You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

2245 lines
62KB

  1. @chapter Filtergraph description
  2. @c man begin FILTERGRAPH DESCRIPTION
  3. A filtergraph is a directed graph of connected filters. It can contain
  4. cycles, and there can be multiple links between a pair of
  5. filters. Each link has one input pad on one side connecting it to one
  6. filter from which it takes its input, and one output pad on the other
  7. side connecting it to the one filter accepting its output.
  8. Each filter in a filtergraph is an instance of a filter class
  9. registered in the application, which defines the features and the
  10. number of input and output pads of the filter.
  11. A filter with no input pads is called a "source", a filter with no
  12. output pads is called a "sink".
  13. @anchor{Filtergraph syntax}
  14. @section Filtergraph syntax
  15. A filtergraph can be represented using a textual representation, which is
  16. recognized by the @option{-filter}/@option{-vf} and @option{-filter_complex}
  17. options in @command{avconv} and @option{-vf} in @command{avplay}, and by the
  18. @code{avfilter_graph_parse()}/@code{avfilter_graph_parse2()} function defined in
  19. @file{libavfilter/avfiltergraph.h}.
  20. A filterchain consists of a sequence of connected filters, each one
  21. connected to the previous one in the sequence. A filterchain is
  22. represented by a list of ","-separated filter descriptions.
  23. A filtergraph consists of a sequence of filterchains. A sequence of
  24. filterchains is represented by a list of ";"-separated filterchain
  25. descriptions.
  26. A filter is represented by a string of the form:
  27. [@var{in_link_1}]...[@var{in_link_N}]@var{filter_name}=@var{arguments}[@var{out_link_1}]...[@var{out_link_M}]
  28. @var{filter_name} is the name of the filter class of which the
  29. described filter is an instance of, and has to be the name of one of
  30. the filter classes registered in the program.
  31. The name of the filter class is optionally followed by a string
  32. "=@var{arguments}".
  33. @var{arguments} is a string which contains the parameters used to
  34. initialize the filter instance, and are described in the filter
  35. descriptions below.
  36. The list of arguments can be quoted using the character "'" as initial
  37. and ending mark, and the character '\' for escaping the characters
  38. within the quoted text; otherwise the argument string is considered
  39. terminated when the next special character (belonging to the set
  40. "[]=;,") is encountered.
  41. The name and arguments of the filter are optionally preceded and
  42. followed by a list of link labels.
  43. A link label allows to name a link and associate it to a filter output
  44. or input pad. The preceding labels @var{in_link_1}
  45. ... @var{in_link_N}, are associated to the filter input pads,
  46. the following labels @var{out_link_1} ... @var{out_link_M}, are
  47. associated to the output pads.
  48. When two link labels with the same name are found in the
  49. filtergraph, a link between the corresponding input and output pad is
  50. created.
  51. If an output pad is not labelled, it is linked by default to the first
  52. unlabelled input pad of the next filter in the filterchain.
  53. For example in the filterchain:
  54. @example
  55. nullsrc, split[L1], [L2]overlay, nullsink
  56. @end example
  57. the split filter instance has two output pads, and the overlay filter
  58. instance two input pads. The first output pad of split is labelled
  59. "L1", the first input pad of overlay is labelled "L2", and the second
  60. output pad of split is linked to the second input pad of overlay,
  61. which are both unlabelled.
  62. In a complete filterchain all the unlabelled filter input and output
  63. pads must be connected. A filtergraph is considered valid if all the
  64. filter input and output pads of all the filterchains are connected.
  65. Libavfilter will automatically insert scale filters where format
  66. conversion is required. It is possible to specify swscale flags
  67. for those automatically inserted scalers by prepending
  68. @code{sws_flags=@var{flags};}
  69. to the filtergraph description.
  70. Follows a BNF description for the filtergraph syntax:
  71. @example
  72. @var{NAME} ::= sequence of alphanumeric characters and '_'
  73. @var{LINKLABEL} ::= "[" @var{NAME} "]"
  74. @var{LINKLABELS} ::= @var{LINKLABEL} [@var{LINKLABELS}]
  75. @var{FILTER_ARGUMENTS} ::= sequence of chars (eventually quoted)
  76. @var{FILTER} ::= [@var{LINKNAMES}] @var{NAME} ["=" @var{ARGUMENTS}] [@var{LINKNAMES}]
  77. @var{FILTERCHAIN} ::= @var{FILTER} [,@var{FILTERCHAIN}]
  78. @var{FILTERGRAPH} ::= [sws_flags=@var{flags};] @var{FILTERCHAIN} [;@var{FILTERGRAPH}]
  79. @end example
  80. @c man end FILTERGRAPH DESCRIPTION
  81. @chapter Audio Filters
  82. @c man begin AUDIO FILTERS
  83. When you configure your Libav build, you can disable any of the
  84. existing filters using --disable-filters.
  85. The configure output will show the audio filters included in your
  86. build.
  87. Below is a description of the currently available audio filters.
  88. @section aformat
  89. Convert the input audio to one of the specified formats. The framework will
  90. negotiate the most appropriate format to minimize conversions.
  91. The filter accepts the following named parameters:
  92. @table @option
  93. @item sample_fmts
  94. A comma-separated list of requested sample formats.
  95. @item sample_rates
  96. A comma-separated list of requested sample rates.
  97. @item channel_layouts
  98. A comma-separated list of requested channel layouts.
  99. @end table
  100. If a parameter is omitted, all values are allowed.
  101. For example to force the output to either unsigned 8-bit or signed 16-bit stereo:
  102. @example
  103. aformat=sample_fmts\=u8\,s16:channel_layouts\=stereo
  104. @end example
  105. @section amix
  106. Mixes multiple audio inputs into a single output.
  107. For example
  108. @example
  109. avconv -i INPUT1 -i INPUT2 -i INPUT3 -filter_complex amix=inputs=3:duration=first:dropout_transition=3 OUTPUT
  110. @end example
  111. will mix 3 input audio streams to a single output with the same duration as the
  112. first input and a dropout transition time of 3 seconds.
  113. The filter accepts the following named parameters:
  114. @table @option
  115. @item inputs
  116. Number of inputs. If unspecified, it defaults to 2.
  117. @item duration
  118. How to determine the end-of-stream.
  119. @table @option
  120. @item longest
  121. Duration of longest input. (default)
  122. @item shortest
  123. Duration of shortest input.
  124. @item first
  125. Duration of first input.
  126. @end table
  127. @item dropout_transition
  128. Transition time, in seconds, for volume renormalization when an input
  129. stream ends. The default value is 2 seconds.
  130. @end table
  131. @section anull
  132. Pass the audio source unchanged to the output.
  133. @section asplit
  134. Split input audio into several identical outputs.
  135. The filter accepts a single parameter which specifies the number of outputs. If
  136. unspecified, it defaults to 2.
  137. For example
  138. @example
  139. avconv -i INPUT -filter_complex asplit=5 OUTPUT
  140. @end example
  141. will create 5 copies of the input audio.
  142. @section asyncts
  143. Synchronize audio data with timestamps by squeezing/stretching it and/or
  144. dropping samples/adding silence when needed.
  145. The filter accepts the following named parameters:
  146. @table @option
  147. @item compensate
  148. Enable stretching/squeezing the data to make it match the timestamps.
  149. @item min_delta
  150. Minimum difference between timestamps and audio data (in seconds) to trigger
  151. adding/dropping samples.
  152. @item max_comp
  153. Maximum compensation in samples per second.
  154. @end table
  155. @section resample
  156. Convert the audio sample format, sample rate and channel layout. This filter is
  157. not meant to be used directly, it is inserted automatically by libavfilter
  158. whenever conversion is needed. Use the @var{aformat} filter to force a specific
  159. conversion.
  160. @c man end AUDIO FILTERS
  161. @chapter Audio Sources
  162. @c man begin AUDIO SOURCES
  163. Below is a description of the currently available audio sources.
  164. @section anullsrc
  165. Null audio source, never return audio frames. It is mainly useful as a
  166. template and to be employed in analysis / debugging tools.
  167. It accepts as optional parameter a string of the form
  168. @var{sample_rate}:@var{channel_layout}.
  169. @var{sample_rate} specify the sample rate, and defaults to 44100.
  170. @var{channel_layout} specify the channel layout, and can be either an
  171. integer or a string representing a channel layout. The default value
  172. of @var{channel_layout} is 3, which corresponds to CH_LAYOUT_STEREO.
  173. Check the channel_layout_map definition in
  174. @file{libavcodec/audioconvert.c} for the mapping between strings and
  175. channel layout values.
  176. Follow some examples:
  177. @example
  178. # set the sample rate to 48000 Hz and the channel layout to CH_LAYOUT_MONO.
  179. anullsrc=48000:4
  180. # same as
  181. anullsrc=48000:mono
  182. @end example
  183. @section abuffer
  184. Buffer audio frames, and make them available to the filter chain.
  185. This source is not intended to be part of user-supplied graph descriptions but
  186. for insertion by calling programs through the interface defined in
  187. @file{libavfilter/buffersrc.h}.
