You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

839 lines
26KB

  1. /*
  2. * WMA compatible decoder
  3. * Copyright (c) 2002 The FFmpeg Project
  4. *
  5. * This file is part of FFmpeg.
  6. *
  7. * FFmpeg is free software; you can redistribute it and/or
  8. * modify it under the terms of the GNU Lesser General Public
  9. * License as published by the Free Software Foundation; either
  10. * version 2.1 of the License, or (at your option) any later version.
  11. *
  12. * FFmpeg is distributed in the hope that it will be useful,
  13. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  14. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  15. * Lesser General Public License for more details.
  16. *
  17. * You should have received a copy of the GNU Lesser General Public
  18. * License along with FFmpeg; if not, write to the Free Software
  19. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  20. */
  21. /**
  22. * @file libavcodec/wmadec.c
  23. * WMA compatible decoder.
  24. * This decoder handles Microsoft Windows Media Audio data, versions 1 & 2.
  25. * WMA v1 is identified by audio format 0x160 in Microsoft media files
  26. * (ASF/AVI/WAV). WMA v2 is identified by audio format 0x161.
  27. *
  28. * To use this decoder, a calling application must supply the extra data
  29. * bytes provided with the WMA data. These are the extra, codec-specific
  30. * bytes at the end of a WAVEFORMATEX data structure. Transmit these bytes
  31. * to the decoder using the extradata[_size] fields in AVCodecContext. There
  32. * should be 4 extra bytes for v1 data and 6 extra bytes for v2 data.
  33. */
  34. #include "avcodec.h"
  35. #include "wma.h"
  36. #undef NDEBUG
  37. #include <assert.h>
  38. #define EXPVLCBITS 8
  39. #define EXPMAX ((19+EXPVLCBITS-1)/EXPVLCBITS)
  40. #define HGAINVLCBITS 9
  41. #define HGAINMAX ((13+HGAINVLCBITS-1)/HGAINVLCBITS)
  42. static void wma_lsp_to_curve_init(WMACodecContext *s, int frame_len);
  43. #ifdef TRACE
  44. static void dump_shorts(WMACodecContext *s, const char *name, const short *tab, int n)
  45. {
  46. int i;
  47. tprintf(s->avctx, "%s[%d]:\n", name, n);
  48. for(i=0;i<n;i++) {
  49. if ((i & 7) == 0)
  50. tprintf(s->avctx, "%4d: ", i);
  51. tprintf(s->avctx, " %5d.0", tab[i]);
  52. if ((i & 7) == 7)
  53. tprintf(s->avctx, "\n");
  54. }
  55. }
  56. static void dump_floats(WMACodecContext *s, const char *name, int prec, const float *tab, int n)
  57. {
  58. int i;
  59. tprintf(s->avctx, "%s[%d]:\n", name, n);
  60. for(i=0;i<n;i++) {
  61. if ((i & 7) == 0)
  62. tprintf(s->avctx, "%4d: ", i);
  63. tprintf(s->avctx, " %8.*f", prec, tab[i]);
  64. if ((i & 7) == 7)
  65. tprintf(s->avctx, "\n");
  66. }
  67. if ((i & 7) != 0)
  68. tprintf(s->avctx, "\n");
  69. }
  70. #endif
  71. static int wma_decode_init(AVCodecContext * avctx)
  72. {
  73. WMACodecContext *s = avctx->priv_data;
