You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

1183 lines
39KB

  1. /*
  2. * TwinVQ decoder
  3. * Copyright (c) 2009 Vitor Sessak
  4. *
  5. * This file is part of Libav.
  6. *
  7. * Libav is free software; you can redistribute it and/or
  8. * modify it under the terms of the GNU Lesser General Public
  9. * License as published by the Free Software Foundation; either
  10. * version 2.1 of the License, or (at your option) any later version.
  11. *
  12. * Libav is distributed in the hope that it will be useful,
  13. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  14. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  15. * Lesser General Public License for more details.
  16. *
  17. * You should have received a copy of the GNU Lesser General Public
  18. * License along with Libav; if not, write to the Free Software
  19. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  20. */
  21. #include "libavutil/channel_layout.h"
  22. #include "libavutil/float_dsp.h"
  23. #include "avcodec.h"
  24. #include "get_bits.h"
  25. #include "fft.h"
  26. #include "internal.h"
  27. #include "lsp.h"
  28. #include "sinewin.h"
  29. #include <math.h>
  30. #include <stdint.h>
  31. #include "twinvq_data.h"
  32. enum FrameType {
  33. FT_SHORT = 0, ///< Short frame (divided in n sub-blocks)
  34. FT_MEDIUM, ///< Medium frame (divided in m<n sub-blocks)
  35. FT_LONG, ///< Long frame (single sub-block + PPC)
  36. FT_PPC, ///< Periodic Peak Component (part of the long frame)
  37. };
  38. /**
  39. * Parameters and tables that are different for each frame type
  40. */
  41. struct FrameMode {
  42. uint8_t sub; ///< Number subblocks in each frame
  43. const uint16_t *bark_tab;
  44. /** number of distinct bark scale envelope values */
  45. uint8_t bark_env_size;
  46. const int16_t *bark_cb; ///< codebook for the bark scale envelope (BSE)
  47. uint8_t bark_n_coef;///< number of BSE CB coefficients to read
  48. uint8_t bark_n_bit; ///< number of bits of the BSE coefs
  49. //@{
  50. /** main codebooks for spectrum data */
  51. const int16_t *cb0;
  52. const int16_t *cb1;
  53. //@}
  54. uint8_t cb_len_read; ///< number of spectrum coefficients to read
  55. };
  56. /**
  57. * Parameters and tables that are different for every combination of
  58. * bitrate/sample rate
  59. */
  60. typedef struct {
  61. struct FrameMode fmode[3]; ///< frame type-dependant parameters
  62. uint16_t size; ///< frame size in samples
  63. uint8_t n_lsp; ///< number of lsp coefficients
  64. const float *lspcodebook;
  65. /* number of bits of the different LSP CB coefficients */
  66. uint8_t lsp_bit0;
  67. uint8_t lsp_bit1;
  68. uint8_t lsp_bit2;
  69. uint8_t lsp_split; ///< number of CB entries for the LSP decoding
  70. const int16_t *ppc_shape_cb; ///< PPC shape CB
  71. /** number of the bits for the PPC period value */
  72. uint8_t ppc_period_bit;
  73. uint8_t ppc_shape_bit; ///< number of bits of the PPC shape CB coeffs
  74. uint8_t ppc_shape_len; ///< size of PPC shape CB
  75. uint8_t pgain_bit; ///< bits for PPC gain
  76. /** constant for peak period to peak width conversion */
  77. uint16_t peak_per2wid;
  78. } ModeTab;
  79. static const ModeTab mode_08_08 = {
  80. {
  81. { 8, bark_tab_s08_64, 10, tab.fcb08s , 1, 5, tab.cb0808s0, tab.cb0808s1, 18},
  82. { 2, bark_tab_m08_256, 20, tab.fcb08m , 2, 5, tab.cb0808m0, tab.cb0808m1, 16},
  83. { 1, bark_tab_l08_512, 30, tab.fcb08l , 3, 6, tab.cb0808l0, tab.cb0808l1, 17}
  84. },
  85. 512 , 12, tab.lsp08, 1, 5, 3, 3, tab.shape08 , 8, 28, 20, 6, 40
  86. };
  87. static const ModeTab mode_11_08 = {
  88. {
  89. { 8, bark_tab_s11_64, 10, tab.fcb11s , 1, 5, tab.cb1108s0, tab.cb1108s1, 29},
  90. { 2, bark_tab_m11_256, 20, tab.fcb11m , 2, 5, tab.cb1108m0, tab.cb1108m1, 24},
  91. { 1, bark_tab_l11_512, 30, tab.fcb11l , 3, 6, tab.cb1108l0, tab.cb1108l1, 27}
  92. },
  93. 512 , 16, tab.lsp11, 1, 6, 4, 3, tab.shape11 , 9, 36, 30, 7, 90
  94. };
  95. static const ModeTab mode_11_10 = {
  96. {
  97. { 8, bark_tab_s11_64, 10, tab.fcb11s , 1, 5, tab.cb1110s0, tab.cb1110s1, 21},
  98. { 2, bark_tab_m11_256, 20, tab.fcb11m , 2, 5, tab.cb1110m0, tab.cb1110m1, 18},