  188. It accepts the following named parameters:
  189. @table @option
  190. @item time_base
  191. Timebase which will be used for timestamps of submitted frames. It must be
  192. either a floating-point number or in @var{numerator}/@var{denominator} form.
  193. @item sample_rate
  194. Audio sample rate.
  195. @item sample_fmt
  196. Name of the sample format, as returned by @code{av_get_sample_fmt_name()}.
  197. @item channel_layout
  198. Channel layout of the audio data, in the form that can be accepted by
  199. @code{av_get_channel_layout()}.
  200. @end table
  201. All the parameters need to be explicitly defined.
  202. @c man end AUDIO SOURCES
  203. @chapter Audio Sinks
  204. @c man begin AUDIO SINKS
  205. Below is a description of the currently available audio sinks.
  206. @section anullsink
  207. Null audio sink, do absolutely nothing with the input audio. It is
  208. mainly useful as a template and to be employed in analysis / debugging
  209. tools.
  210. @section abuffersink
  211. This sink is intended for programmatic use. Frames that arrive on this sink can
  212. be retrieved by the calling program using the interface defined in
  213. @file{libavfilter/buffersink.h}.
  214. This filter accepts no parameters.
  215. @c man end AUDIO SINKS
  216. @chapter Video Filters
  217. @c man begin VIDEO FILTERS
  218. When you configure your Libav build, you can disable any of the
  219. existing filters using --disable-filters.
  220. The configure output will show the video filters included in your
  221. build.
  222. Below is a description of the currently available video filters.
  223. @section blackframe
  224. Detect frames that are (almost) completely black. Can be useful to
  225. detect chapter transitions or commercials. Output lines consist of
  226. the frame number of the detected frame, the percentage of blackness,
  227. the position in the file if known or -1 and the timestamp in seconds.
  228. In order to display the output lines, you need to set the loglevel at
  229. least to the AV_LOG_INFO value.
  230. The filter accepts the syntax:
  231. @example
  232. blackframe[=@var{amount}:[@var{threshold}]]
  233. @end example
  234. @var{amount} is the percentage of the pixels that have to be below the
  235. threshold, and defaults to 98.
  236. @var{threshold} is the threshold below which a pixel value is
  237. considered black, and defaults to 32.
  238. @section boxblur
  239. Apply boxblur algorithm to the input video.
  240. This filter accepts the parameters:
  241. @var{luma_power}:@var{luma_radius}:@var{chroma_radius}:@var{chroma_power}:@var{alpha_radius}:@var{alpha_power}
  242. Chroma and alpha parameters are optional, if not specified they default
  243. to the corresponding values set for @var{luma_radius} and
  244. @var{luma_power}.
  245. @var{luma_radius}, @var{chroma_radius}, and @var{alpha_radius} represent
  246. the radius in pixels of the box used for blurring the corresponding
  247. input plane. They are expressions, and can contain the following
  248. constants:
  249. @table @option
  250. @item w, h
  251. the input width and height in pixels
  252. @item cw, ch
  253. the input chroma image width and height in pixels
  254. @item hsub, vsub
  255. horizontal and vertical chroma subsample values. For example for the
  256. pixel format "yuv422p" @var{hsub} is 2 and @var{vsub} is 1.
  257. @end table
  258. The radius must be a non-negative number, and must not be greater than
  259. the value of the expression @code{min(w,h)/2} for the luma and alpha planes,
  260. and of @code{min(cw,ch)/2} for the chroma planes.
  261. @var{luma_power}, @var{chroma_power}, and @var{alpha_power} represent
  262. how many times the boxblur filter is applied to the corresponding
  263. plane.
  264. Some examples follow:
  265. @itemize
  266. @item
  267. Apply a boxblur filter with luma, chroma, and alpha radius
  268. set to 2:
  269. @example
  270. boxblur=2:1
  271. @end example
  272. @item
  273. Set luma radius to 2, alpha and chroma radius to 0
  274. @example
  275. boxblur=2:1:0:0:0:0
  276. @end example
  277. @item
  278. Set luma and chroma radius to a fraction of the video dimension
  279. @example
  280. boxblur=min(h\,w)/10:1:min(cw\,ch)/10:1
  281. @end example
  282. @end itemize
  283. @section copy
  284. Copy the input source unchanged to the output. Mainly useful for
  285. testing purposes.
  286. @section crop
  287. Crop the input video to @var{out_w}:@var{out_h}:@var{x}:@var{y}.
  288. The parameters are expressions containing the following constants:
  289. @table @option
  290. @item E, PI, PHI
  291. the corresponding mathematical approximated values for e
  292. (euler number), pi (greek PI), PHI (golden ratio)
  293. @item x, y
  294. the computed values for @var{x} and @var{y}. They are evaluated for
  295. each new frame.
  296. @item in_w, in_h
  297. the input width and height
  298. @item iw, ih
  299. same as @var{in_w} and @var{in_h}
  300. @item out_w, out_h
  301. the output (cropped) width and height
  302. @item ow, oh
  303. same as @var{out_w} and @var{out_h}
  304. @item n
  305. the number of input frame, starting from 0
  306. @item pos
  307. the position in the file of the input frame, NAN if unknown
  308. @item t
  309. timestamp expressed in seconds, NAN if the input timestamp is unknown
  310. @end table
  311. The @var{out_w} and @var{out_h} parameters specify the expressions for
  312. the width and height of the output (cropped) video. They are
  313. evaluated just at the configuration of the filter.
  314. The default value of @var{out_w} is "in_w", and the default value of
  315. @var{out_h} is "in_h".
  316. The expression for @var{out_w} may depend on the value of @var{out_h},
  317. and the expression for @var{out_h} may depend on @var{out_w}, but they
  318. cannot depend on @var{x} and @var{y}, as @var{x} and @var{y} are
  319. evaluated after @var{out_w} and @var{out_h}.
  320. The @var{x} and @var{y} parameters specify the expressions for the
  321. position of the top-left corner of the output (non-cropped) area. They
  322. are evaluated for each frame. If the evaluated value is not valid, it
  323. is approximated to the nearest valid value.
  324. The default value of @var{x} is "(in_w-out_w)/2", and the default
  325. value for @var{y} is "(in_h-out_h)/2", which set the cropped area at
  326. the center of the input image.
  327. The expression for @var{x} may depend on @var{y}, and the expression
  328. for @var{y} may depend on @var{x}.
  329. Follow some examples:
  330. @example
  331. # crop the central input area with size 100x100
  332. crop=100:100
  333. # crop the central input area with size 2/3 of the input video
  334. "crop=2/3*in_w:2/3*in_h"
  335. # crop the input video central square
  336. crop=in_h
  337. # delimit the rectangle with the top-left corner placed at position
  338. # 100:100 and the right-bottom corner corresponding to the right-bottom
  339. # corner of the input image.
  340. crop=in_w-100:in_h-100:100:100
  341. # crop 10 pixels from the left and right borders, and 20 pixels from
  342. # the top and bottom borders
  343. "crop=in_w-2*10:in_h-2*20"
  344. # keep only the bottom right quarter of the input image
  345. "crop=in_w/2:in_h/2:in_w/2:in_h/2"
  346. # crop height for getting Greek harmony
  347. "crop=in_w:1/PHI*in_w"
  348. # trembling effect
  349. "crop=in_w/2:in_h/2:(in_w-out_w)/2+((in_w-out_w)/2)*sin(n/10):(in_h-out_h)/2 +((in_h-out_h)/2)*sin(n/7)"
  350. # erratic camera effect depending on timestamp
  351. "crop=in_w/2:in_h/2:(in_w-out_w)/2+((in_w-out_w)/2)*sin(t*10):(in_h-out_h)/2 +((in_h-out_h)/2)*sin(t*13)"
  352. # set x depending on the value of y
  353. "crop=in_w/2:in_h/2:y:10+10*sin(n/10)"
  354. @end example
  355. @section cropdetect
  356. Auto-detect crop size.
  357. Calculate necessary cropping parameters and prints the recommended
  358. parameters through the logging system. The detected dimensions
  359. correspond to the non-black area of the input video.
  360. It accepts the syntax:
  361. @example
  362. cropdetect[=@var{limit}[:@var{round}[:@var{reset}]]]
  363. @end example
  364. @table @option
  365. @item limit
  366. Threshold, which can be optionally specified from nothing (0) to
  367. everything (255), defaults to 24.
  368. @item round
  369. Value which the width/height should be divisible by, defaults to
  370. 16. The offset is automatically adjusted to center the video. Use 2 to
  371. get only even dimensions (needed for 4:2:2 video). 16 is best when
  372. encoding to most video codecs.
  373. @item reset
  374. Counter that determines after how many frames cropdetect will reset
  375. the previously detected largest video area and start over to detect
  376. the current optimal crop area. Defaults to 0.
  377. This can be useful when channel logos distort the video area. 0
  378. indicates never reset and return the largest area encountered during
  379. playback.
  380. @end table
  381. @section delogo
  382. Suppress a TV station logo by a simple interpolation of the surrounding
  383. pixels. Just set a rectangle covering the logo and watch it disappear
  384. (and sometimes something even uglier appear - your mileage may vary).
