You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

950 lines
34KB

  1. /*
  2. * MPEG-4 Parametric Stereo decoding functions
  3. * Copyright (c) 2010 Alex Converse <alex.converse@gmail.com>
  4. *
  5. * This file is part of Libav.
  6. *
  7. * Libav is free software; you can redistribute it and/or
  8. * modify it under the terms of the GNU Lesser General Public
  9. * License as published by the Free Software Foundation; either
  10. * version 2.1 of the License, or (at your option) any later version.
  11. *
  12. * Libav is distributed in the hope that it will be useful,
  13. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  14. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  15. * Lesser General Public License for more details.
  16. *
  17. * You should have received a copy of the GNU Lesser General Public
  18. * License along with Libav; if not, write to the Free Software
  19. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  20. */
  21. #include <stdint.h>
  22. #include "libavutil/common.h"
  23. #include "libavutil/mathematics.h"
  24. #include "avcodec.h"
  25. #include "get_bits.h"
  26. #include "aacps.h"
  27. #include "aacps_tablegen.h"
  28. #include "aacpsdata.c"
  29. #define PS_BASELINE 0 ///< Operate in Baseline PS mode
  30. ///< Baseline implies 10 or 20 stereo bands,
  31. ///< mixing mode A, and no ipd/opd
  32. #define numQMFSlots 32 //numTimeSlots * RATE
  33. static const int8_t num_env_tab[2][4] = {
  34. { 0, 1, 2, 4, },
  35. { 1, 2, 3, 4, },
  36. };
  37. static const int8_t nr_iidicc_par_tab[] = {
  38. 10, 20, 34, 10, 20, 34,
  39. };
  40. static const int8_t nr_iidopd_par_tab[] = {
  41. 5, 11, 17, 5, 11, 17,
  42. };
  43. enum {
  44. huff_iid_df1,
  45. huff_iid_dt1,
  46. huff_iid_df0,
  47. huff_iid_dt0,
  48. huff_icc_df,
  49. huff_icc_dt,
  50. huff_ipd_df,
  51. huff_ipd_dt,
  52. huff_opd_df,
  53. huff_opd_dt,
  54. };
  55. static const int huff_iid[] = {
  56. huff_iid_df0,
  57. huff_iid_df1,
  58. huff_iid_dt0,
  59. huff_iid_dt1,
  60. };
  61. static VLC vlc_ps[10];
  62. #define READ_PAR_DATA(PAR, OFFSET, MASK, ERR_CONDITION) \
  63. /** \
  64. * Read Inter-channel Intensity Difference/Inter-Channel Coherence/ \
  65. * Inter-channel Phase Difference/Overall Phase Difference parameters from the \
  66. * bitstream. \
  67. * \
  68. * @param avctx contains the current codec context \
  69. * @param gb pointer to the input bitstream \
  70. * @param ps pointer to the Parametric Stereo context \
  71. * @param PAR pointer to the parameter to be read \
  72. * @param e envelope to decode \
  73. * @param dt 1: time delta-coded, 0: frequency delta-coded \
  74. */ \
  75. static int read_ ## PAR ## _data(AVCodecContext *avctx, GetBitContext *gb, PSContext *ps, \
  76. int8_t (*PAR)[PS_MAX_NR_IIDICC], int table_idx, int e, int dt) \
  77. { \
  78. int b, num = ps->nr_ ## PAR ## _par; \
  79. VLC_TYPE (*vlc_table)[2] = vlc_ps[table_idx].table; \
  80. if (dt) { \
  81. int e_prev = e ? e - 1 : ps->num_env_old - 1; \
  82. e_prev = FFMAX(e_prev, 0); \
  83. for (b = 0; b < num; b++) { \
  84. int val = PAR[e_prev][b] + get_vlc2(gb, vlc_table, 9, 3) - OFFSET; \
  85. if (MASK) val &= MASK; \
  86. PAR[e][b] = val; \
  87. if (ERR_CONDITION) \
  88. goto err; \
  89. } \
  90. } else { \
  91. int val = 0; \
  92. for (b = 0; b < num; b++) { \
  93. val += get_vlc2(gb, vlc_table, 9, 3) - OFFSET; \
  94. if (MASK) val &= MASK; \
  95. PAR[e][b] = val; \
  96. if (ERR_CONDITION) \
  97. goto err; \
  98. } \
  99. } \
  100. return 0; \
  101. err: \
  102. av_log(avctx, AV_LOG_ERROR, "illegal "#PAR"\n"); \
  103. return -1; \
  104. }
  105. READ_PAR_DATA(iid, huff_offset[table_idx], 0, FFABS(ps->iid_par[e][b]) > 7 + 8 * ps->iid_quant)
  106. READ_PAR_DATA(icc, huff_offset[table_idx], 0, ps->icc_par[e][b] > 7U)
  107. READ_PAR_DATA(ipdopd, 0, 0x07, 0)
  108. static int ps_read_extension_data(GetBitContext *gb, PSContext *ps, int ps_extension_id)
  109. {
  110. int e;
  111. int count = get_bits_count(gb);
  112. if (ps_extension_id)
  113. return 0;
  114. ps->enable_ipdopd = get_bits1(gb);
  115. if (ps->enable_ipdopd) {
  116. for (e = 0; e < ps->num_env; e++) {
  117. int dt = get_bits1(gb);
  118. read_ipdopd_data(NULL, gb, ps, ps->ipd_par, dt ? huff_ipd_dt : huff_ipd_df, e, dt);
  119. dt = get_bits1(gb);
  120. read_ipdopd_data(NULL, gb, ps, ps->opd_par, dt ? huff_opd_dt : huff_opd_df, e, dt);
  121. }
  122. }
  123. skip_bits1(gb); //reserved_ps
  124. return get_bits_count(gb) - count;
  125. }
  126. static void ipdopd_reset(int8_t *opd_hist, int8_t *ipd_hist)
  127. {
  128. int i;