  99. { 1, bark_tab_l11_512, 30, tab.fcb11l , 3, 6, tab.cb1110l0, tab.cb1110l1, 20}
  100. },
  101. 512 , 16, tab.lsp11, 1, 6, 4, 3, tab.shape11 , 9, 36, 30, 7, 90
  102. };
  103. static const ModeTab mode_16_16 = {
  104. {
  105. { 8, bark_tab_s16_128, 10, tab.fcb16s , 1, 5, tab.cb1616s0, tab.cb1616s1, 16},
  106. { 2, bark_tab_m16_512, 20, tab.fcb16m , 2, 5, tab.cb1616m0, tab.cb1616m1, 15},
  107. { 1, bark_tab_l16_1024,30, tab.fcb16l , 3, 6, tab.cb1616l0, tab.cb1616l1, 16}
  108. },
  109. 1024, 16, tab.lsp16, 1, 6, 4, 3, tab.shape16 , 9, 56, 60, 7, 180
  110. };
  111. static const ModeTab mode_22_20 = {
  112. {
  113. { 8, bark_tab_s22_128, 10, tab.fcb22s_1, 1, 6, tab.cb2220s0, tab.cb2220s1, 18},
  114. { 2, bark_tab_m22_512, 20, tab.fcb22m_1, 2, 6, tab.cb2220m0, tab.cb2220m1, 17},
  115. { 1, bark_tab_l22_1024,32, tab.fcb22l_1, 4, 6, tab.cb2220l0, tab.cb2220l1, 18}
  116. },
  117. 1024, 16, tab.lsp22_1, 1, 6, 4, 3, tab.shape22_1, 9, 56, 36, 7, 144
  118. };
  119. static const ModeTab mode_22_24 = {
  120. {
  121. { 8, bark_tab_s22_128, 10, tab.fcb22s_1, 1, 6, tab.cb2224s0, tab.cb2224s1, 15},
  122. { 2, bark_tab_m22_512, 20, tab.fcb22m_1, 2, 6, tab.cb2224m0, tab.cb2224m1, 14},
  123. { 1, bark_tab_l22_1024,32, tab.fcb22l_1, 4, 6, tab.cb2224l0, tab.cb2224l1, 15}
  124. },
  125. 1024, 16, tab.lsp22_1, 1, 6, 4, 3, tab.shape22_1, 9, 56, 36, 7, 144
  126. };
  127. static const ModeTab mode_22_32 = {
  128. {
  129. { 4, bark_tab_s22_128, 10, tab.fcb22s_2, 1, 6, tab.cb2232s0, tab.cb2232s1, 11},
  130. { 2, bark_tab_m22_256, 20, tab.fcb22m_2, 2, 6, tab.cb2232m0, tab.cb2232m1, 11},
  131. { 1, bark_tab_l22_512, 32, tab.fcb22l_2, 4, 6, tab.cb2232l0, tab.cb2232l1, 12}
  132. },
  133. 512 , 16, tab.lsp22_2, 1, 6, 4, 4, tab.shape22_2, 9, 56, 36, 7, 72
  134. };
  135. static const ModeTab mode_44_40 = {
  136. {
  137. {16, bark_tab_s44_128, 10, tab.fcb44s , 1, 6, tab.cb4440s0, tab.cb4440s1, 18},
  138. { 4, bark_tab_m44_512, 20, tab.fcb44m , 2, 6, tab.cb4440m0, tab.cb4440m1, 17},
  139. { 1, bark_tab_l44_2048,40, tab.fcb44l , 4, 6, tab.cb4440l0, tab.cb4440l1, 17}
  140. },
  141. 2048, 20, tab.lsp44, 1, 6, 4, 4, tab.shape44 , 9, 84, 54, 7, 432
  142. };
  143. static const ModeTab mode_44_48 = {
  144. {
  145. {16, bark_tab_s44_128, 10, tab.fcb44s , 1, 6, tab.cb4448s0, tab.cb4448s1, 15},
  146. { 4, bark_tab_m44_512, 20, tab.fcb44m , 2, 6, tab.cb4448m0, tab.cb4448m1, 14},
  147. { 1, bark_tab_l44_2048,40, tab.fcb44l , 4, 6, tab.cb4448l0, tab.cb4448l1, 14}
  148. },
  149. 2048, 20, tab.lsp44, 1, 6, 4, 4, tab.shape44 , 9, 84, 54, 7, 432
  150. };
  151. typedef struct TwinContext {
  152. AVCodecContext *avctx;
  153. AVFloatDSPContext fdsp;
  154. FFTContext mdct_ctx[3];
  155. const ModeTab *mtab;
  156. // history
  157. float lsp_hist[2][20]; ///< LSP coefficients of the last frame
  158. float bark_hist[3][2][40]; ///< BSE coefficients of last frame
  159. // bitstream parameters
  160. int16_t permut[4][4096];
  161. uint8_t length[4][2]; ///< main codebook stride
  162. uint8_t length_change[4];
  163. uint8_t bits_main_spec[2][4][2]; ///< bits for the main codebook
  164. int bits_main_spec_change[4];
  165. int n_div[4];
  166. float *spectrum;
  167. float *curr_frame; ///< non-interleaved output
  168. float *prev_frame; ///< non-interleaved previous frame
  169. int last_block_pos[2];
  170. int discarded_packets;
  171. float *cos_tabs[3];
  172. // scratch buffers
  173. float *tmp_buf;
  174. } TwinContext;
  175. #define PPC_SHAPE_CB_SIZE 64
  176. #define PPC_SHAPE_LEN_MAX 60
  177. #define SUB_AMP_MAX 4500.0
  178. #define MULAW_MU 100.0
  179. #define GAIN_BITS 8
  180. #define AMP_MAX 13000.0
  181. #define SUB_GAIN_BITS 5
  182. #define WINDOW_TYPE_BITS 4
  183. #define PGAIN_MU 200
  184. #define LSP_COEFS_MAX 20
  185. #define LSP_SPLIT_MAX 4
  186. #define CHANNELS_MAX 2
  187. #define SUBBLOCKS_MAX 16
  188. #define BARK_N_COEF_MAX 4
  189. /** @note not speed critical, hence not optimized */
  190. static void memset_float(float *buf, float val, int size)
  191. {
  192. while (size--)
  193. *buf++ = val;
  194. }
  195. /**
  196. * Evaluate a single LPC amplitude spectrum envelope coefficient from the line
  197. * spectrum pairs.
