You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

441 lines
14KB

  1. /*
  2. * WMA compatible encoder
  3. * Copyright (c) 2007 Michael Niedermayer
  4. *
  5. * This file is part of Libav.
  6. *
  7. * Libav is free software; you can redistribute it and/or
  8. * modify it under the terms of the GNU Lesser General Public
  9. * License as published by the Free Software Foundation; either
  10. * version 2.1 of the License, or (at your option) any later version.
  11. *
  12. * Libav is distributed in the hope that it will be useful,
  13. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  14. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  15. * Lesser General Public License for more details.
  16. *
  17. * You should have received a copy of the GNU Lesser General Public
  18. * License along with Libav; if not, write to the Free Software
  19. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  20. */
  21. #include "avcodec.h"
  22. #include "internal.h"
  23. #include "wma.h"
  24. #undef NDEBUG
  25. #include <assert.h>
  26. static int encode_init(AVCodecContext * avctx){
  27. WMACodecContext *s = avctx->priv_data;
  28. int i, flags1, flags2, block_align;
  29. uint8_t *extradata;
  30. s->avctx = avctx;
  31. if(avctx->channels > MAX_CHANNELS) {
  32. av_log(avctx, AV_LOG_ERROR, "too many channels: got %i, need %i or fewer",
  33. avctx->channels, MAX_CHANNELS);
  34. return AVERROR(EINVAL);
  35. }
  36. if (avctx->sample_rate > 48000) {
  37. av_log(avctx, AV_LOG_ERROR, "sample rate is too high: %d > 48kHz",
  38. avctx->sample_rate);
  39. return AVERROR(EINVAL);
  40. }
  41. if(avctx->bit_rate < 24*1000) {
  42. av_log(avctx, AV_LOG_ERROR, "bitrate too low: got %i, need 24000 or higher\n",
  43. avctx->bit_rate);
  44. return AVERROR(EINVAL);
  45. }
  46. /* extract flag infos */
  47. flags1 = 0;
  48. flags2 = 1;
  49. if (avctx->codec->id == AV_CODEC_ID_WMAV1) {
  50. extradata= av_malloc(4);
  51. avctx->extradata_size= 4;
  52. AV_WL16(extradata, flags1);
  53. AV_WL16(extradata+2, flags2);
  54. } else if (avctx->codec->id == AV_CODEC_ID_WMAV2) {
  55. extradata= av_mallocz(10);
  56. avctx->extradata_size= 10;
  57. AV_WL32(extradata, flags1);
  58. AV_WL16(extradata+4, flags2);
  59. }else
  60. assert(0);
  61. avctx->extradata= extradata;
  62. s->use_exp_vlc = flags2 & 0x0001;
  63. s->use_bit_reservoir = flags2 & 0x0002;
  64. s->use_variable_block_len = flags2 & 0x0004;
  65. if (avctx->channels == 2)
  66. s->ms_stereo = 1;
  67. ff_wma_init(avctx, flags2);
  68. /* init MDCT */
  69. for(i = 0; i < s->nb_block_sizes; i++)
  70. ff_mdct_init(&s->mdct_ctx[i], s->frame_len_bits - i + 1, 0, 1.0);
  71. block_align = avctx->bit_rate * (int64_t)s->frame_len /
  72. (avctx->sample_rate * 8);
  73. block_align = FFMIN(block_align, MAX_CODED_SUPERFRAME_SIZE);
  74. avctx->block_align = block_align;
  75. avctx->bit_rate = avctx->block_align * 8LL * avctx->sample_rate /
  76. s->frame_len;
  77. avctx->frame_size = avctx->delay = s->frame_len;
  78. return 0;
  79. }
  80. static void apply_window_and_mdct(AVCodecContext * avctx, const AVFrame *frame)
  81. {
  82. WMACodecContext *s = avctx->priv_data;
  83. float **audio = (float **)frame->extended_data;
  84. int len = frame->nb_samples;
  85. int window_index= s->frame_len_bits - s->block_len_bits;
  86. FFTContext *mdct = &s->mdct_ctx[window_index];
  87. int ch;