  129. for (i = 0; i < PS_MAX_NR_IPDOPD; i++) {
  130. opd_hist[i] = 0;
  131. ipd_hist[i] = 0;
  132. }
  133. }
  134. int ff_ps_read_data(AVCodecContext *avctx, GetBitContext *gb_host, PSContext *ps, int bits_left)
  135. {
  136. int e;
  137. int bit_count_start = get_bits_count(gb_host);
  138. int header;
  139. int bits_consumed;
  140. GetBitContext gbc = *gb_host, *gb = &gbc;
  141. header = get_bits1(gb);
  142. if (header) { //enable_ps_header
  143. ps->enable_iid = get_bits1(gb);
  144. if (ps->enable_iid) {
  145. int iid_mode = get_bits(gb, 3);
  146. if (iid_mode > 5) {
  147. av_log(avctx, AV_LOG_ERROR, "iid_mode %d is reserved.\n",
  148. iid_mode);
  149. goto err;
  150. }
  151. ps->nr_iid_par = nr_iidicc_par_tab[iid_mode];
  152. ps->iid_quant = iid_mode > 2;
  153. ps->nr_ipdopd_par = nr_iidopd_par_tab[iid_mode];
  154. }
  155. ps->enable_icc = get_bits1(gb);
  156. if (ps->enable_icc) {
  157. ps->icc_mode = get_bits(gb, 3);
  158. if (ps->icc_mode > 5) {
  159. av_log(avctx, AV_LOG_ERROR, "icc_mode %d is reserved.\n",
  160. ps->icc_mode);
  161. goto err;
  162. }
  163. ps->nr_icc_par = nr_iidicc_par_tab[ps->icc_mode];
  164. }
  165. ps->enable_ext = get_bits1(gb);
  166. }
  167. ps->frame_class = get_bits1(gb);
  168. ps->num_env_old = ps->num_env;
  169. ps->num_env = num_env_tab[ps->frame_class][get_bits(gb, 2)];
  170. ps->border_position[0] = -1;
  171. if (ps->frame_class) {
  172. for (e = 1; e <= ps->num_env; e++)
  173. ps->border_position[e] = get_bits(gb, 5);
  174. } else
  175. for (e = 1; e <= ps->num_env; e++)
  176. ps->border_position[e] = (e * numQMFSlots >> ff_log2_tab[ps->num_env]) - 1;
  177. if (ps->enable_iid) {
  178. for (e = 0; e < ps->num_env; e++) {
  179. int dt = get_bits1(gb);
  180. if (read_iid_data(avctx, gb, ps, ps->iid_par, huff_iid[2*dt+ps->iid_quant], e, dt))
  181. goto err;
  182. }
  183. } else
  184. memset(ps->iid_par, 0, sizeof(ps->iid_par));
  185. if (ps->enable_icc)
  186. for (e = 0; e < ps->num_env; e++) {
  187. int dt = get_bits1(gb);
  188. if (read_icc_data(avctx, gb, ps, ps->icc_par, dt ? huff_icc_dt : huff_icc_df, e, dt))
  189. goto err;
  190. }
  191. else
  192. memset(ps->icc_par, 0, sizeof(ps->icc_par));
  193. if (ps->enable_ext) {
  194. int cnt = get_bits(gb, 4);
  195. if (cnt == 15) {
  196. cnt += get_bits(gb, 8);
  197. }
  198. cnt *= 8;
  199. while (cnt > 7) {
  200. int ps_extension_id = get_bits(gb, 2);
  201. cnt -= 2 + ps_read_extension_data(gb, ps, ps_extension_id);
  202. }
  203. if (cnt < 0) {
  204. av_log(avctx, AV_LOG_ERROR, "ps extension overflow %d\n", cnt);
  205. goto err;
  206. }
  207. skip_bits(gb, cnt);
  208. }
  209. ps->enable_ipdopd &= !PS_BASELINE;
  210. //Fix up envelopes
  211. if (!ps->num_env || ps->border_position[ps->num_env] < numQMFSlots - 1) {
  212. //Create a fake envelope
  213. int source = ps->num_env ? ps->num_env - 1 : ps->num_env_old - 1;
  214. if (source >= 0 && source != ps->num_env) {
  215. if (ps->enable_iid) {
  216. memcpy(ps->iid_par+ps->num_env, ps->iid_par+source, sizeof(ps->iid_par[0]));
  217. }
  218. if (ps->enable_icc) {
  219. memcpy(ps->icc_par+ps->num_env, ps->icc_par+source, sizeof(ps->icc_par[0]));
  220. }
  221. if (ps->enable_ipdopd) {
  222. memcpy(ps->ipd_par+ps->num_env, ps->ipd_par+source, sizeof(ps->ipd_par[0]));
  223. memcpy(ps->opd_par+ps->num_env, ps->opd_par+source, sizeof(ps->opd_par[0]));
  224. }
  225. }
  226. ps->num_env++;
  227. ps->border_position[ps->num_env] = numQMFSlots - 1;
  228. }
  229. ps->is34bands_old = ps->is34bands;
  230. if (!PS_BASELINE && (ps->enable_iid || ps->enable_icc))
  231. ps->is34bands = (ps->enable_iid && ps->nr_iid_par == 34) ||
  232. (ps->enable_icc && ps->nr_icc_par == 34);
  233. //Baseline
  234. if (!ps->enable_ipdopd) {
  235. memset(ps->ipd_par, 0, sizeof(ps->ipd_par));
  236. memset(ps->opd_par, 0, sizeof(ps->opd_par));
  237. }
  238. if (header)
  239. ps->start = 1;
  240. bits_consumed = get_bits_count(gb) - bit_count_start;
  241. if (bits_consumed <= bits_left) {
  242. skip_bits_long(gb_host, bits_consumed);
  243. return bits_consumed;
  244. }
  245. av_log(avctx, AV_LOG_ERROR, "Expected to read %d PS bits actually read %d.\n", bits_left, bits_consumed);
  246. err:
  247. ps->start = 0;
  248. skip_bits_long(gb_host, bits_left);
  249. memset(ps->iid_par, 0, sizeof(ps->iid_par));
  250. memset(ps->icc_par, 0, sizeof(ps->icc_par));
  251. memset(ps->ipd_par, 0, sizeof(ps->ipd_par));
  252. memset(ps->opd_par, 0, sizeof(ps->opd_par));
  253. return bits_left;
  254. }
  255. /** Split one subband into 2 subsubbands with a symmetric real filter.
