You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

349 lines
10KB

  1. /*
  2. * RTMP Diffie-Hellmann utilities
  3. * Copyright (c) 2009 Andrej Stepanchuk
  4. * Copyright (c) 2009-2010 Howard Chu
  5. * Copyright (c) 2012 Samuel Pitoiset
  6. *
  7. * This file is part of FFmpeg.
  8. *
  9. * FFmpeg is free software; you can redistribute it and/or
  10. * modify it under the terms of the GNU Lesser General Public
  11. * License as published by the Free Software Foundation; either
  12. * version 2.1 of the License, or (at your option) any later version.
  13. *
  14. * FFmpeg is distributed in the hope that it will be useful,
  15. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  16. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  17. * Lesser General Public License for more details.
  18. *
  19. * You should have received a copy of the GNU Lesser General Public
  20. * License along with FFmpeg; if not, write to the Free Software
  21. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  22. */
  23. /**
  24. * @file
  25. * RTMP Diffie-Hellmann utilities
  26. */
  27. #include "config.h"
  28. #include "rtmpdh.h"
  29. #include "libavutil/random_seed.h"
  30. #define P1024 \
  31. "FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1" \
  32. "29024E088A67CC74020BBEA63B139B22514A08798E3404DD" \
  33. "EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245" \
  34. "E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED" \
  35. "EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE65381" \
  36. "FFFFFFFFFFFFFFFF"
  37. #define Q1024 \
  38. "7FFFFFFFFFFFFFFFE487ED5110B4611A62633145C06E0E68" \
  39. "948127044533E63A0105DF531D89CD9128A5043CC71A026E" \
  40. "F7CA8CD9E69D218D98158536F92F8A1BA7F09AB6B6A8E122" \
  41. "F242DABB312F3F637A262174D31BF6B585FFAE5B7A035BF6" \
  42. "F71C35FDAD44CFD2D74F9208BE258FF324943328F67329C0" \
  43. "FFFFFFFFFFFFFFFF"
  44. #if CONFIG_NETTLE || CONFIG_GCRYPT
  45. #if CONFIG_NETTLE
  46. #define bn_new(bn) \
  47. do { \
  48. bn = av_malloc(sizeof(*bn)); \
  49. if (bn) \
  50. mpz_init2(bn, 1); \
  51. } while (0)
  52. #define bn_free(bn) \
  53. do { \
  54. mpz_clear(bn); \
  55. av_free(bn); \
  56. } while (0)
  57. #define bn_set_word(bn, w) mpz_set_ui(bn, w)
  58. #define bn_cmp(a, b) mpz_cmp(a, b)
  59. #define bn_copy(to, from) mpz_set(to, from)
  60. #define bn_sub_word(bn, w) mpz_sub_ui(bn, bn, w)
  61. #define bn_cmp_1(bn) mpz_cmp_ui(bn, 1)
  62. #define bn_num_bytes(bn) (mpz_sizeinbase(bn, 2) + 7) / 8
  63. #define bn_bn2bin(bn, buf, len) nettle_mpz_get_str_256(len, buf, bn)
  64. #define bn_bin2bn(bn, buf, len) \
  65. do { \
  66. bn_new(bn); \
  67. if (bn) \
  68. nettle_mpz_set_str_256_u(bn, len, buf); \
  69. } while (0)
  70. #define bn_hex2bn(bn, buf, ret) \
  71. do { \
  72. bn_new(bn); \
  73. if (bn) \
  74. ret = (mpz_set_str(bn, buf, 16) == 0); \
  75. else \
  76. ret = 1; \
  77. } while (0)
  78. #define bn_modexp(bn, y, q, p) mpz_powm(bn, y, q, p)
  79. #define bn_random(bn, num_bytes) \
  80. do { \
  81. gmp_randstate_t rs; \
  82. gmp_randinit_mt(rs); \
  83. gmp_randseed_ui(rs, av_get_random_seed()); \
  84. mpz_urandomb(bn, rs, num_bytes); \
  85. gmp_randclear(rs); \
  86. } while (0)
  87. #elif CONFIG_GCRYPT
  88. #define bn_new(bn) bn = gcry_mpi_new(1)
  89. #define bn_free(bn) gcry_mpi_release(bn)
  90. #define bn_set_word(bn, w) gcry_mpi_set_ui(bn, w)
  91. #define bn_cmp(a, b) gcry_mpi_cmp(a, b)
  92. #define bn_copy(to, from) gcry_mpi_set(to, from)
  93. #define bn_sub_word(bn, w) gcry_mpi_sub_ui(bn, bn, w)
  94. #define bn_cmp_1(bn) gcry_mpi_cmp_ui(bn, 1)
  95. #define bn_num_bytes(bn) (gcry_mpi_get_nbits(bn) + 7) / 8
  96. #define bn_bn2bin(bn, buf, len) gcry_mpi_print(GCRYMPI_FMT_USG, buf, len, NULL, bn)