  74. int i, flags2;
  75. uint8_t *extradata;
  76. s->avctx = avctx;
  77. /* extract flag infos */
  78. flags2 = 0;
  79. extradata = avctx->extradata;
  80. if (avctx->codec->id == CODEC_ID_WMAV1 && avctx->extradata_size >= 4) {
  81. flags2 = AV_RL16(extradata+2);
  82. } else if (avctx->codec->id == CODEC_ID_WMAV2 && avctx->extradata_size >= 6) {
  83. flags2 = AV_RL16(extradata+4);
  84. }
  85. // for(i=0; i<avctx->extradata_size; i++)
  86. // av_log(NULL, AV_LOG_ERROR, "%02X ", extradata[i]);
  87. s->use_exp_vlc = flags2 & 0x0001;
  88. s->use_bit_reservoir = flags2 & 0x0002;
  89. s->use_variable_block_len = flags2 & 0x0004;
  90. if(ff_wma_init(avctx, flags2)<0)
  91. return -1;
  92. /* init MDCT */
  93. for(i = 0; i < s->nb_block_sizes; i++)
  94. ff_mdct_init(&s->mdct_ctx[i], s->frame_len_bits - i + 1, 1, 1.0);
  95. if (s->use_noise_coding) {
  96. init_vlc(&s->hgain_vlc, HGAINVLCBITS, sizeof(ff_wma_hgain_huffbits),
  97. ff_wma_hgain_huffbits, 1, 1,
  98. ff_wma_hgain_huffcodes, 2, 2, 0);
  99. }
  100. if (s->use_exp_vlc) {
  101. init_vlc(&s->exp_vlc, EXPVLCBITS, sizeof(ff_wma_scale_huffbits), //FIXME move out of context
  102. ff_wma_scale_huffbits, 1, 1,
  103. ff_wma_scale_huffcodes, 4, 4, 0);
  104. } else {
  105. wma_lsp_to_curve_init(s, s->frame_len);
  106. }
  107. avctx->sample_fmt = SAMPLE_FMT_S16;
  108. return 0;
  109. }
  110. /**
  111. * compute x^-0.25 with an exponent and mantissa table. We use linear
  112. * interpolation to reduce the mantissa table size at a small speed
  113. * expense (linear interpolation approximately doubles the number of
  114. * bits of precision).
  115. */
  116. static inline float pow_m1_4(WMACodecContext *s, float x)
  117. {
  118. union {
  119. float f;
  120. unsigned int v;
  121. } u, t;
  122. unsigned int e, m;
  123. float a, b;
  124. u.f = x;
  125. e = u.v >> 23;
  126. m = (u.v >> (23 - LSP_POW_BITS)) & ((1 << LSP_POW_BITS) - 1);
  127. /* build interpolation scale: 1 <= t < 2. */
  128. t.v = ((u.v << LSP_POW_BITS) & ((1 << 23) - 1)) | (127 << 23);
  129. a = s->lsp_pow_m_table1[m];
  130. b = s->lsp_pow_m_table2[m];
  131. return s->lsp_pow_e_table[e] * (a + b * t.f);
  132. }
  133. static void wma_lsp_to_curve_init(WMACodecContext *s, int frame_len)
  134. {
  135. float wdel, a, b;
  136. int i, e, m;
  137. wdel = M_PI / frame_len;
  138. for(i=0;i<frame_len;i++)
  139. s->lsp_cos_table[i] = 2.0f * cos(wdel * i);
  140. /* tables for x^-0.25 computation */
  141. for(i=0;i<256;i++) {
  142. e = i - 126;
  143. s->lsp_pow_e_table[i] = pow(2.0, e * -0.25);
  144. }
  145. /* NOTE: these two tables are needed to avoid two operations in
  146. pow_m1_4 */
  147. b = 1.0;
  148. for(i=(1 << LSP_POW_BITS) - 1;i>=0;i--) {
  149. m = (1 << LSP_POW_BITS) + i;
  150. a = (float)m * (0.5 / (1 << LSP_POW_BITS));
  151. a = pow(a, -0.25);
  152. s->lsp_pow_m_table1[i] = 2 * a - b;