  385. The filter accepts parameters as a string of the form
  386. "@var{x}:@var{y}:@var{w}:@var{h}:@var{band}", or as a list of
  387. @var{key}=@var{value} pairs, separated by ":".
  388. The description of the accepted parameters follows.
  389. @table @option
  390. @item x, y
  391. Specify the top left corner coordinates of the logo. They must be
  392. specified.
  393. @item w, h
  394. Specify the width and height of the logo to clear. They must be
  395. specified.
  396. @item band, t
  397. Specify the thickness of the fuzzy edge of the rectangle (added to
  398. @var{w} and @var{h}). The default value is 4.
  399. @item show
  400. When set to 1, a green rectangle is drawn on the screen to simplify
  401. finding the right @var{x}, @var{y}, @var{w}, @var{h} parameters, and
  402. @var{band} is set to 4. The default value is 0.
  403. @end table
  404. Some examples follow.
  405. @itemize
  406. @item
  407. Set a rectangle covering the area with top left corner coordinates 0,0
  408. and size 100x77, setting a band of size 10:
  409. @example
  410. delogo=0:0:100:77:10
  411. @end example
  412. @item
  413. As the previous example, but use named options:
  414. @example
  415. delogo=x=0:y=0:w=100:h=77:band=10
  416. @end example
  417. @end itemize
  418. @section drawbox
  419. Draw a colored box on the input image.
  420. It accepts the syntax:
  421. @example
  422. drawbox=@var{x}:@var{y}:@var{width}:@var{height}:@var{color}
  423. @end example
  424. @table @option
  425. @item x, y
  426. Specify the top left corner coordinates of the box. Default to 0.
  427. @item width, height
  428. Specify the width and height of the box, if 0 they are interpreted as
  429. the input width and height. Default to 0.
  430. @item color
  431. Specify the color of the box to write, it can be the name of a color
  432. (case insensitive match) or a 0xRRGGBB[AA] sequence.
  433. @end table
  434. Follow some examples:
  435. @example
  436. # draw a black box around the edge of the input image
  437. drawbox
  438. # draw a box with color red and an opacity of 50%
  439. drawbox=10:20:200:60:red@@0.5"
  440. @end example
  441. @section drawtext
  442. Draw text string or text from specified file on top of video using the
  443. libfreetype library.
  444. To enable compilation of this filter you need to configure Libav with
  445. @code{--enable-libfreetype}.
  446. The filter also recognizes strftime() sequences in the provided text
  447. and expands them accordingly. Check the documentation of strftime().
  448. The filter accepts parameters as a list of @var{key}=@var{value} pairs,
  449. separated by ":".
  450. The description of the accepted parameters follows.
  451. @table @option
  452. @item fontfile
  453. The font file to be used for drawing text. Path must be included.
  454. This parameter is mandatory.
  455. @item text
  456. The text string to be drawn. The text must be a sequence of UTF-8
  457. encoded characters.
  458. This parameter is mandatory if no file is specified with the parameter
  459. @var{textfile}.
  460. @item textfile
  461. A text file containing text to be drawn. The text must be a sequence
  462. of UTF-8 encoded characters.
  463. This parameter is mandatory if no text string is specified with the
  464. parameter @var{text}.
  465. If both text and textfile are specified, an error is thrown.
  466. @item x, y
  467. The offsets where text will be drawn within the video frame.
  468. Relative to the top/left border of the output image.
  469. They accept expressions similar to the @ref{overlay} filter:
  470. @table @option
  471. @item x, y
  472. the computed values for @var{x} and @var{y}. They are evaluated for
  473. each new frame.
  474. @item main_w, main_h
  475. main input width and height
  476. @item W, H
  477. same as @var{main_w} and @var{main_h}
  478. @item text_w, text_h
  479. rendered text width and height
  480. @item w, h
  481. same as @var{text_w} and @var{text_h}
  482. @item n
  483. the number of frames processed, starting from 0
  484. @item t
  485. timestamp expressed in seconds, NAN if the input timestamp is unknown
  486. @end table
  487. The default value of @var{x} and @var{y} is 0.
  488. @item fontsize
  489. The font size to be used for drawing text.
  490. The default value of @var{fontsize} is 16.
  491. @item fontcolor
  492. The color to be used for drawing fonts.
  493. Either a string (e.g. "red") or in 0xRRGGBB[AA] format
  494. (e.g. "0xff000033"), possibly followed by an alpha specifier.
  495. The default value of @var{fontcolor} is "black".
  496. @item boxcolor
  497. The color to be used for drawing box around text.
  498. Either a string (e.g. "yellow") or in 0xRRGGBB[AA] format
  499. (e.g. "0xff00ff"), possibly followed by an alpha specifier.
  500. The default value of @var{boxcolor} is "white".
  501. @item box
  502. Used to draw a box around text using background color.
  503. Value should be either 1 (enable) or 0 (disable).
  504. The default value of @var{box} is 0.
  505. @item shadowx, shadowy
  506. The x and y offsets for the text shadow position with respect to the
  507. position of the text. They can be either positive or negative
  508. values. Default value for both is "0".
  509. @item shadowcolor
  510. The color to be used for drawing a shadow behind the drawn text. It
  511. can be a color name (e.g. "yellow") or a string in the 0xRRGGBB[AA]
  512. form (e.g. "0xff00ff"), possibly followed by an alpha specifier.
  513. The default value of @var{shadowcolor} is "black".
  514. @item ft_load_flags
  515. Flags to be used for loading the fonts.
  516. The flags map the corresponding flags supported by libfreetype, and are
  517. a combination of the following values:
  518. @table @var
  519. @item default
  520. @item no_scale
  521. @item no_hinting
  522. @item render
  523. @item no_bitmap
  524. @item vertical_layout
  525. @item force_autohint
  526. @item crop_bitmap
  527. @item pedantic
  528. @item ignore_global_advance_width
  529. @item no_recurse
  530. @item ignore_transform
  531. @item monochrome
  532. @item linear_design
  533. @item no_autohint
  534. @item end table
  535. @end table
  536. Default value is "render".
  537. For more information consult the documentation for the FT_LOAD_*
  538. libfreetype flags.
  539. @item tabsize
  540. The size in number of spaces to use for rendering the tab.
  541. Default value is 4.
  542. @item fix_bounds
  543. If true, check and fix text coords to avoid clipping.
  544. @end table
  545. For example the command:
  546. @example
  547. drawtext="fontfile=/usr/share/fonts/truetype/freefont/FreeSerif.ttf: text='Test Text'"
  548. @end example
  549. will draw "Test Text" with font FreeSerif, using the default values
  550. for the optional parameters.
  551. The command:
  552. @example
  553. drawtext="fontfile=/usr/share/fonts/truetype/freefont/FreeSerif.ttf: text='Test Text':\
  554. x=100: y=50: fontsize=24: fontcolor=yellow@@0.2: box=1: boxcolor=red@@0.2"
  555. @end example
  556. will draw 'Test Text' with font FreeSerif of size 24 at position x=100
  557. and y=50 (counting from the top-left corner of the screen), text is
  558. yellow with a red box around it. Both the text and the box have an
  559. opacity of 20%.
  560. Note that the double quotes are not necessary if spaces are not used
  561. within the parameter list.
  562. For more information about libfreetype, check:
  563. @url{http://www.freetype.org/}.
  564. @section fade
  565. Apply fade-in/out effect to input video.
  566. It accepts the parameters:
  567. @var{type}:@var{start_frame}:@var{nb_frames}
  568. @var{type} specifies if the effect type, can be either "in" for
  569. fade-in, or "out" for a fade-out effect.
  570. @var{start_frame} specifies the number of the start frame for starting
  571. to apply the fade effect.
  572. @var{nb_frames} specifies the number of frames for which the fade
  573. effect has to last. At the end of the fade-in effect the output video
  574. will have the same intensity as the input video, at the end of the
  575. fade-out transition the output video will be completely black.
  576. A few usage examples follow, usable too as test scenarios.
  577. @example
  578. # fade in first 30 frames of video
  579. fade=in:0:30
  580. # fade out last 45 frames of a 200-frame video
  581. fade=out:155:45
  582. # fade in first 25 frames and fade out last 25 frames of a 1000-frame video
  583. fade=in:0:25, fade=out:975:25
  584. # make first 5 frames black, then fade in from frame 5-24
  585. fade=in:5:20
  586. @end example
  587. @section fieldorder
  588. Transform the field order of the input video.
  589. It accepts one parameter which specifies the required field order that
  590. the input interlaced video will be transformed to. The parameter can
  591. assume one of the following values:
  592. @table @option
  593. @item 0 or bff
  594. output bottom field first
  595. @item 1 or tff
  596. output top field first
  597. @end table
  598. Default value is "tff".
  599. Transformation is achieved by shifting the picture content up or down
  600. by one line, and filling the remaining line with appropriate picture content.
  601. This method is consistent with most broadcast field order converters.
  602. If the input video is not flagged as being interlaced, or it is already
  603. flagged as being of the required output field order then this filter does
  604. not alter the incoming video.
  605. This filter is very useful when converting to or from PAL DV material,
  606. which is bottom field first.