  198. *
  199. * @param lsp a vector of the cosinus of the LSP values
  200. * @param cos_val cos(PI*i/N) where i is the index of the LPC amplitude
  201. * @param order the order of the LSP (and the size of the *lsp buffer). Must
  202. * be a multiple of four.
  203. * @return the LPC value
  204. *
  205. * @todo reuse code from Vorbis decoder: vorbis_floor0_decode
  206. */
  207. static float eval_lpc_spectrum(const float *lsp, float cos_val, int order)
  208. {
  209. int j;
  210. float p = 0.5f;
  211. float q = 0.5f;
  212. float two_cos_w = 2.0f*cos_val;
  213. for (j = 0; j + 1 < order; j += 2*2) {
  214. // Unroll the loop once since order is a multiple of four
  215. q *= lsp[j ] - two_cos_w;
  216. p *= lsp[j+1] - two_cos_w;
  217. q *= lsp[j+2] - two_cos_w;
  218. p *= lsp[j+3] - two_cos_w;
  219. }
  220. p *= p * (2.0f - two_cos_w);
  221. q *= q * (2.0f + two_cos_w);
  222. return 0.5 / (p + q);
  223. }
  224. /**
  225. * Evaluate the LPC amplitude spectrum envelope from the line spectrum pairs.
  226. */
  227. static void eval_lpcenv(TwinContext *tctx, const float *cos_vals, float *lpc)
  228. {
  229. int i;
  230. const ModeTab *mtab = tctx->mtab;
  231. int size_s = mtab->size / mtab->fmode[FT_SHORT].sub;
  232. for (i = 0; i < size_s/2; i++) {
  233. float cos_i = tctx->cos_tabs[0][i];
  234. lpc[i] = eval_lpc_spectrum(cos_vals, cos_i, mtab->n_lsp);
  235. lpc[size_s-i-1] = eval_lpc_spectrum(cos_vals, -cos_i, mtab->n_lsp);
  236. }
  237. }
  238. static void interpolate(float *out, float v1, float v2, int size)
  239. {
  240. int i;
  241. float step = (v1 - v2)/(size + 1);
  242. for (i = 0; i < size; i++) {
  243. v2 += step;
  244. out[i] = v2;
  245. }
  246. }
  247. static inline float get_cos(int idx, int part, const float *cos_tab, int size)
  248. {
  249. return part ? -cos_tab[size - idx - 1] :
  250. cos_tab[ idx ];
  251. }
  252. /**
  253. * Evaluate the LPC amplitude spectrum envelope from the line spectrum pairs.
  254. * Probably for speed reasons, the coefficients are evaluated as
  255. * siiiibiiiisiiiibiiiisiiiibiiiisiiiibiiiis ...
  256. * where s is an evaluated value, i is a value interpolated from the others
  257. * and b might be either calculated or interpolated, depending on an
  258. * unexplained condition.
  259. *
  260. * @param step the size of a block "siiiibiiii"
  261. * @param in the cosinus of the LSP data
  262. * @param part is 0 for 0...PI (positive cossinus values) and 1 for PI...2PI
  263. (negative cossinus values)
  264. * @param size the size of the whole output
  265. */
  266. static inline void eval_lpcenv_or_interp(TwinContext *tctx,
  267. enum FrameType ftype,
  268. float *out, const float *in,
  269. int size, int step, int part)
  270. {
  271. int i;
  272. const ModeTab *mtab = tctx->mtab;
  273. const float *cos_tab = tctx->cos_tabs[ftype];
  274. // Fill the 's'
  275. for (i = 0; i < size; i += step)
  276. out[i] =
  277. eval_lpc_spectrum(in,
  278. get_cos(i, part, cos_tab, size),
  279. mtab->n_lsp);
  280. // Fill the 'iiiibiiii'
  281. for (i = step; i <= size - 2*step; i += step) {
  282. if (out[i + step] + out[i - step] > 1.95*out[i] ||
  283. out[i + step] >= out[i - step]) {
  284. interpolate(out + i - step + 1, out[i], out[i-step], step - 1);
  285. } else {
  286. out[i - step/2] =
  287. eval_lpc_spectrum(in,
  288. get_cos(i-step/2, part, cos_tab, size),
  289. mtab->n_lsp);
  290. interpolate(out + i - step + 1, out[i-step/2], out[i-step ], step/2 - 1);
  291. interpolate(out + i - step/2 + 1, out[i ], out[i-step/2], step/2 - 1);
  292. }
  293. }
  294. interpolate(out + size - 2*step + 1, out[size-step], out[size - 2*step], step - 1);
  295. }
  296. static void eval_lpcenv_2parts(TwinContext *tctx, enum FrameType ftype,
  297. const float *buf, float *lpc,
  298. int size, int step)
  299. {
  300. eval_lpcenv_or_interp(tctx, ftype, lpc , buf, size/2, step, 0);
  301. eval_lpcenv_or_interp(tctx, ftype, lpc + size/2, buf, size/2, 2*step, 1);
  302. interpolate(lpc+size/2-step+1, lpc[size/2], lpc[size/2-step], step);
  303. memset_float(lpc + size - 2*step + 1, lpc[size - 2*step], 2*step - 1);
  304. }
  305. /**
  306. * Inverse quantization. Read CB coefficients for cb1 and cb2 from the
  307. * bitstream, sum the corresponding vectors and write the result to *out
  308. * after permutation.