  97. #define bn_bin2bn(bn, buf, len) gcry_mpi_scan(&bn, GCRYMPI_FMT_USG, buf, len, NULL)
  98. #define bn_hex2bn(bn, buf, ret) ret = (gcry_mpi_scan(&bn, GCRYMPI_FMT_HEX, buf, 0, 0) == 0)
  99. #define bn_modexp(bn, y, q, p) gcry_mpi_powm(bn, y, q, p)
  100. #define bn_random(bn, num_bytes) gcry_mpi_randomize(bn, num_bytes, GCRY_WEAK_RANDOM)
  101. #endif
  102. #define MAX_BYTES 18000
  103. #define dh_new() av_malloc(sizeof(FF_DH))
  104. static FFBigNum dh_generate_key(FF_DH *dh)
  105. {
  106. int num_bytes;
  107. num_bytes = bn_num_bytes(dh->p) - 1;
  108. if (num_bytes <= 0 || num_bytes > MAX_BYTES)
  109. return NULL;
  110. bn_new(dh->priv_key);
  111. if (!dh->priv_key)
  112. return NULL;
  113. bn_random(dh->priv_key, num_bytes);
  114. bn_new(dh->pub_key);
  115. if (!dh->pub_key) {
  116. bn_free(dh->priv_key);
  117. return NULL;
  118. }
  119. bn_modexp(dh->pub_key, dh->g, dh->priv_key, dh->p);
  120. return dh->pub_key;
  121. }
  122. static int dh_compute_key(FF_DH *dh, FFBigNum pub_key_bn,
  123. uint32_t secret_key_len, uint8_t *secret_key)
  124. {
  125. FFBigNum k;
  126. int num_bytes;
  127. num_bytes = bn_num_bytes(dh->p);
  128. if (num_bytes <= 0 || num_bytes > MAX_BYTES)
  129. return -1;
  130. bn_new(k);
  131. if (!k)
  132. return -1;
  133. bn_modexp(k, pub_key_bn, dh->priv_key, dh->p);
  134. bn_bn2bin(k, secret_key, secret_key_len);
  135. bn_free(k);
  136. /* return the length of the shared secret key like DH_compute_key */
  137. return secret_key_len;
  138. }
  139. void ff_dh_free(FF_DH *dh)
  140. {
  141. bn_free(dh->p);
  142. bn_free(dh->g);
  143. bn_free(dh->pub_key);
  144. bn_free(dh->priv_key);
  145. av_free(dh);
  146. }
  147. #elif CONFIG_OPENSSL
  148. #define bn_new(bn) bn = BN_new()
  149. #define bn_free(bn) BN_free(bn)
  150. #define bn_set_word(bn, w) BN_set_word(bn, w)
  151. #define bn_cmp(a, b) BN_cmp(a, b)
  152. #define bn_copy(to, from) BN_copy(to, from)
  153. #define bn_sub_word(bn, w) BN_sub_word(bn, w)
  154. #define bn_cmp_1(bn) BN_cmp(bn, BN_value_one())
  155. #define bn_num_bytes(bn) BN_num_bytes(bn)
  156. #define bn_bn2bin(bn, buf, len) BN_bn2bin(bn, buf)
  157. #define bn_bin2bn(bn, buf, len) bn = BN_bin2bn(buf, len, 0)
  158. #define bn_hex2bn(bn, buf, ret) ret = BN_hex2bn(&bn, buf)
  159. #define bn_modexp(bn, y, q, p) \
  160. do { \
  161. BN_CTX *ctx = BN_CTX_new(); \
  162. if (!ctx) \
  163. return AVERROR(ENOMEM); \
  164. if (!BN_mod_exp(bn, y, q, p, ctx)) { \
  165. BN_CTX_free(ctx); \
  166. return AVERROR(EINVAL); \
  167. } \
  168. BN_CTX_free(ctx); \
  169. } while (0)
  170. #define dh_new() DH_new()
  171. #define dh_generate_key(dh) DH_generate_key(dh)
  172. static int dh_compute_key(FF_DH *dh, FFBigNum pub_key_bn,
  173. uint32_t secret_key_len, uint8_t *secret_key)
  174. {
  175. if (secret_key_len < DH_size(dh))
  176. return AVERROR(EINVAL);
  177. return DH_compute_key(secret_key, pub_key_bn, dh);
  178. }
  179. void ff_dh_free(FF_DH *dh)
  180. {
  181. DH_free(dh);
  182. }
  183. #endif
  184. static int dh_is_valid_public_key(FFBigNum y, FFBigNum p, FFBigNum q)
  185. {
  186. FFBigNum bn = NULL;
  187. int ret = AVERROR(EINVAL);
  188. bn_new(bn);
  189. if (!bn)
  190. return AVERROR(ENOMEM);
  191. /* y must lie in [2, p - 1] */
  192. bn_set_word(bn, 1);
  193. if (!bn_cmp(y, bn))
  194. goto fail;
  195. /* bn = p - 2 */
  196. bn_copy(bn, p);
  197. bn_sub_word(bn, 1);
  198. if (!bn_cmp(y, bn))
  199. goto fail;
  200. /* Verify with Sophie-Germain prime
  201. *
  202. * This is a nice test to make sure the public key position is calculated
  203. * correctly. This test will fail in about 50% of the cases if applied to
  204. * random data.