  607. For example:
  608. @example
  609. ./avconv -i in.vob -vf "fieldorder=bff" out.dv
  610. @end example
  611. @section fifo
  612. Buffer input images and send them when they are requested.
  613. This filter is mainly useful when auto-inserted by the libavfilter
  614. framework.
  615. The filter does not take parameters.
  616. @section format
  617. Convert the input video to one of the specified pixel formats.
  618. Libavfilter will try to pick one that is supported for the input to
  619. the next filter.
  620. The filter accepts a list of pixel format names, separated by ":",
  621. for example "yuv420p:monow:rgb24".
  622. Some examples follow:
  623. @example
  624. # convert the input video to the format "yuv420p"
  625. format=yuv420p
  626. # convert the input video to any of the formats in the list
  627. format=yuv420p:yuv444p:yuv410p
  628. @end example
  629. @section fps
  630. Convert the video to specified constant framerate by duplicating or dropping
  631. frames as necessary.
  632. This filter accepts the following named parameters:
  633. @table @option
  634. @item fps
  635. Desired output framerate.
  636. @end table
  637. @anchor{frei0r}
  638. @section frei0r
  639. Apply a frei0r effect to the input video.
  640. To enable compilation of this filter you need to install the frei0r
  641. header and configure Libav with --enable-frei0r.
  642. The filter supports the syntax:
  643. @example
  644. @var{filter_name}[@{:|=@}@var{param1}:@var{param2}:...:@var{paramN}]
  645. @end example
  646. @var{filter_name} is the name to the frei0r effect to load. If the
  647. environment variable @env{FREI0R_PATH} is defined, the frei0r effect
  648. is searched in each one of the directories specified by the colon
  649. separated list in @env{FREIOR_PATH}, otherwise in the standard frei0r
  650. paths, which are in this order: @file{HOME/.frei0r-1/lib/},
  651. @file{/usr/local/lib/frei0r-1/}, @file{/usr/lib/frei0r-1/}.
  652. @var{param1}, @var{param2}, ... , @var{paramN} specify the parameters
  653. for the frei0r effect.
  654. A frei0r effect parameter can be a boolean (whose values are specified
  655. with "y" and "n"), a double, a color (specified by the syntax
  656. @var{R}/@var{G}/@var{B}, @var{R}, @var{G}, and @var{B} being float
  657. numbers from 0.0 to 1.0) or by an @code{av_parse_color()} color
  658. description), a position (specified by the syntax @var{X}/@var{Y},
  659. @var{X} and @var{Y} being float numbers) and a string.
  660. The number and kind of parameters depend on the loaded effect. If an
  661. effect parameter is not specified the default value is set.
  662. Some examples follow:
  663. @example
  664. # apply the distort0r effect, set the first two double parameters
  665. frei0r=distort0r:0.5:0.01
  666. # apply the colordistance effect, takes a color as first parameter
  667. frei0r=colordistance:0.2/0.3/0.4
  668. frei0r=colordistance:violet
  669. frei0r=colordistance:0x112233
  670. # apply the perspective effect, specify the top left and top right
  671. # image positions
  672. frei0r=perspective:0.2/0.2:0.8/0.2
  673. @end example
  674. For more information see:
  675. @url{http://piksel.org/frei0r}
  676. @section gradfun
  677. Fix the banding artifacts that are sometimes introduced into nearly flat
  678. regions by truncation to 8bit colordepth.
  679. Interpolate the gradients that should go where the bands are, and
  680. dither them.
  681. This filter is designed for playback only. Do not use it prior to
  682. lossy compression, because compression tends to lose the dither and
  683. bring back the bands.
  684. The filter takes two optional parameters, separated by ':':
  685. @var{strength}:@var{radius}
  686. @var{strength} is the maximum amount by which the filter will change
  687. any one pixel. Also the threshold for detecting nearly flat
  688. regions. Acceptable values range from .51 to 255, default value is
  689. 1.2, out-of-range values will be clipped to the valid range.
  690. @var{radius} is the neighborhood to fit the gradient to. A larger
  691. radius makes for smoother gradients, but also prevents the filter from
  692. modifying the pixels near detailed regions. Acceptable values are
  693. 8-32, default value is 16, out-of-range values will be clipped to the
  694. valid range.
  695. @example
  696. # default parameters
  697. gradfun=1.2:16
  698. # omitting radius
  699. gradfun=1.2
  700. @end example
  701. @section hflip
  702. Flip the input video horizontally.
  703. For example to horizontally flip the input video with @command{avconv}:
  704. @example
  705. avconv -i in.avi -vf "hflip" out.avi
  706. @end example
  707. @section hqdn3d
  708. High precision/quality 3d denoise filter. This filter aims to reduce
  709. image noise producing smooth images and making still images really
  710. still. It should enhance compressibility.
  711. It accepts the following optional parameters:
  712. @var{luma_spatial}:@var{chroma_spatial}:@var{luma_tmp}:@var{chroma_tmp}
  713. @table @option
  714. @item luma_spatial
  715. a non-negative float number which specifies spatial luma strength,
  716. defaults to 4.0
  717. @item chroma_spatial
  718. a non-negative float number which specifies spatial chroma strength,
  719. defaults to 3.0*@var{luma_spatial}/4.0
  720. @item luma_tmp
  721. a float number which specifies luma temporal strength, defaults to
  722. 6.0*@var{luma_spatial}/4.0
  723. @item chroma_tmp
  724. a float number which specifies chroma temporal strength, defaults to
  725. @var{luma_tmp}*@var{chroma_spatial}/@var{luma_spatial}
  726. @end table
  727. @section lut, lutrgb, lutyuv
  728. Compute a look-up table for binding each pixel component input value
  729. to an output value, and apply it to input video.
  730. @var{lutyuv} applies a lookup table to a YUV input video, @var{lutrgb}
  731. to an RGB input video.
  732. These filters accept in input a ":"-separated list of options, which
  733. specify the expressions used for computing the lookup table for the
  734. corresponding pixel component values.
  735. The @var{lut} filter requires either YUV or RGB pixel formats in
  736. input, and accepts the options:
  737. @table @option
  738. @var{c0} (first pixel component)
  739. @var{c1} (second pixel component)
  740. @var{c2} (third pixel component)
  741. @var{c3} (fourth pixel component, corresponds to the alpha component)
  742. @end table
  743. The exact component associated to each option depends on the format in
  744. input.
  745. The @var{lutrgb} filter requires RGB pixel formats in input, and
  746. accepts the options:
  747. @table @option
  748. @var{r} (red component)
  749. @var{g} (green component)
  750. @var{b} (blue component)
  751. @var{a} (alpha component)
  752. @end table
  753. The @var{lutyuv} filter requires YUV pixel formats in input, and
  754. accepts the options:
  755. @table @option
  756. @var{y} (Y/luminance component)
  757. @var{u} (U/Cb component)
  758. @var{v} (V/Cr component)
  759. @var{a} (alpha component)
  760. @end table
  761. The expressions can contain the following constants and functions:
  762. @table @option
  763. @item E, PI, PHI
  764. the corresponding mathematical approximated values for e
  765. (euler number), pi (greek PI), PHI (golden ratio)
  766. @item w, h
  767. the input width and height
  768. @item val
  769. input value for the pixel component
  770. @item clipval
  771. the input value clipped in the @var{minval}-@var{maxval} range
  772. @item maxval
  773. maximum value for the pixel component
  774. @item minval
  775. minimum value for the pixel component
  776. @item negval
  777. the negated value for the pixel component value clipped in the
  778. @var{minval}-@var{maxval} range , it corresponds to the expression
  779. "maxval-clipval+minval"
  780. @item clip(val)
  781. the computed value in @var{val} clipped in the
  782. @var{minval}-@var{maxval} range
  783. @item gammaval(gamma)
  784. the computed gamma correction value of the pixel component value
  785. clipped in the @var{minval}-@var{maxval} range, corresponds to the
  786. expression
  787. "pow((clipval-minval)/(maxval-minval)\,@var{gamma})*(maxval-minval)+minval"
  788. @end table
  789. All expressions default to "val".
  790. Some examples follow:
  791. @example
  792. # negate input video
  793. lutrgb="r=maxval+minval-val:g=maxval+minval-val:b=maxval+minval-val"
  794. lutyuv="y=maxval+minval-val:u=maxval+minval-val:v=maxval+minval-val"
  795. # the above is the same as
  796. lutrgb="r=negval:g=negval:b=negval"
  797. lutyuv="y=negval:u=negval:v=negval"
  798. # negate luminance
  799. lutyuv=negval
  800. # remove chroma components, turns the video into a graytone image
  801. lutyuv="u=128:v=128"
  802. # apply a luma burning effect
  803. lutyuv="y=2*val"
  804. # remove green and blue components
  805. lutrgb="g=0:b=0"
  806. # set a constant alpha channel value on input
  807. format=rgba,lutrgb=a="maxval-minval/2"
  808. # correct luminance gamma by a 0.5 factor
  809. lutyuv=y=gammaval(0.5)
  810. @end example
  811. @section negate
  812. Negate input video.
  813. This filter accepts an integer in input, if non-zero it negates the
  814. alpha component (if available). The default value in input is 0.
