You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

957 lines
32KB

  1. /*
  2. * WMA compatible decoder
  3. * Copyright (c) 2002 The Libav Project
  4. *
  5. * This file is part of Libav.
  6. *
  7. * Libav is free software; you can redistribute it and/or
  8. * modify it under the terms of the GNU Lesser General Public
  9. * License as published by the Free Software Foundation; either
  10. * version 2.1 of the License, or (at your option) any later version.
  11. *
  12. * Libav is distributed in the hope that it will be useful,
  13. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  14. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  15. * Lesser General Public License for more details.
  16. *
  17. * You should have received a copy of the GNU Lesser General Public
  18. * License along with Libav; if not, write to the Free Software
  19. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  20. */
  21. /**
  22. * @file
  23. * WMA compatible decoder.
  24. * This decoder handles Microsoft Windows Media Audio data, versions 1 & 2.
  25. * WMA v1 is identified by audio format 0x160 in Microsoft media files
  26. * (ASF/AVI/WAV). WMA v2 is identified by audio format 0x161.
  27. *
  28. * To use this decoder, a calling application must supply the extra data
  29. * bytes provided with the WMA data. These are the extra, codec-specific
  30. * bytes at the end of a WAVEFORMATEX data structure. Transmit these bytes
  31. * to the decoder using the extradata[_size] fields in AVCodecContext. There
  32. * should be 4 extra bytes for v1 data and 6 extra bytes for v2 data.
  33. */
  34. #include "avcodec.h"
  35. #include "internal.h"
  36. #include "wma.h"
  37. #undef NDEBUG
  38. #include <assert.h>
  39. #define EXPVLCBITS 8
  40. #define EXPMAX ((19+EXPVLCBITS-1)/EXPVLCBITS)
  41. #define HGAINVLCBITS 9
  42. #define HGAINMAX ((13+HGAINVLCBITS-1)/HGAINVLCBITS)
  43. static void wma_lsp_to_curve_init(WMACodecContext *s, int frame_len);
  44. #ifdef TRACE
  45. static void dump_floats(WMACodecContext *s, const char *name, int prec, const float *tab, int n)
  46. {
  47. int i;
  48. tprintf(s->avctx, "%s[%d]:\n", name, n);
  49. for(i=0;i<n;i++) {
  50. if ((i & 7) == 0)
  51. tprintf(s->avctx, "%4d: ", i);
  52. tprintf(s->avctx, " %8.*f", prec, tab[i]);
  53. if ((i & 7) == 7)
  54. tprintf(s->avctx, "\n");
  55. }
  56. if ((i & 7) != 0)
  57. tprintf(s->avctx, "\n");
  58. }
  59. #endif
  60. static int wma_decode_init(AVCodecContext * avctx)
  61. {
  62. WMACodecContext *s = avctx->priv_data;
  63. int i, flags2;
  64. uint8_t *extradata;
  65. if (!avctx->block_align) {
  66. av_log(avctx, AV_LOG_ERROR, "block_align is not set\n");
  67. return AVERROR(EINVAL);
  68. }
  69. s->avctx = avctx;
  70. /* extract flag infos */
  71. flags2 = 0;
  72. extradata = avctx->extradata;
  73. if (avctx->codec->id == AV_CODEC_ID_WMAV1 && avctx->extradata_size >= 4) {
  74. flags2 = AV_RL16(extradata+2);
  75. } else if (avctx->codec->id == AV_CODEC_ID_WMAV2 && avctx->extradata_size >= 6) {
  76. flags2 = AV_RL16(extradata+4);
  77. }
  78. s->use_exp_vlc = flags2 & 0x0001;
  79. s->use_bit_reservoir = flags2 & 0x0002;
  80. s->use_variable_block_len = flags2 & 0x0004;
  81. if(ff_wma_init(avctx, flags2)<0)
  82. return -1;
  83. /* init MDCT */
  84. for(i = 0; i < s->nb_block_sizes; i++)
  85. ff_mdct_init(&s->mdct_ctx[i], s->frame_len_bits - i + 1, 1, 1.0 / 32768.0);
  86. if (s->use_noise_coding) {
  87. init_vlc(&s->hgain_vlc, HGAINVLCBITS, sizeof(ff_wma_hgain_huffbits),
  88. ff_wma_hgain_huffbits, 1, 1,
  89. ff_wma_hgain_huffcodes, 2, 2, 0);
  90. }
  91. if (s->use_exp_vlc) {
  92. init_vlc(&s->exp_vlc, EXPVLCBITS, sizeof(ff_aac_scalefactor_bits), //FIXME move out of context
  93. ff_aac_scalefactor_bits, 1, 1,
  94. ff_aac_scalefactor_code, 4, 4, 0);
  95. } else {
  96. wma_lsp_to_curve_init(s, s->frame_len);
  97. }
  98. avctx->sample_fmt = AV_SAMPLE_FMT_FLTP;
  99. return 0;
  100. }
  101. /**
  102. * compute x^-0.25 with an exponent and mantissa table. We use linear
  103. * interpolation to reduce the mantissa table size at a small speed
  104. * expense (linear interpolation approximately doubles the number of
  105. * bits of precision).
