You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

2227 lines
78KB

  1. /*
  2. * Copyright (C) 2007 Marco Gerards <marco@gnu.org>
  3. * Copyright (C) 2009 David Conrad
  4. * Copyright (C) 2011 Jordi Ortiz
  5. *
  6. * This file is part of FFmpeg.
  7. *
  8. * FFmpeg is free software; you can redistribute it and/or
  9. * modify it under the terms of the GNU Lesser General Public
  10. * License as published by the Free Software Foundation; either
  11. * version 2.1 of the License, or (at your option) any later version.
  12. *
  13. * FFmpeg is distributed in the hope that it will be useful,
  14. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  15. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  16. * Lesser General Public License for more details.
  17. *
  18. * You should have received a copy of the GNU Lesser General Public
  19. * License along with FFmpeg; if not, write to the Free Software
  20. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  21. */
  22. /**
  23. * @file
  24. * Dirac Decoder
  25. * @author Marco Gerards <marco@gnu.org>, David Conrad, Jordi Ortiz <nenjordi@gmail.com>
  26. */
  27. #include "avcodec.h"
  28. #include "get_bits.h"
  29. #include "bytestream.h"
  30. #include "internal.h"
  31. #include "golomb.h"
  32. #include "dirac_arith.h"
  33. #include "mpeg12data.h"
  34. #include "libavcodec/mpegvideo.h"
  35. #include "mpegvideoencdsp.h"
  36. #include "dirac_dwt.h"
  37. #include "dirac.h"
  38. #include "diracdsp.h"
  39. #include "videodsp.h"
  40. /**
  41. * The spec limits the number of wavelet decompositions to 4 for both
  42. * level 1 (VC-2) and 128 (long-gop default).
  43. * 5 decompositions is the maximum before >16-bit buffers are needed.
  44. * Schroedinger allows this for DD 9,7 and 13,7 wavelets only, limiting
  45. * the others to 4 decompositions (or 3 for the fidelity filter).
  46. *
  47. * We use this instead of MAX_DECOMPOSITIONS to save some memory.
  48. */
  49. #define MAX_DWT_LEVELS 5
  50. /**
  51. * The spec limits this to 3 for frame coding, but in practice can be as high as 6
  52. */
  53. #define MAX_REFERENCE_FRAMES 8
  54. #define MAX_DELAY 5 /* limit for main profile for frame coding (TODO: field coding) */
  55. #define MAX_FRAMES (MAX_REFERENCE_FRAMES + MAX_DELAY + 1)
  56. #define MAX_QUANT 255 /* max quant for VC-2 */
  57. #define MAX_BLOCKSIZE 32 /* maximum xblen/yblen we support */
  58. /**
  59. * DiracBlock->ref flags, if set then the block does MC from the given ref
  60. */
  61. #define DIRAC_REF_MASK_REF1 1
  62. #define DIRAC_REF_MASK_REF2 2
  63. #define DIRAC_REF_MASK_GLOBAL 4
  64. /**
  65. * Value of Picture.reference when Picture is not a reference picture, but
  66. * is held for delayed output.
  67. */
  68. #define DELAYED_PIC_REF 4
  69. #define CALC_PADDING(size, depth) \
  70. (((size + (1 << depth) - 1) >> depth) << depth)
  71. #define DIVRNDUP(a, b) (((a) + (b) - 1) / (b))
  72. typedef struct {
  73. AVFrame *avframe;
  74. int interpolated[3]; /* 1 if hpel[] is valid */
  75. uint8_t *hpel[3][4];
  76. uint8_t *hpel_base[3][4];
  77. int reference;
  78. } DiracFrame;
  79. typedef struct {
  80. union {
  81. int16_t mv[2][2];
  82. int16_t dc[3];
  83. } u; /* anonymous unions aren't in C99 :( */
  84. uint8_t ref;
  85. } DiracBlock;
  86. typedef struct SubBand {
  87. int level;
  88. int orientation;
  89. int stride; /* in bytes */
  90. int width;
  91. int height;
  92. int pshift;
  93. int quant;
  94. uint8_t *ibuf;
  95. struct SubBand *parent;
  96. /* for low delay */
  97. unsigned length;
  98. const uint8_t *coeff_data;
  99. } SubBand;
  100. typedef struct Plane {
  101. int width;
  102. int height;
  103. ptrdiff_t stride;
  104. int idwt_width;
  105. int idwt_height;
  106. int idwt_stride;
  107. uint8_t *idwt_buf;
  108. uint8_t *idwt_buf_base;
  109. uint8_t *idwt_tmp;
  110. /* block length */
  111. uint8_t xblen;
  112. uint8_t yblen;
  113. /* block separation (block n+1 starts after this many pixels in block n) */
  114. uint8_t xbsep;
  115. uint8_t ybsep;
  116. /* amount of overspill on each edge (half of the overlap between blocks) */
  117. uint8_t xoffset;
  118. uint8_t yoffset;
  119. SubBand band[MAX_DWT_LEVELS][4];
  120. } Plane;
  121. typedef struct DiracContext {
  122. AVCodecContext *avctx;
  123. MpegvideoEncDSPContext mpvencdsp;
  124. VideoDSPContext vdsp;
  125. DiracDSPContext diracdsp;
  126. DiracVersionInfo version;
  127. GetBitContext gb;
  128. AVDiracSeqHeader seq;
  129. int seen_sequence_header;
  130. int frame_number; /* number of the next frame to display */
  131. Plane plane[3];
  132. int chroma_x_shift;
  133. int chroma_y_shift;
  134. int bit_depth; /* bit depth */
  135. int pshift; /* pixel shift = bit_depth > 8 */
  136. int zero_res; /* zero residue flag */
  137. int is_arith; /* whether coeffs use arith or golomb coding */
  138. int core_syntax; /* use core syntax only */
  139. int low_delay; /* use the low delay syntax */
  140. int hq_picture; /* high quality picture, enables low_delay */
  141. int ld_picture; /* use low delay picture, turns on low_delay */
  142. int dc_prediction; /* has dc prediction */
  143. int globalmc_flag; /* use global motion compensation */
  144. int num_refs; /* number of reference pictures */
  145. /* wavelet decoding */
  146. unsigned wavelet_depth; /* depth of the IDWT */
  147. unsigned wavelet_idx;
  148. /**
  149. * schroedinger older than 1.0.8 doesn't store
  150. * quant delta if only one codebook exists in a band
  151. */
  152. unsigned old_delta_quant;
  153. unsigned codeblock_mode;
  154. unsigned num_x; /* number of horizontal slices */
  155. unsigned num_y; /* number of vertical slices */
  156. struct {
  157. unsigned width;
  158. unsigned height;
  159. } codeblock[MAX_DWT_LEVELS+1];
  160. struct {
  161. AVRational bytes; /* average bytes per slice */
  162. uint8_t quant[MAX_DWT_LEVELS][4]; /* [DIRAC_STD] E.1 */
  163. } lowdelay;
  164. struct {
  165. unsigned prefix_bytes;
  166. unsigned size_scaler;
  167. } highquality;
  168. struct {
  169. int pan_tilt[2]; /* pan/tilt vector */
  170. int zrs[2][2]; /* zoom/rotate/shear matrix */
  171. int perspective[2]; /* perspective vector */
  172. unsigned zrs_exp;
  173. unsigned perspective_exp;
  174. } globalmc[2];
  175. /* motion compensation */
  176. uint8_t mv_precision; /* [DIRAC_STD] REFS_WT_PRECISION */
  177. int16_t weight[2]; /* [DIRAC_STD] REF1_WT and REF2_WT */
  178. unsigned weight_log2denom; /* [DIRAC_STD] REFS_WT_PRECISION */
  179. int blwidth; /* number of blocks (horizontally) */
  180. int blheight; /* number of blocks (vertically) */
  181. int sbwidth; /* number of superblocks (horizontally) */
  182. int sbheight; /* number of superblocks (vertically) */
  183. uint8_t *sbsplit;
  184. DiracBlock *blmotion;
  185. uint8_t *edge_emu_buffer[4];
  186. uint8_t *edge_emu_buffer_base;
  187. uint16_t *mctmp; /* buffer holding the MC data multiplied by OBMC weights */
  188. uint8_t *mcscratch;
  189. int buffer_stride;
  190. DECLARE_ALIGNED(16, uint8_t, obmc_weight)[3][MAX_BLOCKSIZE*MAX_BLOCKSIZE];
  191. void (*put_pixels_tab[4])(uint8_t *dst, const uint8_t *src[5], int stride, int h);
  192. void (*avg_pixels_tab[4])(uint8_t *dst, const uint8_t *src[5], int stride, int h);
  193. void (*add_obmc)(uint16_t *dst, const uint8_t *src, int stride, const uint8_t *obmc_weight, int yblen);
  194. dirac_weight_func weight_func;
  195. dirac_biweight_func biweight_func;
  196. DiracFrame *current_picture;
  197. DiracFrame *ref_pics[2];
  198. DiracFrame *ref_frames[MAX_REFERENCE_FRAMES+1];
  199. DiracFrame *delay_frames[MAX_DELAY+1];
  200. DiracFrame all_frames[MAX_FRAMES];
  201. } DiracContext;
  202. enum dirac_subband {
  203. subband_ll = 0,
  204. subband_hl = 1,
  205. subband_lh = 2,
  206. subband_hh = 3,
  207. subband_nb,
  208. };
  209. static const uint8_t default_qmat[][4][4] = {
  210. { { 5, 3, 3, 0}, { 0, 4, 4, 1}, { 0, 5, 5, 2}, { 0, 6, 6, 3} },
  211. { { 4, 2, 2, 0}, { 0, 4, 4, 2}, { 0, 5, 5, 3}, { 0, 7, 7, 5} },
  212. { { 5, 3, 3, 0}, { 0, 4, 4, 1}, { 0, 5, 5, 2}, { 0, 6, 6, 3} },
  213. { { 8, 4, 4, 0}, { 0, 4, 4, 0}, { 0, 4, 4, 0}, { 0, 4, 4, 0} },
  214. { { 8, 4, 4, 0}, { 0, 4, 4, 0}, { 0, 4, 4, 0}, { 0, 4, 4, 0} },
  215. { { 0, 4, 4, 8}, { 0, 8, 8, 12}, { 0, 13, 13, 17}, { 0, 17, 17, 21} },
  216. { { 3, 1, 1, 0}, { 0, 4, 4, 2}, { 0, 6, 6, 5}, { 0, 9, 9, 7} },
  217. };
  218. static const int32_t qscale_tab[128] = {
  219. 4, 5, 6, 7, 8, 10, 11, 13,
  220. 16, 19, 23, 27, 32, 38, 45, 54,
  221. 64, 76, 91, 108, 128, 152, 181, 215,
  222. 256, 304, 362, 431, 512, 609, 724, 861,
  223. 1024, 1218, 1448, 1722, 2048, 2435, 2896, 3444,
  224. 4096, 4871, 5793, 6889, 8192, 9742, 11585, 13777,
  225. 16384, 19484, -13317, 27554, 32768, -1581, 9853, -10518,
  226. 65536, -3164, -16782, -21037, 131072, -6328, 2922, 23552,
  227. 262144, -12658, 5844, -18524, 524288, 15232, 11689, 28578,
  228. 1048576, -10085, -13110, -8471, 2097152, -20170, 10267, -16943,
  229. 4194304, 208, -15954, 31741, 8388608, 416, 4579, -2146,
  230. 16777216, 832, 9158, -4293, 33554432, 1663, -18172, -8587,
  231. 67108864, 3326, 143, -17175, 134217728, 6653, 285, 31276,
  232. 268435456, 13306, 570, -3075, 536870912, -13938, 1140, -6152,
  233. 1073741824, 12672, 2281, -12304, -2147483648, -15205, 4561, -24610,
  234. 0, 10138, 9122, 16407, 0, -20274, -18243, -32813,
  235. };
  236. static const int32_t qoffset_intra_tab[128] = {
  237. 1, 2, 3, 4, 4, 5, 6, 7,
  238. 8, 10, 12, 14, 16, 19, 23, 27,
  239. 32, 38, 46, 54, 64, 76, 91, 108,