  309. */
  310. static void dequant(TwinContext *tctx, GetBitContext *gb, float *out,
  311. enum FrameType ftype,
  312. const int16_t *cb0, const int16_t *cb1, int cb_len)
  313. {
  314. int pos = 0;
  315. int i, j;
  316. for (i = 0; i < tctx->n_div[ftype]; i++) {
  317. int tmp0, tmp1;
  318. int sign0 = 1;
  319. int sign1 = 1;
  320. const int16_t *tab0, *tab1;
  321. int length = tctx->length[ftype][i >= tctx->length_change[ftype]];
  322. int bitstream_second_part = (i >= tctx->bits_main_spec_change[ftype]);
  323. int bits = tctx->bits_main_spec[0][ftype][bitstream_second_part];
  324. if (bits == 7) {
  325. if (get_bits1(gb))
  326. sign0 = -1;
  327. bits = 6;
  328. }
  329. tmp0 = get_bits(gb, bits);
  330. bits = tctx->bits_main_spec[1][ftype][bitstream_second_part];
  331. if (bits == 7) {
  332. if (get_bits1(gb))
  333. sign1 = -1;
  334. bits = 6;
  335. }
  336. tmp1 = get_bits(gb, bits);
  337. tab0 = cb0 + tmp0*cb_len;
  338. tab1 = cb1 + tmp1*cb_len;
  339. for (j = 0; j < length; j++)
  340. out[tctx->permut[ftype][pos+j]] = sign0*tab0[j] + sign1*tab1[j];
  341. pos += length;
  342. }
  343. }
  344. static inline float mulawinv(float y, float clip, float mu)
  345. {
  346. y = av_clipf(y/clip, -1, 1);
  347. return clip * FFSIGN(y) * (exp(log(1+mu) * fabs(y)) - 1) / mu;
  348. }
  349. /**
  350. * Evaluate a*b/400 rounded to the nearest integer. When, for example,
  351. * a*b == 200 and the nearest integer is ill-defined, use a table to emulate
  352. * the following broken float-based implementation used by the binary decoder:
  353. *
  354. * @code
  355. * static int very_broken_op(int a, int b)
  356. * {
  357. * static float test; // Ugh, force gcc to do the division first...
  358. *
  359. * test = a/400.;
  360. * return b * test + 0.5;
  361. * }
  362. * @endcode
  363. *
  364. * @note if this function is replaced by just ROUNDED_DIV(a*b,400.), the stddev
  365. * between the original file (before encoding with Yamaha encoder) and the
  366. * decoded output increases, which leads one to believe that the encoder expects
  367. * exactly this broken calculation.
  368. */
  369. static int very_broken_op(int a, int b)
  370. {
  371. int x = a*b + 200;
  372. int size;
  373. const uint8_t *rtab;
  374. if (x%400 || b%5)
  375. return x/400;
  376. x /= 400;
  377. size = tabs[b/5].size;
  378. rtab = tabs[b/5].tab;
  379. return x - rtab[size*av_log2(2*(x - 1)/size)+(x - 1)%size];
  380. }
  381. /**
  382. * Sum to data a periodic peak of a given period, width and shape.
  383. *
  384. * @param period the period of the peak divised by 400.0
  385. */
  386. static void add_peak(int period, int width, const float *shape,
  387. float ppc_gain, float *speech, int len)
  388. {
  389. int i, j;
  390. const float *shape_end = shape + len;
  391. int center;
  392. // First peak centered around zero
  393. for (i = 0; i < width/2; i++)
  394. speech[i] += ppc_gain * *shape++;
  395. for (i = 1; i < ROUNDED_DIV(len,width) ; i++) {
  396. center = very_broken_op(period, i);
  397. for (j = -width/2; j < (width+1)/2; j++)
  398. speech[j+center] += ppc_gain * *shape++;
  399. }
  400. // For the last block, be careful not to go beyond the end of the buffer
  401. center = very_broken_op(period, i);
  402. for (j = -width/2; j < (width + 1)/2 && shape < shape_end; j++)
  403. speech[j+center] += ppc_gain * *shape++;
  404. }
  405. static void decode_ppc(TwinContext *tctx, int period_coef, const float *shape,
  406. float ppc_gain, float *speech)
  407. {
  408. const ModeTab *mtab = tctx->mtab;
  409. int isampf = tctx->avctx->sample_rate/1000;
  410. int ibps = tctx->avctx->bit_rate/(1000 * tctx->avctx->channels);
  411. int min_period = ROUNDED_DIV( 40*2*mtab->size, isampf);
  412. int max_period = ROUNDED_DIV(6*40*2*mtab->size, isampf);
  413. int period_range = max_period - min_period;
  414. // This is actually the period multiplied by 400. It is just linearly coded
  415. // between its maximum and minimum value.
  416. int period = min_period +
  417. ROUNDED_DIV(period_coef*period_range, (1 << mtab->ppc_period_bit) - 1);
  418. int width;
  419. if (isampf == 22 && ibps == 32) {
  420. // For some unknown reason, NTT decided to code this case differently...