  153. s->lsp_pow_m_table2[i] = b - a;
  154. b = a;
  155. }
  156. #if 0
  157. for(i=1;i<20;i++) {
  158. float v, r1, r2;
  159. v = 5.0 / i;
  160. r1 = pow_m1_4(s, v);
  161. r2 = pow(v,-0.25);
  162. printf("%f^-0.25=%f e=%f\n", v, r1, r2 - r1);
  163. }
  164. #endif
  165. }
  166. /**
  167. * NOTE: We use the same code as Vorbis here
  168. * @todo optimize it further with SSE/3Dnow
  169. */
  170. static void wma_lsp_to_curve(WMACodecContext *s,
  171. float *out, float *val_max_ptr,
  172. int n, float *lsp)
  173. {
  174. int i, j;
  175. float p, q, w, v, val_max;
  176. val_max = 0;
  177. for(i=0;i<n;i++) {
  178. p = 0.5f;
  179. q = 0.5f;
  180. w = s->lsp_cos_table[i];
  181. for(j=1;j<NB_LSP_COEFS;j+=2){
  182. q *= w - lsp[j - 1];
  183. p *= w - lsp[j];
  184. }
  185. p *= p * (2.0f - w);
  186. q *= q * (2.0f + w);
  187. v = p + q;
  188. v = pow_m1_4(s, v);
  189. if (v > val_max)
  190. val_max = v;
  191. out[i] = v;
  192. }
  193. *val_max_ptr = val_max;
  194. }
  195. /**
  196. * decode exponents coded with LSP coefficients (same idea as Vorbis)
  197. */
  198. static void decode_exp_lsp(WMACodecContext *s, int ch)
  199. {
  200. float lsp_coefs[NB_LSP_COEFS];
  201. int val, i;
  202. for(i = 0; i < NB_LSP_COEFS; i++) {
  203. if (i == 0 || i >= 8)
  204. val = get_bits(&s->gb, 3);
  205. else
  206. val = get_bits(&s->gb, 4);
  207. lsp_coefs[i] = ff_wma_lsp_codebook[i][val];
  208. }
  209. wma_lsp_to_curve(s, s->exponents[ch], &s->max_exponent[ch],
  210. s->block_len, lsp_coefs);
  211. }
  212. /**
  213. * decode exponents coded with VLC codes
  214. */
  215. static int decode_exp_vlc(WMACodecContext *s, int ch)
  216. {
  217. int last_exp, n, code;
  218. const uint16_t *ptr;
  219. float v, *q, max_scale, *q_end;
  220. ptr = s->exponent_bands[s->frame_len_bits - s->block_len_bits];
  221. q = s->exponents[ch];
  222. q_end = q + s->block_len;
  223. max_scale = 0;
  224. if (s->version == 1) {
  225. last_exp = get_bits(&s->gb, 5) + 10;
  226. /* XXX: use a table */
  227. v = pow(10, last_exp * (1.0 / 16.0));
  228. max_scale = v;
  229. n = *ptr++;
  230. do {
  231. *q++ = v;
  232. } while (--n);
  233. }else
  234. last_exp = 36;
  235. while (q < q_end) {
  236. code = get_vlc2(&s->gb, s->exp_vlc.table, EXPVLCBITS, EXPMAX);
  237. if (code < 0)
  238. return -1;
  239. /* NOTE: this offset is the same as MPEG4 AAC ! */
  240. last_exp += code - 60;
  241. /* XXX: use a table */
  242. v = pow(10, last_exp * (1.0 / 16.0));
  243. if (v > max_scale)
  244. max_scale = v;
  245. n = *ptr++;
  246. do {
  247. *q++ = v;
  248. } while (--n);
  249. }
  250. s->max_exponent[ch] = max_scale;
  251. return 0;
  252. }
  253. /**
  254. * Apply MDCT window and add into output.
  255. *
  256. * We ensure that when the windows overlap their squared sum
  257. * is always 1 (MDCT reconstruction rule).