  815. Force libavfilter not to use any of the specified pixel formats for the
  816. input to the next filter.
  817. The filter accepts a list of pixel format names, separated by ":",
  818. for example "yuv420p:monow:rgb24".
  819. Some examples follow:
  820. @example
  821. # force libavfilter to use a format different from "yuv420p" for the
  822. # input to the vflip filter
  823. noformat=yuv420p,vflip
  824. # convert the input video to any of the formats not contained in the list
  825. noformat=yuv420p:yuv444p:yuv410p
  826. @end example
  827. @section null
  828. Pass the video source unchanged to the output.
  829. @section ocv
  830. Apply video transform using libopencv.
  831. To enable this filter install libopencv library and headers and
  832. configure Libav with --enable-libopencv.
  833. The filter takes the parameters: @var{filter_name}@{:=@}@var{filter_params}.
  834. @var{filter_name} is the name of the libopencv filter to apply.
  835. @var{filter_params} specifies the parameters to pass to the libopencv
  836. filter. If not specified the default values are assumed.
  837. Refer to the official libopencv documentation for more precise
  838. information:
  839. @url{http://opencv.willowgarage.com/documentation/c/image_filtering.html}
  840. Follows the list of supported libopencv filters.
  841. @anchor{dilate}
  842. @subsection dilate
  843. Dilate an image by using a specific structuring element.
  844. This filter corresponds to the libopencv function @code{cvDilate}.
  845. It accepts the parameters: @var{struct_el}:@var{nb_iterations}.
  846. @var{struct_el} represents a structuring element, and has the syntax:
  847. @var{cols}x@var{rows}+@var{anchor_x}x@var{anchor_y}/@var{shape}
  848. @var{cols} and @var{rows} represent the number of columns and rows of
  849. the structuring element, @var{anchor_x} and @var{anchor_y} the anchor
  850. point, and @var{shape} the shape for the structuring element, and
  851. can be one of the values "rect", "cross", "ellipse", "custom".
  852. If the value for @var{shape} is "custom", it must be followed by a
  853. string of the form "=@var{filename}". The file with name
  854. @var{filename} is assumed to represent a binary image, with each
  855. printable character corresponding to a bright pixel. When a custom
  856. @var{shape} is used, @var{cols} and @var{rows} are ignored, the number
  857. or columns and rows of the read file are assumed instead.
  858. The default value for @var{struct_el} is "3x3+0x0/rect".
  859. @var{nb_iterations} specifies the number of times the transform is
  860. applied to the image, and defaults to 1.
  861. Follow some example:
  862. @example
  863. # use the default values
  864. ocv=dilate
  865. # dilate using a structuring element with a 5x5 cross, iterate two times
  866. ocv=dilate=5x5+2x2/cross:2
  867. # read the shape from the file diamond.shape, iterate two times
  868. # the file diamond.shape may contain a pattern of characters like this:
  869. # *
  870. # ***
  871. # *****
  872. # ***
  873. # *
  874. # the specified cols and rows are ignored (but not the anchor point coordinates)
  875. ocv=0x0+2x2/custom=diamond.shape:2
  876. @end example
  877. @subsection erode
  878. Erode an image by using a specific structuring element.
  879. This filter corresponds to the libopencv function @code{cvErode}.
  880. The filter accepts the parameters: @var{struct_el}:@var{nb_iterations},
  881. with the same syntax and semantics as the @ref{dilate} filter.
  882. @subsection smooth
  883. Smooth the input video.
  884. The filter takes the following parameters:
  885. @var{type}:@var{param1}:@var{param2}:@var{param3}:@var{param4}.
  886. @var{type} is the type of smooth filter to apply, and can be one of
  887. the following values: "blur", "blur_no_scale", "median", "gaussian",
  888. "bilateral". The default value is "gaussian".
  889. @var{param1}, @var{param2}, @var{param3}, and @var{param4} are
  890. parameters whose meanings depend on smooth type. @var{param1} and
  891. @var{param2} accept integer positive values or 0, @var{param3} and
  892. @var{param4} accept float values.
  893. The default value for @var{param1} is 3, the default value for the
  894. other parameters is 0.
  895. These parameters correspond to the parameters assigned to the
  896. libopencv function @code{cvSmooth}.
  897. @anchor{overlay}
  898. @section overlay
  899. Overlay one video on top of another.
  900. It takes two inputs and one output, the first input is the "main"
  901. video on which the second input is overlayed.
  902. It accepts the parameters: @var{x}:@var{y}.
  903. @var{x} is the x coordinate of the overlayed video on the main video,
  904. @var{y} is the y coordinate. The parameters are expressions containing
  905. the following parameters:
  906. @table @option
  907. @item main_w, main_h
  908. main input width and height
  909. @item W, H
  910. same as @var{main_w} and @var{main_h}
  911. @item overlay_w, overlay_h
  912. overlay input width and height
  913. @item w, h
  914. same as @var{overlay_w} and @var{overlay_h}
  915. @end table
  916. Be aware that frames are taken from each input video in timestamp
  917. order, hence, if their initial timestamps differ, it is a a good idea
  918. to pass the two inputs through a @var{setpts=PTS-STARTPTS} filter to
  919. have them begin in the same zero timestamp, as it does the example for
  920. the @var{movie} filter.
  921. Follow some examples:
  922. @example
  923. # draw the overlay at 10 pixels from the bottom right
  924. # corner of the main video.
  925. overlay=main_w-overlay_w-10:main_h-overlay_h-10
  926. # insert a transparent PNG logo in the bottom left corner of the input
  927. avconv -i input -i logo -filter_complex 'overlay=10:main_h-overlay_h-10' output
  928. # insert 2 different transparent PNG logos (second logo on bottom
  929. # right corner):
  930. avconv -i input -i logo1 -i logo2 -filter_complex
  931. 'overlay=10:H-h-10,overlay=W-w-10:H-h-10' output
  932. # add a transparent color layer on top of the main video,
  933. # WxH specifies the size of the main input to the overlay filter
  934. color=red@.3:WxH [over]; [in][over] overlay [out]
  935. @end example
  936. You can chain together more overlays but the efficiency of such
  937. approach is yet to be tested.
  938. @section pad
  939. Add paddings to the input image, and places the original input at the
  940. given coordinates @var{x}, @var{y}.
  941. It accepts the following parameters:
  942. @var{width}:@var{height}:@var{x}:@var{y}:@var{color}.
  943. The parameters @var{width}, @var{height}, @var{x}, and @var{y} are
  944. expressions containing the following constants:
  945. @table @option
  946. @item E, PI, PHI
  947. the corresponding mathematical approximated values for e
  948. (euler number), pi (greek PI), phi (golden ratio)
  949. @item in_w, in_h
  950. the input video width and height
  951. @item iw, ih
  952. same as @var{in_w} and @var{in_h}
  953. @item out_w, out_h
  954. the output width and height, that is the size of the padded area as
  955. specified by the @var{width} and @var{height} expressions
  956. @item ow, oh
  957. same as @var{out_w} and @var{out_h}
  958. @item x, y
  959. x and y offsets as specified by the @var{x} and @var{y}
  960. expressions, or NAN if not yet specified
  961. @item a
  962. input display aspect ratio, same as @var{iw} / @var{ih}
  963. @item hsub, vsub
  964. horizontal and vertical chroma subsample values. For example for the
  965. pixel format "yuv422p" @var{hsub} is 2 and @var{vsub} is 1.
  966. @end table
  967. Follows the description of the accepted parameters.
  968. @table @option
  969. @item width, height
  970. Specify the size of the output image with the paddings added. If the
  971. value for @var{width} or @var{height} is 0, the corresponding input size
  972. is used for the output.
  973. The @var{width} expression can reference the value set by the
  974. @var{height} expression, and vice versa.
  975. The default value of @var{width} and @var{height} is 0.
  976. @item x, y
  977. Specify the offsets where to place the input image in the padded area
  978. with respect to the top/left border of the output image.
  979. The @var{x} expression can reference the value set by the @var{y}
  980. expression, and vice versa.
  981. The default value of @var{x} and @var{y} is 0.
  982. @item color
  983. Specify the color of the padded area, it can be the name of a color
  984. (case insensitive match) or a 0xRRGGBB[AA] sequence.
  985. The default value of @var{color} is "black".
  986. @end table
  987. Some examples follow:
  988. @example
  989. # Add paddings with color "violet" to the input video. Output video
  990. # size is 640x480, the top-left corner of the input video is placed at
  991. # column 0, row 40.
  992. pad=640:480:0:40:violet
  993. # pad the input to get an output with dimensions increased bt 3/2,
  994. # and put the input video at the center of the padded area
  995. pad="3/2*iw:3/2*ih:(ow-iw)/2:(oh-ih)/2"
  996. # pad the input to get a squared output with size equal to the maximum
  997. # value between the input width and height, and put the input video at
  998. # the center of the padded area
  999. pad="max(iw\,ih):ow:(ow-iw)/2:(oh-ih)/2"
  1000. # pad the input to get a final w/h ratio of 16:9
  1001. pad="ih*16/9:ih:(ow-iw)/2:(oh-ih)/2"
  1002. # double output size and put the input video in the bottom-right
  1003. # corner of the output padded area
  1004. pad="2*iw:2*ih:ow-iw:oh-ih"
  1005. @end example
  1006. @section pixdesctest
  1007. Pixel format descriptor test filter, mainly useful for internal
  1008. testing. The output video should be equal to the input video.