  106. */
  107. static inline float pow_m1_4(WMACodecContext *s, float x)
  108. {
  109. union {
  110. float f;
  111. unsigned int v;
  112. } u, t;
  113. unsigned int e, m;
  114. float a, b;
  115. u.f = x;
  116. e = u.v >> 23;
  117. m = (u.v >> (23 - LSP_POW_BITS)) & ((1 << LSP_POW_BITS) - 1);
  118. /* build interpolation scale: 1 <= t < 2. */
  119. t.v = ((u.v << LSP_POW_BITS) & ((1 << 23) - 1)) | (127 << 23);
  120. a = s->lsp_pow_m_table1[m];
  121. b = s->lsp_pow_m_table2[m];
  122. return s->lsp_pow_e_table[e] * (a + b * t.f);
  123. }
  124. static void wma_lsp_to_curve_init(WMACodecContext *s, int frame_len)
  125. {
  126. float wdel, a, b;
  127. int i, e, m;
  128. wdel = M_PI / frame_len;
  129. for(i=0;i<frame_len;i++)
  130. s->lsp_cos_table[i] = 2.0f * cos(wdel * i);
  131. /* tables for x^-0.25 computation */
  132. for(i=0;i<256;i++) {
  133. e = i - 126;
  134. s->lsp_pow_e_table[i] = pow(2.0, e * -0.25);
  135. }
  136. /* NOTE: these two tables are needed to avoid two operations in
  137. pow_m1_4 */
  138. b = 1.0;
  139. for(i=(1 << LSP_POW_BITS) - 1;i>=0;i--) {
  140. m = (1 << LSP_POW_BITS) + i;
  141. a = (float)m * (0.5 / (1 << LSP_POW_BITS));
  142. a = pow(a, -0.25);
  143. s->lsp_pow_m_table1[i] = 2 * a - b;
  144. s->lsp_pow_m_table2[i] = b - a;
  145. b = a;
  146. }
  147. }
  148. /**
  149. * NOTE: We use the same code as Vorbis here
  150. * @todo optimize it further with SSE/3Dnow
  151. */
  152. static void wma_lsp_to_curve(WMACodecContext *s,
  153. float *out, float *val_max_ptr,
  154. int n, float *lsp)
  155. {
  156. int i, j;
  157. float p, q, w, v, val_max;
  158. val_max = 0;
  159. for(i=0;i<n;i++) {
  160. p = 0.5f;
  161. q = 0.5f;
  162. w = s->lsp_cos_table[i];
  163. for(j=1;j<NB_LSP_COEFS;j+=2){
  164. q *= w - lsp[j - 1];
  165. p *= w - lsp[j];
  166. }
  167. p *= p * (2.0f - w);
  168. q *= q * (2.0f + w);
  169. v = p + q;
  170. v = pow_m1_4(s, v);
  171. if (v > val_max)
  172. val_max = v;
  173. out[i] = v;
  174. }
  175. *val_max_ptr = val_max;
  176. }
  177. /**
  178. * decode exponents coded with LSP coefficients (same idea as Vorbis)
  179. */
  180. static void decode_exp_lsp(WMACodecContext *s, int ch)
  181. {
  182. float lsp_coefs[NB_LSP_COEFS];
  183. int val, i;
  184. for(i = 0; i < NB_LSP_COEFS; i++) {
  185. if (i == 0 || i >= 8)
  186. val = get_bits(&s->gb, 3);
  187. else
  188. val = get_bits(&s->gb, 4);
  189. lsp_coefs[i] = ff_wma_lsp_codebook[i][val];
  190. }
  191. wma_lsp_to_curve(s, s->exponents[ch], &s->max_exponent[ch],
  192. s->block_len, lsp_coefs);
  193. }
  194. /** pow(10, i / 16.0) for i in -60..95 */
  195. static const float pow_tab[] = {
  196. 1.7782794100389e-04, 2.0535250264571e-04,
  197. 2.3713737056617e-04, 2.7384196342644e-04,
  198. 3.1622776601684e-04, 3.6517412725484e-04,
  199. 4.2169650342858e-04, 4.8696752516586e-04,
  200. 5.6234132519035e-04, 6.4938163157621e-04,
  201. 7.4989420933246e-04, 8.6596432336006e-04,
  202. 1.0000000000000e-03, 1.1547819846895e-03,
  203. 1.3335214321633e-03, 1.5399265260595e-03,
  204. 1.7782794100389e-03, 2.0535250264571e-03,
  205. 2.3713737056617e-03, 2.7384196342644e-03,
  206. 3.1622776601684e-03, 3.6517412725484e-03,
  207. 4.2169650342858e-03, 4.8696752516586e-03,
  208. 5.6234132519035e-03, 6.4938163157621e-03,
  209. 7.4989420933246e-03, 8.6596432336006e-03,
  210. 1.0000000000000e-02, 1.1547819846895e-02,
  211. 1.3335214321633e-02, 1.5399265260595e-02,
  212. 1.7782794100389e-02, 2.0535250264571e-02,
  213. 2.3713737056617e-02, 2.7384196342644e-02,
  214. 3.1622776601684e-02, 3.6517412725484e-02,
  215. 4.2169650342858e-02, 4.8696752516586e-02,
  216. 5.6234132519035e-02, 6.4938163157621e-02,
  217. 7.4989420933246e-02, 8.6596432336007e-02,
  218. 1.0000000000000e-01, 1.1547819846895e-01,
