, 16 * s->mb_y, 16, 16,
  419. 0, 0, 0, 0, 1, 1);
  420. mb_type = MB_TYPE_SKIP;
  421. } else {
  422. mb_type = FFMIN(s->next_picture.f.mb_type[mb_xy], 6);
  423. if (svq3_mc_dir(h, mb_type, PREDICT_MODE, 0, 0) < 0)
  424. return -1;
  425. if (svq3_mc_dir(h, mb_type, PREDICT_MODE, 1, 1) < 0)
  426. return -1;
  427. mb_type = MB_TYPE_16x16;
  428. }
  429. } else if (mb_type < 8) { /* INTER */
  430. if (svq3->thirdpel_flag && svq3->halfpel_flag == !get_bits1(&s->gb))
  431. mode = THIRDPEL_MODE;
  432. else if (svq3->halfpel_flag &&
  433. svq3->thirdpel_flag == !get_bits1(&s->gb))
  434. mode = HALFPEL_MODE;
  435. else
  436. mode = FULLPEL_MODE;
  437. /* fill caches */
  438. /* note ref_cache should contain here:
  439. * ????????
  440. * ???11111
  441. * N??11111
  442. * N??11111
  443. * N??11111
  444. */
  445. for (m = 0; m < 2; m++) {
  446. if (s->mb_x > 0 && h->intra4x4_pred_mode[h->mb2br_xy[mb_xy - 1] + 6] != -1) {
  447. for (i = 0; i < 4; i++)
  448. AV_COPY32(h->mv_cache[m][scan8[0] - 1 + i * 8],
  449. s->current_picture.f.motion_val[m][b_xy - 1 + i * h->b_stride]);
  450. } else {
  451. for (i = 0; i < 4; i++)
  452. AV_ZERO32(h->mv_cache[m][scan8[0] - 1 + i * 8]);
  453. }
  454. if (s->mb_y > 0) {
  455. memcpy(h->mv_cache[m][scan8[0] - 1 * 8],
  456. s->current_picture.f.motion_val[m][b_xy - h->b_stride],
  457. 4 * 2 * sizeof(int16_t));
  458. memset(&h->ref_cache[m][scan8[0] - 1 * 8],
  459. (h->intra4x4_pred_mode[h->mb2br_xy[mb_xy - s->mb_stride]] == -1) ? PART_NOT_AVAILABLE : 1, 4);
  460. if (s->mb_x < s->mb_width - 1) {
  461. AV_COPY32(h->mv_cache[m][scan8[0] + 4 - 1 * 8],
  462. s->current_picture.f.motion_val[m][b_xy - h->b_stride + 4]);
  463. h->ref_cache[m][scan8[0] + 4 - 1 * 8] =
  464. (h->intra4x4_pred_mode[h->mb2br_xy[mb_xy - s->mb_stride + 1] + 6] == -1 ||
  465. h->intra4x4_pred_mode[h->mb2br_xy[mb_xy - s->mb_stride]] == -1) ? PART_NOT_AVAILABLE : 1;
  466. } else
  467. h->ref_cache[m][scan8[0] + 4 - 1 * 8] = PART_NOT_AVAILABLE;
  468. if (s->mb_x > 0) {
  469. AV_COPY32(h->mv_cache[m][scan8[0] - 1 - 1 * 8],
  470. s->current_picture.f.motion_val[m][b_xy - h->b_stride - 1]);
  471. h->ref_cache[m][scan8[0] - 1 - 1 * 8] =
  472. (h->intra4x4_pred_mode[h->mb2br_xy[mb_xy - s->mb_stride - 1] + 3] == -1) ? PART_NOT_AVAILABLE : 1;
  473. } else
  474. h->ref_cache[m][scan8[0] - 1 - 1 * 8] = PART_NOT_AVAILABLE;
  475. } else
  476. memset(&h->ref_cache[m][scan8[0] - 1 * 8 - 1],
  477. PART_NOT_AVAILABLE, 8);
  478. if (s->pict_type != AV_PICTURE_TYPE_B)
  479. break;
  480. }
  481. /* decode motion vector(s) and form prediction(s) */
  482. if (s->pict_type == AV_PICTURE_TYPE_P) {
  483. if (svq3_mc_dir(h, mb_type - 1, mode, 0, 0) < 0)
  484. return -1;
  485. } else { /* AV_PICTURE_TYPE_B */
  486. if (mb_type != 2) {
  487. if (svq3_mc_dir(h, 0, mode, 0, 0) < 0)