  421. width = ROUNDED_DIV((period + 800)* mtab->peak_per2wid, 400*mtab->size);
  422. } else
  423. width = (period )* mtab->peak_per2wid/(400*mtab->size);
  424. add_peak(period, width, shape, ppc_gain, speech, mtab->ppc_shape_len);
  425. }
  426. static void dec_gain(TwinContext *tctx, GetBitContext *gb, enum FrameType ftype,
  427. float *out)
  428. {
  429. const ModeTab *mtab = tctx->mtab;
  430. int i, j;
  431. int sub = mtab->fmode[ftype].sub;
  432. float step = AMP_MAX / ((1 << GAIN_BITS) - 1);
  433. float sub_step = SUB_AMP_MAX / ((1 << SUB_GAIN_BITS) - 1);
  434. if (ftype == FT_LONG) {
  435. for (i = 0; i < tctx->avctx->channels; i++)
  436. out[i] = (1./(1<<13)) *
  437. mulawinv(step * 0.5 + step * get_bits(gb, GAIN_BITS),
  438. AMP_MAX, MULAW_MU);
  439. } else {
  440. for (i = 0; i < tctx->avctx->channels; i++) {
  441. float val = (1./(1<<23)) *
  442. mulawinv(step * 0.5 + step * get_bits(gb, GAIN_BITS),
  443. AMP_MAX, MULAW_MU);
  444. for (j = 0; j < sub; j++) {
  445. out[i*sub + j] =
  446. val*mulawinv(sub_step* 0.5 +
  447. sub_step* get_bits(gb, SUB_GAIN_BITS),
  448. SUB_AMP_MAX, MULAW_MU);
  449. }
  450. }
  451. }
  452. }
  453. /**
  454. * Rearrange the LSP coefficients so that they have a minimum distance of
  455. * min_dist. This function does it exactly as described in section of 3.2.4
  456. * of the G.729 specification (but interestingly is different from what the
  457. * reference decoder actually does).
  458. */
  459. static void rearrange_lsp(int order, float *lsp, float min_dist)
  460. {
  461. int i;
  462. float min_dist2 = min_dist * 0.5;
  463. for (i = 1; i < order; i++)
  464. if (lsp[i] - lsp[i-1] < min_dist) {
  465. float avg = (lsp[i] + lsp[i-1]) * 0.5;
  466. lsp[i-1] = avg - min_dist2;
  467. lsp[i ] = avg + min_dist2;
  468. }
  469. }
  470. static void decode_lsp(TwinContext *tctx, int lpc_idx1, uint8_t *lpc_idx2,
  471. int lpc_hist_idx, float *lsp, float *hist)
  472. {
  473. const ModeTab *mtab = tctx->mtab;
  474. int i, j;
  475. const float *cb = mtab->lspcodebook;
  476. const float *cb2 = cb + (1 << mtab->lsp_bit1)*mtab->n_lsp;
  477. const float *cb3 = cb2 + (1 << mtab->lsp_bit2)*mtab->n_lsp;
  478. const int8_t funny_rounding[4] = {
  479. -2,
  480. mtab->lsp_split == 4 ? -2 : 1,
  481. mtab->lsp_split == 4 ? -2 : 1,
  482. 0
  483. };
  484. j = 0;
  485. for (i = 0; i < mtab->lsp_split; i++) {
  486. int chunk_end = ((i + 1)*mtab->n_lsp + funny_rounding[i])/mtab->lsp_split;
  487. for (; j < chunk_end; j++)
  488. lsp[j] = cb [lpc_idx1 * mtab->n_lsp + j] +
  489. cb2[lpc_idx2[i] * mtab->n_lsp + j];
  490. }
  491. rearrange_lsp(mtab->n_lsp, lsp, 0.0001);
  492. for (i = 0; i < mtab->n_lsp; i++) {
  493. float tmp1 = 1. - cb3[lpc_hist_idx*mtab->n_lsp + i];
  494. float tmp2 = hist[i] * cb3[lpc_hist_idx*mtab->n_lsp + i];
  495. hist[i] = lsp[i];
  496. lsp[i] = lsp[i] * tmp1 + tmp2;
  497. }
  498. rearrange_lsp(mtab->n_lsp, lsp, 0.0001);
  499. rearrange_lsp(mtab->n_lsp, lsp, 0.000095);
  500. ff_sort_nearly_sorted_floats(lsp, mtab->n_lsp);
  501. }
  502. static void dec_lpc_spectrum_inv(TwinContext *tctx, float *lsp,
  503. enum FrameType ftype, float *lpc)
  504. {
  505. int i;
  506. int size = tctx->mtab->size / tctx->mtab->fmode[ftype].sub;
  507. for (i = 0; i < tctx->mtab->n_lsp; i++)
  508. lsp[i] = 2*cos(lsp[i]);
  509. switch (ftype) {
  510. case FT_LONG:
  511. eval_lpcenv_2parts(tctx, ftype, lsp, lpc, size, 8);
  512. break;
  513. case FT_MEDIUM:
  514. eval_lpcenv_2parts(tctx, ftype, lsp, lpc, size, 2);
  515. break;
  516. case FT_SHORT:
  517. eval_lpcenv(tctx, lsp, lpc);
  518. break;
  519. }
  520. }
  521. static void imdct_and_window(TwinContext *tctx, enum FrameType ftype, int wtype,
  522. float *in, float *prev, int ch)
  523. {
  524. FFTContext *mdct = &tctx->mdct_ctx[ftype];
  525. const ModeTab *mtab = tctx->mtab;
  526. int bsize = mtab->size / mtab->fmode[ftype].sub;
  527. int size = mtab->size;
  528. float *buf1 = tctx->tmp_buf;
  529. int j;
  530. int wsize; // Window size
  531. float *out = tctx->curr_frame + 2*ch*mtab->size;