  219. 1.3335214321633e-01, 1.5399265260595e-01,
  220. 1.7782794100389e-01, 2.0535250264571e-01,
  221. 2.3713737056617e-01, 2.7384196342644e-01,
  222. 3.1622776601684e-01, 3.6517412725484e-01,
  223. 4.2169650342858e-01, 4.8696752516586e-01,
  224. 5.6234132519035e-01, 6.4938163157621e-01,
  225. 7.4989420933246e-01, 8.6596432336007e-01,
  226. 1.0000000000000e+00, 1.1547819846895e+00,
  227. 1.3335214321633e+00, 1.5399265260595e+00,
  228. 1.7782794100389e+00, 2.0535250264571e+00,
  229. 2.3713737056617e+00, 2.7384196342644e+00,
  230. 3.1622776601684e+00, 3.6517412725484e+00,
  231. 4.2169650342858e+00, 4.8696752516586e+00,
  232. 5.6234132519035e+00, 6.4938163157621e+00,
  233. 7.4989420933246e+00, 8.6596432336007e+00,
  234. 1.0000000000000e+01, 1.1547819846895e+01,
  235. 1.3335214321633e+01, 1.5399265260595e+01,
  236. 1.7782794100389e+01, 2.0535250264571e+01,
  237. 2.3713737056617e+01, 2.7384196342644e+01,
  238. 3.1622776601684e+01, 3.6517412725484e+01,
  239. 4.2169650342858e+01, 4.8696752516586e+01,
  240. 5.6234132519035e+01, 6.4938163157621e+01,
  241. 7.4989420933246e+01, 8.6596432336007e+01,
  242. 1.0000000000000e+02, 1.1547819846895e+02,
  243. 1.3335214321633e+02, 1.5399265260595e+02,
  244. 1.7782794100389e+02, 2.0535250264571e+02,
  245. 2.3713737056617e+02, 2.7384196342644e+02,
  246. 3.1622776601684e+02, 3.6517412725484e+02,
  247. 4.2169650342858e+02, 4.8696752516586e+02,
  248. 5.6234132519035e+02, 6.4938163157621e+02,
  249. 7.4989420933246e+02, 8.6596432336007e+02,
  250. 1.0000000000000e+03, 1.1547819846895e+03,
  251. 1.3335214321633e+03, 1.5399265260595e+03,
  252. 1.7782794100389e+03, 2.0535250264571e+03,
  253. 2.3713737056617e+03, 2.7384196342644e+03,
  254. 3.1622776601684e+03, 3.6517412725484e+03,
  255. 4.2169650342858e+03, 4.8696752516586e+03,
  256. 5.6234132519035e+03, 6.4938163157621e+03,
  257. 7.4989420933246e+03, 8.6596432336007e+03,
  258. 1.0000000000000e+04, 1.1547819846895e+04,
  259. 1.3335214321633e+04, 1.5399265260595e+04,
  260. 1.7782794100389e+04, 2.0535250264571e+04,
  261. 2.3713737056617e+04, 2.7384196342644e+04,
  262. 3.1622776601684e+04, 3.6517412725484e+04,
  263. 4.2169650342858e+04, 4.8696752516586e+04,
  264. 5.6234132519035e+04, 6.4938163157621e+04,
  265. 7.4989420933246e+04, 8.6596432336007e+04,
  266. 1.0000000000000e+05, 1.1547819846895e+05,
  267. 1.3335214321633e+05, 1.5399265260595e+05,
  268. 1.7782794100389e+05, 2.0535250264571e+05,
  269. 2.3713737056617e+05, 2.7384196342644e+05,
  270. 3.1622776601684e+05, 3.6517412725484e+05,
  271. 4.2169650342858e+05, 4.8696752516586e+05,
  272. 5.6234132519035e+05, 6.4938163157621e+05,
  273. 7.4989420933246e+05, 8.6596432336007e+05,
  274. };
  275. /**
  276. * decode exponents coded with VLC codes
  277. */
  278. static int decode_exp_vlc(WMACodecContext *s, int ch)
  279. {
  280. int last_exp, n, code;
  281. const uint16_t *ptr;
  282. float v, max_scale;
  283. uint32_t *q, *q_end, iv;
  284. const float *ptab = pow_tab + 60;
  285. const uint32_t *iptab = (const uint32_t*)ptab;
  286. ptr = s->exponent_bands[s->frame_len_bits - s->block_len_bits];
  287. q = (uint32_t *)s->exponents[ch];
  288. q_end = q + s->block_len;
  289. max_scale = 0;
  290. if (s->version == 1) {
  291. last_exp = get_bits(&s->gb, 5) + 10;
  292. v = ptab[last_exp];
  293. iv = iptab[last_exp];
  294. max_scale = v;
  295. n = *ptr++;
  296. switch (n & 3) do {
  297. case 0: *q++ = iv;
  298. case 3: *q++ = iv;
  299. case 2: *q++ = iv;
  300. case 1: *q++ = iv;
  301. } while ((n -= 4) > 0);
  302. }else
  303. last_exp = 36;
  304. while (q < q_end) {
  305. code = get_vlc2(&s->gb, s->exp_vlc.table, EXPVLCBITS, EXPMAX);
  306. if (code < 0){
  307. av_log(s->avctx, AV_LOG_ERROR, "Exponent vlc invalid\n");
  308. return -1;
  309. }