  488. return -1;
  489. } else {
  490. for (i = 0; i < 4; i++)
  491. memset(s->current_picture.f.motion_val[0][b_xy + i * h->b_stride],
  492. 0, 4 * 2 * sizeof(int16_t));
  493. }
  494. if (mb_type != 1) {
  495. if (svq3_mc_dir(h, 0, mode, 1, mb_type == 3) < 0)
  496. return -1;
  497. } else {
  498. for (i = 0; i < 4; i++)
  499. memset(s->current_picture.f.motion_val[1][b_xy + i * h->b_stride],
  500. 0, 4 * 2 * sizeof(int16_t));
  501. }
  502. }
  503. mb_type = MB_TYPE_16x16;
  504. } else if (mb_type == 8 || mb_type == 33) { /* INTRA4x4 */
  505. memset(h->intra4x4_pred_mode_cache, -1, 8 * 5 * sizeof(int8_t));
  506. if (mb_type == 8) {
  507. if (s->mb_x > 0) {
  508. for (i = 0; i < 4; i++)
  509. h->intra4x4_pred_mode_cache[scan8[0] - 1 + i * 8] = h->intra4x4_pred_mode[h->mb2br_xy[mb_xy - 1] + 6 - i];
  510. if (h->intra4x4_pred_mode_cache[scan8[0] - 1] == -1)
  511. h->left_samples_available = 0x5F5F;
  512. }
  513. if (s->mb_y > 0) {
  514. h->intra4x4_pred_mode_cache[4 + 8 * 0] = h->intra4x4_pred_mode[h->mb2br_xy[mb_xy - s->mb_stride] + 0];
  515. h->intra4x4_pred_mode_cache[5 + 8 * 0] = h->intra4x4_pred_mode[h->mb2br_xy[mb_xy - s->mb_stride] + 1];
  516. h->intra4x4_pred_mode_cache[6 + 8 * 0] = h->intra4x4_pred_mode[h->mb2br_xy[mb_xy - s->mb_stride] + 2];
  517. h->intra4x4_pred_mode_cache[7 + 8 * 0] = h->intra4x4_pred_mode[h->mb2br_xy[mb_xy - s->mb_stride] + 3];
  518. if (h->intra4x4_pred_mode_cache[4 + 8 * 0] == -1)
  519. h->top_samples_available = 0x33FF;
  520. }
  521. /* decode prediction codes for luma blocks */
  522. for (i = 0; i < 16; i += 2) {
  523. vlc = svq3_get_ue_golomb(&s->gb);
  524. if (vlc >= 25U) {
  525. av_log(h->s.avctx, AV_LOG_ERROR, "luma prediction:%d\n", vlc);
  526. return -1;
  527. }
  528. left = &h->intra4x4_pred_mode_cache[scan8[i] - 1];
  529. top = &h->intra4x4_pred_mode_cache[scan8[i] - 8];
  530. left[1] = svq3_pred_1[top[0] + 1][left[0] + 1][svq3_pred_0[vlc][0]];
  531. left[2] = svq3_pred_1[top[1] + 1][left[1] + 1][svq3_pred_0[vlc][1]];
  532. if (left[1] == -1 || left[2] == -1) {
  533. av_log(h->s.avctx, AV_LOG_ERROR, "weird prediction\n");
  534. return -1;
  535. }
  536. }
  537. } else { /* mb_type == 33, DC_128_PRED block type */
  538. for (i = 0; i < 4; i++)
  539. memset(&h->intra4x4_pred_mode_cache[scan8[0] + 8 * i], DC_PRED, 4);
  540. }
  541. write_back_intra_pred_mode(h);
  542. if (mb_type == 8) {
  543. ff_h264_check_intra4x4_pred_mode(h);
  544. h->top_samples_available = (s->mb_y == 0) ? 0x33FF : 0xFFFF;
  545. h->left_samples_available = (s->mb_x == 0) ? 0x5F5F : 0xFFFF;
  546. } else {
  547. for (i = 0; i < 4; i++)
  548. memset(&h->intra4x4_pred_mode_cache[scan8[0] + 8 * i], DC_128_PRED, 4);
  549. h->top_samples_available = 0x33FF;
  550. h->left_samples_available = 0x5F5F;
  551. }
  552. mb_type = MB_TYPE_INTRA4x4;