  240. 128, 152, 181, 216, 256, 305, 362, 431,
  241. 512, 609, 724, 861, 1024, 1218, 1448, 1722,
  242. 2048, 2436, 2897, 3445, 4096, 4871, 5793, 6889,
  243. 8192, 9742, -6658, 13777, 16384, -790, 4927, -5258,
  244. 32768, -1581, -8390, -10518, 65536, -3163, 1461, 11776,
  245. 131072, -6328, 2922, -9261, 262144, 7616, 5845, 14289,
  246. 524288, -5042, -6554, -4235, 1048576, -10084, 5134, -8471,
  247. 2097152, 104, -7976, 15871, 4194304, 208, 2290, -1072,
  248. 8388608, 416, 4579, -2146, 16777216, 832, -9085, -4293,
  249. 33554432, 1663, 72, -8587, 67108864, 3327, 143, 15638,
  250. 134217728, 6653, 285, -1537, 268435456, -6968, 570, -3075,
  251. 536870912, 6336, 1141, -6151, -1073741823, -7602, 2281, -12304,
  252. 0, 5069, 4561, 8204, 0, -10136, -9121, -16406,
  253. };
  254. static const int qoffset_inter_tab[MAX_QUANT+1] = {
  255. 1, 2, 2, 3, 3, 4, 4, 5,
  256. 6, 7, 9, 10, 12, 14, 17, 20,
  257. 24, 29, 34, 41, 48, 57, 68, 81,
  258. 96, 114, 136, 162, 192, 228, 272, 323,
  259. 384, 457, 543, 646, 768, 913, 1086, 1292,
  260. 1536, 1827, 2172, 2583, 3072, 3653, 4344, 5166,
  261. 6144, 7307, 8689, 10333, 12288, 14613, 17378, 20666,
  262. 24576, 29226
  263. };
  264. /* magic number division by 3 from schroedinger */
  265. static inline int divide3(int x)
  266. {
  267. return ((x+1)*21845 + 10922) >> 16;
  268. }
  269. static DiracFrame *remove_frame(DiracFrame *framelist[], int picnum)
  270. {
  271. DiracFrame *remove_pic = NULL;
  272. int i, remove_idx = -1;
  273. for (i = 0; framelist[i]; i++)
  274. if (framelist[i]->avframe->display_picture_number == picnum) {
  275. remove_pic = framelist[i];
  276. remove_idx = i;
  277. }
  278. if (remove_pic)
  279. for (i = remove_idx; framelist[i]; i++)
  280. framelist[i] = framelist[i+1];
  281. return remove_pic;
  282. }
  283. static int add_frame(DiracFrame *framelist[], int maxframes, DiracFrame *frame)
  284. {
  285. int i;
  286. for (i = 0; i < maxframes; i++)
  287. if (!framelist[i]) {
  288. framelist[i] = frame;
  289. return 0;
  290. }
  291. return -1;
  292. }
  293. static int alloc_sequence_buffers(DiracContext *s)
  294. {
  295. int sbwidth = DIVRNDUP(s->seq.width, 4);
  296. int sbheight = DIVRNDUP(s->seq.height, 4);
  297. int i, w, h, top_padding;
  298. /* todo: think more about this / use or set Plane here */
  299. for (i = 0; i < 3; i++) {
  300. int max_xblen = MAX_BLOCKSIZE >> (i ? s->chroma_x_shift : 0);
  301. int max_yblen = MAX_BLOCKSIZE >> (i ? s->chroma_y_shift : 0);
  302. w = s->seq.width >> (i ? s->chroma_x_shift : 0);
  303. h = s->seq.height >> (i ? s->chroma_y_shift : 0);
  304. /* we allocate the max we support here since num decompositions can
  305. * change from frame to frame. Stride is aligned to 16 for SIMD, and
  306. * 1<<MAX_DWT_LEVELS top padding to avoid if(y>0) in arith decoding
  307. * MAX_BLOCKSIZE padding for MC: blocks can spill up to half of that
  308. * on each side */
  309. top_padding = FFMAX(1<<MAX_DWT_LEVELS, max_yblen/2);
  310. w = FFALIGN(CALC_PADDING(w, MAX_DWT_LEVELS), 8); /* FIXME: Should this be 16 for SSE??? */
  311. h = top_padding + CALC_PADDING(h, MAX_DWT_LEVELS) + max_yblen/2;
  312. s->plane[i].idwt_buf_base = av_mallocz_array((w+max_xblen), h * (2 << s->pshift));
  313. s->plane[i].idwt_tmp = av_malloc_array((w+16), 2 << s->pshift);
  314. s->plane[i].idwt_buf = s->plane[i].idwt_buf_base + (top_padding*w)*(2 << s->pshift);
  315. if (!s->plane[i].idwt_buf_base || !s->plane[i].idwt_tmp)
  316. return AVERROR(ENOMEM);
  317. }
  318. /* fixme: allocate using real stride here */
  319. s->sbsplit = av_malloc_array(sbwidth, sbheight);
  320. s->blmotion = av_malloc_array(sbwidth, sbheight * 16 * sizeof(*s->blmotion));
  321. if (!s->sbsplit || !s->blmotion)
  322. return AVERROR(ENOMEM);
  323. return 0;
  324. }
  325. static int alloc_buffers(DiracContext *s, int stride)
  326. {
  327. int w = s->seq.width;
  328. int h = s->seq.height;
  329. av_assert0(stride >= w);
  330. stride += 64;
  331. if (s->buffer_stride >= stride)
  332. return 0;
  333. s->buffer_stride = 0;
  334. av_freep(&s->edge_emu_buffer_base);
  335. memset(s->edge_emu_buffer, 0, sizeof(s->edge_emu_buffer));
  336. av_freep(&s->mctmp);
  337. av_freep(&s->mcscratch);
  338. s->edge_emu_buffer_base = av_malloc_array(stride, MAX_BLOCKSIZE);
  339. s->mctmp = av_malloc_array((stride+MAX_BLOCKSIZE), (h+MAX_BLOCKSIZE) * sizeof(*s->mctmp));
  340. s->mcscratch = av_malloc_array(stride, MAX_BLOCKSIZE);
  341. if (!s->edge_emu_buffer_base || !s->mctmp || !s->mcscratch)
  342. return AVERROR(ENOMEM);
  343. s->buffer_stride = stride;
  344. return 0;
  345. }
  346. static void free_sequence_buffers(DiracContext *s)
  347. {
  348. int i, j, k;
  349. for (i = 0; i < MAX_FRAMES; i++) {
  350. if (s->all_frames[i].avframe->data[0]) {
  351. av_frame_unref(s->all_frames[i].avframe);
  352. memset(s->all_frames[i].interpolated, 0, sizeof(s->all_frames[i].interpolated));
  353. }
  354. for (j = 0; j < 3; j++)
  355. for (k = 1; k < 4; k++)
  356. av_freep(&s->all_frames[i].hpel_base[j][k]);
  357. }
  358. memset(s->ref_frames, 0, sizeof(s->ref_frames));
  359. memset(s->delay_frames, 0, sizeof(s->delay_frames));
  360. for (i = 0; i < 3; i++) {
  361. av_freep(&s->plane[i].idwt_buf_base);
  362. av_freep(&s->plane[i].idwt_tmp);
  363. }
  364. s->buffer_stride = 0;
  365. av_freep(&s->sbsplit);
  366. av_freep(&s->blmotion);
  367. av_freep(&s->edge_emu_buffer_base);
  368. av_freep(&s->mctmp);
  369. av_freep(&s->mcscratch);
  370. }
  371. static av_cold int dirac_decode_init(AVCodecContext *avctx)
  372. {
  373. DiracContext *s = avctx->priv_data;
  374. int i;
  375. s->avctx = avctx;
  376. s->frame_number = -1;
  377. ff_diracdsp_init(&s->diracdsp);
  378. ff_mpegvideoencdsp_init(&s->mpvencdsp, avctx);
  379. ff_videodsp_init(&s->vdsp, 8);
  380. for (i = 0; i < MAX_FRAMES; i++) {
  381. s->all_frames[i].avframe = av_frame_alloc();
  382. if (!s->all_frames[i].avframe) {
  383. while (i > 0)
  384. av_frame_free(&s->all_frames[--i].avframe);
  385. return AVERROR(ENOMEM);
  386. }
  387. }
  388. return 0;
  389. }
  390. static void dirac_decode_flush(AVCodecContext *avctx)
  391. {
  392. DiracContext *s = avctx->priv_data;
  393. free_sequence_buffers(s);
  394. s->seen_sequence_header = 0;
  395. s->frame_number = -1;
  396. }
  397. static av_cold int dirac_decode_end(AVCodecContext *avctx)
  398. {
  399. DiracContext *s = avctx->priv_data;
  400. int i;
  401. dirac_decode_flush(avctx);
  402. for (i = 0; i < MAX_FRAMES; i++)
  403. av_frame_free(&s->all_frames[i].avframe);
  404. return 0;
  405. }
  406. #define SIGN_CTX(x) (CTX_SIGN_ZERO + ((x) > 0) - ((x) < 0))
  407. static inline int coeff_unpack_golomb(GetBitContext *gb, int qfactor, int qoffset)
  408. {
  409. int sign, coeff;
  410. coeff = svq3_get_ue_golomb(gb);
  411. if (coeff) {
  412. coeff = (coeff * qfactor + qoffset + 2) >> 2;
  413. sign = get_bits1(gb);
  414. coeff = (coeff ^ -sign) + sign;
  415. }
  416. return coeff;
  417. }
  418. #define UNPACK_ARITH(n, type) \
  419. static inline void coeff_unpack_arith_##n(DiracArith *c, int qfactor, int qoffset, \
  420. SubBand *b, type *buf, int x, int y) \
  421. { \
  422. int coeff, sign, sign_pred = 0, pred_ctx = CTX_ZPZN_F1; \
  423. const int mstride = -(b->stride >> (1+b->pshift)); \
  424. if (b->parent) { \
  425. const type *pbuf = (type *)b->parent->ibuf; \
  426. const int stride = b->parent->stride >> (1+b->parent->pshift); \
  427. pred_ctx += !!pbuf[stride * (y>>1) + (x>>1)] << 1; \
  428. } \
  429. if (b->orientation == subband_hl) \
  430. sign_pred = buf[mstride]; \
  431. if (x) { \
  432. pred_ctx += !(buf[-1] | buf[mstride] | buf[-1 + mstride]); \
  433. if (b->orientation == subband_lh) \
  434. sign_pred = buf[-1]; \
  435. } else { \
  436. pred_ctx += !buf[mstride]; \
  437. } \
  438. coeff = dirac_get_arith_uint(c, pred_ctx, CTX_COEFF_DATA); \
  439. if (coeff) { \
  440. coeff = (coeff * qfactor + qoffset + 2) >> 2; \
  441. sign = dirac_get_arith_bit(c, SIGN_CTX(sign_pred)); \
  442. coeff = (coeff ^ -sign) + sign; \
  443. } \
  444. *buf = coeff; \
  445. } \
  446. UNPACK_ARITH(8, int16_t)
  447. UNPACK_ARITH(10, int32_t)
  448. /**
  449. * Decode the coeffs in the rectangle defined by left, right, top, bottom
  450. * [DIRAC_STD] 13.4.3.2 Codeblock unpacking loop. codeblock()
  451. */
  452. static inline void codeblock(DiracContext *s, SubBand *b,
  453. GetBitContext *gb, DiracArith *c,
  454. int left, int right, int top, int bottom,
  455. int blockcnt_one, int is_arith)
  456. {
  457. int x, y, zero_block;
  458. int qoffset, qfactor;
  459. uint8_t *buf;
  460. /* check for any coded coefficients in this codeblock */
  461. if (!blockcnt_one) {
  462. if (is_arith)
  463. zero_block = dirac_get_arith_bit(c, CTX_ZERO_BLOCK);
  464. else
  465. zero_block = get_bits1(gb);
  466. if (zero_block)
  467. return;
  468. }
  469. if (s->codeblock_mode && !(s->old_delta_quant && blockcnt_one)) {
  470. int quant = b->quant;
  471. if (is_arith)
  472. quant += dirac_get_arith_int(c, CTX_DELTA_Q_F, CTX_DELTA_Q_DATA);
  473. else
  474. quant += dirac_get_se_golomb(gb);
  475. if (quant < 0) {
  476. av_log(s->avctx, AV_LOG_ERROR, "Invalid quant\n");
  477. return;
  478. }
  479. b->quant = quant;
  480. }
  481. b->quant = FFMIN(b->quant, MAX_QUANT);
  482. qfactor = qscale_tab[b->quant];
  483. /* TODO: context pointer? */
  484. if (!s->num_refs)
  485. qoffset = qoffset_intra_tab[b->quant];
  486. else
  487. qoffset = qoffset_inter_tab[b->quant];
  488. buf = b->ibuf + top * b->stride;
  489. if (is_arith) {
  490. for (y = top; y < bottom; y++) {