  310. /* NOTE: this offset is the same as MPEG4 AAC ! */
  311. last_exp += code - 60;
  312. if ((unsigned)last_exp + 60 >= FF_ARRAY_ELEMS(pow_tab)) {
  313. av_log(s->avctx, AV_LOG_ERROR, "Exponent out of range: %d\n",
  314. last_exp);
  315. return -1;
  316. }
  317. v = ptab[last_exp];
  318. iv = iptab[last_exp];
  319. if (v > max_scale)
  320. max_scale = v;
  321. n = *ptr++;
  322. switch (n & 3) do {
  323. case 0: *q++ = iv;
  324. case 3: *q++ = iv;
  325. case 2: *q++ = iv;
  326. case 1: *q++ = iv;
  327. } while ((n -= 4) > 0);
  328. }
  329. s->max_exponent[ch] = max_scale;
  330. return 0;
  331. }
  332. /**
  333. * Apply MDCT window and add into output.
  334. *
  335. * We ensure that when the windows overlap their squared sum
  336. * is always 1 (MDCT reconstruction rule).
  337. */
  338. static void wma_window(WMACodecContext *s, float *out)
  339. {
  340. float *in = s->output;
  341. int block_len, bsize, n;
  342. /* left part */
  343. if (s->block_len_bits <= s->prev_block_len_bits) {
  344. block_len = s->block_len;
  345. bsize = s->frame_len_bits - s->block_len_bits;
  346. s->fdsp.vector_fmul_add(out, in, s->windows[bsize],
  347. out, block_len);
  348. } else {
  349. block_len = 1 << s->prev_block_len_bits;
  350. n = (s->block_len - block_len) / 2;
  351. bsize = s->frame_len_bits - s->prev_block_len_bits;
  352. s->fdsp.vector_fmul_add(out+n, in+n, s->windows[bsize],
  353. out+n, block_len);
  354. memcpy(out+n+block_len, in+n+block_len, n*sizeof(float));
  355. }
  356. out += s->block_len;
  357. in += s->block_len;
  358. /* right part */
  359. if (s->block_len_bits <= s->next_block_len_bits) {
  360. block_len = s->block_len;
  361. bsize = s->frame_len_bits - s->block_len_bits;
  362. s->fdsp.vector_fmul_reverse(out, in, s->windows[bsize], block_len);
  363. } else {
  364. block_len = 1 << s->next_block_len_bits;
  365. n = (s->block_len - block_len) / 2;
  366. bsize = s->frame_len_bits - s->next_block_len_bits;
  367. memcpy(out, in, n*sizeof(float));
  368. s->fdsp.vector_fmul_reverse(out+n, in+n, s->windows[bsize], block_len);
  369. memset(out+n+block_len, 0, n*sizeof(float));
  370. }
  371. }
  372. /**
  373. * @return 0 if OK. 1 if last block of frame. return -1 if
  374. * unrecorrable error.
  375. */
  376. static int wma_decode_block(WMACodecContext *s)
  377. {
  378. int n, v, a, ch, bsize;
  379. int coef_nb_bits, total_gain;
  380. int nb_coefs[MAX_CHANNELS];
  381. float mdct_norm;
  382. FFTContext *mdct;
  383. #ifdef TRACE
  384. tprintf(s->avctx, "***decode_block: %d:%d\n", s->frame_count - 1, s->block_num);
  385. #endif
  386. /* compute current block length */
  387. if (s->use_variable_block_len) {
  388. n = av_log2(s->nb_block_sizes - 1) + 1;
  389. if (s->reset_block_lengths) {
  390. s->reset_block_lengths = 0;
  391. v = get_bits(&s->gb, n);
  392. if (v >= s->nb_block_sizes){
  393. av_log(s->avctx, AV_LOG_ERROR, "prev_block_len_bits %d out of range\n", s->frame_len_bits - v);
  394. return -1;
  395. }
  396. s->prev_block_len_bits = s->frame_len_bits - v;
  397. v = get_bits(&s->gb, n);
  398. if (v >= s->nb_block_sizes){
  399. av_log(s->avctx, AV_LOG_ERROR, "block_len_bits %d out of range\n", s->frame_len_bits - v);
  400. return -1;
  401. }
  402. s->block_len_bits = s->frame_len_bits - v;
  403. } else {
  404. /* update block lengths */
  405. s->prev_block_len_bits = s->block_len_bits;
  406. s->block_len_bits = s->next_block_len_bits;
  407. }
  408. v = get_bits(&s->gb, n);
  409. if (v >= s->nb_block_sizes){
  410. av_log(s->avctx, AV_LOG_ERROR, "next_block_len_bits %d out of range\n", s->frame_len_bits - v);
  411. return -1;
  412. }
  413. s->next_block_len_bits = s->frame_len_bits - v;
  414. } else {
  415. /* fixed block len */