  553. } else { /* INTRA16x16 */
  554. dir = i_mb_type_info[mb_type - 8].pred_mode;
  555. dir = (dir >> 1) ^ 3 * (dir & 1) ^ 1;
  556. if ((h->intra16x16_pred_mode = ff_h264_check_intra_pred_mode(h, dir, 0)) == -1) {
  557. av_log(h->s.avctx, AV_LOG_ERROR, "check_intra_pred_mode = -1\n");
  558. return -1;
  559. }
  560. cbp = i_mb_type_info[mb_type - 8].cbp;
  561. mb_type = MB_TYPE_INTRA16x16;
  562. }
  563. if (!IS_INTER(mb_type) && s->pict_type != AV_PICTURE_TYPE_I) {
  564. for (i = 0; i < 4; i++)
  565. memset(s->current_picture.f.motion_val[0][b_xy + i * h->b_stride],
  566. 0, 4 * 2 * sizeof(int16_t));
  567. if (s->pict_type == AV_PICTURE_TYPE_B) {
  568. for (i = 0; i < 4; i++)
  569. memset(s->current_picture.f.motion_val[1][b_xy + i * h->b_stride],
  570. 0, 4 * 2 * sizeof(int16_t));
  571. }
  572. }
  573. if (!IS_INTRA4x4(mb_type)) {
  574. memset(h->intra4x4_pred_mode + h->mb2br_xy[mb_xy], DC_PRED, 8);
  575. }
  576. if (!IS_SKIP(mb_type) || s->pict_type == AV_PICTURE_TYPE_B) {
  577. memset(h->non_zero_count_cache + 8, 0, 14 * 8 * sizeof(uint8_t));
  578. s->dsp.clear_blocks(h->mb + 0);
  579. s->dsp.clear_blocks(h->mb + 384);
  580. }
  581. if (!IS_INTRA16x16(mb_type) &&
  582. (!IS_SKIP(mb_type) || s->pict_type == AV_PICTURE_TYPE_B)) {
  583. if ((vlc = svq3_get_ue_golomb(&s->gb)) >= 48U){
  584. av_log(h->s.avctx, AV_LOG_ERROR, "cbp_vlc=%d\n", vlc);
  585. return -1;
  586. }
  587. cbp = IS_INTRA(mb_type) ? golomb_to_intra4x4_cbp[vlc]
  588. : golomb_to_inter_cbp[vlc];
  589. }
  590. if (IS_INTRA16x16(mb_type) ||
  591. (s->pict_type != AV_PICTURE_TYPE_I && s->adaptive_quant && cbp)) {
  592. s->qscale += svq3_get_se_golomb(&s->gb);
  593. if (s->qscale > 31u) {
  594. av_log(h->s.avctx, AV_LOG_ERROR, "qscale:%d\n", s->qscale);
  595. return -1;
  596. }
  597. }
  598. if (IS_INTRA16x16(mb_type)) {
  599. AV_ZERO128(h->mb_luma_dc[0] + 0);
  600. AV_ZERO128(h->mb_luma_dc[0] + 8);
  601. if (svq3_decode_block(&s->gb, h->mb_luma_dc[0], 0, 1)) {
  602. av_log(h->s.avctx, AV_LOG_ERROR,
  603. "error while decoding intra luma dc\n");
  604. return -1;
  605. }
  606. }
  607. if (cbp) {
  608. const int index = IS_INTRA16x16(mb_type) ? 1 : 0;
  609. const int type = ((s->qscale < 24 && IS_INTRA4x4(mb_type)) ? 2 : 1);
  610. for (i = 0; i < 4; i++)
  611. if ((cbp & (1 << i))) {
  612. for (j = 0; j < 4; j++) {
  613. k = index ? (1 * (j & 1) + 2 * (i & 1) +
  614. 2 * (j & 2) + 4 * (i & 2))
  615. : (4 * i + j);
  616. h->non_zero_count_cache[scan8[k]] = 1;
  617. if (svq3_decode_block(&s->gb, &h->mb[16 * k], index, type)) {
  618. av_log(h->s.avctx, AV_LOG_ERROR,
  619. "error while decoding block\n");
  620. return -1;
  621. }
  622. }
  623. }
  624. if ((cbp & 0x30)) {
  625. for (i = 1; i < 3; ++i)
  626. if (svq3_decode_block(&s->gb, &h->mb[16 * 16 * i], 0, 3)) {