  258. */
  259. static void wma_window(WMACodecContext *s, float *out)
  260. {
  261. float *in = s->output;
  262. int block_len, bsize, n;
  263. /* left part */
  264. if (s->block_len_bits <= s->prev_block_len_bits) {
  265. block_len = s->block_len;
  266. bsize = s->frame_len_bits - s->block_len_bits;
  267. s->dsp.vector_fmul_add_add(out, in, s->windows[bsize],
  268. out, 0, block_len, 1);
  269. } else {
  270. block_len = 1 << s->prev_block_len_bits;
  271. n = (s->block_len - block_len) / 2;
  272. bsize = s->frame_len_bits - s->prev_block_len_bits;
  273. s->dsp.vector_fmul_add_add(out+n, in+n, s->windows[bsize],
  274. out+n, 0, block_len, 1);
  275. memcpy(out+n+block_len, in+n+block_len, n*sizeof(float));
  276. }
  277. out += s->block_len;
  278. in += s->block_len;
  279. /* right part */
  280. if (s->block_len_bits <= s->next_block_len_bits) {
  281. block_len = s->block_len;
  282. bsize = s->frame_len_bits - s->block_len_bits;
  283. s->dsp.vector_fmul_reverse(out, in, s->windows[bsize], block_len);
  284. } else {
  285. block_len = 1 << s->next_block_len_bits;
  286. n = (s->block_len - block_len) / 2;
  287. bsize = s->frame_len_bits - s->next_block_len_bits;
  288. memcpy(out, in, n*sizeof(float));
  289. s->dsp.vector_fmul_reverse(out+n, in+n, s->windows[bsize], block_len);
  290. memset(out+n+block_len, 0, n*sizeof(float));
  291. }
  292. }
  293. /**
  294. * @return 0 if OK. 1 if last block of frame. return -1 if
  295. * unrecorrable error.
  296. */
  297. static int wma_decode_block(WMACodecContext *s)
  298. {
  299. int n, v, a, ch, bsize;
  300. int coef_nb_bits, total_gain;
  301. int nb_coefs[MAX_CHANNELS];
  302. float mdct_norm;
  303. #ifdef TRACE
  304. tprintf(s->avctx, "***decode_block: %d:%d\n", s->frame_count - 1, s->block_num);
  305. #endif
  306. /* compute current block length */
  307. if (s->use_variable_block_len) {
  308. n = av_log2(s->nb_block_sizes - 1) + 1;
  309. if (s->reset_block_lengths) {
  310. s->reset_block_lengths = 0;
  311. v = get_bits(&s->gb, n);
  312. if (v >= s->nb_block_sizes)
  313. return -1;
  314. s->prev_block_len_bits = s->frame_len_bits - v;
  315. v = get_bits(&s->gb, n);
  316. if (v >= s->nb_block_sizes)
  317. return -1;
  318. s->block_len_bits = s->frame_len_bits - v;
  319. } else {
  320. /* update block lengths */
  321. s->prev_block_len_bits = s->block_len_bits;
  322. s->block_len_bits = s->next_block_len_bits;
  323. }
  324. v = get_bits(&s->gb, n);
  325. if (v >= s->nb_block_sizes)
  326. return -1;
  327. s->next_block_len_bits = s->frame_len_bits - v;
  328. } else {
  329. /* fixed block len */
  330. s->next_block_len_bits = s->frame_len_bits;
  331. s->prev_block_len_bits = s->frame_len_bits;
  332. s->block_len_bits = s->frame_len_bits;
  333. }
  334. /* now check if the block length is coherent with the frame length */
  335. s->block_len = 1 << s->block_len_bits;
  336. if ((s->block_pos + s->block_len) > s->frame_len)
  337. return -1;
  338. if (s->nb_channels == 2) {
  339. s->ms_stereo = get_bits1(&s->gb);
  340. }
  341. v = 0;
  342. for(ch = 0; ch < s->nb_channels; ch++) {
  343. a = get_bits1(&s->gb);
  344. s->channel_coded[ch] = a;
  345. v |= a;
  346. }
  347. bsize = s->frame_len_bits - s->block_len_bits;