  416. s->next_block_len_bits = s->frame_len_bits;
  417. s->prev_block_len_bits = s->frame_len_bits;
  418. s->block_len_bits = s->frame_len_bits;
  419. }
  420. /* now check if the block length is coherent with the frame length */
  421. s->block_len = 1 << s->block_len_bits;
  422. if ((s->block_pos + s->block_len) > s->frame_len){
  423. av_log(s->avctx, AV_LOG_ERROR, "frame_len overflow\n");
  424. return -1;
  425. }
  426. if (s->avctx->channels == 2) {
  427. s->ms_stereo = get_bits1(&s->gb);
  428. }
  429. v = 0;
  430. for(ch = 0; ch < s->avctx->channels; ch++) {
  431. a = get_bits1(&s->gb);
  432. s->channel_coded[ch] = a;
  433. v |= a;
  434. }
  435. bsize = s->frame_len_bits - s->block_len_bits;
  436. /* if no channel coded, no need to go further */
  437. /* XXX: fix potential framing problems */
  438. if (!v)
  439. goto next;
  440. /* read total gain and extract corresponding number of bits for
  441. coef escape coding */
  442. total_gain = 1;
  443. for(;;) {
  444. a = get_bits(&s->gb, 7);
  445. total_gain += a;
  446. if (a != 127)
  447. break;
  448. }
  449. coef_nb_bits= ff_wma_total_gain_to_bits(total_gain);
  450. /* compute number of coefficients */
  451. n = s->coefs_end[bsize] - s->coefs_start;
  452. for(ch = 0; ch < s->avctx->channels; ch++)
  453. nb_coefs[ch] = n;
  454. /* complex coding */
  455. if (s->use_noise_coding) {
  456. for(ch = 0; ch < s->avctx->channels; ch++) {
  457. if (s->channel_coded[ch]) {
  458. int i, n, a;
  459. n = s->exponent_high_sizes[bsize];
  460. for(i=0;i<n;i++) {
  461. a = get_bits1(&s->gb);
  462. s->high_band_coded[ch][i] = a;
  463. /* if noise coding, the coefficients are not transmitted */
  464. if (a)
  465. nb_coefs[ch] -= s->exponent_high_bands[bsize][i];
  466. }
  467. }
  468. }
  469. for(ch = 0; ch < s->avctx->channels; ch++) {
  470. if (s->channel_coded[ch]) {
  471. int i, n, val, code;
  472. n = s->exponent_high_sizes[bsize];
  473. val = (int)0x80000000;
  474. for(i=0;i<n;i++) {
  475. if (s->high_band_coded[ch][i]) {
  476. if (val == (int)0x80000000) {
  477. val = get_bits(&s->gb, 7) - 19;
  478. } else {
  479. code = get_vlc2(&s->gb, s->hgain_vlc.table, HGAINVLCBITS, HGAINMAX);
  480. if (code < 0){
  481. av_log(s->avctx, AV_LOG_ERROR, "hgain vlc invalid\n");
  482. return -1;
  483. }
  484. val += code - 18;
  485. }
  486. s->high_band_values[ch][i] = val;
  487. }
  488. }
  489. }
  490. }
  491. }
  492. /* exponents can be reused in short blocks. */
  493. if ((s->block_len_bits == s->frame_len_bits) ||
  494. get_bits1(&s->gb)) {
  495. for(ch = 0; ch < s->avctx->channels; ch++) {
  496. if (s->channel_coded[ch]) {
  497. if (s->use_exp_vlc) {
  498. if (decode_exp_vlc(s, ch) < 0)
  499. return -1;
  500. } else {
  501. decode_exp_lsp(s, ch);
  502. }
  503. s->exponents_bsize[ch] = bsize;
  504. }
  505. }
  506. }
  507. /* parse spectral coefficients : just RLE encoding */
  508. for (ch = 0; ch < s->avctx->channels; ch++) {
  509. if (s->channel_coded[ch]) {
  510. int tindex;
  511. WMACoef* ptr = &s->coefs1[ch][0];
  512. /* special VLC tables are used for ms stereo because
  513. there is potentially less energy there */
  514. tindex = (ch == 1 && s->ms_stereo);
  515. memset(ptr, 0, s->block_len * sizeof(WMACoef));
  516. ff_wma_run_level_decode(s->avctx, &s->gb, &s->coef_vlc[tindex],
  517. s->level_table[tindex], s->run_table[tindex],
  518. 0, ptr, 0, nb_coefs[ch],
  519. s->block_len, s->frame_len_bits, coef_nb_bits);
  520. }
  521. if (s->version == 1 && s->avctx->channels >= 2) {
  522. align_get_bits(&s->gb);
  523. }
  524. }
  525. /* normalize */
  526. {
  527. int n4 = s->block_len / 2;
  528. mdct_norm = 1.0 / (float)n4;
  529. if (s->version == 1) {
  530. mdct_norm *= sqrt(n4);
  531. }
  532. }
  533. /* finally compute the MDCT coefficients */