  1009. For example:
  1010. @example
  1011. format=monow, pixdesctest
  1012. @end example
  1013. can be used to test the monowhite pixel format descriptor definition.
  1014. @section scale
  1015. Scale the input video to @var{width}:@var{height} and/or convert the image format.
  1016. The parameters @var{width} and @var{height} are expressions containing
  1017. the following constants:
  1018. @table @option
  1019. @item E, PI, PHI
  1020. the corresponding mathematical approximated values for e
  1021. (euler number), pi (greek PI), phi (golden ratio)
  1022. @item in_w, in_h
  1023. the input width and height
  1024. @item iw, ih
  1025. same as @var{in_w} and @var{in_h}
  1026. @item out_w, out_h
  1027. the output (cropped) width and height
  1028. @item ow, oh
  1029. same as @var{out_w} and @var{out_h}
  1030. @item dar, a
  1031. input display aspect ratio, same as @var{iw} / @var{ih}
  1032. @item sar
  1033. input sample aspect ratio
  1034. @item hsub, vsub
  1035. horizontal and vertical chroma subsample values. For example for the
  1036. pixel format "yuv422p" @var{hsub} is 2 and @var{vsub} is 1.
  1037. @end table
  1038. If the input image format is different from the format requested by
  1039. the next filter, the scale filter will convert the input to the
  1040. requested format.
  1041. If the value for @var{width} or @var{height} is 0, the respective input
  1042. size is used for the output.
  1043. If the value for @var{width} or @var{height} is -1, the scale filter will
  1044. use, for the respective output size, a value that maintains the aspect
  1045. ratio of the input image.
  1046. The default value of @var{width} and @var{height} is 0.
  1047. Some examples follow:
  1048. @example
  1049. # scale the input video to a size of 200x100.
  1050. scale=200:100
  1051. # scale the input to 2x
  1052. scale=2*iw:2*ih
  1053. # the above is the same as
  1054. scale=2*in_w:2*in_h
  1055. # scale the input to half size
  1056. scale=iw/2:ih/2
  1057. # increase the width, and set the height to the same size
  1058. scale=3/2*iw:ow
  1059. # seek for Greek harmony
  1060. scale=iw:1/PHI*iw
  1061. scale=ih*PHI:ih
  1062. # increase the height, and set the width to 3/2 of the height
  1063. scale=3/2*oh:3/5*ih
  1064. # increase the size, but make the size a multiple of the chroma
  1065. scale="trunc(3/2*iw/hsub)*hsub:trunc(3/2*ih/vsub)*vsub"
  1066. # increase the width to a maximum of 500 pixels, keep the same input aspect ratio
  1067. scale='min(500\, iw*3/2):-1'
  1068. @end example
  1069. @section select
  1070. Select frames to pass in output.
  1071. It accepts in input an expression, which is evaluated for each input
  1072. frame. If the expression is evaluated to a non-zero value, the frame
  1073. is selected and passed to the output, otherwise it is discarded.
  1074. The expression can contain the following constants:
  1075. @table @option
  1076. @item PI
  1077. Greek PI
  1078. @item PHI
  1079. golden ratio
  1080. @item E
  1081. Euler number
  1082. @item n
  1083. the sequential number of the filtered frame, starting from 0
  1084. @item selected_n
  1085. the sequential number of the selected frame, starting from 0
  1086. @item prev_selected_n
  1087. the sequential number of the last selected frame, NAN if undefined
  1088. @item TB
  1089. timebase of the input timestamps
  1090. @item pts
  1091. the PTS (Presentation TimeStamp) of the filtered video frame,
  1092. expressed in @var{TB} units, NAN if undefined
  1093. @item t
  1094. the PTS (Presentation TimeStamp) of the filtered video frame,
  1095. expressed in seconds, NAN if undefined
  1096. @item prev_pts
  1097. the PTS of the previously filtered video frame, NAN if undefined
  1098. @item prev_selected_pts
  1099. the PTS of the last previously filtered video frame, NAN if undefined
  1100. @item prev_selected_t
  1101. the PTS of the last previously selected video frame, NAN if undefined
  1102. @item start_pts
  1103. the PTS of the first video frame in the video, NAN if undefined
  1104. @item start_t
  1105. the time of the first video frame in the video, NAN if undefined
  1106. @item pict_type
  1107. the type of the filtered frame, can assume one of the following
  1108. values:
  1109. @table @option
  1110. @item I
  1111. @item P
  1112. @item B
  1113. @item S
  1114. @item SI
  1115. @item SP
  1116. @item BI
  1117. @end table
  1118. @item interlace_type
  1119. the frame interlace type, can assume one of the following values:
  1120. @table @option
  1121. @item PROGRESSIVE
  1122. the frame is progressive (not interlaced)
  1123. @item TOPFIRST
  1124. the frame is top-field-first
  1125. @item BOTTOMFIRST
  1126. the frame is bottom-field-first
  1127. @end table
  1128. @item key
  1129. 1 if the filtered frame is a key-frame, 0 otherwise
  1130. @item pos
  1131. the position in the file of the filtered frame, -1 if the information
  1132. is not available (e.g. for synthetic video)
  1133. @end table
  1134. The default value of the select expression is "1".
  1135. Some examples follow:
  1136. @example
  1137. # select all frames in input
  1138. select
  1139. # the above is the same as:
  1140. select=1
  1141. # skip all frames:
  1142. select=0
  1143. # select only I-frames
  1144. select='eq(pict_type\,I)'
  1145. # select one frame every 100
  1146. select='not(mod(n\,100))'
  1147. # select only frames contained in the 10-20 time interval
  1148. select='gte(t\,10)*lte(t\,20)'
  1149. # select only I frames contained in the 10-20 time interval
  1150. select='gte(t\,10)*lte(t\,20)*eq(pict_type\,I)'
  1151. # select frames with a minimum distance of 10 seconds
  1152. select='isnan(prev_selected_t)+gte(t-prev_selected_t\,10)'
  1153. @end example
  1154. @anchor{setdar}
  1155. @section setdar
  1156. Set the Display Aspect Ratio for the filter output video.
  1157. This is done by changing the specified Sample (aka Pixel) Aspect
  1158. Ratio, according to the following equation:
  1159. @math{DAR = HORIZONTAL_RESOLUTION / VERTICAL_RESOLUTION * SAR}
  1160. Keep in mind that this filter does not modify the pixel dimensions of
  1161. the video frame. Also the display aspect ratio set by this filter may
  1162. be changed by later filters in the filterchain, e.g. in case of
  1163. scaling or if another "setdar" or a "setsar" filter is applied.
  1164. The filter accepts a parameter string which represents the wanted
  1165. display aspect ratio.
  1166. The parameter can be a floating point number string, or an expression
  1167. of the form @var{num}:@var{den}, where @var{num} and @var{den} are the
  1168. numerator and denominator of the aspect ratio.
  1169. If the parameter is not specified, it is assumed the value "0:1".
  1170. For example to change the display aspect ratio to 16:9, specify:
  1171. @example
  1172. setdar=16:9
  1173. # the above is equivalent to
  1174. setdar=1.77777
  1175. @end example
  1176. See also the @ref{setsar} filter documentation.
  1177. @section setpts
  1178. Change the PTS (presentation timestamp) of the input video frames.
  1179. Accept in input an expression evaluated through the eval API, which
  1180. can contain the following constants:
  1181. @table @option
  1182. @item PTS
  1183. the presentation timestamp in input
  1184. @item PI
  1185. Greek PI
  1186. @item PHI
  1187. golden ratio
  1188. @item E
  1189. Euler number
  1190. @item N
  1191. the count of the input frame, starting from 0.
  1192. @item STARTPTS
  1193. the PTS of the first video frame
  1194. @item INTERLACED
  1195. tell if the current frame is interlaced
  1196. @item POS
  1197. original position in the file of the frame, or undefined if undefined
  1198. for the current frame
  1199. @item PREV_INPTS
  1200. previous input PTS
  1201. @item PREV_OUTPTS
  1202. previous output PTS
  1203. @end table
  1204. Some examples follow:
  1205. @example
  1206. # start counting PTS from zero
  1207. setpts=PTS-STARTPTS
  1208. # fast motion
  1209. setpts=0.5*PTS
  1210. # slow motion
  1211. setpts=2.0*PTS
  1212. # fixed rate 25 fps
  1213. setpts=N/(25*TB)
  1214. # fixed rate 25 fps with some jitter
  1215. setpts='1/(25*TB) * (N + 0.05 * sin(N*2*PI/25))'
  1216. @end example
  1217. @anchor{setsar}
  1218. @section setsar
  1219. Set the Sample (aka Pixel) Aspect Ratio for the filter output video.
  1220. Note that as a consequence of the application of this filter, the
  1221. output display aspect ratio will change according to the following
  1222. equation:
  1223. @math{DAR = HORIZONTAL_RESOLUTION / VERTICAL_RESOLUTION * SAR}
  1224. Keep in mind that the sample aspect ratio set by this filter may be
  1225. changed by later filters in the filterchain, e.g. if another "setsar"
  1226. or a "setdar" filter is applied.