  627. av_log(h->s.avctx, AV_LOG_ERROR,
  628. "error while decoding chroma dc block\n");
  629. return -1;
  630. }
  631. if ((cbp & 0x20)) {
  632. for (i = 1; i < 3; i++) {
  633. for (j = 0; j < 4; j++) {
  634. k = 16 * i + j;
  635. h->non_zero_count_cache[scan8[k]] = 1;
  636. if (svq3_decode_block(&s->gb, &h->mb[16 * k], 1, 1)) {
  637. av_log(h->s.avctx, AV_LOG_ERROR,
  638. "error while decoding chroma ac block\n");
  639. return -1;
  640. }
  641. }
  642. }
  643. }
  644. }
  645. }
  646. h->cbp = cbp;
  647. s->current_picture.f.mb_type[mb_xy] = mb_type;
  648. if (IS_INTRA(mb_type))
  649. h->chroma_pred_mode = ff_h264_check_intra_pred_mode(h, DC_PRED8x8, 1);
  650. return 0;
  651. }
  652. static int svq3_decode_slice_header(AVCodecContext *avctx)
  653. {
  654. SVQ3Context *svq3 = avctx->priv_data;
  655. H264Context *h = &svq3->h;
  656. MpegEncContext *s = &h->s;
  657. const int mb_xy = h->mb_xy;
  658. int i, header;
  659. header = get_bits(&s->gb, 8);
  660. if (((header & 0x9F) != 1 && (header & 0x9F) != 2) || (header & 0x60) == 0) {
  661. /* TODO: what? */
  662. av_log(avctx, AV_LOG_ERROR, "unsupported slice header (%02X)\n", header);
  663. return -1;
  664. } else {
  665. int length = header >> 5 & 3;
  666. svq3->next_slice_index = get_bits_count(&s->gb) +
  667. 8 * show_bits(&s->gb, 8 * length) +
  668. 8 * length;
  669. if (svq3->next_slice_index > s->gb.size_in_bits) {
  670. av_log(avctx, AV_LOG_ERROR, "slice after bitstream end\n");
  671. return -1;
  672. }
  673. s->gb.size_in_bits = svq3->next_slice_index - 8 * (length - 1);
  674. skip_bits(&s->gb, 8);
  675. if (svq3->watermark_key) {
  676. uint32_t header = AV_RL32(&s->gb.buffer[(get_bits_count(&s->gb) >> 3) + 1]);
  677. AV_WL32(&s->gb.buffer[(get_bits_count(&s->gb) >> 3) + 1],
  678. header ^ svq3->watermark_key);
  679. }
  680. if (length > 0) {
  681. memcpy((uint8_t *) &s->gb.buffer[get_bits_count(&s->gb) >> 3],
  682. &s->gb.buffer[s->gb.size_in_bits >> 3], length - 1);
  683. }
  684. skip_bits_long(&s->gb, 0);
  685. }
  686. if ((i = svq3_get_ue_golomb(&s->gb)) >= 3U) {
  687. av_log(h->s.avctx, AV_LOG_ERROR, "illegal slice type %d \n", i);
  688. return -1;
  689. }
  690. h->slice_type = golomb_to_pict_type[i];
  691. if ((header & 0x9F) == 2) {
  692. i = (s->mb_num < 64) ? 6 : (1 + av_log2(s->mb_num - 1));
  693. s->mb_skip_run = get_bits(&s->gb, i) -
  694. (s->mb_y * s->mb_width + s->mb_x);
  695. } else {
  696. skip_bits1(&s->gb);
  697. s->mb_skip_run = 0;
  698. }
  699. h->slice_num = get_bits(&s->gb, 8);
  700. s->qscale = get_bits(&s->gb, 5);
  701. s->adaptive_quant = get_bits1(&s->gb);
  702. /* unknown fields */
  703. skip_bits1(&s->gb);
  704. if (svq3->unknown_flag)
  705. skip_bits1(&s->gb);
  706. skip_bits1(&s->gb);
  707. skip_bits(&s->gb, 2);
  708. while (get_bits1(&s->gb))