  491. for (x = left; x < right; x++) {
  492. if (b->pshift) {
  493. coeff_unpack_arith_10(c, qfactor, qoffset, b, (int32_t*)(buf)+x, x, y);
  494. } else {
  495. coeff_unpack_arith_8(c, qfactor, qoffset, b, (int16_t*)(buf)+x, x, y);
  496. }
  497. }
  498. buf += b->stride;
  499. }
  500. } else {
  501. for (y = top; y < bottom; y++) {
  502. for (x = left; x < right; x++) {
  503. int val = coeff_unpack_golomb(gb, qfactor, qoffset);
  504. if (b->pshift) {
  505. AV_WN32(&buf[4*x], val);
  506. } else {
  507. AV_WN16(&buf[2*x], val);
  508. }
  509. }
  510. buf += b->stride;
  511. }
  512. }
  513. }
  514. /**
  515. * Dirac Specification ->
  516. * 13.3 intra_dc_prediction(band)
  517. */
  518. #define INTRA_DC_PRED(n, type) \
  519. static inline void intra_dc_prediction_##n(SubBand *b) \
  520. { \
  521. type *buf = (type*)b->ibuf; \
  522. int x, y; \
  523. \
  524. for (x = 1; x < b->width; x++) \
  525. buf[x] += buf[x-1]; \
  526. buf += (b->stride >> (1+b->pshift)); \
  527. \
  528. for (y = 1; y < b->height; y++) { \
  529. buf[0] += buf[-(b->stride >> (1+b->pshift))]; \
  530. \
  531. for (x = 1; x < b->width; x++) { \
  532. int pred = buf[x - 1] + buf[x - (b->stride >> (1+b->pshift))] + buf[x - (b->stride >> (1+b->pshift))-1]; \
  533. buf[x] += divide3(pred); \
  534. } \
  535. buf += (b->stride >> (1+b->pshift)); \
  536. } \
  537. } \
  538. INTRA_DC_PRED(8, int16_t)
  539. INTRA_DC_PRED(10, int32_t)
  540. /**
  541. * Dirac Specification ->
  542. * 13.4.2 Non-skipped subbands. subband_coeffs()
  543. */
  544. static av_always_inline void decode_subband_internal(DiracContext *s, SubBand *b, int is_arith)
  545. {
  546. int cb_x, cb_y, left, right, top, bottom;
  547. DiracArith c;
  548. GetBitContext gb;
  549. int cb_width = s->codeblock[b->level + (b->orientation != subband_ll)].width;
  550. int cb_height = s->codeblock[b->level + (b->orientation != subband_ll)].height;
  551. int blockcnt_one = (cb_width + cb_height) == 2;
  552. if (!b->length)
  553. return;
  554. init_get_bits8(&gb, b->coeff_data, b->length);
  555. if (is_arith)
  556. ff_dirac_init_arith_decoder(&c, &gb, b->length);
  557. top = 0;
  558. for (cb_y = 0; cb_y < cb_height; cb_y++) {
  559. bottom = (b->height * (cb_y+1LL)) / cb_height;
  560. left = 0;
  561. for (cb_x = 0; cb_x < cb_width; cb_x++) {
  562. right = (b->width * (cb_x+1LL)) / cb_width;
  563. codeblock(s, b, &gb, &c, left, right, top, bottom, blockcnt_one, is_arith);
  564. left = right;
  565. }
  566. top = bottom;
  567. }
  568. if (b->orientation == subband_ll && s->num_refs == 0) {
  569. if (s->pshift) {
  570. intra_dc_prediction_10(b);
  571. } else {
  572. intra_dc_prediction_8(b);
  573. }
  574. }
  575. }
  576. static int decode_subband_arith(AVCodecContext *avctx, void *b)
  577. {
  578. DiracContext *s = avctx->priv_data;
  579. decode_subband_internal(s, b, 1);
  580. return 0;
  581. }
  582. static int decode_subband_golomb(AVCodecContext *avctx, void *arg)
  583. {
  584. DiracContext *s = avctx->priv_data;
  585. SubBand **b = arg;
  586. decode_subband_internal(s, *b, 0);
  587. return 0;
  588. }
  589. /**
  590. * Dirac Specification ->
  591. * [DIRAC_STD] 13.4.1 core_transform_data()
  592. */
  593. static void decode_component(DiracContext *s, int comp)
  594. {
  595. AVCodecContext *avctx = s->avctx;
  596. SubBand *bands[3*MAX_DWT_LEVELS+1];
  597. enum dirac_subband orientation;
  598. int level, num_bands = 0;
  599. /* Unpack all subbands at all levels. */
  600. for (level = 0; level < s->wavelet_depth; level++) {
  601. for (orientation = !!level; orientation < 4; orientation++) {
  602. SubBand *b = &s->plane[comp].band[level][orientation];
  603. bands[num_bands++] = b;
  604. align_get_bits(&s->gb);
  605. /* [DIRAC_STD] 13.4.2 subband() */
  606. b->length = svq3_get_ue_golomb(&s->gb);
  607. if (b->length) {
  608. b->quant = svq3_get_ue_golomb(&s->gb);
  609. align_get_bits(&s->gb);
  610. b->coeff_data = s->gb.buffer + get_bits_count(&s->gb)/8;
  611. b->length = FFMIN(b->length, FFMAX(get_bits_left(&s->gb)/8, 0));
  612. skip_bits_long(&s->gb, b->length*8);
  613. }
  614. }
  615. /* arithmetic coding has inter-level dependencies, so we can only execute one level at a time */
  616. if (s->is_arith)
  617. avctx->execute(avctx, decode_subband_arith, &s->plane[comp].band[level][!!level],
  618. NULL, 4-!!level, sizeof(SubBand));
  619. }
  620. /* golomb coding has no inter-level dependencies, so we can execute all subbands in parallel */
  621. if (!s->is_arith)
  622. avctx->execute(avctx, decode_subband_golomb, bands, NULL, num_bands, sizeof(SubBand*));
  623. }
  624. #define PARSE_VALUES(type, x, gb, ebits, buf1, buf2) \
  625. type *buf = (type *)buf1; \
  626. buf[x] = coeff_unpack_golomb(gb, qfactor, qoffset); \
  627. if (get_bits_count(gb) >= ebits) \
  628. return; \
  629. if (buf2) { \
  630. buf = (type *)buf2; \
  631. buf[x] = coeff_unpack_golomb(gb, qfactor, qoffset); \
  632. if (get_bits_count(gb) >= ebits) \
  633. return; \
  634. } \
  635. static void decode_subband(DiracContext *s, GetBitContext *gb, int quant,
  636. int slice_x, int slice_y, int bits_end,
  637. SubBand *b1, SubBand *b2)
  638. {
  639. int left = b1->width * slice_x / s->num_x;
  640. int right = b1->width *(slice_x+1) / s->num_x;
  641. int top = b1->height * slice_y / s->num_y;
  642. int bottom = b1->height *(slice_y+1) / s->num_y;
  643. int qfactor = qscale_tab[quant & 0x7f];
  644. int qoffset = qoffset_intra_tab[quant & 0x7f];
  645. uint8_t *buf1 = b1->ibuf + top * b1->stride;
  646. uint8_t *buf2 = b2 ? b2->ibuf + top * b2->stride: NULL;
  647. int x, y;
  648. /* we have to constantly check for overread since the spec explicitly
  649. requires this, with the meaning that all remaining coeffs are set to 0 */
  650. if (get_bits_count(gb) >= bits_end)
  651. return;
  652. if (s->pshift) {
  653. for (y = top; y < bottom; y++) {
  654. for (x = left; x < right; x++) {
  655. PARSE_VALUES(int32_t, x, gb, bits_end, buf1, buf2);
  656. }
  657. buf1 += b1->stride;
  658. if (buf2)
  659. buf2 += b2->stride;
  660. }
  661. }
  662. else {
  663. for (y = top; y < bottom; y++) {
  664. for (x = left; x < right; x++) {
  665. PARSE_VALUES(int16_t, x, gb, bits_end, buf1, buf2);
  666. }
  667. buf1 += b1->stride;
  668. if (buf2)
  669. buf2 += b2->stride;
  670. }
  671. }
  672. }
  673. /* Used by Low Delay and High Quality profiles */
  674. typedef struct DiracSlice {
  675. GetBitContext gb;
  676. int slice_x;
  677. int slice_y;
  678. int bytes;
  679. } DiracSlice;
  680. /**
  681. * Dirac Specification ->
  682. * 13.5.2 Slices. slice(sx,sy)
  683. */
  684. static int decode_lowdelay_slice(AVCodecContext *avctx, void *arg)
  685. {
  686. DiracContext *s = avctx->priv_data;
  687. DiracSlice *slice = arg;
  688. GetBitContext *gb = &slice->gb;
  689. enum dirac_subband orientation;
  690. int level, quant, chroma_bits, chroma_end;
  691. int quant_base = get_bits(gb, 7); /*[DIRAC_STD] qindex */
  692. int length_bits = av_log2(8 * slice->bytes)+1;
  693. int luma_bits = get_bits_long(gb, length_bits);
  694. int luma_end = get_bits_count(gb) + FFMIN(luma_bits, get_bits_left(gb));
  695. /* [DIRAC_STD] 13.5.5.2 luma_slice_band */
  696. for (level = 0; level < s->wavelet_depth; level++)
  697. for (orientation = !!level; orientation < 4; orientation++) {
  698. quant = FFMAX(quant_base - s->lowdelay.quant[level][orientation], 0);
  699. decode_subband(s, gb, quant, slice->slice_x, slice->slice_y, luma_end,
  700. &s->plane[0].band[level][orientation], NULL);
  701. }
  702. /* consume any unused bits from luma */
  703. skip_bits_long(gb, get_bits_count(gb) - luma_end);
  704. chroma_bits = 8*slice->bytes - 7 - length_bits - luma_bits;
  705. chroma_end = get_bits_count(gb) + FFMIN(chroma_bits, get_bits_left(gb));
  706. /* [DIRAC_STD] 13.5.5.3 chroma_slice_band */
  707. for (level = 0; level < s->wavelet_depth; level++)
  708. for (orientation = !!level; orientation < 4; orientation++) {
  709. quant = FFMAX(quant_base - s->lowdelay.quant[level][orientation], 0);
  710. decode_subband(s, gb, quant, slice->slice_x, slice->slice_y, chroma_end,
  711. &s->plane[1].band[level][orientation],
  712. &s->plane[2].band[level][orientation]);
  713. }
  714. return 0;
  715. }
  716. /**
  717. * VC-2 Specification ->
  718. * 13.5.3 hq_slice(sx,sy)
  719. */
  720. static int decode_hq_slice(AVCodecContext *avctx, void *arg)
  721. {
  722. int i, quant, level, orientation, quant_idx;
  723. uint8_t quants[MAX_DWT_LEVELS][4];
  724. DiracContext *s = avctx->priv_data;
  725. DiracSlice *slice = arg;
  726. GetBitContext *gb = &slice->gb;
  727. skip_bits_long(gb, 8*s->highquality.prefix_bytes);
  728. quant_idx = get_bits(gb, 8);
  729. /* Slice quantization (slice_quantizers() in the specs) */
  730. for (level = 0; level < s->wavelet_depth; level++) {
  731. for (orientation = !!level; orientation < 4; orientation++) {
  732. quant = FFMAX(quant_idx - s->lowdelay.quant[level][orientation], 0);
  733. quants[level][orientation] = quant;
  734. }
  735. }
  736. /* Luma + 2 Chroma planes */
  737. for (i = 0; i < 3; i++) {
  738. int length = s->highquality.size_scaler * get_bits(gb, 8);
  739. int bits_left = 8 * length;
  740. int bits_end = get_bits_count(gb) + bits_left;
  741. for (level = 0; level < s->wavelet_depth; level++) {
  742. for (orientation = !!level; orientation < 4; orientation++) {
  743. decode_subband(s, gb, quants[level][orientation], slice->slice_x, slice->slice_y, bits_end,
  744. &s->plane[i].band[level][orientation], NULL);
  745. }