  256. * The filter must have its non-center even coefficients equal to zero. */
  257. static void hybrid2_re(float (*in)[2], float (*out)[32][2], const float filter[7], int len, int reverse)
  258. {
  259. int i, j;
  260. for (i = 0; i < len; i++, in++) {
  261. float re_in = filter[6] * in[6][0]; //real inphase
  262. float re_op = 0.0f; //real out of phase
  263. float im_in = filter[6] * in[6][1]; //imag inphase
  264. float im_op = 0.0f; //imag out of phase
  265. for (j = 0; j < 6; j += 2) {
  266. re_op += filter[j+1] * (in[j+1][0] + in[12-j-1][0]);
  267. im_op += filter[j+1] * (in[j+1][1] + in[12-j-1][1]);
  268. }
  269. out[ reverse][i][0] = re_in + re_op;
  270. out[ reverse][i][1] = im_in + im_op;
  271. out[!reverse][i][0] = re_in - re_op;
  272. out[!reverse][i][1] = im_in - im_op;
  273. }
  274. }
  275. /** Split one subband into 6 subsubbands with a complex filter */
  276. static void hybrid6_cx(PSDSPContext *dsp, float (*in)[2], float (*out)[32][2], const float (*filter)[7][2], int len)
  277. {
  278. int i;
  279. int N = 8;
  280. float temp[8][2];
  281. for (i = 0; i < len; i++, in++) {
  282. dsp->hybrid_analysis(temp, in, filter, 1, N);
  283. out[0][i][0] = temp[6][0];
  284. out[0][i][1] = temp[6][1];
  285. out[1][i][0] = temp[7][0];
  286. out[1][i][1] = temp[7][1];
  287. out[2][i][0] = temp[0][0];
  288. out[2][i][1] = temp[0][1];
  289. out[3][i][0] = temp[1][0];
  290. out[3][i][1] = temp[1][1];
  291. out[4][i][0] = temp[2][0] + temp[5][0];
  292. out[4][i][1] = temp[2][1] + temp[5][1];
  293. out[5][i][0] = temp[3][0] + temp[4][0];
  294. out[5][i][1] = temp[3][1] + temp[4][1];
  295. }
  296. }
  297. static void hybrid4_8_12_cx(PSDSPContext *dsp, float (*in)[2], float (*out)[32][2], const float (*filter)[7][2], int N, int len)
  298. {
  299. int i;
  300. for (i = 0; i < len; i++, in++) {
  301. dsp->hybrid_analysis(out[0] + i, in, filter, 32, N);
  302. }
  303. }
  304. static void hybrid_analysis(PSDSPContext *dsp, float out[91][32][2],
  305. float in[5][44][2], float L[2][38][64],
  306. int is34, int len)
  307. {
  308. int i, j;
  309. for (i = 0; i < 5; i++) {
  310. for (j = 0; j < 38; j++) {
  311. in[i][j+6][0] = L[0][j][i];
  312. in[i][j+6][1] = L[1][j][i];
  313. }
  314. }
  315. if (is34) {
  316. hybrid4_8_12_cx(dsp, in[0], out, f34_0_12, 12, len);
  317. hybrid4_8_12_cx(dsp, in[1], out+12, f34_1_8, 8, len);
  318. hybrid4_8_12_cx(dsp, in[2], out+20, f34_2_4, 4, len);
  319. hybrid4_8_12_cx(dsp, in[3], out+24, f34_2_4, 4, len);
  320. hybrid4_8_12_cx(dsp, in[4], out+28, f34_2_4, 4, len);
  321. dsp->hybrid_analysis_ileave(out + 27, L, 5, len);
  322. } else {
  323. hybrid6_cx(dsp, in[0], out, f20_0_8, len);
  324. hybrid2_re(in[1], out+6, g1_Q2, len, 1);
  325. hybrid2_re(in[2], out+8, g1_Q2, len, 0);
  326. dsp->hybrid_analysis_ileave(out + 7, L, 3, len);
  327. }
  328. //update in_buf
  329. for (i = 0; i < 5; i++) {
  330. memcpy(in[i], in[i]+32, 6 * sizeof(in[i][0]));
  331. }
  332. }
  333. static void hybrid_synthesis(PSDSPContext *dsp, float out[2][38][64],
  334. float in[91][32][2], int is34, int len)
  335. {
  336. int i, n;
  337. if (is34) {
  338. for (n = 0; n < len; n++) {
  339. memset(out[0][n], 0, 5*sizeof(out[0][n][0]));
  340. memset(out[1][n], 0, 5*sizeof(out[1][n][0]));
  341. for (i = 0; i < 12; i++) {
  342. out[0][n][0] += in[ i][n][0];
  343. out[1][n][0] += in[ i][n][1];
  344. }
  345. for (i = 0; i < 8; i++) {
  346. out[0][n][1] += in[12+i][n][0];
  347. out[1][n][1] += in[12+i][n][1];
  348. }
  349. for (i = 0; i < 4; i++) {
  350. out[0][n][2] += in[20+i][n][0];
  351. out[1][n][2] += in[20+i][n][1];
  352. out[0][n][3] += in[24+i][n][0];
  353. out[1][n][3] += in[24+i][n][1];
  354. out[0][n][4] += in[28+i][n][0];
  355. out[1][n][4] += in[28+i][n][1];
  356. }
  357. }
  358. dsp->hybrid_synthesis_deint(out, in + 27, 5, len);
  359. } else {
  360. for (n = 0; n < len; n++) {
  361. out[0][n][0] = in[0][n][0] + in[1][n][0] + in[2][n][0] +
  362. in[3][n][0] + in[4][n][0] + in[5][n][0];
  363. out[1][n][0] = in[0][n][1] + in[1][n][1] + in[2][n][1] +
  364. in[3][n][1] + in[4][n][1] + in[5][n][1];
  365. out[0][n][1] = in[6][n][0] + in[7][n][0];
  366. out[1][n][1] = in[6][n][1] + in[7][n][1];
  367. out[0][n][2] = in[8][n][0] + in[9][n][0];