  88. const float * win = s->windows[window_index];
  89. int window_len = 1 << s->block_len_bits;
  90. float n = 2.0 * 32768.0 / window_len;
  91. for (ch = 0; ch < avctx->channels; ch++) {
  92. memcpy(s->output, s->frame_out[ch], window_len * sizeof(*s->output));
  93. s->fdsp.vector_fmul_scalar(s->frame_out[ch], audio[ch], n, len);
  94. s->fdsp.vector_fmul_reverse(&s->output[window_len], s->frame_out[ch], win, len);
  95. s->fdsp.vector_fmul(s->frame_out[ch], s->frame_out[ch], win, len);
  96. mdct->mdct_calc(mdct, s->coefs[ch], s->output);
  97. }
  98. }
  99. //FIXME use for decoding too
  100. static void init_exp(WMACodecContext *s, int ch, const int *exp_param){
  101. int n;
  102. const uint16_t *ptr;
  103. float v, *q, max_scale, *q_end;
  104. ptr = s->exponent_bands[s->frame_len_bits - s->block_len_bits];
  105. q = s->exponents[ch];
  106. q_end = q + s->block_len;
  107. max_scale = 0;
  108. while (q < q_end) {
  109. /* XXX: use a table */
  110. v = pow(10, *exp_param++ * (1.0 / 16.0));
  111. max_scale= FFMAX(max_scale, v);
  112. n = *ptr++;
  113. do {
  114. *q++ = v;
  115. } while (--n);
  116. }
  117. s->max_exponent[ch] = max_scale;
  118. }
  119. static void encode_exp_vlc(WMACodecContext *s, int ch, const int *exp_param){
  120. int last_exp;
  121. const uint16_t *ptr;
  122. float *q, *q_end;
  123. ptr = s->exponent_bands[s->frame_len_bits - s->block_len_bits];
  124. q = s->exponents[ch];
  125. q_end = q + s->block_len;
  126. if (s->version == 1) {
  127. last_exp= *exp_param++;
  128. assert(last_exp-10 >= 0 && last_exp-10 < 32);
  129. put_bits(&s->pb, 5, last_exp - 10);
  130. q+= *ptr++;
  131. }else
  132. last_exp = 36;
  133. while (q < q_end) {
  134. int exp = *exp_param++;
  135. int code = exp - last_exp + 60;
  136. assert(code >= 0 && code < 120);
  137. put_bits(&s->pb, ff_aac_scalefactor_bits[code], ff_aac_scalefactor_code[code]);
  138. /* XXX: use a table */
  139. q+= *ptr++;
  140. last_exp= exp;
  141. }
  142. }
  143. static int encode_block(WMACodecContext *s, float (*src_coefs)[BLOCK_MAX_SIZE], int total_gain){
  144. int v, bsize, ch, coef_nb_bits, parse_exponents;
  145. float mdct_norm;
  146. int nb_coefs[MAX_CHANNELS];
  147. static const int fixed_exp[25]={20,20,20,20,20,20,20,20,20,20,20,20,20,20,20,20,20,20,20,20,20,20,20,20,20};
  148. //FIXME remove duplication relative to decoder
  149. if (s->use_variable_block_len) {
  150. assert(0); //FIXME not implemented
  151. }else{
  152. /* fixed block len */
  153. s->next_block_len_bits = s->frame_len_bits;
  154. s->prev_block_len_bits = s->frame_len_bits;
  155. s->block_len_bits = s->frame_len_bits;
  156. }
  157. s->block_len = 1 << s->block_len_bits;
  158. // assert((s->block_pos + s->block_len) <= s->frame_len);
  159. bsize = s->frame_len_bits - s->block_len_bits;
  160. //FIXME factor
  161. v = s->coefs_end[bsize] - s->coefs_start;
  162. for (ch = 0; ch < s->avctx->channels; ch++)
  163. nb_coefs[ch] = v;
  164. {
  165. int n4 = s->block_len / 2;
  166. mdct_norm = 1.0 / (float)n4;
  167. if (s->version == 1) {
  168. mdct_norm *= sqrt(n4);
  169. }
  170. }
  171. if (s->avctx->channels == 2) {
  172. put_bits(&s->pb, 1, !!s->ms_stereo);
  173. }
  174. for (ch = 0; ch < s->avctx->channels; ch++) {
  175. s->channel_coded[ch] = 1; //FIXME only set channel_coded when needed, instead of always
  176. if (s->channel_coded[ch]) {