  534. for (ch = 0; ch < s->avctx->channels; ch++) {
  535. if (s->channel_coded[ch]) {
  536. WMACoef *coefs1;
  537. float *coefs, *exponents, mult, mult1, noise;
  538. int i, j, n, n1, last_high_band, esize;
  539. float exp_power[HIGH_BAND_MAX_SIZE];
  540. coefs1 = s->coefs1[ch];
  541. exponents = s->exponents[ch];
  542. esize = s->exponents_bsize[ch];
  543. mult = pow(10, total_gain * 0.05) / s->max_exponent[ch];
  544. mult *= mdct_norm;
  545. coefs = s->coefs[ch];
  546. if (s->use_noise_coding) {
  547. mult1 = mult;
  548. /* very low freqs : noise */
  549. for(i = 0;i < s->coefs_start; i++) {
  550. *coefs++ = s->noise_table[s->noise_index] *
  551. exponents[i<<bsize>>esize] * mult1;
  552. s->noise_index = (s->noise_index + 1) & (NOISE_TAB_SIZE - 1);
  553. }
  554. n1 = s->exponent_high_sizes[bsize];
  555. /* compute power of high bands */
  556. exponents = s->exponents[ch] +
  557. (s->high_band_start[bsize]<<bsize>>esize);
  558. last_high_band = 0; /* avoid warning */
  559. for(j=0;j<n1;j++) {
  560. n = s->exponent_high_bands[s->frame_len_bits -
  561. s->block_len_bits][j];
  562. if (s->high_band_coded[ch][j]) {
  563. float e2, v;
  564. e2 = 0;
  565. for(i = 0;i < n; i++) {
  566. v = exponents[i<<bsize>>esize];
  567. e2 += v * v;
  568. }
  569. exp_power[j] = e2 / n;
  570. last_high_band = j;
  571. tprintf(s->avctx, "%d: power=%f (%d)\n", j, exp_power[j], n);
  572. }
  573. exponents += n<<bsize>>esize;
  574. }
  575. /* main freqs and high freqs */
  576. exponents = s->exponents[ch] + (s->coefs_start<<bsize>>esize);
  577. for(j=-1;j<n1;j++) {
  578. if (j < 0) {
  579. n = s->high_band_start[bsize] -
  580. s->coefs_start;
  581. } else {
  582. n = s->exponent_high_bands[s->frame_len_bits -
  583. s->block_len_bits][j];
  584. }
  585. if (j >= 0 && s->high_band_coded[ch][j]) {
  586. /* use noise with specified power */
  587. mult1 = sqrt(exp_power[j] / exp_power[last_high_band]);
  588. /* XXX: use a table */
  589. mult1 = mult1 * pow(10, s->high_band_values[ch][j] * 0.05);
  590. mult1 = mult1 / (s->max_exponent[ch] * s->noise_mult);
  591. mult1 *= mdct_norm;
  592. for(i = 0;i < n; i++) {
  593. noise = s->noise_table[s->noise_index];
  594. s->noise_index = (s->noise_index + 1) & (NOISE_TAB_SIZE - 1);
  595. *coefs++ = noise *
  596. exponents[i<<bsize>>esize] * mult1;
  597. }
  598. exponents += n<<bsize>>esize;
  599. } else {
  600. /* coded values + small noise */
  601. for(i = 0;i < n; i++) {
  602. noise = s->noise_table[s->noise_index];
  603. s->noise_index = (s->noise_index + 1) & (NOISE_TAB_SIZE - 1);
  604. *coefs++ = ((*coefs1++) + noise) *
  605. exponents[i<<bsize>>esize] * mult;
  606. }
  607. exponents += n<<bsize>>esize;
  608. }
  609. }
  610. /* very high freqs : noise */
  611. n = s->block_len - s->coefs_end[bsize];
  612. mult1 = mult * exponents[((-1<<bsize))>>esize];
  613. for(i = 0; i < n; i++) {
  614. *coefs++ = s->noise_table[s->noise_index] * mult1;
  615. s->noise_index = (s->noise_index + 1) & (NOISE_TAB_SIZE - 1);
  616. }
  617. } else {
  618. /* XXX: optimize more */
  619. for(i = 0;i < s->coefs_start; i++)
  620. *coefs++ = 0.0;
  621. n = nb_coefs[ch];
  622. for(i = 0;i < n; i++) {
  623. *coefs++ = coefs1[i] * exponents[i<<bsize>>esize] * mult;
  624. }
  625. n = s->block_len - s->coefs_end[bsize];
  626. for(i = 0;i < n; i++)
  627. *coefs++ = 0.0;
  628. }
  629. }
  630. }
  631. #ifdef TRACE
  632. for (ch = 0; ch < s->avctx->channels; ch++) {
  633. if (s->channel_coded[ch]) {
  634. dump_floats(s, "exponents", 3, s->exponents[ch], s->block_len);
  635. dump_floats(s, "coefs", 1, s->coefs[ch], s->block_len);
  636. }
  637. }
  638. #endif
  639. if (s->ms_stereo && s->channel_coded[1]) {
  640. /* nominal case for ms stereo: we do it before mdct */