  368. out[1][n][2] = in[8][n][1] + in[9][n][1];
  369. }
  370. dsp->hybrid_synthesis_deint(out, in + 7, 3, len);
  371. }
  372. }
  373. /// All-pass filter decay slope
  374. #define DECAY_SLOPE 0.05f
  375. /// Number of frequency bands that can be addressed by the parameter index, b(k)
  376. static const int NR_PAR_BANDS[] = { 20, 34 };
  377. /// Number of frequency bands that can be addressed by the sub subband index, k
  378. static const int NR_BANDS[] = { 71, 91 };
  379. /// Start frequency band for the all-pass filter decay slope
  380. static const int DECAY_CUTOFF[] = { 10, 32 };
  381. /// Number of all-pass filer bands
  382. static const int NR_ALLPASS_BANDS[] = { 30, 50 };
  383. /// First stereo band using the short one sample delay
  384. static const int SHORT_DELAY_BAND[] = { 42, 62 };
  385. /** Table 8.46 */
  386. static void map_idx_10_to_20(int8_t *par_mapped, const int8_t *par, int full)
  387. {
  388. int b;
  389. if (full)
  390. b = 9;
  391. else {
  392. b = 4;
  393. par_mapped[10] = 0;
  394. }
  395. for (; b >= 0; b--) {
  396. par_mapped[2*b+1] = par_mapped[2*b] = par[b];
  397. }
  398. }
  399. static void map_idx_34_to_20(int8_t *par_mapped, const int8_t *par, int full)
  400. {
  401. par_mapped[ 0] = (2*par[ 0] + par[ 1]) / 3;
  402. par_mapped[ 1] = ( par[ 1] + 2*par[ 2]) / 3;
  403. par_mapped[ 2] = (2*par[ 3] + par[ 4]) / 3;
  404. par_mapped[ 3] = ( par[ 4] + 2*par[ 5]) / 3;
  405. par_mapped[ 4] = ( par[ 6] + par[ 7]) / 2;
  406. par_mapped[ 5] = ( par[ 8] + par[ 9]) / 2;
  407. par_mapped[ 6] = par[10];
  408. par_mapped[ 7] = par[11];
  409. par_mapped[ 8] = ( par[12] + par[13]) / 2;
  410. par_mapped[ 9] = ( par[14] + par[15]) / 2;
  411. par_mapped[10] = par[16];
  412. if (full) {
  413. par_mapped[11] = par[17];
  414. par_mapped[12] = par[18];
  415. par_mapped[13] = par[19];
  416. par_mapped[14] = ( par[20] + par[21]) / 2;
  417. par_mapped[15] = ( par[22] + par[23]) / 2;
  418. par_mapped[16] = ( par[24] + par[25]) / 2;
  419. par_mapped[17] = ( par[26] + par[27]) / 2;
  420. par_mapped[18] = ( par[28] + par[29] + par[30] + par[31]) / 4;
  421. par_mapped[19] = ( par[32] + par[33]) / 2;
  422. }
  423. }
  424. static void map_val_34_to_20(float par[PS_MAX_NR_IIDICC])
  425. {
  426. par[ 0] = (2*par[ 0] + par[ 1]) * 0.33333333f;
  427. par[ 1] = ( par[ 1] + 2*par[ 2]) * 0.33333333f;
  428. par[ 2] = (2*par[ 3] + par[ 4]) * 0.33333333f;
  429. par[ 3] = ( par[ 4] + 2*par[ 5]) * 0.33333333f;
  430. par[ 4] = ( par[ 6] + par[ 7]) * 0.5f;
  431. par[ 5] = ( par[ 8] + par[ 9]) * 0.5f;
  432. par[ 6] = par[10];
  433. par[ 7] = par[11];
  434. par[ 8] = ( par[12] + par[13]) * 0.5f;
  435. par[ 9] = ( par[14] + par[15]) * 0.5f;
  436. par[10] = par[16];
  437. par[11] = par[17];
  438. par[12] = par[18];
  439. par[13] = par[19];
  440. par[14] = ( par[20] + par[21]) * 0.5f;
  441. par[15] = ( par[22] + par[23]) * 0.5f;
  442. par[16] = ( par[24] + par[25]) * 0.5f;
  443. par[17] = ( par[26] + par[27]) * 0.5f;
  444. par[18] = ( par[28] + par[29] + par[30] + par[31]) * 0.25f;
  445. par[19] = ( par[32] + par[33]) * 0.5f;
  446. }
  447. static void map_idx_10_to_34(int8_t *par_mapped, const int8_t *par, int full)
  448. {
  449. if (full) {
  450. par_mapped[33] = par[9];
  451. par_mapped[32] = par[9];
  452. par_mapped[31] = par[9];
  453. par_mapped[30] = par[9];
  454. par_mapped[29] = par[9];
  455. par_mapped[28] = par[9];
  456. par_mapped[27] = par[8];
  457. par_mapped[26] = par[8];
  458. par_mapped[25] = par[8];
  459. par_mapped[24] = par[8];
  460. par_mapped[23] = par[7];
  461. par_mapped[22] = par[7];
  462. par_mapped[21] = par[7];
  463. par_mapped[20] = par[7];
  464. par_mapped[19] = par[6];
  465. par_mapped[18] = par[6];
  466. par_mapped[17] = par[5];
  467. par_mapped[16] = par[5];
  468. } else {
  469. par_mapped[16] = 0;
  470. }
  471. par_mapped[15] = par[4];
  472. par_mapped[14] = par[4];
  473. par_mapped[13] = par[4];
  474. par_mapped[12] = par[4];
  475. par_mapped[11] = par[3];
  476. par_mapped[10] = par[3];
  477. par_mapped[ 9] = par[2];
  478. par_mapped[ 8] = par[2];
  479. par_mapped[ 7] = par[2];
  480. par_mapped[ 6] = par[2];
  481. par_mapped[ 5] = par[1];
  482. par_mapped[ 4] = par[1];