  205. */
  206. /* y must fulfill y^q mod p = 1 */
  207. bn_modexp(bn, y, q, p);
  208. if (bn_cmp_1(bn))
  209. goto fail;
  210. ret = 0;
  211. fail:
  212. bn_free(bn);
  213. return ret;
  214. }
  215. av_cold FF_DH *ff_dh_init(int key_len)
  216. {
  217. FF_DH *dh;
  218. int ret;
  219. if (!(dh = dh_new()))
  220. return NULL;
  221. bn_new(dh->g);
  222. if (!dh->g)
  223. goto fail;
  224. bn_hex2bn(dh->p, P1024, ret);
  225. if (!ret)
  226. goto fail;
  227. bn_set_word(dh->g, 2);
  228. dh->length = key_len;
  229. return dh;
  230. fail:
  231. ff_dh_free(dh);
  232. return NULL;
  233. }
  234. int ff_dh_generate_public_key(FF_DH *dh)
  235. {
  236. int ret = 0;
  237. while (!ret) {
  238. FFBigNum q1 = NULL;
  239. if (!dh_generate_key(dh))
  240. return AVERROR(EINVAL);
  241. bn_hex2bn(q1, Q1024, ret);
  242. if (!ret)
  243. return AVERROR(ENOMEM);
  244. ret = dh_is_valid_public_key(dh->pub_key, dh->p, q1);
  245. bn_free(q1);
  246. if (!ret) {
  247. /* the public key is valid */
  248. break;
  249. }
  250. }
  251. return ret;
  252. }
  253. int ff_dh_write_public_key(FF_DH *dh, uint8_t *pub_key, int pub_key_len)
  254. {
  255. int len;
  256. /* compute the length of the public key */
  257. len = bn_num_bytes(dh->pub_key);
  258. if (len <= 0 || len > pub_key_len)
  259. return AVERROR(EINVAL);
  260. /* convert the public key value into big-endian form */
  261. memset(pub_key, 0, pub_key_len);
  262. bn_bn2bin(dh->pub_key, pub_key + pub_key_len - len, len);
  263. return 0;
  264. }
  265. int ff_dh_compute_shared_secret_key(FF_DH *dh, const uint8_t *pub_key,
  266. int pub_key_len, uint8_t *secret_key)
  267. {
  268. FFBigNum q1 = NULL, pub_key_bn = NULL;
  269. int ret;
  270. /* convert the big-endian form of the public key into a bignum */
  271. bn_bin2bn(pub_key_bn, pub_key, pub_key_len);
  272. if (!pub_key_bn)
  273. return AVERROR(ENOMEM);
  274. /* convert the string containing a hexadecimal number into a bignum */
  275. bn_hex2bn(q1, Q1024, ret);
  276. if (!ret) {
  277. ret = AVERROR(ENOMEM);
  278. goto fail;
  279. }
  280. /* when the public key is valid we have to compute the shared secret key */
  281. if ((ret = dh_is_valid_public_key(pub_key_bn, dh->p, q1)) < 0) {
  282. goto fail;
  283. } else if ((ret = dh_compute_key(dh, pub_key_bn, pub_key_len,
  284. secret_key)) < 0) {
  285. ret = AVERROR(EINVAL);
  286. goto fail;
  287. }
  288. fail:
  289. bn_free(pub_key_bn);
  290. bn_free(q1);
  291. return ret;
  292. }