  746. }
  747. skip_bits_long(gb, bits_end - get_bits_count(gb));
  748. }
  749. return 0;
  750. }
  751. /**
  752. * Dirac Specification ->
  753. * 13.5.1 low_delay_transform_data()
  754. */
  755. static int decode_lowdelay(DiracContext *s)
  756. {
  757. AVCodecContext *avctx = s->avctx;
  758. int slice_x, slice_y, bytes = 0, bufsize;
  759. const uint8_t *buf;
  760. DiracSlice *slices;
  761. int slice_num = 0;
  762. slices = av_mallocz_array(s->num_x, s->num_y * sizeof(DiracSlice));
  763. if (!slices)
  764. return AVERROR(ENOMEM);
  765. align_get_bits(&s->gb);
  766. /*[DIRAC_STD] 13.5.2 Slices. slice(sx,sy) */
  767. buf = s->gb.buffer + get_bits_count(&s->gb)/8;
  768. bufsize = get_bits_left(&s->gb);
  769. if (s->hq_picture) {
  770. int i;
  771. for (slice_y = 0; bufsize > 0 && slice_y < s->num_y; slice_y++) {
  772. for (slice_x = 0; bufsize > 0 && slice_x < s->num_x; slice_x++) {
  773. bytes = s->highquality.prefix_bytes + 1;
  774. for (i = 0; i < 3; i++) {
  775. if (bytes <= bufsize/8)
  776. bytes += buf[bytes] * s->highquality.size_scaler + 1;
  777. }
  778. slices[slice_num].bytes = bytes;
  779. slices[slice_num].slice_x = slice_x;
  780. slices[slice_num].slice_y = slice_y;
  781. init_get_bits(&slices[slice_num].gb, buf, bufsize);
  782. slice_num++;
  783. buf += bytes;
  784. if (bufsize/8 >= bytes)
  785. bufsize -= bytes*8;
  786. else
  787. bufsize = 0;
  788. }
  789. }
  790. avctx->execute(avctx, decode_hq_slice, slices, NULL, slice_num,
  791. sizeof(DiracSlice));
  792. } else {
  793. for (slice_y = 0; bufsize > 0 && slice_y < s->num_y; slice_y++) {
  794. for (slice_x = 0; bufsize > 0 && slice_x < s->num_x; slice_x++) {
  795. bytes = (slice_num+1) * s->lowdelay.bytes.num / s->lowdelay.bytes.den
  796. - slice_num * s->lowdelay.bytes.num / s->lowdelay.bytes.den;
  797. slices[slice_num].bytes = bytes;
  798. slices[slice_num].slice_x = slice_x;
  799. slices[slice_num].slice_y = slice_y;
  800. init_get_bits(&slices[slice_num].gb, buf, bufsize);
  801. slice_num++;
  802. buf += bytes;
  803. if (bufsize/8 >= bytes)
  804. bufsize -= bytes*8;
  805. else
  806. bufsize = 0;
  807. }
  808. }
  809. avctx->execute(avctx, decode_lowdelay_slice, slices, NULL, slice_num,
  810. sizeof(DiracSlice)); /* [DIRAC_STD] 13.5.2 Slices */
  811. }
  812. if (s->dc_prediction) {
  813. if (s->pshift) {
  814. intra_dc_prediction_10(&s->plane[0].band[0][0]); /* [DIRAC_STD] 13.3 intra_dc_prediction() */
  815. intra_dc_prediction_10(&s->plane[1].band[0][0]); /* [DIRAC_STD] 13.3 intra_dc_prediction() */
  816. intra_dc_prediction_10(&s->plane[2].band[0][0]); /* [DIRAC_STD] 13.3 intra_dc_prediction() */
  817. } else {
  818. intra_dc_prediction_8(&s->plane[0].band[0][0]);
  819. intra_dc_prediction_8(&s->plane[1].band[0][0]);
  820. intra_dc_prediction_8(&s->plane[2].band[0][0]);
  821. }
  822. }
  823. av_free(slices);
  824. return 0;
  825. }
  826. static void init_planes(DiracContext *s)
  827. {
  828. int i, w, h, level, orientation;
  829. for (i = 0; i < 3; i++) {
  830. Plane *p = &s->plane[i];
  831. p->width = s->seq.width >> (i ? s->chroma_x_shift : 0);
  832. p->height = s->seq.height >> (i ? s->chroma_y_shift : 0);
  833. p->idwt_width = w = CALC_PADDING(p->width , s->wavelet_depth);
  834. p->idwt_height = h = CALC_PADDING(p->height, s->wavelet_depth);
  835. p->idwt_stride = FFALIGN(p->idwt_width, 8) << (1 + s->pshift);
  836. for (level = s->wavelet_depth-1; level >= 0; level--) {
  837. w = w>>1;
  838. h = h>>1;
  839. for (orientation = !!level; orientation < 4; orientation++) {
  840. SubBand *b = &p->band[level][orientation];
  841. b->pshift = s->pshift;
  842. b->ibuf = p->idwt_buf;
  843. b->level = level;
  844. b->stride = p->idwt_stride << (s->wavelet_depth - level);
  845. b->width = w;
  846. b->height = h;
  847. b->orientation = orientation;
  848. if (orientation & 1)
  849. b->ibuf += w << (1+b->pshift);
  850. if (orientation > 1)
  851. b->ibuf += (b->stride>>1);
  852. if (level)
  853. b->parent = &p->band[level-1][orientation];
  854. }
  855. }
  856. if (i > 0) {
  857. p->xblen = s->plane[0].xblen >> s->chroma_x_shift;
  858. p->yblen = s->plane[0].yblen >> s->chroma_y_shift;
  859. p->xbsep = s->plane[0].xbsep >> s->chroma_x_shift;
  860. p->ybsep = s->plane[0].ybsep >> s->chroma_y_shift;
  861. }
  862. p->xoffset = (p->xblen - p->xbsep)/2;
  863. p->yoffset = (p->yblen - p->ybsep)/2;
  864. }
  865. }
  866. /**
  867. * Unpack the motion compensation parameters
  868. * Dirac Specification ->
  869. * 11.2 Picture prediction data. picture_prediction()
  870. */
  871. static int dirac_unpack_prediction_parameters(DiracContext *s)
  872. {
  873. static const uint8_t default_blen[] = { 4, 12, 16, 24 };
  874. GetBitContext *gb = &s->gb;
  875. unsigned idx, ref;
  876. align_get_bits(gb);
  877. /* [DIRAC_STD] 11.2.2 Block parameters. block_parameters() */
  878. /* Luma and Chroma are equal. 11.2.3 */
  879. idx = svq3_get_ue_golomb(gb); /* [DIRAC_STD] index */
  880. if (idx > 4) {
  881. av_log(s->avctx, AV_LOG_ERROR, "Block prediction index too high\n");
  882. return AVERROR_INVALIDDATA;
  883. }
  884. if (idx == 0) {
  885. s->plane[0].xblen = svq3_get_ue_golomb(gb);
  886. s->plane[0].yblen = svq3_get_ue_golomb(gb);
  887. s->plane[0].xbsep = svq3_get_ue_golomb(gb);
  888. s->plane[0].ybsep = svq3_get_ue_golomb(gb);
  889. } else {
  890. /*[DIRAC_STD] preset_block_params(index). Table 11.1 */
  891. s->plane[0].xblen = default_blen[idx-1];
  892. s->plane[0].yblen = default_blen[idx-1];
  893. s->plane[0].xbsep = 4 * idx;
  894. s->plane[0].ybsep = 4 * idx;
  895. }
  896. /*[DIRAC_STD] 11.2.4 motion_data_dimensions()
  897. Calculated in function dirac_unpack_block_motion_data */
  898. if (s->plane[0].xblen % (1 << s->chroma_x_shift) != 0 ||
  899. s->plane[0].yblen % (1 << s->chroma_y_shift) != 0 ||
  900. !s->plane[0].xblen || !s->plane[0].yblen) {
  901. av_log(s->avctx, AV_LOG_ERROR,
  902. "invalid x/y block length (%d/%d) for x/y chroma shift (%d/%d)\n",
  903. s->plane[0].xblen, s->plane[0].yblen, s->chroma_x_shift, s->chroma_y_shift);
  904. return AVERROR_INVALIDDATA;
  905. }
  906. if (!s->plane[0].xbsep || !s->plane[0].ybsep || s->plane[0].xbsep < s->plane[0].xblen/2 || s->plane[0].ybsep < s->plane[0].yblen/2) {
  907. av_log(s->avctx, AV_LOG_ERROR, "Block separation too small\n");
  908. return AVERROR_INVALIDDATA;
  909. }
  910. if (s->plane[0].xbsep > s->plane[0].xblen || s->plane[0].ybsep > s->plane[0].yblen) {
  911. av_log(s->avctx, AV_LOG_ERROR, "Block separation greater than size\n");
  912. return AVERROR_INVALIDDATA;
  913. }
  914. if (FFMAX(s->plane[0].xblen, s->plane[0].yblen) > MAX_BLOCKSIZE) {
  915. av_log(s->avctx, AV_LOG_ERROR, "Unsupported large block size\n");
  916. return AVERROR_PATCHWELCOME;
  917. }
  918. /*[DIRAC_STD] 11.2.5 Motion vector precision. motion_vector_precision()
  919. Read motion vector precision */
  920. s->mv_precision = svq3_get_ue_golomb(gb);
  921. if (s->mv_precision > 3) {
  922. av_log(s->avctx, AV_LOG_ERROR, "MV precision finer than eighth-pel\n");
  923. return AVERROR_INVALIDDATA;
  924. }
  925. /*[DIRAC_STD] 11.2.6 Global motion. global_motion()
  926. Read the global motion compensation parameters */
  927. s->globalmc_flag = get_bits1(gb);
  928. if (s->globalmc_flag) {
  929. memset(s->globalmc, 0, sizeof(s->globalmc));
  930. /* [DIRAC_STD] pan_tilt(gparams) */
  931. for (ref = 0; ref < s->num_refs; ref++) {
  932. if (get_bits1(gb)) {
  933. s->globalmc[ref].pan_tilt[0] = dirac_get_se_golomb(gb);
  934. s->globalmc[ref].pan_tilt[1] = dirac_get_se_golomb(gb);
  935. }
  936. /* [DIRAC_STD] zoom_rotate_shear(gparams)
  937. zoom/rotation/shear parameters */
  938. if (get_bits1(gb)) {
  939. s->globalmc[ref].zrs_exp = svq3_get_ue_golomb(gb);
  940. s->globalmc[ref].zrs[0][0] = dirac_get_se_golomb(gb);
  941. s->globalmc[ref].zrs[0][1] = dirac_get_se_golomb(gb);
  942. s->globalmc[ref].zrs[1][0] = dirac_get_se_golomb(gb);
  943. s->globalmc[ref].zrs[1][1] = dirac_get_se_golomb(gb);
  944. } else {
  945. s->globalmc[ref].zrs[0][0] = 1;
  946. s->globalmc[ref].zrs[1][1] = 1;
  947. }
  948. /* [DIRAC_STD] perspective(gparams) */
  949. if (get_bits1(gb)) {
  950. s->globalmc[ref].perspective_exp = svq3_get_ue_golomb(gb);
  951. s->globalmc[ref].perspective[0] = dirac_get_se_golomb(gb);
  952. s->globalmc[ref].perspective[1] = dirac_get_se_golomb(gb);
  953. }
  954. }
  955. }
  956. /*[DIRAC_STD] 11.2.7 Picture prediction mode. prediction_mode()
  957. Picture prediction mode, not currently used. */
  958. if (svq3_get_ue_golomb(gb)) {
  959. av_log(s->avctx, AV_LOG_ERROR, "Unknown picture prediction mode\n");
  960. return AVERROR_INVALIDDATA;
  961. }
  962. /* [DIRAC_STD] 11.2.8 Reference picture weight. reference_picture_weights()
  963. just data read, weight calculation will be done later on. */
  964. s->weight_log2denom = 1;
  965. s->weight[0] = 1;
  966. s->weight[1] = 1;
  967. if (get_bits1(gb)) {
  968. s->weight_log2denom = svq3_get_ue_golomb(gb);
  969. s->weight[0] = dirac_get_se_golomb(gb);
  970. if (s->num_refs == 2)
  971. s->weight[1] = dirac_get_se_golomb(gb);
  972. }
  973. return 0;
  974. }
  975. /**
  976. * Dirac Specification ->
  977. * 11.3 Wavelet transform data. wavelet_transform()
  978. */
  979. static int dirac_unpack_idwt_params(DiracContext *s)
  980. {
  981. GetBitContext *gb = &s->gb;
  982. int i, level;
  983. unsigned tmp;
  984. #define CHECKEDREAD(dst, cond, errmsg) \
  985. tmp = svq3_get_ue_golomb(gb); \
  986. if (cond) { \
  987. av_log(s->avctx, AV_LOG_ERROR, errmsg); \