  483. par_mapped[ 3] = par[1];
  484. par_mapped[ 2] = par[0];
  485. par_mapped[ 1] = par[0];
  486. par_mapped[ 0] = par[0];
  487. }
  488. static void map_idx_20_to_34(int8_t *par_mapped, const int8_t *par, int full)
  489. {
  490. if (full) {
  491. par_mapped[33] = par[19];
  492. par_mapped[32] = par[19];
  493. par_mapped[31] = par[18];
  494. par_mapped[30] = par[18];
  495. par_mapped[29] = par[18];
  496. par_mapped[28] = par[18];
  497. par_mapped[27] = par[17];
  498. par_mapped[26] = par[17];
  499. par_mapped[25] = par[16];
  500. par_mapped[24] = par[16];
  501. par_mapped[23] = par[15];
  502. par_mapped[22] = par[15];
  503. par_mapped[21] = par[14];
  504. par_mapped[20] = par[14];
  505. par_mapped[19] = par[13];
  506. par_mapped[18] = par[12];
  507. par_mapped[17] = par[11];
  508. }
  509. par_mapped[16] = par[10];
  510. par_mapped[15] = par[ 9];
  511. par_mapped[14] = par[ 9];
  512. par_mapped[13] = par[ 8];
  513. par_mapped[12] = par[ 8];
  514. par_mapped[11] = par[ 7];
  515. par_mapped[10] = par[ 6];
  516. par_mapped[ 9] = par[ 5];
  517. par_mapped[ 8] = par[ 5];
  518. par_mapped[ 7] = par[ 4];
  519. par_mapped[ 6] = par[ 4];
  520. par_mapped[ 5] = par[ 3];
  521. par_mapped[ 4] = (par[ 2] + par[ 3]) / 2;
  522. par_mapped[ 3] = par[ 2];
  523. par_mapped[ 2] = par[ 1];
  524. par_mapped[ 1] = (par[ 0] + par[ 1]) / 2;
  525. par_mapped[ 0] = par[ 0];
  526. }
  527. static void map_val_20_to_34(float par[PS_MAX_NR_IIDICC])
  528. {
  529. par[33] = par[19];
  530. par[32] = par[19];
  531. par[31] = par[18];
  532. par[30] = par[18];
  533. par[29] = par[18];
  534. par[28] = par[18];
  535. par[27] = par[17];
  536. par[26] = par[17];
  537. par[25] = par[16];
  538. par[24] = par[16];
  539. par[23] = par[15];
  540. par[22] = par[15];
  541. par[21] = par[14];
  542. par[20] = par[14];
  543. par[19] = par[13];
  544. par[18] = par[12];
  545. par[17] = par[11];
  546. par[16] = par[10];
  547. par[15] = par[ 9];
  548. par[14] = par[ 9];
  549. par[13] = par[ 8];
  550. par[12] = par[ 8];
  551. par[11] = par[ 7];
  552. par[10] = par[ 6];
  553. par[ 9] = par[ 5];
  554. par[ 8] = par[ 5];
  555. par[ 7] = par[ 4];
  556. par[ 6] = par[ 4];
  557. par[ 5] = par[ 3];
  558. par[ 4] = (par[ 2] + par[ 3]) * 0.5f;
  559. par[ 3] = par[ 2];
  560. par[ 2] = par[ 1];
  561. par[ 1] = (par[ 0] + par[ 1]) * 0.5f;
  562. par[ 0] = par[ 0];
  563. }
  564. static void decorrelation(PSContext *ps, float (*out)[32][2], const float (*s)[32][2], int is34)
  565. {
  566. float power[34][PS_QMF_TIME_SLOTS] = {{0}};
  567. float transient_gain[34][PS_QMF_TIME_SLOTS];
  568. float *peak_decay_nrg = ps->peak_decay_nrg;
  569. float *power_smooth = ps->power_smooth;
  570. float *peak_decay_diff_smooth = ps->peak_decay_diff_smooth;
  571. float (*delay)[PS_QMF_TIME_SLOTS + PS_MAX_DELAY][2] = ps->delay;
  572. float (*ap_delay)[PS_AP_LINKS][PS_QMF_TIME_SLOTS + PS_MAX_AP_DELAY][2] = ps->ap_delay;
  573. const int8_t *k_to_i = is34 ? k_to_i_34 : k_to_i_20;
  574. const float peak_decay_factor = 0.76592833836465f;
  575. const float transient_impact = 1.5f;
  576. const float a_smooth = 0.25f; ///< Smoothing coefficient
  577. int i, k, m, n;
  578. int n0 = 0, nL = 32;
  579. if (is34 != ps->is34bands_old) {
  580. memset(ps->peak_decay_nrg, 0, sizeof(ps->peak_decay_nrg));
  581. memset(ps->power_smooth, 0, sizeof(ps->power_smooth));
  582. memset(ps->peak_decay_diff_smooth, 0, sizeof(ps->peak_decay_diff_smooth));
  583. memset(ps->delay, 0, sizeof(ps->delay));
  584. memset(ps->ap_delay, 0, sizeof(ps->ap_delay));
  585. }
  586. for (k = 0; k < NR_BANDS[is34]; k++) {
  587. int i = k_to_i[k];
  588. ps->dsp.add_squares(power[i], s[k], nL - n0);
  589. }
  590. //Transient detection
  591. for (i = 0; i < NR_PAR_BANDS[is34]; i++) {
  592. for (n = n0; n < nL; n++) {
  593. float decayed_peak = peak_decay_factor * peak_decay_nrg[i];
  594. float denom;
  595. peak_decay_nrg[i] = FFMAX(decayed_peak, power[i][n]);
  596. power_smooth[i] += a_smooth * (power[i][n] - power_smooth[i]);
  597. peak_decay_diff_smooth[i] += a_smooth * (peak_decay_nrg[i] - power[i][n] - peak_decay_diff_smooth[i]);
  598. denom = transient_impact * peak_decay_diff_smooth[i];
  599. transient_gain[i][n] = (denom > power_smooth[i]) ?