  709. skip_bits(&s->gb, 8);
  710. /* reset intra predictors and invalidate motion vector references */
  711. if (s->mb_x > 0) {
  712. memset(h->intra4x4_pred_mode + h->mb2br_xy[mb_xy - 1] + 3,
  713. -1, 4 * sizeof(int8_t));
  714. memset(h->intra4x4_pred_mode + h->mb2br_xy[mb_xy - s->mb_x],
  715. -1, 8 * sizeof(int8_t) * s->mb_x);
  716. }
  717. if (s->mb_y > 0) {
  718. memset(h->intra4x4_pred_mode + h->mb2br_xy[mb_xy - s->mb_stride],
  719. -1, 8 * sizeof(int8_t) * (s->mb_width - s->mb_x));
  720. if (s->mb_x > 0)
  721. h->intra4x4_pred_mode[h->mb2br_xy[mb_xy - s->mb_stride - 1] + 3] = -1;
  722. }
  723. return 0;
  724. }
  725. static av_cold int svq3_decode_init(AVCodecContext *avctx)
  726. {
  727. SVQ3Context *svq3 = avctx->priv_data;
  728. H264Context *h = &svq3->h;
  729. MpegEncContext *s = &h->s;
  730. int m;
  731. unsigned char *extradata;
  732. unsigned char *extradata_end;
  733. unsigned int size;
  734. int marker_found = 0;
  735. if (ff_h264_decode_init(avctx) < 0)
  736. return -1;
  737. s->flags = avctx->flags;
  738. s->flags2 = avctx->flags2;
  739. s->unrestricted_mv = 1;
  740. h->is_complex = 1;
  741. h->sps.chroma_format_idc = 1;
  742. avctx->pix_fmt = avctx->codec->pix_fmts[0];
  743. if (!s->context_initialized) {
  744. h->chroma_qp[0] = h->chroma_qp[1] = 4;
  745. svq3->halfpel_flag = 1;
  746. svq3->thirdpel_flag = 1;
  747. svq3->unknown_flag = 0;
  748. /* prowl for the "SEQH" marker in the extradata */
  749. extradata = (unsigned char *)avctx->extradata;
  750. extradata_end = avctx->extradata + avctx->extradata_size;
  751. if (extradata) {
  752. for (m = 0; m + 8 < avctx->extradata_size; m++) {
  753. if (!memcmp(extradata, "SEQH", 4)) {
  754. marker_found = 1;
  755. break;
  756. }
  757. extradata++;
  758. }
  759. }
  760. /* if a match was found, parse the extra data */
  761. if (marker_found) {
  762. GetBitContext gb;
  763. int frame_size_code;
  764. size = AV_RB32(&extradata[4]);
  765. if (size > extradata_end - extradata - 8)
  766. return AVERROR_INVALIDDATA;
  767. init_get_bits(&gb, extradata + 8, size * 8);
  768. /* 'frame size code' and optional 'width, height' */
  769. frame_size_code = get_bits(&gb, 3);
  770. switch (frame_size_code) {
  771. case 0:
  772. avctx->width = 160;
  773. avctx->height = 120;
  774. break;
  775. case 1:
  776. avctx->width = 128;
  777. avctx->height = 96;
  778. break;
  779. case 2:
  780. avctx->width = 176;
  781. avctx->height = 144;
  782. break;
  783. case 3:
  784. avctx->width = 352;
  785. avctx->height = 288;
  786. break;
  787. case 4:
  788. avctx->width = 704;
  789. avctx->height = 576;
  790. break;
  791. case 5:
  792. avctx->width = 240;
  793. avctx->height = 180;
  794. break;
  795. case 6:
  796. avctx->width = 320;
  797. avctx->height = 240;
  798. break;
  799. case 7:
  800. avctx->width = get_bits(&gb, 12);
  801. avctx->height = get_bits(&gb, 12);
  802. break;
  803. }
  804. svq3->halfpel_flag = get_bits1(&gb);
  805. svq3->thirdpel_flag = get_bits1(&gb);
  806. /* unknown fields */
  807. skip_bits1(&gb);
  808. skip_bits1(&gb);
  809. skip_bits1(&gb);
  810. skip_bits1(&gb);
  811. s->low_delay = get_bits1(&gb);
  812. /* unknown field */
  813. skip_bits1(&gb);
  814. while (get_bits1(&gb))
  815. skip_bits(&gb, 8);
  816. svq3->unknown_flag = get_bits1(&gb);
  817. avctx->has_b_frames = !s->low_delay;
  818. if (svq3->unknown_flag) {
  819. #if CONFIG_ZLIB
  820. unsigned watermark_width = svq3_get_ue_golomb(&gb);
  821. unsigned watermark_height = svq3_get_ue_golomb(&gb);
  822. int u1 = svq3_get_ue_golomb(&gb);
  823. int u2 = get_bits(&gb, 8);
  824. int u3 = get_bits(&gb, 2);
  825. int u4 = svq3_get_ue_golomb(&gb);
  826. unsigned long buf_len = watermark_width *
  827. watermark_height * 4;
  828. int offset = get_bits_count(&gb) + 7 >> 3;
  829. uint8_t *buf;
  830. if (watermark_height <= 0 || (uint64_t)watermark_width*4 > UINT_MAX/watermark_height)
  831. return -1;
  832. buf = av_malloc(buf_len);
  833. av_log(avctx, AV_LOG_DEBUG, "watermark size: %dx%d\n",
  834. watermark_width, watermark_height);
  835. av_log(avctx, AV_LOG_DEBUG,
  836. "u1: %x u2: %x u3: %x compressed data size: %d offset: %d\n",
  837. u1, u2, u3, u4, offset);
  838. if (uncompress(buf, &buf_len, extradata + 8 + offset,
  839. size - offset) != Z_OK) {
  840. av_log(avctx, AV_LOG_ERROR,
  841. "could not uncompress watermark logo\n");
  842. av_free(buf);
  843. return -1;
  844. }
  845. svq3->watermark_key = ff_svq1_packet_checksum(buf, buf_len, 0);
  846. svq3->watermark_key = svq3->watermark_key << 16 |
  847. svq3->watermark_key;
  848. av_log(avctx, AV_LOG_DEBUG,
  849. "watermark key %#x\n", svq3->watermark_key);
  850. av_free(buf);
  851. #else
  852. av_log(avctx, AV_LOG_ERROR,
  853. "this svq3 file contains watermark which need zlib support compiled in\n");
  854. return -1;
  855. #endif
  856. }
  857. }
  858. s->width = avctx->width;
  859. s->height = avctx->height;
  860. if (ff_MPV_common_init(s) < 0)
  861. return -1;
  862. h->b_stride = 4 * s->mb_width;
  863. if (ff_h264_alloc_tables(h) < 0) {
  864. av_log(avctx, AV_LOG_ERROR, "svq3 memory allocation failed\n");
  865. return AVERROR(ENOMEM);
  866. }
  867. }
  868. return 0;
  869. }
  870. static int svq3_decode_frame(AVCodecContext *avctx, void *data,
  871. int *data_size, AVPacket *avpkt)
  872. {
  873. SVQ3Context *svq3 = avctx->priv_data;
  874. H264Context *h = &svq3->h;
  875. MpegEncContext *s = &h->s;
  876. int buf_size = avpkt->size;
  877. int m, mb_type, left;
  878. uint8_t *buf;
  879. /* special case for last picture */
  880. if (buf_size == 0) {
  881. if (s->next_picture_ptr && !s->low_delay) {