  988. return AVERROR_INVALIDDATA; \
  989. }\
  990. dst = tmp;
  991. align_get_bits(gb);
  992. s->zero_res = s->num_refs ? get_bits1(gb) : 0;
  993. if (s->zero_res)
  994. return 0;
  995. /*[DIRAC_STD] 11.3.1 Transform parameters. transform_parameters() */
  996. CHECKEDREAD(s->wavelet_idx, tmp > 6, "wavelet_idx is too big\n")
  997. CHECKEDREAD(s->wavelet_depth, tmp > MAX_DWT_LEVELS || tmp < 1, "invalid number of DWT decompositions\n")
  998. if (!s->low_delay) {
  999. /* Codeblock parameters (core syntax only) */
  1000. if (get_bits1(gb)) {
  1001. for (i = 0; i <= s->wavelet_depth; i++) {
  1002. CHECKEDREAD(s->codeblock[i].width , tmp < 1 || tmp > (s->avctx->width >>s->wavelet_depth-i), "codeblock width invalid\n")
  1003. CHECKEDREAD(s->codeblock[i].height, tmp < 1 || tmp > (s->avctx->height>>s->wavelet_depth-i), "codeblock height invalid\n")
  1004. }
  1005. CHECKEDREAD(s->codeblock_mode, tmp > 1, "unknown codeblock mode\n")
  1006. }
  1007. else {
  1008. for (i = 0; i <= s->wavelet_depth; i++)
  1009. s->codeblock[i].width = s->codeblock[i].height = 1;
  1010. }
  1011. }
  1012. else {
  1013. s->num_x = svq3_get_ue_golomb(gb);
  1014. s->num_y = svq3_get_ue_golomb(gb);
  1015. if (s->ld_picture) {
  1016. s->lowdelay.bytes.num = svq3_get_ue_golomb(gb);
  1017. s->lowdelay.bytes.den = svq3_get_ue_golomb(gb);
  1018. if (s->lowdelay.bytes.den <= 0) {
  1019. av_log(s->avctx,AV_LOG_ERROR,"Invalid lowdelay.bytes.den\n");
  1020. return AVERROR_INVALIDDATA;
  1021. }
  1022. } else if (s->hq_picture) {
  1023. s->highquality.prefix_bytes = svq3_get_ue_golomb(gb);
  1024. s->highquality.size_scaler = svq3_get_ue_golomb(gb);
  1025. }
  1026. /* [DIRAC_STD] 11.3.5 Quantisation matrices (low-delay syntax). quant_matrix() */
  1027. if (get_bits1(gb)) {
  1028. av_log(s->avctx,AV_LOG_DEBUG,"Low Delay: Has Custom Quantization Matrix!\n");
  1029. /* custom quantization matrix */
  1030. s->lowdelay.quant[0][0] = svq3_get_ue_golomb(gb);
  1031. for (level = 0; level < s->wavelet_depth; level++) {
  1032. s->lowdelay.quant[level][1] = svq3_get_ue_golomb(gb);
  1033. s->lowdelay.quant[level][2] = svq3_get_ue_golomb(gb);
  1034. s->lowdelay.quant[level][3] = svq3_get_ue_golomb(gb);
  1035. }
  1036. } else {
  1037. if (s->wavelet_depth > 4) {
  1038. av_log(s->avctx,AV_LOG_ERROR,"Mandatory custom low delay matrix missing for depth %d\n", s->wavelet_depth);
  1039. return AVERROR_INVALIDDATA;
  1040. }
  1041. /* default quantization matrix */
  1042. for (level = 0; level < s->wavelet_depth; level++)
  1043. for (i = 0; i < 4; i++) {
  1044. s->lowdelay.quant[level][i] = default_qmat[s->wavelet_idx][level][i];
  1045. /* haar with no shift differs for different depths */
  1046. if (s->wavelet_idx == 3)
  1047. s->lowdelay.quant[level][i] += 4*(s->wavelet_depth-1 - level);
  1048. }
  1049. }
  1050. }
  1051. return 0;
  1052. }
  1053. static inline int pred_sbsplit(uint8_t *sbsplit, int stride, int x, int y)
  1054. {
  1055. static const uint8_t avgsplit[7] = { 0, 0, 1, 1, 1, 2, 2 };
  1056. if (!(x|y))
  1057. return 0;
  1058. else if (!y)
  1059. return sbsplit[-1];
  1060. else if (!x)
  1061. return sbsplit[-stride];
  1062. return avgsplit[sbsplit[-1] + sbsplit[-stride] + sbsplit[-stride-1]];
  1063. }
  1064. static inline int pred_block_mode(DiracBlock *block, int stride, int x, int y, int refmask)
  1065. {
  1066. int pred;
  1067. if (!(x|y))
  1068. return 0;
  1069. else if (!y)
  1070. return block[-1].ref & refmask;
  1071. else if (!x)
  1072. return block[-stride].ref & refmask;
  1073. /* return the majority */
  1074. pred = (block[-1].ref & refmask) + (block[-stride].ref & refmask) + (block[-stride-1].ref & refmask);
  1075. return (pred >> 1) & refmask;
  1076. }
  1077. static inline void pred_block_dc(DiracBlock *block, int stride, int x, int y)
  1078. {
  1079. int i, n = 0;
  1080. memset(block->u.dc, 0, sizeof(block->u.dc));
  1081. if (x && !(block[-1].ref & 3)) {
  1082. for (i = 0; i < 3; i++)
  1083. block->u.dc[i] += block[-1].u.dc[i];
  1084. n++;
  1085. }
  1086. if (y && !(block[-stride].ref & 3)) {
  1087. for (i = 0; i < 3; i++)
  1088. block->u.dc[i] += block[-stride].u.dc[i];
  1089. n++;
  1090. }
  1091. if (x && y && !(block[-1-stride].ref & 3)) {
  1092. for (i = 0; i < 3; i++)
  1093. block->u.dc[i] += block[-1-stride].u.dc[i];
  1094. n++;
  1095. }
  1096. if (n == 2) {
  1097. for (i = 0; i < 3; i++)
  1098. block->u.dc[i] = (block->u.dc[i]+1)>>1;
  1099. } else if (n == 3) {
  1100. for (i = 0; i < 3; i++)
  1101. block->u.dc[i] = divide3(block->u.dc[i]);
  1102. }
  1103. }
  1104. static inline void pred_mv(DiracBlock *block, int stride, int x, int y, int ref)
  1105. {
  1106. int16_t *pred[3];
  1107. int refmask = ref+1;
  1108. int mask = refmask | DIRAC_REF_MASK_GLOBAL; /* exclude gmc blocks */
  1109. int n = 0;
  1110. if (x && (block[-1].ref & mask) == refmask)
  1111. pred[n++] = block[-1].u.mv[ref];
  1112. if (y && (block[-stride].ref & mask) == refmask)
  1113. pred[n++] = block[-stride].u.mv[ref];
  1114. if (x && y && (block[-stride-1].ref & mask) == refmask)
  1115. pred[n++] = block[-stride-1].u.mv[ref];
  1116. switch (n) {
  1117. case 0:
  1118. block->u.mv[ref][0] = 0;
  1119. block->u.mv[ref][1] = 0;
  1120. break;
  1121. case 1:
  1122. block->u.mv[ref][0] = pred[0][0];
  1123. block->u.mv[ref][1] = pred[0][1];
  1124. break;
  1125. case 2:
  1126. block->u.mv[ref][0] = (pred[0][0] + pred[1][0] + 1) >> 1;
  1127. block->u.mv[ref][1] = (pred[0][1] + pred[1][1] + 1) >> 1;
  1128. break;
  1129. case 3:
  1130. block->u.mv[ref][0] = mid_pred(pred[0][0], pred[1][0], pred[2][0]);
  1131. block->u.mv[ref][1] = mid_pred(pred[0][1], pred[1][1], pred[2][1]);
  1132. break;
  1133. }
  1134. }
  1135. static void global_mv(DiracContext *s, DiracBlock *block, int x, int y, int ref)
  1136. {
  1137. int ez = s->globalmc[ref].zrs_exp;
  1138. int ep = s->globalmc[ref].perspective_exp;
  1139. int (*A)[2] = s->globalmc[ref].zrs;
  1140. int *b = s->globalmc[ref].pan_tilt;
  1141. int *c = s->globalmc[ref].perspective;
  1142. int m = (1<<ep) - (c[0]*x + c[1]*y);
  1143. int mx = m * ((A[0][0] * x + A[0][1]*y) + (1<<ez) * b[0]);
  1144. int my = m * ((A[1][0] * x + A[1][1]*y) + (1<<ez) * b[1]);
  1145. block->u.mv[ref][0] = (mx + (1<<(ez+ep))) >> (ez+ep);
  1146. block->u.mv[ref][1] = (my + (1<<(ez+ep))) >> (ez+ep);
  1147. }
  1148. static void decode_block_params(DiracContext *s, DiracArith arith[8], DiracBlock *block,
  1149. int stride, int x, int y)
  1150. {
  1151. int i;
  1152. block->ref = pred_block_mode(block, stride, x, y, DIRAC_REF_MASK_REF1);
  1153. block->ref ^= dirac_get_arith_bit(arith, CTX_PMODE_REF1);
  1154. if (s->num_refs == 2) {
  1155. block->ref |= pred_block_mode(block, stride, x, y, DIRAC_REF_MASK_REF2);
  1156. block->ref ^= dirac_get_arith_bit(arith, CTX_PMODE_REF2) << 1;
  1157. }
  1158. if (!block->ref) {
  1159. pred_block_dc(block, stride, x, y);
  1160. for (i = 0; i < 3; i++)
  1161. block->u.dc[i] += dirac_get_arith_int(arith+1+i, CTX_DC_F1, CTX_DC_DATA);
  1162. return;
  1163. }
  1164. if (s->globalmc_flag) {
  1165. block->ref |= pred_block_mode(block, stride, x, y, DIRAC_REF_MASK_GLOBAL);
  1166. block->ref ^= dirac_get_arith_bit(arith, CTX_GLOBAL_BLOCK) << 2;
  1167. }
  1168. for (i = 0; i < s->num_refs; i++)
  1169. if (block->ref & (i+1)) {
  1170. if (block->ref & DIRAC_REF_MASK_GLOBAL) {
  1171. global_mv(s, block, x, y, i);
  1172. } else {
  1173. pred_mv(block, stride, x, y, i);
  1174. block->u.mv[i][0] += dirac_get_arith_int(arith + 4 + 2 * i, CTX_MV_F1, CTX_MV_DATA);
  1175. block->u.mv[i][1] += dirac_get_arith_int(arith + 5 + 2 * i, CTX_MV_F1, CTX_MV_DATA);
  1176. }
  1177. }
  1178. }
  1179. /**
  1180. * Copies the current block to the other blocks covered by the current superblock split mode
  1181. */
  1182. static void propagate_block_data(DiracBlock *block, int stride, int size)
  1183. {
  1184. int x, y;
  1185. DiracBlock *dst = block;
  1186. for (x = 1; x < size; x++)
  1187. dst[x] = *block;
  1188. for (y = 1; y < size; y++) {
  1189. dst += stride;
  1190. for (x = 0; x < size; x++)
  1191. dst[x] = *block;
  1192. }
  1193. }
  1194. /**
  1195. * Dirac Specification ->
  1196. * 12. Block motion data syntax
  1197. */
  1198. static int dirac_unpack_block_motion_data(DiracContext *s)
  1199. {
  1200. GetBitContext *gb = &s->gb;
  1201. uint8_t *sbsplit = s->sbsplit;
  1202. int i, x, y, q, p;
  1203. DiracArith arith[8];
  1204. align_get_bits(gb);
  1205. /* [DIRAC_STD] 11.2.4 and 12.2.1 Number of blocks and superblocks */
  1206. s->sbwidth = DIVRNDUP(s->seq.width, 4*s->plane[0].xbsep);
  1207. s->sbheight = DIVRNDUP(s->seq.height, 4*s->plane[0].ybsep);
  1208. s->blwidth = 4 * s->sbwidth;
  1209. s->blheight = 4 * s->sbheight;
  1210. /* [DIRAC_STD] 12.3.1 Superblock splitting modes. superblock_split_modes()
  1211. decode superblock split modes */
  1212. ff_dirac_init_arith_decoder(arith, gb, svq3_get_ue_golomb(gb)); /* svq3_get_ue_golomb(gb) is the length */
  1213. for (y = 0; y < s->sbheight; y++) {
  1214. for (x = 0; x < s->sbwidth; x++) {
  1215. unsigned int split = dirac_get_arith_uint(arith, CTX_SB_F1, CTX_SB_DATA);
  1216. if (split > 2)
  1217. return AVERROR_INVALIDDATA;
  1218. sbsplit[x] = (split + pred_sbsplit(sbsplit+x, s->sbwidth, x, y)) % 3;
  1219. }
  1220. sbsplit += s->sbwidth;
  1221. }
  1222. /* setup arith decoding */
  1223. ff_dirac_init_arith_decoder(arith, gb, svq3_get_ue_golomb(gb));
  1224. for (i = 0; i < s->num_refs; i++) {
  1225. ff_dirac_init_arith_decoder(arith + 4 + 2 * i, gb, svq3_get_ue_golomb(gb));