  348. /* if no channel coded, no need to go further */
  349. /* XXX: fix potential framing problems */
  350. if (!v)
  351. goto next;
  352. /* read total gain and extract corresponding number of bits for
  353. coef escape coding */
  354. total_gain = 1;
  355. for(;;) {
  356. a = get_bits(&s->gb, 7);
  357. total_gain += a;
  358. if (a != 127)
  359. break;
  360. }
  361. coef_nb_bits= ff_wma_total_gain_to_bits(total_gain);
  362. /* compute number of coefficients */
  363. n = s->coefs_end[bsize] - s->coefs_start;
  364. for(ch = 0; ch < s->nb_channels; ch++)
  365. nb_coefs[ch] = n;
  366. /* complex coding */
  367. if (s->use_noise_coding) {
  368. for(ch = 0; ch < s->nb_channels; ch++) {
  369. if (s->channel_coded[ch]) {
  370. int i, n, a;
  371. n = s->exponent_high_sizes[bsize];
  372. for(i=0;i<n;i++) {
  373. a = get_bits1(&s->gb);
  374. s->high_band_coded[ch][i] = a;
  375. /* if noise coding, the coefficients are not transmitted */
  376. if (a)
  377. nb_coefs[ch] -= s->exponent_high_bands[bsize][i];
  378. }
  379. }
  380. }
  381. for(ch = 0; ch < s->nb_channels; ch++) {
  382. if (s->channel_coded[ch]) {
  383. int i, n, val, code;
  384. n = s->exponent_high_sizes[bsize];
  385. val = (int)0x80000000;
  386. for(i=0;i<n;i++) {
  387. if (s->high_band_coded[ch][i]) {
  388. if (val == (int)0x80000000) {
  389. val = get_bits(&s->gb, 7) - 19;
  390. } else {
  391. code = get_vlc2(&s->gb, s->hgain_vlc.table, HGAINVLCBITS, HGAINMAX);
  392. if (code < 0)
  393. return -1;
  394. val += code - 18;
  395. }
  396. s->high_band_values[ch][i] = val;
  397. }
  398. }
  399. }
  400. }
  401. }
  402. /* exponents can be reused in short blocks. */
  403. if ((s->block_len_bits == s->frame_len_bits) ||
  404. get_bits1(&s->gb)) {
  405. for(ch = 0; ch < s->nb_channels; ch++) {
  406. if (s->channel_coded[ch]) {
  407. if (s->use_exp_vlc) {
  408. if (decode_exp_vlc(s, ch) < 0)
  409. return -1;
  410. } else {
  411. decode_exp_lsp(s, ch);
  412. }
  413. s->exponents_bsize[ch] = bsize;
  414. }
  415. }
  416. }
  417. /* parse spectral coefficients : just RLE encoding */
  418. for(ch = 0; ch < s->nb_channels; ch++) {
  419. if (s->channel_coded[ch]) {
  420. int tindex;
  421. WMACoef* ptr = &s->coefs1[ch][0];
  422. /* special VLC tables are used for ms stereo because
  423. there is potentially less energy there */
  424. tindex = (ch == 1 && s->ms_stereo);
  425. memset(ptr, 0, s->block_len * sizeof(WMACoef));
  426. ff_wma_run_level_decode(s->avctx, &s->gb, &s->coef_vlc[tindex],
  427. s->level_table[tindex], s->run_table[tindex],
  428. 0, ptr, 0, nb_coefs[ch],
  429. s->block_len, s->frame_len_bits, coef_nb_bits);
  430. }
  431. if (s->version == 1 && s->nb_channels >= 2) {
  432. align_get_bits(&s->gb);
  433. }
  434. }
  435. /* normalize */
  436. {
  437. int n4 = s->block_len / 2;
  438. mdct_norm = 1.0 / (float)n4;
  439. if (s->version == 1) {
  440. mdct_norm *= sqrt(n4);
  441. }
  442. }
  443. /* finally compute the MDCT coefficients */
  444. for(ch = 0; ch < s->nb_channels; ch++) {
  445. if (s->channel_coded[ch]) {
  446. WMACoef *coefs1;
  447. float *coefs, *exponents, mult, mult1, noise;
  448. int i, j, n, n1, last_high_band, esize;
  449. float exp_power[HIGH_BAND_MAX_SIZE];
  450. coefs1 = s->coefs1[ch];