  1227. The filter accepts a parameter string which represents the wanted
  1228. sample aspect ratio.
  1229. The parameter can be a floating point number string, or an expression
  1230. of the form @var{num}:@var{den}, where @var{num} and @var{den} are the
  1231. numerator and denominator of the aspect ratio.
  1232. If the parameter is not specified, it is assumed the value "0:1".
  1233. For example to change the sample aspect ratio to 10:11, specify:
  1234. @example
  1235. setsar=10:11
  1236. @end example
  1237. @section settb
  1238. Set the timebase to use for the output frames timestamps.
  1239. It is mainly useful for testing timebase configuration.
  1240. It accepts in input an arithmetic expression representing a rational.
  1241. The expression can contain the constants "PI", "E", "PHI", "AVTB" (the
  1242. default timebase), and "intb" (the input timebase).
  1243. The default value for the input is "intb".
  1244. Follow some examples.
  1245. @example
  1246. # set the timebase to 1/25
  1247. settb=1/25
  1248. # set the timebase to 1/10
  1249. settb=0.1
  1250. #set the timebase to 1001/1000
  1251. settb=1+0.001
  1252. #set the timebase to 2*intb
  1253. settb=2*intb
  1254. #set the default timebase value
  1255. settb=AVTB
  1256. @end example
  1257. @section showinfo
  1258. Show a line containing various information for each input video frame.
  1259. The input video is not modified.
  1260. The shown line contains a sequence of key/value pairs of the form
  1261. @var{key}:@var{value}.
  1262. A description of each shown parameter follows:
  1263. @table @option
  1264. @item n
  1265. sequential number of the input frame, starting from 0
  1266. @item pts
  1267. Presentation TimeStamp of the input frame, expressed as a number of
  1268. time base units. The time base unit depends on the filter input pad.
  1269. @item pts_time
  1270. Presentation TimeStamp of the input frame, expressed as a number of
  1271. seconds
  1272. @item pos
  1273. position of the frame in the input stream, -1 if this information in
  1274. unavailable and/or meaningless (for example in case of synthetic video)
  1275. @item fmt
  1276. pixel format name
  1277. @item sar
  1278. sample aspect ratio of the input frame, expressed in the form
  1279. @var{num}/@var{den}
  1280. @item s
  1281. size of the input frame, expressed in the form
  1282. @var{width}x@var{height}
  1283. @item i
  1284. interlaced mode ("P" for "progressive", "T" for top field first, "B"
  1285. for bottom field first)
  1286. @item iskey
  1287. 1 if the frame is a key frame, 0 otherwise
  1288. @item type
  1289. picture type of the input frame ("I" for an I-frame, "P" for a
  1290. P-frame, "B" for a B-frame, "?" for unknown type).
  1291. Check also the documentation of the @code{AVPictureType} enum and of
  1292. the @code{av_get_picture_type_char} function defined in
  1293. @file{libavutil/avutil.h}.
  1294. @item checksum
  1295. Adler-32 checksum of all the planes of the input frame
  1296. @item plane_checksum
  1297. Adler-32 checksum of each plane of the input frame, expressed in the form
  1298. "[@var{c0} @var{c1} @var{c2} @var{c3}]"
  1299. @end table
  1300. @section slicify
  1301. Pass the images of input video on to next video filter as multiple
  1302. slices.
  1303. @example
  1304. ./avconv -i in.avi -vf "slicify=32" out.avi
  1305. @end example
  1306. The filter accepts the slice height as parameter. If the parameter is
  1307. not specified it will use the default value of 16.
  1308. Adding this in the beginning of filter chains should make filtering
  1309. faster due to better use of the memory cache.
  1310. @section split
  1311. Split input video into several identical outputs.
  1312. The filter accepts a single parameter which specifies the number of outputs. If
  1313. unspecified, it defaults to 2.
  1314. For example
  1315. @example
  1316. avconv -i INPUT -filter_complex split=5 OUTPUT
  1317. @end example
  1318. will create 5 copies of the input video.
  1319. @section transpose
  1320. Transpose rows with columns in the input video and optionally flip it.
  1321. It accepts a parameter representing an integer, which can assume the
  1322. values:
  1323. @table @samp
  1324. @item 0
  1325. Rotate by 90 degrees counterclockwise and vertically flip (default), that is:
  1326. @example
  1327. L.R L.l
  1328. . . -> . .
  1329. l.r R.r
  1330. @end example
  1331. @item 1
  1332. Rotate by 90 degrees clockwise, that is:
  1333. @example
  1334. L.R l.L
  1335. . . -> . .
  1336. l.r r.R
  1337. @end example
  1338. @item 2
  1339. Rotate by 90 degrees counterclockwise, that is:
  1340. @example
  1341. L.R R.r
  1342. . . -> . .
  1343. l.r L.l
  1344. @end example
  1345. @item 3
  1346. Rotate by 90 degrees clockwise and vertically flip, that is:
  1347. @example
  1348. L.R r.R
  1349. . . -> . .
  1350. l.r l.L
  1351. @end example
  1352. @end table
  1353. @section unsharp
  1354. Sharpen or blur the input video.
  1355. It accepts the following parameters:
  1356. @var{luma_msize_x}:@var{luma_msize_y}:@var{luma_amount}:@var{chroma_msize_x}:@var{chroma_msize_y}:@var{chroma_amount}
  1357. Negative values for the amount will blur the input video, while positive
  1358. values will sharpen. All parameters are optional and default to the
  1359. equivalent of the string '5:5:1.0:5:5:0.0'.
  1360. @table @option
  1361. @item luma_msize_x
  1362. Set the luma matrix horizontal size. It can be an integer between 3
  1363. and 13, default value is 5.
  1364. @item luma_msize_y
  1365. Set the luma matrix vertical size. It can be an integer between 3
  1366. and 13, default value is 5.
  1367. @item luma_amount
  1368. Set the luma effect strength. It can be a float number between -2.0
  1369. and 5.0, default value is 1.0.
  1370. @item chroma_msize_x
  1371. Set the chroma matrix horizontal size. It can be an integer between 3
  1372. and 13, default value is 5.
  1373. @item chroma_msize_y
  1374. Set the chroma matrix vertical size. It can be an integer between 3
  1375. and 13, default value is 5.
  1376. @item luma_amount
  1377. Set the chroma effect strength. It can be a float number between -2.0
  1378. and 5.0, default value is 0.0.
  1379. @end table
  1380. @example
  1381. # Strong luma sharpen effect parameters
  1382. unsharp=7:7:2.5
  1383. # Strong blur of both luma and chroma parameters
  1384. unsharp=7:7:-2:7:7:-2
  1385. # Use the default values with @command{avconv}
  1386. ./avconv -i in.avi -vf "unsharp" out.mp4
  1387. @end example
  1388. @section vflip
  1389. Flip the input video vertically.
  1390. @example
  1391. ./avconv -i in.avi -vf "vflip" out.avi
  1392. @end example
  1393. @section yadif
  1394. Deinterlace the input video ("yadif" means "yet another deinterlacing
  1395. filter").
  1396. It accepts the optional parameters: @var{mode}:@var{parity}:@var{auto}.
  1397. @var{mode} specifies the interlacing mode to adopt, accepts one of the
  1398. following values:
  1399. @table @option
  1400. @item 0
  1401. output 1 frame for each frame
  1402. @item 1
  1403. output 1 frame for each field
  1404. @item 2
  1405. like 0 but skips spatial interlacing check
  1406. @item 3
  1407. like 1 but skips spatial interlacing check
  1408. @end table
  1409. Default value is 0.
  1410. @var{parity} specifies the picture field parity assumed for the input
  1411. interlaced video, accepts one of the following values:
  1412. @table @option
  1413. @item 0
  1414. assume top field first
  1415. @item 1
  1416. assume bottom field first
  1417. @item -1
  1418. enable automatic detection
  1419. @end table
  1420. Default value is -1.
  1421. If interlacing is unknown or decoder does not export this information,
  1422. top field first will be assumed.
  1423. @var{auto} specifies if deinterlacer should trust the interlaced flag
  1424. and only deinterlace frames marked as interlaced
  1425. @table @option
  1426. @item 0
  1427. deinterlace all frames
  1428. @item 1
  1429. only deinterlace frames marked as interlaced
  1430. @end table
  1431. Default value is 0.
  1432. @c man end VIDEO FILTERS
  1433. @chapter Video Sources
  1434. @c man begin VIDEO SOURCES
  1435. Below is a description of the currently available video sources.
  1436. @section buffer
  1437. Buffer video frames, and make them available to the filter chain.
  1438. This source is mainly intended for a programmatic use, in particular
  1439. through the interface defined in @file{libavfilter/vsrc_buffer.h}.