  1226. ff_dirac_init_arith_decoder(arith + 5 + 2 * i, gb, svq3_get_ue_golomb(gb));
  1227. }
  1228. for (i = 0; i < 3; i++)
  1229. ff_dirac_init_arith_decoder(arith+1+i, gb, svq3_get_ue_golomb(gb));
  1230. for (y = 0; y < s->sbheight; y++)
  1231. for (x = 0; x < s->sbwidth; x++) {
  1232. int blkcnt = 1 << s->sbsplit[y * s->sbwidth + x];
  1233. int step = 4 >> s->sbsplit[y * s->sbwidth + x];
  1234. for (q = 0; q < blkcnt; q++)
  1235. for (p = 0; p < blkcnt; p++) {
  1236. int bx = 4 * x + p*step;
  1237. int by = 4 * y + q*step;
  1238. DiracBlock *block = &s->blmotion[by*s->blwidth + bx];
  1239. decode_block_params(s, arith, block, s->blwidth, bx, by);
  1240. propagate_block_data(block, s->blwidth, step);
  1241. }
  1242. }
  1243. return 0;
  1244. }
  1245. static int weight(int i, int blen, int offset)
  1246. {
  1247. #define ROLLOFF(i) offset == 1 ? ((i) ? 5 : 3) : \
  1248. (1 + (6*(i) + offset - 1) / (2*offset - 1))
  1249. if (i < 2*offset)
  1250. return ROLLOFF(i);
  1251. else if (i > blen-1 - 2*offset)
  1252. return ROLLOFF(blen-1 - i);
  1253. return 8;
  1254. }
  1255. static void init_obmc_weight_row(Plane *p, uint8_t *obmc_weight, int stride,
  1256. int left, int right, int wy)
  1257. {
  1258. int x;
  1259. for (x = 0; left && x < p->xblen >> 1; x++)
  1260. obmc_weight[x] = wy*8;
  1261. for (; x < p->xblen >> right; x++)
  1262. obmc_weight[x] = wy*weight(x, p->xblen, p->xoffset);
  1263. for (; x < p->xblen; x++)
  1264. obmc_weight[x] = wy*8;
  1265. for (; x < stride; x++)
  1266. obmc_weight[x] = 0;
  1267. }
  1268. static void init_obmc_weight(Plane *p, uint8_t *obmc_weight, int stride,
  1269. int left, int right, int top, int bottom)
  1270. {
  1271. int y;
  1272. for (y = 0; top && y < p->yblen >> 1; y++) {
  1273. init_obmc_weight_row(p, obmc_weight, stride, left, right, 8);
  1274. obmc_weight += stride;
  1275. }
  1276. for (; y < p->yblen >> bottom; y++) {
  1277. int wy = weight(y, p->yblen, p->yoffset);
  1278. init_obmc_weight_row(p, obmc_weight, stride, left, right, wy);
  1279. obmc_weight += stride;
  1280. }
  1281. for (; y < p->yblen; y++) {
  1282. init_obmc_weight_row(p, obmc_weight, stride, left, right, 8);
  1283. obmc_weight += stride;
  1284. }
  1285. }
  1286. static void init_obmc_weights(DiracContext *s, Plane *p, int by)
  1287. {
  1288. int top = !by;
  1289. int bottom = by == s->blheight-1;
  1290. /* don't bother re-initing for rows 2 to blheight-2, the weights don't change */
  1291. if (top || bottom || by == 1) {
  1292. init_obmc_weight(p, s->obmc_weight[0], MAX_BLOCKSIZE, 1, 0, top, bottom);
  1293. init_obmc_weight(p, s->obmc_weight[1], MAX_BLOCKSIZE, 0, 0, top, bottom);
  1294. init_obmc_weight(p, s->obmc_weight[2], MAX_BLOCKSIZE, 0, 1, top, bottom);
  1295. }
  1296. }
  1297. static const uint8_t epel_weights[4][4][4] = {
  1298. {{ 16, 0, 0, 0 },
  1299. { 12, 4, 0, 0 },
  1300. { 8, 8, 0, 0 },
  1301. { 4, 12, 0, 0 }},
  1302. {{ 12, 0, 4, 0 },
  1303. { 9, 3, 3, 1 },
  1304. { 6, 6, 2, 2 },
  1305. { 3, 9, 1, 3 }},
  1306. {{ 8, 0, 8, 0 },
  1307. { 6, 2, 6, 2 },
  1308. { 4, 4, 4, 4 },
  1309. { 2, 6, 2, 6 }},
  1310. {{ 4, 0, 12, 0 },
  1311. { 3, 1, 9, 3 },
  1312. { 2, 2, 6, 6 },
  1313. { 1, 3, 3, 9 }}
  1314. };
  1315. /**
  1316. * For block x,y, determine which of the hpel planes to do bilinear
  1317. * interpolation from and set src[] to the location in each hpel plane
  1318. * to MC from.
  1319. *
  1320. * @return the index of the put_dirac_pixels_tab function to use
  1321. * 0 for 1 plane (fpel,hpel), 1 for 2 planes (qpel), 2 for 4 planes (qpel), and 3 for epel
  1322. */
  1323. static int mc_subpel(DiracContext *s, DiracBlock *block, const uint8_t *src[5],
  1324. int x, int y, int ref, int plane)
  1325. {
  1326. Plane *p = &s->plane[plane];
  1327. uint8_t **ref_hpel = s->ref_pics[ref]->hpel[plane];
  1328. int motion_x = block->u.mv[ref][0];
  1329. int motion_y = block->u.mv[ref][1];
  1330. int mx, my, i, epel, nplanes = 0;
  1331. if (plane) {
  1332. motion_x >>= s->chroma_x_shift;
  1333. motion_y >>= s->chroma_y_shift;
  1334. }
  1335. mx = motion_x & ~(-1U << s->mv_precision);
  1336. my = motion_y & ~(-1U << s->mv_precision);
  1337. motion_x >>= s->mv_precision;
  1338. motion_y >>= s->mv_precision;
  1339. /* normalize subpel coordinates to epel */
  1340. /* TODO: template this function? */
  1341. mx <<= 3 - s->mv_precision;
  1342. my <<= 3 - s->mv_precision;
  1343. x += motion_x;
  1344. y += motion_y;
  1345. epel = (mx|my)&1;
  1346. /* hpel position */
  1347. if (!((mx|my)&3)) {
  1348. nplanes = 1;
  1349. src[0] = ref_hpel[(my>>1)+(mx>>2)] + y*p->stride + x;
  1350. } else {
  1351. /* qpel or epel */
  1352. nplanes = 4;
  1353. for (i = 0; i < 4; i++)
  1354. src[i] = ref_hpel[i] + y*p->stride + x;
  1355. /* if we're interpolating in the right/bottom halves, adjust the planes as needed
  1356. we increment x/y because the edge changes for half of the pixels */
  1357. if (mx > 4) {
  1358. src[0] += 1;
  1359. src[2] += 1;
  1360. x++;
  1361. }
  1362. if (my > 4) {
  1363. src[0] += p->stride;
  1364. src[1] += p->stride;
  1365. y++;
  1366. }
  1367. /* hpel planes are:
  1368. [0]: F [1]: H
  1369. [2]: V [3]: C */
  1370. if (!epel) {
  1371. /* check if we really only need 2 planes since either mx or my is
  1372. a hpel position. (epel weights of 0 handle this there) */
  1373. if (!(mx&3)) {
  1374. /* mx == 0: average [0] and [2]
  1375. mx == 4: average [1] and [3] */
  1376. src[!mx] = src[2 + !!mx];
  1377. nplanes = 2;
  1378. } else if (!(my&3)) {
  1379. src[0] = src[(my>>1) ];
  1380. src[1] = src[(my>>1)+1];
  1381. nplanes = 2;
  1382. }
  1383. } else {
  1384. /* adjust the ordering if needed so the weights work */
  1385. if (mx > 4) {
  1386. FFSWAP(const uint8_t *, src[0], src[1]);
  1387. FFSWAP(const uint8_t *, src[2], src[3]);
  1388. }
  1389. if (my > 4) {
  1390. FFSWAP(const uint8_t *, src[0], src[2]);
  1391. FFSWAP(const uint8_t *, src[1], src[3]);
  1392. }
  1393. src[4] = epel_weights[my&3][mx&3];
  1394. }
  1395. }
  1396. /* fixme: v/h _edge_pos */
  1397. if (x + p->xblen > p->width +EDGE_WIDTH/2 ||
  1398. y + p->yblen > p->height+EDGE_WIDTH/2 ||
  1399. x < 0 || y < 0) {
  1400. for (i = 0; i < nplanes; i++) {
  1401. s->vdsp.emulated_edge_mc(s->edge_emu_buffer[i], src[i],
  1402. p->stride, p->stride,
  1403. p->xblen, p->yblen, x, y,
  1404. p->width+EDGE_WIDTH/2, p->height+EDGE_WIDTH/2);
  1405. src[i] = s->edge_emu_buffer[i];
  1406. }
  1407. }
  1408. return (nplanes>>1) + epel;
  1409. }
  1410. static void add_dc(uint16_t *dst, int dc, int stride,
  1411. uint8_t *obmc_weight, int xblen, int yblen)
  1412. {
  1413. int x, y;
  1414. dc += 128;
  1415. for (y = 0; y < yblen; y++) {
  1416. for (x = 0; x < xblen; x += 2) {
  1417. dst[x ] += dc * obmc_weight[x ];
  1418. dst[x+1] += dc * obmc_weight[x+1];
  1419. }
  1420. dst += stride;
  1421. obmc_weight += MAX_BLOCKSIZE;
  1422. }
  1423. }
  1424. static void block_mc(DiracContext *s, DiracBlock *block,
  1425. uint16_t *mctmp, uint8_t *obmc_weight,
  1426. int plane, int dstx, int dsty)
  1427. {
  1428. Plane *p = &s->plane[plane];
  1429. const uint8_t *src[5];
  1430. int idx;
  1431. switch (block->ref&3) {
  1432. case 0: /* DC */
  1433. add_dc(mctmp, block->u.dc[plane], p->stride, obmc_weight, p->xblen, p->yblen);
  1434. return;
  1435. case 1:
  1436. case 2:
  1437. idx = mc_subpel(s, block, src, dstx, dsty, (block->ref&3)-1, plane);
  1438. s->put_pixels_tab[idx](s->mcscratch, src, p->stride, p->yblen);
  1439. if (s->weight_func)
  1440. s->weight_func(s->mcscratch, p->stride, s->weight_log2denom,
  1441. s->weight[0] + s->weight[1], p->yblen);
  1442. break;
  1443. case 3:
  1444. idx = mc_subpel(s, block, src, dstx, dsty, 0, plane);
  1445. s->put_pixels_tab[idx](s->mcscratch, src, p->stride, p->yblen);
  1446. idx = mc_subpel(s, block, src, dstx, dsty, 1, plane);
  1447. if (s->biweight_func) {
  1448. /* fixme: +32 is a quick hack */
  1449. s->put_pixels_tab[idx](s->mcscratch + 32, src, p->stride, p->yblen);
  1450. s->biweight_func(s->mcscratch, s->mcscratch+32, p->stride, s->weight_log2denom,
  1451. s->weight[0], s->weight[1], p->yblen);
  1452. } else
  1453. s->avg_pixels_tab[idx](s->mcscratch, src, p->stride, p->yblen);
  1454. break;
  1455. }
  1456. s->add_obmc(mctmp, s->mcscratch, p->stride, obmc_weight, p->yblen);
  1457. }
  1458. static void mc_row(DiracContext *s, DiracBlock *block, uint16_t *mctmp, int plane, int dsty)
  1459. {
  1460. Plane *p = &s->plane[plane];
  1461. int x, dstx = p->xbsep - p->xoffset;
  1462. block_mc(s, block, mctmp, s->obmc_weight[0], plane, -p->xoffset, dsty);
  1463. mctmp += p->xbsep;
  1464. for (x = 1; x < s->blwidth-1; x++) {
  1465. block_mc(s, block+x, mctmp, s->obmc_weight[1], plane, dstx, dsty);
  1466. dstx += p->xbsep;
  1467. mctmp += p->xbsep;
  1468. }
  1469. block_mc(s, block+x, mctmp, s->obmc_weight[2], plane, dstx, dsty);
  1470. }
  1471. static void select_dsp_funcs(DiracContext *s, int width, int height, int xblen, int yblen)
  1472. {
  1473. int idx = 0;
  1474. if (xblen > 8)
  1475. idx = 1;
  1476. if (xblen > 16)
  1477. idx = 2;
  1478. memcpy(s->put_pixels_tab, s->diracdsp.put_dirac_pixels_tab[idx], sizeof(s->put_pixels_tab));
  1479. memcpy(s->avg_pixels_tab, s->diracdsp.avg_dirac_pixels_tab[idx], sizeof(s->avg_pixels_tab));
  1480. s->add_obmc = s->diracdsp.add_dirac_obmc[idx];
  1481. if (s->weight_log2denom > 1 || s->weight[0] != 1 || s->weight[1] != 1) {
  1482. s->weight_func = s->diracdsp.weight_dirac_pixels_tab[idx];
  1483. s->biweight_func = s->diracdsp.biweight_dirac_pixels_tab[idx];