  451. exponents = s->exponents[ch];
  452. esize = s->exponents_bsize[ch];
  453. mult = pow(10, total_gain * 0.05) / s->max_exponent[ch];
  454. mult *= mdct_norm;
  455. coefs = s->coefs[ch];
  456. if (s->use_noise_coding) {
  457. mult1 = mult;
  458. /* very low freqs : noise */
  459. for(i = 0;i < s->coefs_start; i++) {
  460. *coefs++ = s->noise_table[s->noise_index] *
  461. exponents[i<<bsize>>esize] * mult1;
  462. s->noise_index = (s->noise_index + 1) & (NOISE_TAB_SIZE - 1);
  463. }
  464. n1 = s->exponent_high_sizes[bsize];
  465. /* compute power of high bands */
  466. exponents = s->exponents[ch] +
  467. (s->high_band_start[bsize]<<bsize);
  468. last_high_band = 0; /* avoid warning */
  469. for(j=0;j<n1;j++) {
  470. n = s->exponent_high_bands[s->frame_len_bits -
  471. s->block_len_bits][j];
  472. if (s->high_band_coded[ch][j]) {
  473. float e2, v;
  474. e2 = 0;
  475. for(i = 0;i < n; i++) {
  476. v = exponents[i<<bsize>>esize];
  477. e2 += v * v;
  478. }
  479. exp_power[j] = e2 / n;
  480. last_high_band = j;
  481. tprintf(s->avctx, "%d: power=%f (%d)\n", j, exp_power[j], n);
  482. }
  483. exponents += n<<bsize;
  484. }
  485. /* main freqs and high freqs */
  486. exponents = s->exponents[ch] + (s->coefs_start<<bsize);
  487. for(j=-1;j<n1;j++) {
  488. if (j < 0) {
  489. n = s->high_band_start[bsize] -
  490. s->coefs_start;
  491. } else {
  492. n = s->exponent_high_bands[s->frame_len_bits -
  493. s->block_len_bits][j];
  494. }
  495. if (j >= 0 && s->high_band_coded[ch][j]) {
  496. /* use noise with specified power */
  497. mult1 = sqrt(exp_power[j] / exp_power[last_high_band]);
  498. /* XXX: use a table */
  499. mult1 = mult1 * pow(10, s->high_band_values[ch][j] * 0.05);
  500. mult1 = mult1 / (s->max_exponent[ch] * s->noise_mult);
  501. mult1 *= mdct_norm;
  502. for(i = 0;i < n; i++) {
  503. noise = s->noise_table[s->noise_index];
  504. s->noise_index = (s->noise_index + 1) & (NOISE_TAB_SIZE - 1);
  505. *coefs++ = noise *
  506. exponents[i<<bsize>>esize] * mult1;
  507. }
  508. exponents += n<<bsize;
  509. } else {
  510. /* coded values + small noise */
  511. for(i = 0;i < n; i++) {
  512. noise = s->noise_table[s->noise_index];
  513. s->noise_index = (s->noise_index + 1) & (NOISE_TAB_SIZE - 1);
  514. *coefs++ = ((*coefs1++) + noise) *
  515. exponents[i<<bsize>>esize] * mult;
  516. }
  517. exponents += n<<bsize;
  518. }
  519. }
  520. /* very high freqs : noise */
  521. n = s->block_len - s->coefs_end[bsize];
  522. mult1 = mult * exponents[((-1<<bsize))>>esize];
  523. for(i = 0; i < n; i++) {
  524. *coefs++ = s->noise_table[s->noise_index] * mult1;
  525. s->noise_index = (s->noise_index + 1) & (NOISE_TAB_SIZE - 1);
  526. }
  527. } else {
  528. /* XXX: optimize more */
  529. for(i = 0;i < s->coefs_start; i++)
  530. *coefs++ = 0.0;
  531. n = nb_coefs[ch];
  532. for(i = 0;i < n; i++) {
  533. *coefs++ = coefs1[i] * exponents[i<<bsize>>esize] * mult;
  534. }
  535. n = s->block_len - s->coefs_end[bsize];
  536. for(i = 0;i < n; i++)
  537. *coefs++ = 0.0;
  538. }
  539. }
  540. }
  541. #ifdef TRACE
  542. for(ch = 0; ch < s->nb_channels; ch++) {
  543. if (s->channel_coded[ch]) {
  544. dump_floats(s, "exponents", 3, s->exponents[ch], s->block_len);