  1440. It accepts the following parameters:
  1441. @var{width}:@var{height}:@var{pix_fmt_string}:@var{timebase_num}:@var{timebase_den}:@var{sample_aspect_ratio_num}:@var{sample_aspect_ratio.den}
  1442. All the parameters need to be explicitly defined.
  1443. Follows the list of the accepted parameters.
  1444. @table @option
  1445. @item width, height
  1446. Specify the width and height of the buffered video frames.
  1447. @item pix_fmt_string
  1448. A string representing the pixel format of the buffered video frames.
  1449. It may be a number corresponding to a pixel format, or a pixel format
  1450. name.
  1451. @item timebase_num, timebase_den
  1452. Specify numerator and denomitor of the timebase assumed by the
  1453. timestamps of the buffered frames.
  1454. @item sample_aspect_ratio.num, sample_aspect_ratio.den
  1455. Specify numerator and denominator of the sample aspect ratio assumed
  1456. by the video frames.
  1457. @end table
  1458. For example:
  1459. @example
  1460. buffer=320:240:yuv410p:1:24:1:1
  1461. @end example
  1462. will instruct the source to accept video frames with size 320x240 and
  1463. with format "yuv410p", assuming 1/24 as the timestamps timebase and
  1464. square pixels (1:1 sample aspect ratio).
  1465. Since the pixel format with name "yuv410p" corresponds to the number 6
  1466. (check the enum PixelFormat definition in @file{libavutil/pixfmt.h}),
  1467. this example corresponds to:
  1468. @example
  1469. buffer=320:240:6:1:24
  1470. @end example
  1471. @section color
  1472. Provide an uniformly colored input.
  1473. It accepts the following parameters:
  1474. @var{color}:@var{frame_size}:@var{frame_rate}
  1475. Follows the description of the accepted parameters.
  1476. @table @option
  1477. @item color
  1478. Specify the color of the source. It can be the name of a color (case
  1479. insensitive match) or a 0xRRGGBB[AA] sequence, possibly followed by an
  1480. alpha specifier. The default value is "black".
  1481. @item frame_size
  1482. Specify the size of the sourced video, it may be a string of the form
  1483. @var{width}x@var{height}, or the name of a size abbreviation. The
  1484. default value is "320x240".
  1485. @item frame_rate
  1486. Specify the frame rate of the sourced video, as the number of frames
  1487. generated per second. It has to be a string in the format
  1488. @var{frame_rate_num}/@var{frame_rate_den}, an integer number, a float
  1489. number or a valid video frame rate abbreviation. The default value is
  1490. "25".
  1491. @end table
  1492. For example the following graph description will generate a red source
  1493. with an opacity of 0.2, with size "qcif" and a frame rate of 10
  1494. frames per second, which will be overlayed over the source connected
  1495. to the pad with identifier "in".
  1496. @example
  1497. "color=red@@0.2:qcif:10 [color]; [in][color] overlay [out]"
  1498. @end example
  1499. @section movie
  1500. Read a video stream from a movie container.
  1501. It accepts the syntax: @var{movie_name}[:@var{options}] where
  1502. @var{movie_name} is the name of the resource to read (not necessarily
  1503. a file but also a device or a stream accessed through some protocol),
  1504. and @var{options} is an optional sequence of @var{key}=@var{value}
  1505. pairs, separated by ":".
  1506. The description of the accepted options follows.
  1507. @table @option
  1508. @item format_name, f
  1509. Specifies the format assumed for the movie to read, and can be either
  1510. the name of a container or an input device. If not specified the
  1511. format is guessed from @var{movie_name} or by probing.
  1512. @item seek_point, sp
  1513. Specifies the seek point in seconds, the frames will be output
  1514. starting from this seek point, the parameter is evaluated with
  1515. @code{av_strtod} so the numerical value may be suffixed by an IS
  1516. postfix. Default value is "0".
  1517. @item stream_index, si
  1518. Specifies the index of the video stream to read. If the value is -1,
  1519. the best suited video stream will be automatically selected. Default
  1520. value is "-1".
  1521. @end table
  1522. This filter allows to overlay a second video on top of main input of
  1523. a filtergraph as shown in this graph:
  1524. @example
  1525. input -----------> deltapts0 --> overlay --> output
  1526. ^
  1527. |
  1528. movie --> scale--> deltapts1 -------+
  1529. @end example
  1530. Some examples follow:
  1531. @example
  1532. # skip 3.2 seconds from the start of the avi file in.avi, and overlay it
  1533. # on top of the input labelled as "in".
  1534. movie=in.avi:seek_point=3.2, scale=180:-1, setpts=PTS-STARTPTS [movie];
  1535. [in] setpts=PTS-STARTPTS, [movie] overlay=16:16 [out]
  1536. # read from a video4linux2 device, and overlay it on top of the input
  1537. # labelled as "in"
  1538. movie=/dev/video0:f=video4linux2, scale=180:-1, setpts=PTS-STARTPTS [movie];
  1539. [in] setpts=PTS-STARTPTS, [movie] overlay=16:16 [out]
  1540. @end example
  1541. @section nullsrc
  1542. Null video source, never return images. It is mainly useful as a
  1543. template and to be employed in analysis / debugging tools.
  1544. It accepts as optional parameter a string of the form
  1545. @var{width}:@var{height}:@var{timebase}.
  1546. @var{width} and @var{height} specify the size of the configured
  1547. source. The default values of @var{width} and @var{height} are
  1548. respectively 352 and 288 (corresponding to the CIF size format).
  1549. @var{timebase} specifies an arithmetic expression representing a
  1550. timebase. The expression can contain the constants "PI", "E", "PHI",
  1551. "AVTB" (the default timebase), and defaults to the value "AVTB".
  1552. @section frei0r_src
  1553. Provide a frei0r source.
  1554. To enable compilation of this filter you need to install the frei0r
  1555. header and configure Libav with --enable-frei0r.
  1556. The source supports the syntax:
  1557. @example
  1558. @var{size}:@var{rate}:@var{src_name}[@{=|:@}@var{param1}:@var{param2}:...:@var{paramN}]
  1559. @end example
  1560. @var{size} is the size of the video to generate, may be a string of the
  1561. form @var{width}x@var{height} or a frame size abbreviation.
  1562. @var{rate} is the rate of the video to generate, may be a string of
  1563. the form @var{num}/@var{den} or a frame rate abbreviation.
  1564. @var{src_name} is the name to the frei0r source to load. For more
  1565. information regarding frei0r and how to set the parameters read the
  1566. section @ref{frei0r} in the description of the video filters.
  1567. Some examples follow:
  1568. @example
  1569. # generate a frei0r partik0l source with size 200x200 and framerate 10
  1570. # which is overlayed on the overlay filter main input
  1571. frei0r_src=200x200:10:partik0l=1234 [overlay]; [in][overlay] overlay
  1572. @end example
  1573. @section rgbtestsrc, testsrc
  1574. The @code{rgbtestsrc} source generates an RGB test pattern useful for
  1575. detecting RGB vs BGR issues. You should see a red, green and blue
  1576. stripe from top to bottom.
  1577. The @code{testsrc} source generates a test video pattern, showing a
  1578. color pattern, a scrolling gradient and a timestamp. This is mainly
  1579. intended for testing purposes.
  1580. Both sources accept an optional sequence of @var{key}=@var{value} pairs,
  1581. separated by ":". The description of the accepted options follows.
  1582. @table @option
  1583. @item size, s
  1584. Specify the size of the sourced video, it may be a string of the form
  1585. @var{width}x@var{height}, or the name of a size abbreviation. The
  1586. default value is "320x240".
  1587. @item rate, r
  1588. Specify the frame rate of the sourced video, as the number of frames
  1589. generated per second. It has to be a string in the format
  1590. @var{frame_rate_num}/@var{frame_rate_den}, an integer number, a float
  1591. number or a valid video frame rate abbreviation. The default value is
  1592. "25".
  1593. @item sar
  1594. Set the sample aspect ratio of the sourced video.
  1595. @item duration
  1596. Set the video duration of the sourced video. The accepted syntax is:
  1597. @example
  1598. [-]HH[:MM[:SS[.m...]]]
  1599. [-]S+[.m...]
  1600. @end example
  1601. See also the function @code{av_parse_time()}.
  1602. If not specified, or the expressed duration is negative, the video is
  1603. supposed to be generated forever.
  1604. @end table
  1605. For example the following:
  1606. @example
  1607. testsrc=duration=5.3:size=qcif:rate=10
  1608. @end example
  1609. will generate a video with a duration of 5.3 seconds, with size
  1610. 176x144 and a framerate of 10 frames per second.
  1611. @c man end VIDEO SOURCES
  1612. @chapter Video Sinks
  1613. @c man begin VIDEO SINKS
  1614. Below is a description of the currently available video sinks.
  1615. @section buffersink
  1616. Buffer video frames, and make them available to the end of the filter
  1617. graph.
  1618. This sink is intended for a programmatic use through the interface defined in
  1619. @file{libavfilter/buffersink.h}.
  1620. @section nullsink
  1621. Null video sink, do absolutely nothing with the input video. It is
  1622. mainly useful as a template and to be employed in analysis / debugging
  1623. tools.
  1624. @c man end VIDEO SINKS