  641. /* no need to optimize this case because it should almost
  642. never happen */
  643. if (!s->channel_coded[0]) {
  644. tprintf(s->avctx, "rare ms-stereo case happened\n");
  645. memset(s->coefs[0], 0, sizeof(float) * s->block_len);
  646. s->channel_coded[0] = 1;
  647. }
  648. s->fdsp.butterflies_float(s->coefs[0], s->coefs[1], s->block_len);
  649. }
  650. next:
  651. mdct = &s->mdct_ctx[bsize];
  652. for (ch = 0; ch < s->avctx->channels; ch++) {
  653. int n4, index;
  654. n4 = s->block_len / 2;
  655. if(s->channel_coded[ch]){
  656. mdct->imdct_calc(mdct, s->output, s->coefs[ch]);
  657. }else if(!(s->ms_stereo && ch==1))
  658. memset(s->output, 0, sizeof(s->output));
  659. /* multiply by the window and add in the frame */
  660. index = (s->frame_len / 2) + s->block_pos - n4;
  661. wma_window(s, &s->frame_out[ch][index]);
  662. }
  663. /* update block number */
  664. s->block_num++;
  665. s->block_pos += s->block_len;
  666. if (s->block_pos >= s->frame_len)
  667. return 1;
  668. else
  669. return 0;
  670. }
  671. /* decode a frame of frame_len samples */
  672. static int wma_decode_frame(WMACodecContext *s, float **samples,
  673. int samples_offset)
  674. {
  675. int ret, ch;
  676. #ifdef TRACE
  677. tprintf(s->avctx, "***decode_frame: %d size=%d\n", s->frame_count++, s->frame_len);
  678. #endif
  679. /* read each block */
  680. s->block_num = 0;
  681. s->block_pos = 0;
  682. for(;;) {
  683. ret = wma_decode_block(s);
  684. if (ret < 0)
  685. return -1;
  686. if (ret)
  687. break;
  688. }
  689. for (ch = 0; ch < s->avctx->channels; ch++) {
  690. /* copy current block to output */
  691. memcpy(samples[ch] + samples_offset, s->frame_out[ch],
  692. s->frame_len * sizeof(*s->frame_out[ch]));
  693. /* prepare for next block */
  694. memmove(&s->frame_out[ch][0], &s->frame_out[ch][s->frame_len],
  695. s->frame_len * sizeof(*s->frame_out[ch]));
  696. #ifdef TRACE
  697. dump_floats(s, "samples", 6, samples[ch] + samples_offset, s->frame_len);
  698. #endif
  699. }
  700. return 0;
  701. }
  702. static int wma_decode_superframe(AVCodecContext *avctx, void *data,
  703. int *got_frame_ptr, AVPacket *avpkt)
  704. {
  705. AVFrame *frame = data;
  706. const uint8_t *buf = avpkt->data;
  707. int buf_size = avpkt->size;
  708. WMACodecContext *s = avctx->priv_data;
  709. int nb_frames, bit_offset, i, pos, len, ret;
  710. uint8_t *q;
  711. float **samples;
  712. int samples_offset;
  713. tprintf(avctx, "***decode_superframe:\n");
  714. if(buf_size==0){
  715. s->last_superframe_len = 0;
  716. return 0;
  717. }
  718. if (buf_size < avctx->block_align) {
  719. av_log(avctx, AV_LOG_ERROR,
  720. "Input packet size too small (%d < %d)\n",
  721. buf_size, avctx->block_align);
  722. return AVERROR_INVALIDDATA;
  723. }
  724. buf_size = avctx->block_align;
  725. init_get_bits(&s->gb, buf, buf_size*8);
  726. if (s->use_bit_reservoir) {
  727. /* read super frame header */
  728. skip_bits(&s->gb, 4); /* super frame index */
  729. nb_frames = get_bits(&s->gb, 4) - (s->last_superframe_len <= 0);
  730. } else {
  731. nb_frames = 1;
  732. }
  733. /* get output buffer */
  734. frame->nb_samples = nb_frames * s->frame_len;
  735. if ((ret = ff_get_buffer(avctx, frame, 0)) < 0) {
  736. av_log(avctx, AV_LOG_ERROR, "get_buffer() failed\n");
  737. return ret;
  738. }
  739. samples = (float **)frame->extended_data;
  740. samples_offset = 0;
  741. if (s->use_bit_reservoir) {
  742. bit_offset = get_bits(&s->gb, s->byte_offset_bits + 3);
  743. if (bit_offset > get_bits_left(&s->gb)) {
  744. av_log(avctx, AV_LOG_ERROR,
  745. "Invalid last frame bit offset %d > buf size %d (%d)\n",
  746. bit_offset, get_bits_left(&s->gb), buf_size);
  747. goto fail;
  748. }