  177. init_exp(s, ch, fixed_exp);
  178. }
  179. }
  180. for (ch = 0; ch < s->avctx->channels; ch++) {
  181. if (s->channel_coded[ch]) {
  182. WMACoef *coefs1;
  183. float *coefs, *exponents, mult;
  184. int i, n;
  185. coefs1 = s->coefs1[ch];
  186. exponents = s->exponents[ch];
  187. mult = pow(10, total_gain * 0.05) / s->max_exponent[ch];
  188. mult *= mdct_norm;
  189. coefs = src_coefs[ch];
  190. if (s->use_noise_coding && 0) {
  191. assert(0); //FIXME not implemented
  192. } else {
  193. coefs += s->coefs_start;
  194. n = nb_coefs[ch];
  195. for(i = 0;i < n; i++){
  196. double t= *coefs++ / (exponents[i] * mult);
  197. if(t<-32768 || t>32767)
  198. return -1;
  199. coefs1[i] = lrint(t);
  200. }
  201. }
  202. }
  203. }
  204. v = 0;
  205. for (ch = 0; ch < s->avctx->channels; ch++) {
  206. int a = s->channel_coded[ch];
  207. put_bits(&s->pb, 1, a);
  208. v |= a;
  209. }
  210. if (!v)
  211. return 1;
  212. for(v= total_gain-1; v>=127; v-= 127)
  213. put_bits(&s->pb, 7, 127);
  214. put_bits(&s->pb, 7, v);
  215. coef_nb_bits= ff_wma_total_gain_to_bits(total_gain);
  216. if (s->use_noise_coding) {
  217. for (ch = 0; ch < s->avctx->channels; ch++) {
  218. if (s->channel_coded[ch]) {
  219. int i, n;
  220. n = s->exponent_high_sizes[bsize];
  221. for(i=0;i<n;i++) {
  222. put_bits(&s->pb, 1, s->high_band_coded[ch][i]= 0);
  223. if (0)
  224. nb_coefs[ch] -= s->exponent_high_bands[bsize][i];
  225. }
  226. }
  227. }
  228. }
  229. parse_exponents = 1;
  230. if (s->block_len_bits != s->frame_len_bits) {
  231. put_bits(&s->pb, 1, parse_exponents);
  232. }
  233. if (parse_exponents) {
  234. for (ch = 0; ch < s->avctx->channels; ch++) {
  235. if (s->channel_coded[ch]) {
  236. if (s->use_exp_vlc) {
  237. encode_exp_vlc(s, ch, fixed_exp);
  238. } else {
  239. assert(0); //FIXME not implemented
  240. // encode_exp_lsp(s, ch);
  241. }
  242. }
  243. }
  244. } else {
  245. assert(0); //FIXME not implemented
  246. }
  247. for (ch = 0; ch < s->avctx->channels; ch++) {
  248. if (s->channel_coded[ch]) {
  249. int run, tindex;
  250. WMACoef *ptr, *eptr;
  251. tindex = (ch == 1 && s->ms_stereo);
  252. ptr = &s->coefs1[ch][0];
  253. eptr = ptr + nb_coefs[ch];
  254. run=0;
  255. for(;ptr < eptr; ptr++){
  256. if(*ptr){
  257. int level= *ptr;
  258. int abs_level= FFABS(level);
  259. int code= 0;
  260. if(abs_level <= s->coef_vlcs[tindex]->max_level){
  261. if(run < s->coef_vlcs[tindex]->levels[abs_level-1])
  262. code= run + s->int_table[tindex][abs_level-1];
  263. }
  264. assert(code < s->coef_vlcs[tindex]->n);
  265. put_bits(&s->pb, s->coef_vlcs[tindex]->huffbits[code], s->coef_vlcs[tindex]->huffcodes[code]);
  266. if(code == 0){
  267. if(1<<coef_nb_bits <= abs_level)
  268. return -1;
  269. put_bits(&s->pb, coef_nb_bits, abs_level);
  270. put_bits(&s->pb, s->frame_len_bits, run);
  271. }
  272. put_bits(&s->pb, 1, level < 0); //FIXME the sign is fliped somewhere
  273. run=0;
  274. }else{
  275. run++;
  276. }
  277. }
  278. if(run)
  279. put_bits(&s->pb, s->coef_vlcs[tindex]->huffbits[1], s->coef_vlcs[tindex]->huffcodes[1]);
  280. }
  281. if (s->version == 1 && s->avctx->channels >= 2) {
  282. avpriv_align_put_bits(&s->pb);
  283. }
  284. }
  285. return 0;
  286. }
  287. static int encode_frame(WMACodecContext *s, float (*src_coefs)[BLOCK_MAX_SIZE], uint8_t *buf, int buf_size, int total_gain){