  532. float *out2 = out;
  533. float *prev_buf;
  534. int first_wsize;
  535. static const uint8_t wtype_to_wsize[] = {0, 0, 2, 2, 2, 1, 0, 1, 1};
  536. int types_sizes[] = {
  537. mtab->size / mtab->fmode[FT_LONG ].sub,
  538. mtab->size / mtab->fmode[FT_MEDIUM].sub,
  539. mtab->size / (2*mtab->fmode[FT_SHORT ].sub),
  540. };
  541. wsize = types_sizes[wtype_to_wsize[wtype]];
  542. first_wsize = wsize;
  543. prev_buf = prev + (size - bsize)/2;
  544. for (j = 0; j < mtab->fmode[ftype].sub; j++) {
  545. int sub_wtype = ftype == FT_MEDIUM ? 8 : wtype;
  546. if (!j && wtype == 4)
  547. sub_wtype = 4;
  548. else if (j == mtab->fmode[ftype].sub-1 && wtype == 7)
  549. sub_wtype = 7;
  550. wsize = types_sizes[wtype_to_wsize[sub_wtype]];
  551. mdct->imdct_half(mdct, buf1 + bsize*j, in + bsize*j);
  552. tctx->fdsp.vector_fmul_window(out2, prev_buf + (bsize-wsize) / 2,
  553. buf1 + bsize * j,
  554. ff_sine_windows[av_log2(wsize)],
  555. wsize / 2);
  556. out2 += wsize;
  557. memcpy(out2, buf1 + bsize*j + wsize/2, (bsize - wsize/2)*sizeof(float));
  558. out2 += ftype == FT_MEDIUM ? (bsize-wsize)/2 : bsize - wsize;
  559. prev_buf = buf1 + bsize*j + bsize/2;
  560. }
  561. tctx->last_block_pos[ch] = (size + first_wsize)/2;
  562. }
  563. static void imdct_output(TwinContext *tctx, enum FrameType ftype, int wtype,
  564. float **out)
  565. {
  566. const ModeTab *mtab = tctx->mtab;
  567. int size1, size2;
  568. float *prev_buf = tctx->prev_frame + tctx->last_block_pos[0];
  569. int i;
  570. for (i = 0; i < tctx->avctx->channels; i++) {
  571. imdct_and_window(tctx, ftype, wtype,
  572. tctx->spectrum + i*mtab->size,
  573. prev_buf + 2*i*mtab->size,
  574. i);
  575. }
  576. if (!out)
  577. return;
  578. size2 = tctx->last_block_pos[0];
  579. size1 = mtab->size - size2;
  580. memcpy(&out[0][0 ], prev_buf, size1 * sizeof(out[0][0]));
  581. memcpy(&out[0][size1], tctx->curr_frame, size2 * sizeof(out[0][0]));
  582. if (tctx->avctx->channels == 2) {
  583. memcpy(&out[1][0], &prev_buf[2*mtab->size], size1 * sizeof(out[1][0]));
  584. memcpy(&out[1][size1], &tctx->curr_frame[2*mtab->size], size2 * sizeof(out[1][0]));
  585. tctx->fdsp.butterflies_float(out[0], out[1], mtab->size);
  586. }
  587. }
  588. static void dec_bark_env(TwinContext *tctx, const uint8_t *in, int use_hist,
  589. int ch, float *out, float gain, enum FrameType ftype)
  590. {
  591. const ModeTab *mtab = tctx->mtab;
  592. int i,j;
  593. float *hist = tctx->bark_hist[ftype][ch];
  594. float val = ((const float []) {0.4, 0.35, 0.28})[ftype];
  595. int bark_n_coef = mtab->fmode[ftype].bark_n_coef;
  596. int fw_cb_len = mtab->fmode[ftype].bark_env_size / bark_n_coef;
  597. int idx = 0;
  598. for (i = 0; i < fw_cb_len; i++)
  599. for (j = 0; j < bark_n_coef; j++, idx++) {
  600. float tmp2 =
  601. mtab->fmode[ftype].bark_cb[fw_cb_len*in[j] + i] * (1./4096);
  602. float st = use_hist ?
  603. (1. - val) * tmp2 + val*hist[idx] + 1. : tmp2 + 1.;
  604. hist[idx] = tmp2;
  605. if (st < -1.) st = 1.;
  606. memset_float(out, st * gain, mtab->fmode[ftype].bark_tab[idx]);
  607. out += mtab->fmode[ftype].bark_tab[idx];
  608. }
  609. }
  610. static void read_and_decode_spectrum(TwinContext *tctx, GetBitContext *gb,
  611. float *out, enum FrameType ftype)
  612. {
  613. const ModeTab *mtab = tctx->mtab;
  614. int channels = tctx->avctx->channels;
  615. int sub = mtab->fmode[ftype].sub;
  616. int block_size = mtab->size / sub;
  617. float gain[CHANNELS_MAX*SUBBLOCKS_MAX];
  618. float ppc_shape[PPC_SHAPE_LEN_MAX * CHANNELS_MAX * 4];
  619. uint8_t bark1[CHANNELS_MAX][SUBBLOCKS_MAX][BARK_N_COEF_MAX];
  620. uint8_t bark_use_hist[CHANNELS_MAX][SUBBLOCKS_MAX];
  621. uint8_t lpc_idx1[CHANNELS_MAX];
  622. uint8_t lpc_idx2[CHANNELS_MAX][LSP_SPLIT_MAX];
  623. uint8_t lpc_hist_idx[CHANNELS_MAX];
  624. int i, j, k;
  625. dequant(tctx, gb, out, ftype,
  626. mtab->fmode[ftype].cb0, mtab->fmode[ftype].cb1,
  627. mtab->fmode[ftype].cb_len_read);
  628. for (i = 0; i < channels; i++)
  629. for (j = 0; j < sub; j++)
  630. for (k = 0; k < mtab->fmode[ftype].bark_n_coef; k++)