  1484. } else {
  1485. s->weight_func = NULL;
  1486. s->biweight_func = NULL;
  1487. }
  1488. }
  1489. static int interpolate_refplane(DiracContext *s, DiracFrame *ref, int plane, int width, int height)
  1490. {
  1491. /* chroma allocates an edge of 8 when subsampled
  1492. which for 4:2:2 means an h edge of 16 and v edge of 8
  1493. just use 8 for everything for the moment */
  1494. int i, edge = EDGE_WIDTH/2;
  1495. ref->hpel[plane][0] = ref->avframe->data[plane];
  1496. s->mpvencdsp.draw_edges(ref->hpel[plane][0], ref->avframe->linesize[plane], width, height, edge, edge, EDGE_TOP | EDGE_BOTTOM); /* EDGE_TOP | EDGE_BOTTOM values just copied to make it build, this needs to be ensured */
  1497. /* no need for hpel if we only have fpel vectors */
  1498. if (!s->mv_precision)
  1499. return 0;
  1500. for (i = 1; i < 4; i++) {
  1501. if (!ref->hpel_base[plane][i])
  1502. ref->hpel_base[plane][i] = av_malloc((height+2*edge) * ref->avframe->linesize[plane] + 32);
  1503. if (!ref->hpel_base[plane][i]) {
  1504. return AVERROR(ENOMEM);
  1505. }
  1506. /* we need to be 16-byte aligned even for chroma */
  1507. ref->hpel[plane][i] = ref->hpel_base[plane][i] + edge*ref->avframe->linesize[plane] + 16;
  1508. }
  1509. if (!ref->interpolated[plane]) {
  1510. s->diracdsp.dirac_hpel_filter(ref->hpel[plane][1], ref->hpel[plane][2],
  1511. ref->hpel[plane][3], ref->hpel[plane][0],
  1512. ref->avframe->linesize[plane], width, height);
  1513. s->mpvencdsp.draw_edges(ref->hpel[plane][1], ref->avframe->linesize[plane], width, height, edge, edge, EDGE_TOP | EDGE_BOTTOM);
  1514. s->mpvencdsp.draw_edges(ref->hpel[plane][2], ref->avframe->linesize[plane], width, height, edge, edge, EDGE_TOP | EDGE_BOTTOM);
  1515. s->mpvencdsp.draw_edges(ref->hpel[plane][3], ref->avframe->linesize[plane], width, height, edge, edge, EDGE_TOP | EDGE_BOTTOM);
  1516. }
  1517. ref->interpolated[plane] = 1;
  1518. return 0;
  1519. }
  1520. /**
  1521. * Dirac Specification ->
  1522. * 13.0 Transform data syntax. transform_data()
  1523. */
  1524. static int dirac_decode_frame_internal(DiracContext *s)
  1525. {
  1526. DWTContext d;
  1527. int y, i, comp, dsty;
  1528. int ret;
  1529. if (s->low_delay) {
  1530. /* [DIRAC_STD] 13.5.1 low_delay_transform_data() */
  1531. for (comp = 0; comp < 3; comp++) {
  1532. Plane *p = &s->plane[comp];
  1533. memset(p->idwt_buf, 0, p->idwt_stride * p->idwt_height);
  1534. }
  1535. if (!s->zero_res) {
  1536. if ((ret = decode_lowdelay(s)) < 0)
  1537. return ret;
  1538. }
  1539. }
  1540. for (comp = 0; comp < 3; comp++) {
  1541. Plane *p = &s->plane[comp];
  1542. uint8_t *frame = s->current_picture->avframe->data[comp];
  1543. /* FIXME: small resolutions */
  1544. for (i = 0; i < 4; i++)
  1545. s->edge_emu_buffer[i] = s->edge_emu_buffer_base + i*FFALIGN(p->width, 16);
  1546. if (!s->zero_res && !s->low_delay)
  1547. {
  1548. memset(p->idwt_buf, 0, p->idwt_stride * p->idwt_height);
  1549. decode_component(s, comp); /* [DIRAC_STD] 13.4.1 core_transform_data() */
  1550. }
  1551. ret = ff_spatial_idwt_init2(&d, p->idwt_buf, p->idwt_width, p->idwt_height, p->idwt_stride,
  1552. s->wavelet_idx+2, s->wavelet_depth, p->idwt_tmp, s->bit_depth);
  1553. if (ret < 0)
  1554. return ret;
  1555. if (!s->num_refs) { /* intra */
  1556. for (y = 0; y < p->height; y += 16) {
  1557. ff_spatial_idwt_slice2(&d, y+16); /* decode */
  1558. s->diracdsp.put_signed_rect_clamped[s->pshift](frame + y*p->stride, p->stride,
  1559. p->idwt_buf + y*p->idwt_stride, p->idwt_stride, p->width, 16);
  1560. }
  1561. } else { /* inter */
  1562. int rowheight = p->ybsep*p->stride;
  1563. select_dsp_funcs(s, p->width, p->height, p->xblen, p->yblen);
  1564. for (i = 0; i < s->num_refs; i++) {
  1565. int ret = interpolate_refplane(s, s->ref_pics[i], comp, p->width, p->height);
  1566. if (ret < 0)
  1567. return ret;
  1568. }
  1569. memset(s->mctmp, 0, 4*p->yoffset*p->stride);
  1570. dsty = -p->yoffset;
  1571. for (y = 0; y < s->blheight; y++) {
  1572. int h = 0,
  1573. start = FFMAX(dsty, 0);
  1574. uint16_t *mctmp = s->mctmp + y*rowheight;
  1575. DiracBlock *blocks = s->blmotion + y*s->blwidth;
  1576. init_obmc_weights(s, p, y);
  1577. if (y == s->blheight-1 || start+p->ybsep > p->height)
  1578. h = p->height - start;
  1579. else
  1580. h = p->ybsep - (start - dsty);
  1581. if (h < 0)
  1582. break;
  1583. memset(mctmp+2*p->yoffset*p->stride, 0, 2*rowheight);
  1584. mc_row(s, blocks, mctmp, comp, dsty);
  1585. mctmp += (start - dsty)*p->stride + p->xoffset;
  1586. ff_spatial_idwt_slice2(&d, start + h); /* decode */
  1587. /* NOTE: add_rect_clamped hasn't been templated hence the shifts.
  1588. * idwt_stride is passed as pixels, not in bytes as in the rest of the decoder */
  1589. s->diracdsp.add_rect_clamped(frame + start*p->stride, mctmp, p->stride,
  1590. (int16_t*)(p->idwt_buf) + start*(p->idwt_stride >> 1), (p->idwt_stride >> 1), p->width, h);
  1591. dsty += p->ybsep;
  1592. }
  1593. }
  1594. }
  1595. return 0;
  1596. }
  1597. static int get_buffer_with_edge(AVCodecContext *avctx, AVFrame *f, int flags)
  1598. {
  1599. int ret, i;
  1600. int chroma_x_shift, chroma_y_shift;
  1601. avcodec_get_chroma_sub_sample(avctx->pix_fmt, &chroma_x_shift, &chroma_y_shift);
  1602. f->width = avctx->width + 2 * EDGE_WIDTH;
  1603. f->height = avctx->height + 2 * EDGE_WIDTH + 2;
  1604. ret = ff_get_buffer(avctx, f, flags);
  1605. if (ret < 0)
  1606. return ret;
  1607. for (i = 0; f->data[i]; i++) {
  1608. int offset = (EDGE_WIDTH >> (i && i<3 ? chroma_y_shift : 0)) *
  1609. f->linesize[i] + 32;
  1610. f->data[i] += offset;
  1611. }
  1612. f->width = avctx->width;
  1613. f->height = avctx->height;
  1614. return 0;
  1615. }
  1616. /**
  1617. * Dirac Specification ->
  1618. * 11.1.1 Picture Header. picture_header()
  1619. */
  1620. static int dirac_decode_picture_header(DiracContext *s)
  1621. {
  1622. unsigned retire, picnum;
  1623. int i, j, ret;
  1624. int64_t refdist, refnum;
  1625. GetBitContext *gb = &s->gb;
  1626. /* [DIRAC_STD] 11.1.1 Picture Header. picture_header() PICTURE_NUM */
  1627. picnum = s->current_picture->avframe->display_picture_number = get_bits_long(gb, 32);
  1628. av_log(s->avctx,AV_LOG_DEBUG,"PICTURE_NUM: %d\n",picnum);
  1629. /* if this is the first keyframe after a sequence header, start our
  1630. reordering from here */
  1631. if (s->frame_number < 0)
  1632. s->frame_number = picnum;
  1633. s->ref_pics[0] = s->ref_pics[1] = NULL;
  1634. for (i = 0; i < s->num_refs; i++) {
  1635. refnum = (picnum + dirac_get_se_golomb(gb)) & 0xFFFFFFFF;
  1636. refdist = INT64_MAX;
  1637. /* find the closest reference to the one we want */
  1638. /* Jordi: this is needed if the referenced picture hasn't yet arrived */
  1639. for (j = 0; j < MAX_REFERENCE_FRAMES && refdist; j++)
  1640. if (s->ref_frames[j]
  1641. && FFABS(s->ref_frames[j]->avframe->display_picture_number - refnum) < refdist) {
  1642. s->ref_pics[i] = s->ref_frames[j];
  1643. refdist = FFABS(s->ref_frames[j]->avframe->display_picture_number - refnum);
  1644. }
  1645. if (!s->ref_pics[i] || refdist)
  1646. av_log(s->avctx, AV_LOG_DEBUG, "Reference not found\n");
  1647. /* if there were no references at all, allocate one */
  1648. if (!s->ref_pics[i])
  1649. for (j = 0; j < MAX_FRAMES; j++)
  1650. if (!s->all_frames[j].avframe->data[0]) {
  1651. s->ref_pics[i] = &s->all_frames[j];
  1652. get_buffer_with_edge(s->avctx, s->ref_pics[i]->avframe, AV_GET_BUFFER_FLAG_REF);
  1653. break;
  1654. }
  1655. if (!s->ref_pics[i]) {
  1656. av_log(s->avctx, AV_LOG_ERROR, "Reference could not be allocated\n");
  1657. return AVERROR_INVALIDDATA;
  1658. }
  1659. }
  1660. /* retire the reference frames that are not used anymore */
  1661. if (s->current_picture->reference) {
  1662. retire = (picnum + dirac_get_se_golomb(gb)) & 0xFFFFFFFF;
  1663. if (retire != picnum) {
  1664. DiracFrame *retire_pic = remove_frame(s->ref_frames, retire);
  1665. if (retire_pic)
  1666. retire_pic->reference &= DELAYED_PIC_REF;
  1667. else
  1668. av_log(s->avctx, AV_LOG_DEBUG, "Frame to retire not found\n");
  1669. }
  1670. /* if reference array is full, remove the oldest as per the spec */
  1671. while (add_frame(s->ref_frames, MAX_REFERENCE_FRAMES, s->current_picture)) {
  1672. av_log(s->avctx, AV_LOG_ERROR, "Reference frame overflow\n");
  1673. remove_frame(s->ref_frames, s->ref_frames[0]->avframe->display_picture_number)->reference &= DELAYED_PIC_REF;
  1674. }
  1675. }
  1676. if (s->num_refs) {
  1677. ret = dirac_unpack_prediction_parameters(s); /* [DIRAC_STD] 11.2 Picture Prediction Data. picture_prediction() */
  1678. if (ret < 0)
  1679. return ret;
  1680. ret = dirac_unpack_block_motion_data(s); /* [DIRAC_STD] 12. Block motion data syntax */
  1681. if (ret < 0)
  1682. return ret;
  1683. }
  1684. ret = dirac_unpack_idwt_params(s); /* [DIRAC_STD] 11.3 Wavelet transform data */
  1685. if (ret < 0)
  1686. return ret;
  1687. init_planes(s);
  1688. return 0;
  1689. }
  1690. static int get_delayed_pic(DiracContext *s, AVFrame *picture, int *got_frame)
  1691. {
  1692. DiracFrame *out = s->delay_frames[0];
  1693. int i, out_idx = 0;
  1694. int ret;
  1695. /* find frame with lowest picture number */
  1696. for (i = 1; s->delay_frames[i]; i++)
  1697. if (s->delay_frames[i]->avframe->display_picture_number < out->avframe->display_picture_number) {
  1698. out = s->delay_frames[i];
  1699. out_idx = i;
  1700. }
  1701. for (i = out_idx; s->delay_frames[i]; i++)
  1702. s->delay_frames[i] = s->delay_frames[i+1];
  1703. if (out) {