  288. init_put_bits(&s->pb, buf, buf_size);
  289. if (s->use_bit_reservoir) {
  290. assert(0);//FIXME not implemented
  291. }else{
  292. if(encode_block(s, src_coefs, total_gain) < 0)
  293. return INT_MAX;
  294. }
  295. avpriv_align_put_bits(&s->pb);
  296. return put_bits_count(&s->pb) / 8 - s->avctx->block_align;
  297. }
  298. static int encode_superframe(AVCodecContext *avctx, AVPacket *avpkt,
  299. const AVFrame *frame, int *got_packet_ptr)
  300. {
  301. WMACodecContext *s = avctx->priv_data;
  302. int i, total_gain, ret;
  303. s->block_len_bits= s->frame_len_bits; //required by non variable block len
  304. s->block_len = 1 << s->block_len_bits;
  305. apply_window_and_mdct(avctx, frame);
  306. if (s->ms_stereo) {
  307. float a, b;
  308. int i;
  309. for(i = 0; i < s->block_len; i++) {
  310. a = s->coefs[0][i]*0.5;
  311. b = s->coefs[1][i]*0.5;
  312. s->coefs[0][i] = a + b;
  313. s->coefs[1][i] = a - b;
  314. }
  315. }
  316. if ((ret = ff_alloc_packet(avpkt, 2 * MAX_CODED_SUPERFRAME_SIZE))) {
  317. av_log(avctx, AV_LOG_ERROR, "Error getting output packet\n");
  318. return ret;
  319. }
  320. #if 1
  321. total_gain= 128;
  322. for(i=64; i; i>>=1){
  323. int error = encode_frame(s, s->coefs, avpkt->data, avpkt->size,
  324. total_gain - i);
  325. if(error<0)
  326. total_gain-= i;
  327. }
  328. #else
  329. total_gain= 90;
  330. best = encode_frame(s, s->coefs, avpkt->data, avpkt->size, total_gain);
  331. for(i=32; i; i>>=1){
  332. int scoreL = encode_frame(s, s->coefs, avpkt->data, avpkt->size, total_gain - i);
  333. int scoreR = encode_frame(s, s->coefs, avpkt->data, avpkt->size, total_gain + i);
  334. av_log(NULL, AV_LOG_ERROR, "%d %d %d (%d)\n", scoreL, best, scoreR, total_gain);
  335. if(scoreL < FFMIN(best, scoreR)){
  336. best = scoreL;
  337. total_gain -= i;
  338. }else if(scoreR < best){
  339. best = scoreR;
  340. total_gain += i;
  341. }
  342. }
  343. #endif
  344. if ((i = encode_frame(s, s->coefs, avpkt->data, avpkt->size, total_gain)) >= 0) {
  345. av_log(avctx, AV_LOG_ERROR, "required frame size too large. please "
  346. "use a higher bit rate.\n");
  347. return AVERROR(EINVAL);
  348. }
  349. assert((put_bits_count(&s->pb) & 7) == 0);
  350. while (i++)
  351. put_bits(&s->pb, 8, 'N');
  352. flush_put_bits(&s->pb);
  353. if (frame->pts != AV_NOPTS_VALUE)
  354. avpkt->pts = frame->pts - ff_samples_to_time_base(avctx, avctx->delay);
  355. avpkt->size = avctx->block_align;
  356. *got_packet_ptr = 1;
  357. return 0;
  358. }
  359. AVCodec ff_wmav1_encoder = {
  360. .name = "wmav1",
  361. .type = AVMEDIA_TYPE_AUDIO,
  362. .id = AV_CODEC_ID_WMAV1,
  363. .priv_data_size = sizeof(WMACodecContext),
  364. .init = encode_init,
  365. .encode2 = encode_superframe,
  366. .close = ff_wma_end,
  367. .sample_fmts = (const enum AVSampleFormat[]){ AV_SAMPLE_FMT_FLTP,
  368. AV_SAMPLE_FMT_NONE },
  369. .long_name = NULL_IF_CONFIG_SMALL("Windows Media Audio 1"),
  370. };
  371. AVCodec ff_wmav2_encoder = {
  372. .name = "wmav2",
  373. .type = AVMEDIA_TYPE_AUDIO,
  374. .id = AV_CODEC_ID_WMAV2,
  375. .priv_data_size = sizeof(WMACodecContext),
  376. .init = encode_init,
  377. .encode2 = encode_superframe,
  378. .close = ff_wma_end,
  379. .sample_fmts = (const enum AVSampleFormat[]){ AV_SAMPLE_FMT_FLTP,
  380. AV_SAMPLE_FMT_NONE },
  381. .long_name = NULL_IF_CONFIG_SMALL("Windows Media Audio 2"),
  382. };