  882. *(AVFrame *) data = s->next_picture.f;
  883. s->next_picture_ptr = NULL;
  884. *data_size = sizeof(AVFrame);
  885. }
  886. return 0;
  887. }
  888. s->mb_x = s->mb_y = h->mb_xy = 0;
  889. if (svq3->watermark_key) {
  890. av_fast_malloc(&svq3->buf, &svq3->buf_size,
  891. buf_size+FF_INPUT_BUFFER_PADDING_SIZE);
  892. if (!svq3->buf)
  893. return AVERROR(ENOMEM);
  894. memcpy(svq3->buf, avpkt->data, buf_size);
  895. buf = svq3->buf;
  896. } else {
  897. buf = avpkt->data;
  898. }
  899. init_get_bits(&s->gb, buf, 8 * buf_size);
  900. if (svq3_decode_slice_header(avctx))
  901. return -1;
  902. s->pict_type = h->slice_type;
  903. s->picture_number = h->slice_num;
  904. if (avctx->debug & FF_DEBUG_PICT_INFO)
  905. av_log(h->s.avctx, AV_LOG_DEBUG,
  906. "%c hpel:%d, tpel:%d aqp:%d qp:%d, slice_num:%02X\n",
  907. av_get_picture_type_char(s->pict_type),
  908. svq3->halfpel_flag, svq3->thirdpel_flag,
  909. s->adaptive_quant, s->qscale, h->slice_num);
  910. /* for skipping the frame */
  911. s->current_picture.f.pict_type = s->pict_type;
  912. s->current_picture.f.key_frame = (s->pict_type == AV_PICTURE_TYPE_I);
  913. /* Skip B-frames if we do not have reference frames. */
  914. if (s->last_picture_ptr == NULL && s->pict_type == AV_PICTURE_TYPE_B)
  915. return 0;
  916. if (avctx->skip_frame >= AVDISCARD_NONREF && s->pict_type == AV_PICTURE_TYPE_B ||
  917. avctx->skip_frame >= AVDISCARD_NONKEY && s->pict_type != AV_PICTURE_TYPE_I ||
  918. avctx->skip_frame >= AVDISCARD_ALL)
  919. return 0;
  920. if (s->next_p_frame_damaged) {
  921. if (s->pict_type == AV_PICTURE_TYPE_B)
  922. return 0;
  923. else
  924. s->next_p_frame_damaged = 0;
  925. }
  926. if (ff_h264_frame_start(h) < 0)
  927. return -1;
  928. if (s->pict_type == AV_PICTURE_TYPE_B) {
  929. h->frame_num_offset = h->slice_num - h->prev_frame_num;
  930. if (h->frame_num_offset < 0)
  931. h->frame_num_offset += 256;
  932. if (h->frame_num_offset == 0 ||
  933. h->frame_num_offset >= h->prev_frame_num_offset) {
  934. av_log(h->s.avctx, AV_LOG_ERROR, "error in B-frame picture id\n");
  935. return -1;
  936. }
  937. } else {
  938. h->prev_frame_num = h->frame_num;
  939. h->frame_num = h->slice_num;
  940. h->prev_frame_num_offset = h->frame_num - h->prev_frame_num;
  941. if (h->prev_frame_num_offset < 0)
  942. h->prev_frame_num_offset += 256;
  943. }
  944. for (m = 0; m < 2; m++) {
  945. int i;
  946. for (i = 0; i < 4; i++) {
  947. int j;
  948. for (j = -1; j < 4; j++)
  949. h->ref_cache[m][scan8[0] + 8 * i + j] = 1;
  950. if (i < 3)
  951. h->ref_cache[m][scan8[0] + 8 * i + j] = PART_NOT_AVAILABLE;
  952. }
  953. }
  954. for (s->mb_y = 0; s->mb_y < s->mb_height; s->mb_y++) {
  955. for (s->mb_x = 0; s->mb_x < s->mb_width; s->mb_x++) {
  956. h->mb_xy = s->mb_x + s->mb_y * s->mb_stride;