  1704. out->reference ^= DELAYED_PIC_REF;
  1705. *got_frame = 1;
  1706. if((ret = av_frame_ref(picture, out->avframe)) < 0)
  1707. return ret;
  1708. }
  1709. return 0;
  1710. }
  1711. /**
  1712. * Dirac Specification ->
  1713. * 9.6 Parse Info Header Syntax. parse_info()
  1714. * 4 byte start code + byte parse code + 4 byte size + 4 byte previous size
  1715. */
  1716. #define DATA_UNIT_HEADER_SIZE 13
  1717. /* [DIRAC_STD] dirac_decode_data_unit makes reference to the while defined in 9.3
  1718. inside the function parse_sequence() */
  1719. static int dirac_decode_data_unit(AVCodecContext *avctx, const uint8_t *buf, int size)
  1720. {
  1721. DiracContext *s = avctx->priv_data;
  1722. DiracFrame *pic = NULL;
  1723. AVDiracSeqHeader *dsh;
  1724. int ret, i;
  1725. uint8_t parse_code;
  1726. unsigned tmp;
  1727. if (size < DATA_UNIT_HEADER_SIZE)
  1728. return AVERROR_INVALIDDATA;
  1729. parse_code = buf[4];
  1730. init_get_bits(&s->gb, &buf[13], 8*(size - DATA_UNIT_HEADER_SIZE));
  1731. if (parse_code == DIRAC_PCODE_SEQ_HEADER) {
  1732. if (s->seen_sequence_header)
  1733. return 0;
  1734. /* [DIRAC_STD] 10. Sequence header */
  1735. ret = av_dirac_parse_sequence_header(&dsh, buf + DATA_UNIT_HEADER_SIZE, size - DATA_UNIT_HEADER_SIZE, avctx);
  1736. if (ret < 0) {
  1737. av_log(avctx, AV_LOG_ERROR, "error parsing sequence header");
  1738. return ret;
  1739. }
  1740. ret = ff_set_dimensions(avctx, dsh->width, dsh->height);
  1741. if (ret < 0) {
  1742. av_freep(&dsh);
  1743. return ret;
  1744. }
  1745. ff_set_sar(avctx, dsh->sample_aspect_ratio);
  1746. avctx->pix_fmt = dsh->pix_fmt;
  1747. avctx->color_range = dsh->color_range;
  1748. avctx->color_trc = dsh->color_trc;
  1749. avctx->color_primaries = dsh->color_primaries;
  1750. avctx->colorspace = dsh->colorspace;
  1751. avctx->profile = dsh->profile;
  1752. avctx->level = dsh->level;
  1753. avctx->framerate = dsh->framerate;
  1754. s->bit_depth = dsh->bit_depth;
  1755. s->seq = *dsh;
  1756. av_freep(&dsh);
  1757. s->pshift = s->bit_depth > 8;
  1758. avcodec_get_chroma_sub_sample(avctx->pix_fmt, &s->chroma_x_shift, &s->chroma_y_shift);
  1759. ret = alloc_sequence_buffers(s);
  1760. if (ret < 0)
  1761. return ret;
  1762. s->seen_sequence_header = 1;
  1763. } else if (parse_code == DIRAC_PCODE_END_SEQ) { /* [DIRAC_STD] End of Sequence */
  1764. free_sequence_buffers(s);
  1765. s->seen_sequence_header = 0;
  1766. } else if (parse_code == DIRAC_PCODE_AUX) {
  1767. if (buf[13] == 1) { /* encoder implementation/version */
  1768. int ver[3];
  1769. /* versions older than 1.0.8 don't store quant delta for
  1770. subbands with only one codeblock */
  1771. if (sscanf(buf+14, "Schroedinger %d.%d.%d", ver, ver+1, ver+2) == 3)
  1772. if (ver[0] == 1 && ver[1] == 0 && ver[2] <= 7)
  1773. s->old_delta_quant = 1;
  1774. }
  1775. } else if (parse_code & 0x8) { /* picture data unit */
  1776. if (!s->seen_sequence_header) {
  1777. av_log(avctx, AV_LOG_DEBUG, "Dropping frame without sequence header\n");
  1778. return AVERROR_INVALIDDATA;
  1779. }
  1780. /* find an unused frame */
  1781. for (i = 0; i < MAX_FRAMES; i++)
  1782. if (s->all_frames[i].avframe->data[0] == NULL)
  1783. pic = &s->all_frames[i];
  1784. if (!pic) {
  1785. av_log(avctx, AV_LOG_ERROR, "framelist full\n");
  1786. return AVERROR_INVALIDDATA;
  1787. }
  1788. av_frame_unref(pic->avframe);
  1789. /* [DIRAC_STD] Defined in 9.6.1 ... */
  1790. tmp = parse_code & 0x03; /* [DIRAC_STD] num_refs() */
  1791. if (tmp > 2) {
  1792. av_log(avctx, AV_LOG_ERROR, "num_refs of 3\n");
  1793. return AVERROR_INVALIDDATA;
  1794. }
  1795. s->num_refs = tmp;
  1796. s->is_arith = (parse_code & 0x48) == 0x08; /* [DIRAC_STD] using_ac() */
  1797. s->low_delay = (parse_code & 0x88) == 0x88; /* [DIRAC_STD] is_low_delay() */
  1798. s->core_syntax = (parse_code & 0x88) == 0x08; /* [DIRAC_STD] is_core_syntax() */
  1799. s->ld_picture = (parse_code & 0xF8) == 0xC8; /* [DIRAC_STD] is_ld_picture() */
  1800. s->hq_picture = (parse_code & 0xF8) == 0xE8; /* [DIRAC_STD] is_hq_picture() */
  1801. s->dc_prediction = (parse_code & 0x28) == 0x08; /* [DIRAC_STD] using_dc_prediction() */
  1802. pic->reference = (parse_code & 0x0C) == 0x0C; /* [DIRAC_STD] is_reference() */
  1803. pic->avframe->key_frame = s->num_refs == 0; /* [DIRAC_STD] is_intra() */
  1804. pic->avframe->pict_type = s->num_refs + 1; /* Definition of AVPictureType in avutil.h */
  1805. if (s->version.minor == 2 && parse_code == 0x88)
  1806. s->ld_picture = 1;
  1807. if (s->low_delay && !(s->ld_picture || s->hq_picture) ) {
  1808. av_log(avctx, AV_LOG_ERROR, "Invalid low delay flag\n");
  1809. return AVERROR_INVALIDDATA;
  1810. }
  1811. if ((ret = get_buffer_with_edge(avctx, pic->avframe, (parse_code & 0x0C) == 0x0C ? AV_GET_BUFFER_FLAG_REF : 0)) < 0)
  1812. return ret;
  1813. s->current_picture = pic;
  1814. s->plane[0].stride = pic->avframe->linesize[0];
  1815. s->plane[1].stride = pic->avframe->linesize[1];
  1816. s->plane[2].stride = pic->avframe->linesize[2];
  1817. if (alloc_buffers(s, FFMAX3(FFABS(s->plane[0].stride), FFABS(s->plane[1].stride), FFABS(s->plane[2].stride))) < 0)
  1818. return AVERROR(ENOMEM);
  1819. /* [DIRAC_STD] 11.1 Picture parse. picture_parse() */
  1820. ret = dirac_decode_picture_header(s);
  1821. if (ret < 0)
  1822. return ret;
  1823. /* [DIRAC_STD] 13.0 Transform data syntax. transform_data() */
  1824. ret = dirac_decode_frame_internal(s);
  1825. if (ret < 0)
  1826. return ret;
  1827. }
  1828. return 0;
  1829. }
  1830. static int dirac_decode_frame(AVCodecContext *avctx, void *data, int *got_frame, AVPacket *pkt)
  1831. {
  1832. DiracContext *s = avctx->priv_data;
  1833. AVFrame *picture = data;
  1834. uint8_t *buf = pkt->data;
  1835. int buf_size = pkt->size;
  1836. int i, buf_idx = 0;
  1837. int ret;
  1838. unsigned data_unit_size;
  1839. /* release unused frames */
  1840. for (i = 0; i < MAX_FRAMES; i++)
  1841. if (s->all_frames[i].avframe->data[0] && !s->all_frames[i].reference) {
  1842. av_frame_unref(s->all_frames[i].avframe);
  1843. memset(s->all_frames[i].interpolated, 0, sizeof(s->all_frames[i].interpolated));
  1844. }
  1845. s->current_picture = NULL;
  1846. *got_frame = 0;
  1847. /* end of stream, so flush delayed pics */
  1848. if (buf_size == 0)
  1849. return get_delayed_pic(s, (AVFrame *)data, got_frame);
  1850. for (;;) {
  1851. /*[DIRAC_STD] Here starts the code from parse_info() defined in 9.6
  1852. [DIRAC_STD] PARSE_INFO_PREFIX = "BBCD" as defined in ISO/IEC 646
  1853. BBCD start code search */
  1854. for (; buf_idx + DATA_UNIT_HEADER_SIZE < buf_size; buf_idx++) {
  1855. if (buf[buf_idx ] == 'B' && buf[buf_idx+1] == 'B' &&
  1856. buf[buf_idx+2] == 'C' && buf[buf_idx+3] == 'D')
  1857. break;
  1858. }
  1859. /* BBCD found or end of data */
  1860. if (buf_idx + DATA_UNIT_HEADER_SIZE >= buf_size)
  1861. break;
  1862. data_unit_size = AV_RB32(buf+buf_idx+5);
  1863. if (data_unit_size > buf_size - buf_idx || !data_unit_size) {
  1864. if(data_unit_size > buf_size - buf_idx)
  1865. av_log(s->avctx, AV_LOG_ERROR,
  1866. "Data unit with size %d is larger than input buffer, discarding\n",
  1867. data_unit_size);
  1868. buf_idx += 4;
  1869. continue;
  1870. }
  1871. /* [DIRAC_STD] dirac_decode_data_unit makes reference to the while defined in 9.3 inside the function parse_sequence() */
  1872. ret = dirac_decode_data_unit(avctx, buf+buf_idx, data_unit_size);
  1873. if (ret < 0)
  1874. {
  1875. av_log(s->avctx, AV_LOG_ERROR,"Error in dirac_decode_data_unit\n");
  1876. return ret;
  1877. }
  1878. buf_idx += data_unit_size;
  1879. }
  1880. if (!s->current_picture)
  1881. return buf_size;
  1882. if (s->current_picture->avframe->display_picture_number > s->frame_number) {
  1883. DiracFrame *delayed_frame = remove_frame(s->delay_frames, s->frame_number);
  1884. s->current_picture->reference |= DELAYED_PIC_REF;
  1885. if (add_frame(s->delay_frames, MAX_DELAY, s->current_picture)) {
  1886. int min_num = s->delay_frames[0]->avframe->display_picture_number;
  1887. /* Too many delayed frames, so we display the frame with the lowest pts */
  1888. av_log(avctx, AV_LOG_ERROR, "Delay frame overflow\n");
  1889. for (i = 1; s->delay_frames[i]; i++)
  1890. if (s->delay_frames[i]->avframe->display_picture_number < min_num)
  1891. min_num = s->delay_frames[i]->avframe->display_picture_number;
  1892. delayed_frame = remove_frame(s->delay_frames, min_num);
  1893. add_frame(s->delay_frames, MAX_DELAY, s->current_picture);
  1894. }
  1895. if (delayed_frame) {
  1896. delayed_frame->reference ^= DELAYED_PIC_REF;
  1897. if((ret=av_frame_ref(data, delayed_frame->avframe)) < 0)
  1898. return ret;
  1899. *got_frame = 1;
  1900. }
  1901. } else if (s->current_picture->avframe->display_picture_number == s->frame_number) {
  1902. /* The right frame at the right time :-) */
  1903. if((ret=av_frame_ref(data, s->current_picture->avframe)) < 0)
  1904. return ret;
  1905. *got_frame = 1;
  1906. }
  1907. if (*got_frame)
  1908. s->frame_number = picture->display_picture_number + 1;
  1909. return buf_idx;
  1910. }
  1911. AVCodec ff_dirac_decoder = {
  1912. .name = "dirac",
  1913. .long_name = NULL_IF_CONFIG_SMALL("BBC Dirac VC-2"),
  1914. .type = AVMEDIA_TYPE_VIDEO,
  1915. .id = AV_CODEC_ID_DIRAC,
  1916. .priv_data_size = sizeof(DiracContext),
  1917. .init = dirac_decode_init,
  1918. .close = dirac_decode_end,
  1919. .decode = dirac_decode_frame,
  1920. .capabilities = AV_CODEC_CAP_DELAY | AV_CODEC_CAP_SLICE_THREADS | AV_CODEC_CAP_DR1,
  1921. .flush = dirac_decode_flush,
  1922. };