  600. power_smooth[i] / denom : 1.0f;
  601. }
  602. }
  603. //Decorrelation and transient reduction
  604. // PS_AP_LINKS - 1
  605. // -----
  606. // | | Q_fract_allpass[k][m]*z^-link_delay[m] - a[m]*g_decay_slope[k]
  607. //H[k][z] = z^-2 * phi_fract[k] * | | ----------------------------------------------------------------
  608. // | | 1 - a[m]*g_decay_slope[k]*Q_fract_allpass[k][m]*z^-link_delay[m]
  609. // m = 0
  610. //d[k][z] (out) = transient_gain_mapped[k][z] * H[k][z] * s[k][z]
  611. for (k = 0; k < NR_ALLPASS_BANDS[is34]; k++) {
  612. int b = k_to_i[k];
  613. float g_decay_slope = 1.f - DECAY_SLOPE * (k - DECAY_CUTOFF[is34]);
  614. g_decay_slope = av_clipf(g_decay_slope, 0.f, 1.f);
  615. memcpy(delay[k], delay[k]+nL, PS_MAX_DELAY*sizeof(delay[k][0]));
  616. memcpy(delay[k]+PS_MAX_DELAY, s[k], numQMFSlots*sizeof(delay[k][0]));
  617. for (m = 0; m < PS_AP_LINKS; m++) {
  618. memcpy(ap_delay[k][m], ap_delay[k][m]+numQMFSlots, 5*sizeof(ap_delay[k][m][0]));
  619. }
  620. ps->dsp.decorrelate(out[k], delay[k] + PS_MAX_DELAY - 2, ap_delay[k],
  621. phi_fract[is34][k], Q_fract_allpass[is34][k],
  622. transient_gain[b], g_decay_slope, nL - n0);
  623. }
  624. for (; k < SHORT_DELAY_BAND[is34]; k++) {
  625. int i = k_to_i[k];
  626. memcpy(delay[k], delay[k]+nL, PS_MAX_DELAY*sizeof(delay[k][0]));
  627. memcpy(delay[k]+PS_MAX_DELAY, s[k], numQMFSlots*sizeof(delay[k][0]));
  628. //H = delay 14
  629. ps->dsp.mul_pair_single(out[k], delay[k] + PS_MAX_DELAY - 14,
  630. transient_gain[i], nL - n0);
  631. }
  632. for (; k < NR_BANDS[is34]; k++) {
  633. int i = k_to_i[k];
  634. memcpy(delay[k], delay[k]+nL, PS_MAX_DELAY*sizeof(delay[k][0]));
  635. memcpy(delay[k]+PS_MAX_DELAY, s[k], numQMFSlots*sizeof(delay[k][0]));
  636. //H = delay 1
  637. ps->dsp.mul_pair_single(out[k], delay[k] + PS_MAX_DELAY - 1,
  638. transient_gain[i], nL - n0);
  639. }
  640. }
  641. static void remap34(int8_t (**p_par_mapped)[PS_MAX_NR_IIDICC],
  642. int8_t (*par)[PS_MAX_NR_IIDICC],
  643. int num_par, int num_env, int full)
  644. {
  645. int8_t (*par_mapped)[PS_MAX_NR_IIDICC] = *p_par_mapped;
  646. int e;
  647. if (num_par == 20 || num_par == 11) {
  648. for (e = 0; e < num_env; e++) {
  649. map_idx_20_to_34(par_mapped[e], par[e], full);
  650. }
  651. } else if (num_par == 10 || num_par == 5) {
  652. for (e = 0; e < num_env; e++) {
  653. map_idx_10_to_34(par_mapped[e], par[e], full);
  654. }
  655. } else {
  656. *p_par_mapped = par;
  657. }
  658. }
  659. static void remap20(int8_t (**p_par_mapped)[PS_MAX_NR_IIDICC],
  660. int8_t (*par)[PS_MAX_NR_IIDICC],
  661. int num_par, int num_env, int full)
  662. {
  663. int8_t (*par_mapped)[PS_MAX_NR_IIDICC] = *p_par_mapped;
  664. int e;
  665. if (num_par == 34 || num_par == 17) {
  666. for (e = 0; e < num_env; e++) {
  667. map_idx_34_to_20(par_mapped[e], par[e], full);
  668. }
  669. } else if (num_par == 10 || num_par == 5) {
  670. for (e = 0; e < num_env; e++) {
  671. map_idx_10_to_20(par_mapped[e], par[e], full);
  672. }
  673. } else {
  674. *p_par_mapped = par;
  675. }
  676. }
  677. static void stereo_processing(PSContext *ps, float (*l)[32][2], float (*r)[32][2], int is34)
  678. {
  679. int e, b, k;
  680. float (*H11)[PS_MAX_NUM_ENV+1][PS_MAX_NR_IIDICC] = ps->H11;
  681. float (*H12)[PS_MAX_NUM_ENV+1][PS_MAX_NR_IIDICC] = ps->H12;
  682. float (*H21)[PS_MAX_NUM_ENV+1][PS_MAX_NR_IIDICC] = ps->H21;
  683. float (*H22)[PS_MAX_NUM_ENV+1][PS_MAX_NR_IIDICC] = ps->H22;
  684. int8_t *opd_hist = ps->opd_hist;
  685. int8_t *ipd_hist = ps->ipd_hist;
  686. int8_t iid_mapped_buf[PS_MAX_NUM_ENV][PS_MAX_NR_IIDICC];
  687. int8_t icc_mapped_buf[PS_MAX_NUM_ENV][PS_MAX_NR_IIDICC];
  688. int8_t ipd_mapped_buf[PS_MAX_NUM_ENV][PS_MAX_NR_IIDICC];
  689. int8_t opd_mapped_buf[PS_MAX_NUM_ENV][PS_MAX_NR_IIDICC];
  690. int8_t (*iid_mapped)[PS_MAX_NR_IIDICC] = iid_mapped_buf;
  691. int8_t (*icc_mapped)[PS_MAX_NR_IIDICC] = icc_mapped_buf;