  957. if ((get_bits_count(&s->gb) + 7) >= s->gb.size_in_bits &&
  958. ((get_bits_count(&s->gb) & 7) == 0 ||
  959. show_bits(&s->gb, -get_bits_count(&s->gb) & 7) == 0)) {
  960. skip_bits(&s->gb, svq3->next_slice_index - get_bits_count(&s->gb));
  961. s->gb.size_in_bits = 8 * buf_size;
  962. if (svq3_decode_slice_header(avctx))
  963. return -1;
  964. /* TODO: support s->mb_skip_run */
  965. }
  966. mb_type = svq3_get_ue_golomb(&s->gb);
  967. if (s->pict_type == AV_PICTURE_TYPE_I)
  968. mb_type += 8;
  969. else if (s->pict_type == AV_PICTURE_TYPE_B && mb_type >= 4)
  970. mb_type += 4;
  971. if ((unsigned)mb_type > 33 || svq3_decode_mb(svq3, mb_type)) {
  972. av_log(h->s.avctx, AV_LOG_ERROR,
  973. "error while decoding MB %d %d\n", s->mb_x, s->mb_y);
  974. return -1;
  975. }
  976. if (mb_type != 0)
  977. ff_h264_hl_decode_mb(h);
  978. if (s->pict_type != AV_PICTURE_TYPE_B && !s->low_delay)
  979. s->current_picture.f.mb_type[s->mb_x + s->mb_y * s->mb_stride] =
  980. (s->pict_type == AV_PICTURE_TYPE_P && mb_type < 8) ? (mb_type - 1) : -1;
  981. }
  982. ff_draw_horiz_band(s, 16 * s->mb_y, 16);
  983. }
  984. left = buf_size*8 - get_bits_count(&s->gb);
  985. if (s->mb_y != s->mb_height || s->mb_x != s->mb_width) {
  986. av_log(avctx, AV_LOG_INFO, "frame num %d incomplete pic x %d y %d left %d\n", avctx->frame_number, s->mb_y, s->mb_x, left);
  987. //av_hex_dump(stderr, buf+buf_size-8, 8);
  988. }
  989. if (left < 0) {
  990. av_log(avctx, AV_LOG_ERROR, "frame num %d left %d\n", avctx->frame_number, left);
  991. return -1;
  992. }
  993. ff_MPV_frame_end(s);
  994. if (s->pict_type == AV_PICTURE_TYPE_B || s->low_delay)
  995. *(AVFrame *)data = s->current_picture.f;
  996. else
  997. *(AVFrame *)data = s->last_picture.f;
  998. /* Do not output the last pic after seeking. */
  999. if (s->last_picture_ptr || s->low_delay)
  1000. *data_size = sizeof(AVFrame);
  1001. return buf_size;
  1002. }
  1003. static int svq3_decode_end(AVCodecContext *avctx)
  1004. {
  1005. SVQ3Context *svq3 = avctx->priv_data;
  1006. H264Context *h = &svq3->h;
  1007. MpegEncContext *s = &h->s;
  1008. ff_h264_free_context(h);
  1009. ff_MPV_common_end(s);
  1010. av_freep(&svq3->buf);
  1011. svq3->buf_size = 0;
  1012. return 0;
  1013. }
  1014. AVCodec ff_svq3_decoder = {
  1015. .name = "svq3",
  1016. .type = AVMEDIA_TYPE_VIDEO,
  1017. .id = AV_CODEC_ID_SVQ3,
  1018. .priv_data_size = sizeof(SVQ3Context),
  1019. .init = svq3_decode_init,
  1020. .close = svq3_decode_end,
  1021. .decode = svq3_decode_frame,
  1022. .capabilities = CODEC_CAP_DRAW_HORIZ_BAND |
  1023. CODEC_CAP_DR1 |
  1024. CODEC_CAP_DELAY,
  1025. .long_name = NULL_IF_CONFIG_SMALL("Sorenson Vector Quantizer 3 / Sorenson Video 3 / SVQ3"),
  1026. .pix_fmts = (const enum AVPixelFormat[]) { AV_PIX_FMT_YUVJ420P,
  1027. AV_PIX_FMT_NONE},
  1028. };