  545. dump_floats(s, "coefs", 1, s->coefs[ch], s->block_len);
  546. }
  547. }
  548. #endif
  549. if (s->ms_stereo && s->channel_coded[1]) {
  550. /* nominal case for ms stereo: we do it before mdct */
  551. /* no need to optimize this case because it should almost
  552. never happen */
  553. if (!s->channel_coded[0]) {
  554. tprintf(s->avctx, "rare ms-stereo case happened\n");
  555. memset(s->coefs[0], 0, sizeof(float) * s->block_len);
  556. s->channel_coded[0] = 1;
  557. }
  558. s->dsp.butterflies_float(s->coefs[0], s->coefs[1], s->block_len);
  559. }
  560. next:
  561. for(ch = 0; ch < s->nb_channels; ch++) {
  562. int n4, index;
  563. n4 = s->block_len / 2;
  564. if(s->channel_coded[ch]){
  565. ff_imdct_calc(&s->mdct_ctx[bsize], s->output, s->coefs[ch]);
  566. }else if(!(s->ms_stereo && ch==1))
  567. memset(s->output, 0, sizeof(s->output));
  568. /* multiply by the window and add in the frame */
  569. index = (s->frame_len / 2) + s->block_pos - n4;
  570. wma_window(s, &s->frame_out[ch][index]);
  571. }
  572. /* update block number */
  573. s->block_num++;
  574. s->block_pos += s->block_len;
  575. if (s->block_pos >= s->frame_len)
  576. return 1;
  577. else
  578. return 0;
  579. }
  580. /* decode a frame of frame_len samples */
  581. static int wma_decode_frame(WMACodecContext *s, int16_t *samples)
  582. {
  583. int ret, i, n, ch, incr;
  584. int16_t *ptr;
  585. float *iptr;
  586. #ifdef TRACE
  587. tprintf(s->avctx, "***decode_frame: %d size=%d\n", s->frame_count++, s->frame_len);
  588. #endif
  589. /* read each block */
  590. s->block_num = 0;
  591. s->block_pos = 0;
  592. for(;;) {
  593. ret = wma_decode_block(s);
  594. if (ret < 0)
  595. return -1;
  596. if (ret)
  597. break;
  598. }
  599. /* convert frame to integer */
  600. n = s->frame_len;
  601. incr = s->nb_channels;
  602. for(ch = 0; ch < s->nb_channels; ch++) {
  603. ptr = samples + ch;
  604. iptr = s->frame_out[ch];
  605. for(i=0;i<n;i++) {
  606. *ptr = av_clip_int16(lrintf(*iptr++));
  607. ptr += incr;
  608. }
  609. /* prepare for next block */
  610. memmove(&s->frame_out[ch][0], &s->frame_out[ch][s->frame_len],
  611. s->frame_len * sizeof(float));
  612. }
  613. #ifdef TRACE
  614. dump_shorts(s, "samples", samples, n * s->nb_channels);
  615. #endif
  616. return 0;
  617. }
  618. static int wma_decode_superframe(AVCodecContext *avctx,
  619. void *data, int *data_size,
  620. AVPacket *avpkt)
  621. {
  622. const uint8_t *buf = avpkt->data;
  623. int buf_size = avpkt->size;
  624. WMACodecContext *s = avctx->priv_data;
  625. int nb_frames, bit_offset, i, pos, len;
  626. uint8_t *q;
  627. int16_t *samples;
  628. tprintf(avctx, "***decode_superframe:\n");
  629. if(buf_size==0){
  630. s->last_superframe_len = 0;
  631. return 0;
  632. }
  633. if (buf_size < s->block_align)
  634. return 0;
  635. buf_size = s->block_align;
  636. samples = data;
  637. init_get_bits(&s->gb, buf, buf_size*8);
  638. if (s->use_bit_reservoir) {
  639. /* read super frame header */
  640. skip_bits(&s->gb, 4); /* super frame index */
  641. nb_frames = get_bits(&s->gb, 4) - 1;
  642. if((nb_frames+1) * s->nb_channels * s->frame_len * sizeof(int16_t) > *data_size){
  643. av_log(s->avctx, AV_LOG_ERROR, "Insufficient output space\n");