  631. bark1[i][j][k] =
  632. get_bits(gb, mtab->fmode[ftype].bark_n_bit);
  633. for (i = 0; i < channels; i++)
  634. for (j = 0; j < sub; j++)
  635. bark_use_hist[i][j] = get_bits1(gb);
  636. dec_gain(tctx, gb, ftype, gain);
  637. for (i = 0; i < channels; i++) {
  638. lpc_hist_idx[i] = get_bits(gb, tctx->mtab->lsp_bit0);
  639. lpc_idx1 [i] = get_bits(gb, tctx->mtab->lsp_bit1);
  640. for (j = 0; j < tctx->mtab->lsp_split; j++)
  641. lpc_idx2[i][j] = get_bits(gb, tctx->mtab->lsp_bit2);
  642. }
  643. if (ftype == FT_LONG) {
  644. int cb_len_p = (tctx->n_div[3] + mtab->ppc_shape_len*channels - 1)/
  645. tctx->n_div[3];
  646. dequant(tctx, gb, ppc_shape, FT_PPC, mtab->ppc_shape_cb,
  647. mtab->ppc_shape_cb + cb_len_p*PPC_SHAPE_CB_SIZE, cb_len_p);
  648. }
  649. for (i = 0; i < channels; i++) {
  650. float *chunk = out + mtab->size * i;
  651. float lsp[LSP_COEFS_MAX];
  652. for (j = 0; j < sub; j++) {
  653. dec_bark_env(tctx, bark1[i][j], bark_use_hist[i][j], i,
  654. tctx->tmp_buf, gain[sub*i+j], ftype);
  655. tctx->fdsp.vector_fmul(chunk + block_size*j, chunk + block_size*j,
  656. tctx->tmp_buf, block_size);
  657. }
  658. if (ftype == FT_LONG) {
  659. float pgain_step = 25000. / ((1 << mtab->pgain_bit) - 1);
  660. int p_coef = get_bits(gb, tctx->mtab->ppc_period_bit);
  661. int g_coef = get_bits(gb, tctx->mtab->pgain_bit);
  662. float v = 1./8192*
  663. mulawinv(pgain_step*g_coef+ pgain_step/2, 25000., PGAIN_MU);
  664. decode_ppc(tctx, p_coef, ppc_shape + i*mtab->ppc_shape_len, v,
  665. chunk);
  666. }
  667. decode_lsp(tctx, lpc_idx1[i], lpc_idx2[i], lpc_hist_idx[i], lsp,
  668. tctx->lsp_hist[i]);
  669. dec_lpc_spectrum_inv(tctx, lsp, ftype, tctx->tmp_buf);
  670. for (j = 0; j < mtab->fmode[ftype].sub; j++) {
  671. tctx->fdsp.vector_fmul(chunk, chunk, tctx->tmp_buf, block_size);
  672. chunk += block_size;
  673. }
  674. }
  675. }
  676. static int twin_decode_frame(AVCodecContext * avctx, void *data,
  677. int *got_frame_ptr, AVPacket *avpkt)
  678. {
  679. AVFrame *frame = data;
  680. const uint8_t *buf = avpkt->data;
  681. int buf_size = avpkt->size;
  682. TwinContext *tctx = avctx->priv_data;
  683. GetBitContext gb;
  684. const ModeTab *mtab = tctx->mtab;
  685. float **out = NULL;
  686. enum FrameType ftype;
  687. int window_type, ret;
  688. static const enum FrameType wtype_to_ftype_table[] = {
  689. FT_LONG, FT_LONG, FT_SHORT, FT_LONG,
  690. FT_MEDIUM, FT_LONG, FT_LONG, FT_MEDIUM, FT_MEDIUM
  691. };
  692. if (buf_size*8 < avctx->bit_rate*mtab->size/avctx->sample_rate + 8) {
  693. av_log(avctx, AV_LOG_ERROR,
  694. "Frame too small (%d bytes). Truncated file?\n", buf_size);
  695. return AVERROR(EINVAL);
  696. }
  697. /* get output buffer */
  698. if (tctx->discarded_packets >= 2) {
  699. frame->nb_samples = mtab->size;
  700. if ((ret = ff_get_buffer(avctx, frame, 0)) < 0) {
  701. av_log(avctx, AV_LOG_ERROR, "get_buffer() failed\n");
  702. return ret;
  703. }
  704. out = (float **)frame->extended_data;
  705. }
  706. init_get_bits(&gb, buf, buf_size * 8);
  707. skip_bits(&gb, get_bits(&gb, 8));
  708. window_type = get_bits(&gb, WINDOW_TYPE_BITS);
  709. if (window_type > 8) {
  710. av_log(avctx, AV_LOG_ERROR, "Invalid window type, broken sample?\n");
  711. return -1;
  712. }
  713. ftype = wtype_to_ftype_table[window_type];
  714. read_and_decode_spectrum(tctx, &gb, tctx->spectrum, ftype);
  715. imdct_output(tctx, ftype, window_type, out);
  716. FFSWAP(float*, tctx->curr_frame, tctx->prev_frame);
  717. if (tctx->discarded_packets < 2) {
  718. tctx->discarded_packets++;
  719. *got_frame_ptr = 0;
  720. return buf_size;
  721. }
  722. *got_frame_ptr = 1;
  723. return buf_size;
  724. }
  725. /**
  726. * Init IMDCT and windowing tables
  727. */
  728. static av_cold int init_mdct_win(TwinContext *tctx)
  729. {
  730. int i, j, ret;
  731. const ModeTab *mtab = tctx->mtab;
  732. int size_s = mtab->size / mtab->fmode[FT_SHORT].sub;
  733. int size_m = mtab->size / mtab->fmode[FT_MEDIUM].sub;
  734. int channels = tctx->avctx->channels;