  692. int8_t (*ipd_mapped)[PS_MAX_NR_IIDICC] = ipd_mapped_buf;
  693. int8_t (*opd_mapped)[PS_MAX_NR_IIDICC] = opd_mapped_buf;
  694. const int8_t *k_to_i = is34 ? k_to_i_34 : k_to_i_20;
  695. const float (*H_LUT)[8][4] = (PS_BASELINE || ps->icc_mode < 3) ? HA : HB;
  696. //Remapping
  697. if (ps->num_env_old) {
  698. memcpy(H11[0][0], H11[0][ps->num_env_old], PS_MAX_NR_IIDICC*sizeof(H11[0][0][0]));
  699. memcpy(H11[1][0], H11[1][ps->num_env_old], PS_MAX_NR_IIDICC*sizeof(H11[1][0][0]));
  700. memcpy(H12[0][0], H12[0][ps->num_env_old], PS_MAX_NR_IIDICC*sizeof(H12[0][0][0]));
  701. memcpy(H12[1][0], H12[1][ps->num_env_old], PS_MAX_NR_IIDICC*sizeof(H12[1][0][0]));
  702. memcpy(H21[0][0], H21[0][ps->num_env_old], PS_MAX_NR_IIDICC*sizeof(H21[0][0][0]));
  703. memcpy(H21[1][0], H21[1][ps->num_env_old], PS_MAX_NR_IIDICC*sizeof(H21[1][0][0]));
  704. memcpy(H22[0][0], H22[0][ps->num_env_old], PS_MAX_NR_IIDICC*sizeof(H22[0][0][0]));
  705. memcpy(H22[1][0], H22[1][ps->num_env_old], PS_MAX_NR_IIDICC*sizeof(H22[1][0][0]));
  706. }
  707. if (is34) {
  708. remap34(&iid_mapped, ps->iid_par, ps->nr_iid_par, ps->num_env, 1);
  709. remap34(&icc_mapped, ps->icc_par, ps->nr_icc_par, ps->num_env, 1);
  710. if (ps->enable_ipdopd) {
  711. remap34(&ipd_mapped, ps->ipd_par, ps->nr_ipdopd_par, ps->num_env, 0);
  712. remap34(&opd_mapped, ps->opd_par, ps->nr_ipdopd_par, ps->num_env, 0);
  713. }
  714. if (!ps->is34bands_old) {
  715. map_val_20_to_34(H11[0][0]);
  716. map_val_20_to_34(H11[1][0]);
  717. map_val_20_to_34(H12[0][0]);
  718. map_val_20_to_34(H12[1][0]);
  719. map_val_20_to_34(H21[0][0]);
  720. map_val_20_to_34(H21[1][0]);
  721. map_val_20_to_34(H22[0][0]);
  722. map_val_20_to_34(H22[1][0]);
  723. ipdopd_reset(ipd_hist, opd_hist);
  724. }
  725. } else {
  726. remap20(&iid_mapped, ps->iid_par, ps->nr_iid_par, ps->num_env, 1);
  727. remap20(&icc_mapped, ps->icc_par, ps->nr_icc_par, ps->num_env, 1);
  728. if (ps->enable_ipdopd) {
  729. remap20(&ipd_mapped, ps->ipd_par, ps->nr_ipdopd_par, ps->num_env, 0);
  730. remap20(&opd_mapped, ps->opd_par, ps->nr_ipdopd_par, ps->num_env, 0);
  731. }
  732. if (ps->is34bands_old) {
  733. map_val_34_to_20(H11[0][0]);
  734. map_val_34_to_20(H11[1][0]);
  735. map_val_34_to_20(H12[0][0]);
  736. map_val_34_to_20(H12[1][0]);
  737. map_val_34_to_20(H21[0][0]);
  738. map_val_34_to_20(H21[1][0]);
  739. map_val_34_to_20(H22[0][0]);
  740. map_val_34_to_20(H22[1][0]);
  741. ipdopd_reset(ipd_hist, opd_hist);
  742. }
  743. }
  744. //Mixing
  745. for (e = 0; e < ps->num_env; e++) {
  746. for (b = 0; b < NR_PAR_BANDS[is34]; b++) {
  747. float h11, h12, h21, h22;
  748. h11 = H_LUT[iid_mapped[e][b] + 7 + 23 * ps->iid_quant][icc_mapped[e][b]][0];
  749. h12 = H_LUT[iid_mapped[e][b] + 7 + 23 * ps->iid_quant][icc_mapped[e][b]][1];
  750. h21 = H_LUT[iid_mapped[e][b] + 7 + 23 * ps->iid_quant][icc_mapped[e][b]][2];
  751. h22 = H_LUT[iid_mapped[e][b] + 7 + 23 * ps->iid_quant][icc_mapped[e][b]][3];
  752. if (!PS_BASELINE && ps->enable_ipdopd && b < ps->nr_ipdopd_par) {
  753. //The spec say says to only run this smoother when enable_ipdopd
  754. //is set but the reference decoder appears to run it constantly
  755. float h11i, h12i, h21i, h22i;
  756. float ipd_adj_re, ipd_adj_im;
  757. int opd_idx = opd_hist[b] * 8 + opd_mapped[e][b];
  758. int ipd_idx = ipd_hist[b] * 8 + ipd_mapped[e][b];
  759. float opd_re = pd_re_smooth[opd_idx];
  760. float opd_im = pd_im_smooth[opd_idx];
  761. float ipd_re = pd_re_smooth[ipd_idx];
  762. float ipd_im = pd_im_smooth[ipd_idx];
  763. opd_hist[b] = opd_idx & 0x3F;
  764. ipd_hist[b] = ipd_idx & 0x3F;
  765. ipd_adj_re = opd_re*ipd_re + opd_im*ipd_im;
  766. ipd_adj_im = opd_im*ipd_re - opd_re*ipd_im;
  767. h11i = h11 * opd_im;
  768. h11 = h11 * opd_re;
  769. h12i = h12 * ipd_adj_im;
  770. h12 = h12 * ipd_adj_re;
  771. h21i = h21 * opd_im;
  772. h21 = h21 * opd_re;
  773. h22i = h22 * ipd_adj_im;
  774. h22 = h22 * ipd_adj_re;