  644. goto fail;
  645. }
  646. bit_offset = get_bits(&s->gb, s->byte_offset_bits + 3);
  647. if (s->last_superframe_len > 0) {
  648. // printf("skip=%d\n", s->last_bitoffset);
  649. /* add bit_offset bits to last frame */
  650. if ((s->last_superframe_len + ((bit_offset + 7) >> 3)) >
  651. MAX_CODED_SUPERFRAME_SIZE)
  652. goto fail;
  653. q = s->last_superframe + s->last_superframe_len;
  654. len = bit_offset;
  655. while (len > 7) {
  656. *q++ = (get_bits)(&s->gb, 8);
  657. len -= 8;
  658. }
  659. if (len > 0) {
  660. *q++ = (get_bits)(&s->gb, len) << (8 - len);
  661. }
  662. /* XXX: bit_offset bits into last frame */
  663. init_get_bits(&s->gb, s->last_superframe, MAX_CODED_SUPERFRAME_SIZE*8);
  664. /* skip unused bits */
  665. if (s->last_bitoffset > 0)
  666. skip_bits(&s->gb, s->last_bitoffset);
  667. /* this frame is stored in the last superframe and in the
  668. current one */
  669. if (wma_decode_frame(s, samples) < 0)
  670. goto fail;
  671. samples += s->nb_channels * s->frame_len;
  672. }
  673. /* read each frame starting from bit_offset */
  674. pos = bit_offset + 4 + 4 + s->byte_offset_bits + 3;
  675. init_get_bits(&s->gb, buf + (pos >> 3), (MAX_CODED_SUPERFRAME_SIZE - (pos >> 3))*8);
  676. len = pos & 7;
  677. if (len > 0)
  678. skip_bits(&s->gb, len);
  679. s->reset_block_lengths = 1;
  680. for(i=0;i<nb_frames;i++) {
  681. if (wma_decode_frame(s, samples) < 0)
  682. goto fail;
  683. samples += s->nb_channels * s->frame_len;
  684. }
  685. /* we copy the end of the frame in the last frame buffer */
  686. pos = get_bits_count(&s->gb) + ((bit_offset + 4 + 4 + s->byte_offset_bits + 3) & ~7);
  687. s->last_bitoffset = pos & 7;
  688. pos >>= 3;
  689. len = buf_size - pos;
  690. if (len > MAX_CODED_SUPERFRAME_SIZE || len < 0) {
  691. goto fail;
  692. }
  693. s->last_superframe_len = len;
  694. memcpy(s->last_superframe, buf + pos, len);
  695. } else {
  696. if(s->nb_channels * s->frame_len * sizeof(int16_t) > *data_size){
  697. av_log(s->avctx, AV_LOG_ERROR, "Insufficient output space\n");
  698. goto fail;
  699. }
  700. /* single frame decode */
  701. if (wma_decode_frame(s, samples) < 0)
  702. goto fail;
  703. samples += s->nb_channels * s->frame_len;
  704. }
  705. //av_log(NULL, AV_LOG_ERROR, "%d %d %d %d outbytes:%d eaten:%d\n", s->frame_len_bits, s->block_len_bits, s->frame_len, s->block_len, (int8_t *)samples - (int8_t *)data, s->block_align);
  706. *data_size = (int8_t *)samples - (int8_t *)data;
  707. return s->block_align;
  708. fail:
  709. /* when error, we reset the bit reservoir */
  710. s->last_superframe_len = 0;
  711. return -1;
  712. }
  713. AVCodec wmav1_decoder =
  714. {
  715. "wmav1",
  716. CODEC_TYPE_AUDIO,
  717. CODEC_ID_WMAV1,
  718. sizeof(WMACodecContext),
  719. wma_decode_init,
  720. NULL,
  721. ff_wma_end,
  722. wma_decode_superframe,
  723. .long_name = NULL_IF_CONFIG_SMALL("Windows Media Audio 1"),
  724. };
  725. AVCodec wmav2_decoder =
  726. {
  727. "wmav2",
  728. CODEC_TYPE_AUDIO,
  729. CODEC_ID_WMAV2,
  730. sizeof(WMACodecContext),
  731. wma_decode_init,
  732. NULL,
  733. ff_wma_end,
  734. wma_decode_superframe,
  735. .long_name = NULL_IF_CONFIG_SMALL("Windows Media Audio 2"),
  736. };