  749. if (s->last_superframe_len > 0) {
  750. /* add bit_offset bits to last frame */
  751. if ((s->last_superframe_len + ((bit_offset + 7) >> 3)) >
  752. MAX_CODED_SUPERFRAME_SIZE)
  753. goto fail;
  754. q = s->last_superframe + s->last_superframe_len;
  755. len = bit_offset;
  756. while (len > 7) {
  757. *q++ = (get_bits)(&s->gb, 8);
  758. len -= 8;
  759. }
  760. if (len > 0) {
  761. *q++ = (get_bits)(&s->gb, len) << (8 - len);
  762. }
  763. memset(q, 0, FF_INPUT_BUFFER_PADDING_SIZE);
  764. /* XXX: bit_offset bits into last frame */
  765. init_get_bits(&s->gb, s->last_superframe, s->last_superframe_len * 8 + bit_offset);
  766. /* skip unused bits */
  767. if (s->last_bitoffset > 0)
  768. skip_bits(&s->gb, s->last_bitoffset);
  769. /* this frame is stored in the last superframe and in the
  770. current one */
  771. if (wma_decode_frame(s, samples, samples_offset) < 0)
  772. goto fail;
  773. samples_offset += s->frame_len;
  774. nb_frames--;
  775. }
  776. /* read each frame starting from bit_offset */
  777. pos = bit_offset + 4 + 4 + s->byte_offset_bits + 3;
  778. if (pos >= MAX_CODED_SUPERFRAME_SIZE * 8 || pos > buf_size * 8)
  779. return AVERROR_INVALIDDATA;
  780. init_get_bits(&s->gb, buf + (pos >> 3), (buf_size - (pos >> 3))*8);
  781. len = pos & 7;
  782. if (len > 0)
  783. skip_bits(&s->gb, len);
  784. s->reset_block_lengths = 1;
  785. for(i=0;i<nb_frames;i++) {
  786. if (wma_decode_frame(s, samples, samples_offset) < 0)
  787. goto fail;
  788. samples_offset += s->frame_len;
  789. }
  790. /* we copy the end of the frame in the last frame buffer */
  791. pos = get_bits_count(&s->gb) + ((bit_offset + 4 + 4 + s->byte_offset_bits + 3) & ~7);
  792. s->last_bitoffset = pos & 7;
  793. pos >>= 3;
  794. len = buf_size - pos;
  795. if (len > MAX_CODED_SUPERFRAME_SIZE || len < 0) {
  796. av_log(s->avctx, AV_LOG_ERROR, "len %d invalid\n", len);
  797. goto fail;
  798. }
  799. s->last_superframe_len = len;
  800. memcpy(s->last_superframe, buf + pos, len);
  801. } else {
  802. /* single frame decode */
  803. if (wma_decode_frame(s, samples, samples_offset) < 0)
  804. goto fail;
  805. samples_offset += s->frame_len;
  806. }
  807. av_dlog(s->avctx, "%d %d %d %d outbytes:%td eaten:%d\n",
  808. s->frame_len_bits, s->block_len_bits, s->frame_len, s->block_len,
  809. (int8_t *)samples - (int8_t *)data, avctx->block_align);
  810. *got_frame_ptr = 1;
  811. return avctx->block_align;
  812. fail:
  813. /* when error, we reset the bit reservoir */
  814. s->last_superframe_len = 0;
  815. return -1;
  816. }
  817. static av_cold void flush(AVCodecContext *avctx)
  818. {
  819. WMACodecContext *s = avctx->priv_data;
  820. s->last_bitoffset=
  821. s->last_superframe_len= 0;
  822. }
  823. AVCodec ff_wmav1_decoder = {
  824. .name = "wmav1",
  825. .type = AVMEDIA_TYPE_AUDIO,
  826. .id = AV_CODEC_ID_WMAV1,
  827. .priv_data_size = sizeof(WMACodecContext),
  828. .init = wma_decode_init,
  829. .close = ff_wma_end,
  830. .decode = wma_decode_superframe,
  831. .flush = flush,
  832. .capabilities = CODEC_CAP_DR1,
  833. .long_name = NULL_IF_CONFIG_SMALL("Windows Media Audio 1"),
  834. .sample_fmts = (const enum AVSampleFormat[]) { AV_SAMPLE_FMT_FLTP,
  835. AV_SAMPLE_FMT_NONE },
  836. };
  837. AVCodec ff_wmav2_decoder = {
  838. .name = "wmav2",
  839. .type = AVMEDIA_TYPE_AUDIO,
  840. .id = AV_CODEC_ID_WMAV2,
  841. .priv_data_size = sizeof(WMACodecContext),
  842. .init = wma_decode_init,
  843. .close = ff_wma_end,
  844. .decode = wma_decode_superframe,
  845. .flush = flush,
  846. .capabilities = CODEC_CAP_DR1,
  847. .long_name = NULL_IF_CONFIG_SMALL("Windows Media Audio 2"),
  848. .sample_fmts = (const enum AVSampleFormat[]) { AV_SAMPLE_FMT_FLTP,
  849. AV_SAMPLE_FMT_NONE },
  850. };