  775. H11[1][e+1][b] = h11i;
  776. H12[1][e+1][b] = h12i;
  777. H21[1][e+1][b] = h21i;
  778. H22[1][e+1][b] = h22i;
  779. }
  780. H11[0][e+1][b] = h11;
  781. H12[0][e+1][b] = h12;
  782. H21[0][e+1][b] = h21;
  783. H22[0][e+1][b] = h22;
  784. }
  785. for (k = 0; k < NR_BANDS[is34]; k++) {
  786. float h[2][4];
  787. float h_step[2][4];
  788. int start = ps->border_position[e];
  789. int stop = ps->border_position[e+1];
  790. float width = 1.f / (stop - start);
  791. b = k_to_i[k];
  792. h[0][0] = H11[0][e][b];
  793. h[0][1] = H12[0][e][b];
  794. h[0][2] = H21[0][e][b];
  795. h[0][3] = H22[0][e][b];
  796. if (!PS_BASELINE && ps->enable_ipdopd) {
  797. //Is this necessary? ps_04_new seems unchanged
  798. if ((is34 && k <= 13 && k >= 9) || (!is34 && k <= 1)) {
  799. h[1][0] = -H11[1][e][b];
  800. h[1][1] = -H12[1][e][b];
  801. h[1][2] = -H21[1][e][b];
  802. h[1][3] = -H22[1][e][b];
  803. } else {
  804. h[1][0] = H11[1][e][b];
  805. h[1][1] = H12[1][e][b];
  806. h[1][2] = H21[1][e][b];
  807. h[1][3] = H22[1][e][b];
  808. }
  809. }
  810. //Interpolation
  811. h_step[0][0] = (H11[0][e+1][b] - h[0][0]) * width;
  812. h_step[0][1] = (H12[0][e+1][b] - h[0][1]) * width;
  813. h_step[0][2] = (H21[0][e+1][b] - h[0][2]) * width;
  814. h_step[0][3] = (H22[0][e+1][b] - h[0][3]) * width;
  815. if (!PS_BASELINE && ps->enable_ipdopd) {
  816. h_step[1][0] = (H11[1][e+1][b] - h[1][0]) * width;
  817. h_step[1][1] = (H12[1][e+1][b] - h[1][1]) * width;
  818. h_step[1][2] = (H21[1][e+1][b] - h[1][2]) * width;
  819. h_step[1][3] = (H22[1][e+1][b] - h[1][3]) * width;
  820. }
  821. ps->dsp.stereo_interpolate[!PS_BASELINE && ps->enable_ipdopd](
  822. l[k] + start + 1, r[k] + start + 1,
  823. h, h_step, stop - start);
  824. }
  825. }
  826. }
  827. int ff_ps_apply(AVCodecContext *avctx, PSContext *ps, float L[2][38][64], float R[2][38][64], int top)
  828. {
  829. float Lbuf[91][32][2];
  830. float Rbuf[91][32][2];
  831. const int len = 32;
  832. int is34 = ps->is34bands;
  833. top += NR_BANDS[is34] - 64;
  834. memset(ps->delay+top, 0, (NR_BANDS[is34] - top)*sizeof(ps->delay[0]));
  835. if (top < NR_ALLPASS_BANDS[is34])
  836. memset(ps->ap_delay + top, 0, (NR_ALLPASS_BANDS[is34] - top)*sizeof(ps->ap_delay[0]));
  837. hybrid_analysis(&ps->dsp, Lbuf, ps->in_buf, L, is34, len);
  838. decorrelation(ps, Rbuf, Lbuf, is34);
  839. stereo_processing(ps, Lbuf, Rbuf, is34);
  840. hybrid_synthesis(&ps->dsp, L, Lbuf, is34, len);
  841. hybrid_synthesis(&ps->dsp, R, Rbuf, is34, len);
  842. return 0;
  843. }
  844. #define PS_INIT_VLC_STATIC(num, size) \
  845. INIT_VLC_STATIC(&vlc_ps[num], 9, ps_tmp[num].table_size / ps_tmp[num].elem_size, \
  846. ps_tmp[num].ps_bits, 1, 1, \
  847. ps_tmp[num].ps_codes, ps_tmp[num].elem_size, ps_tmp[num].elem_size, \
  848. size);
  849. #define PS_VLC_ROW(name) \
  850. { name ## _codes, name ## _bits, sizeof(name ## _codes), sizeof(name ## _codes[0]) }
  851. av_cold void ff_ps_init(void) {
  852. // Syntax initialization
  853. static const struct {
  854. const void *ps_codes, *ps_bits;
  855. const unsigned int table_size, elem_size;
  856. } ps_tmp[] = {
  857. PS_VLC_ROW(huff_iid_df1),
  858. PS_VLC_ROW(huff_iid_dt1),
  859. PS_VLC_ROW(huff_iid_df0),
  860. PS_VLC_ROW(huff_iid_dt0),
  861. PS_VLC_ROW(huff_icc_df),
  862. PS_VLC_ROW(huff_icc_dt),
  863. PS_VLC_ROW(huff_ipd_df),
  864. PS_VLC_ROW(huff_ipd_dt),
  865. PS_VLC_ROW(huff_opd_df),
  866. PS_VLC_ROW(huff_opd_dt),
  867. };
  868. PS_INIT_VLC_STATIC(0, 1544);
  869. PS_INIT_VLC_STATIC(1, 832);
  870. PS_INIT_VLC_STATIC(2, 1024);
  871. PS_INIT_VLC_STATIC(3, 1036);
  872. PS_INIT_VLC_STATIC(4, 544);
  873. PS_INIT_VLC_STATIC(5, 544);
  874. PS_INIT_VLC_STATIC(6, 512);
  875. PS_INIT_VLC_STATIC(7, 512);
  876. PS_INIT_VLC_STATIC(8, 512);
  877. PS_INIT_VLC_STATIC(9, 512);
  878. ps_tableinit();
  879. }
  880. av_cold void ff_ps_ctx_init(PSContext *ps)
  881. {
  882. ff_psdsp_init(&ps->dsp);
  883. }