  735. float norm = channels == 1 ? 2. : 1.;
  736. for (i = 0; i < 3; i++) {
  737. int bsize = tctx->mtab->size/tctx->mtab->fmode[i].sub;
  738. if ((ret = ff_mdct_init(&tctx->mdct_ctx[i], av_log2(bsize) + 1, 1,
  739. -sqrt(norm/bsize) / (1<<15))))
  740. return ret;
  741. }
  742. FF_ALLOC_OR_GOTO(tctx->avctx, tctx->tmp_buf,
  743. mtab->size * sizeof(*tctx->tmp_buf), alloc_fail);
  744. FF_ALLOC_OR_GOTO(tctx->avctx, tctx->spectrum,
  745. 2 * mtab->size * channels * sizeof(*tctx->spectrum),
  746. alloc_fail);
  747. FF_ALLOC_OR_GOTO(tctx->avctx, tctx->curr_frame,
  748. 2 * mtab->size * channels * sizeof(*tctx->curr_frame),
  749. alloc_fail);
  750. FF_ALLOC_OR_GOTO(tctx->avctx, tctx->prev_frame,
  751. 2 * mtab->size * channels * sizeof(*tctx->prev_frame),
  752. alloc_fail);
  753. for (i = 0; i < 3; i++) {
  754. int m = 4*mtab->size/mtab->fmode[i].sub;
  755. double freq = 2*M_PI/m;
  756. FF_ALLOC_OR_GOTO(tctx->avctx, tctx->cos_tabs[i],
  757. (m / 4) * sizeof(*tctx->cos_tabs[i]), alloc_fail);
  758. for (j = 0; j <= m/8; j++)
  759. tctx->cos_tabs[i][j] = cos((2*j + 1)*freq);
  760. for (j = 1; j < m/8; j++)
  761. tctx->cos_tabs[i][m/4-j] = tctx->cos_tabs[i][j];
  762. }
  763. ff_init_ff_sine_windows(av_log2(size_m));
  764. ff_init_ff_sine_windows(av_log2(size_s/2));
  765. ff_init_ff_sine_windows(av_log2(mtab->size));
  766. return 0;
  767. alloc_fail:
  768. return AVERROR(ENOMEM);
  769. }
  770. /**
  771. * Interpret the data as if it were a num_blocks x line_len[0] matrix and for
  772. * each line do a cyclic permutation, i.e.
  773. * abcdefghijklm -> defghijklmabc
  774. * where the amount to be shifted is evaluated depending on the column.
  775. */
  776. static void permutate_in_line(int16_t *tab, int num_vect, int num_blocks,
  777. int block_size,
  778. const uint8_t line_len[2], int length_div,
  779. enum FrameType ftype)
  780. {
  781. int i,j;
  782. for (i = 0; i < line_len[0]; i++) {
  783. int shift;
  784. if (num_blocks == 1 ||
  785. (ftype == FT_LONG && num_vect % num_blocks) ||
  786. (ftype != FT_LONG && num_vect & 1 ) ||
  787. i == line_len[1]) {
  788. shift = 0;
  789. } else if (ftype == FT_LONG) {
  790. shift = i;
  791. } else
  792. shift = i*i;
  793. for (j = 0; j < num_vect && (j+num_vect*i < block_size*num_blocks); j++)
  794. tab[i*num_vect+j] = i*num_vect + (j + shift) % num_vect;
  795. }
  796. }
  797. /**
  798. * Interpret the input data as in the following table:
  799. *
  800. * @verbatim
  801. *
  802. * abcdefgh
  803. * ijklmnop
  804. * qrstuvw
  805. * x123456
  806. *
  807. * @endverbatim
  808. *
  809. * and transpose it, giving the output
  810. * aiqxbjr1cks2dlt3emu4fvn5gow6hp
  811. */
  812. static void transpose_perm(int16_t *out, int16_t *in, int num_vect,
  813. const uint8_t line_len[2], int length_div)
  814. {
  815. int i,j;
  816. int cont= 0;
  817. for (i = 0; i < num_vect; i++)
  818. for (j = 0; j < line_len[i >= length_div]; j++)
  819. out[cont++] = in[j*num_vect + i];
  820. }
  821. static void linear_perm(int16_t *out, int16_t *in, int n_blocks, int size)
  822. {
  823. int block_size = size/n_blocks;
  824. int i;
  825. for (i = 0; i < size; i++)
  826. out[i] = block_size * (in[i] % n_blocks) + in[i] / n_blocks;
  827. }
  828. static av_cold void construct_perm_table(TwinContext *tctx,enum FrameType ftype)
  829. {
  830. int block_size;
  831. const ModeTab *mtab = tctx->mtab;
  832. int size;
  833. int16_t *tmp_perm = (int16_t *) tctx->tmp_buf;
  834. if (ftype == FT_PPC) {
  835. size = tctx->avctx->channels;
  836. block_size = mtab->ppc_shape_len;
  837. } else {
  838. size = tctx->avctx->channels * mtab->fmode[ftype].sub;
  839. block_size = mtab->size / mtab->fmode[ftype].sub;
  840. }
  841. permutate_in_line(tmp_perm, tctx->n_div[ftype], size,
  842. block_size, tctx->length[ftype],
  843. tctx->length_change[ftype], ftype);
  844. transpose_perm(tctx->permut[ftype], tmp_perm, tctx->n_div[ftype],
  845. tctx->length[ftype], tctx->length_change[ftype]);
  846. linear_perm(tctx->permut[ftype], tctx->permut[ftype], size,
  847. size*block_size);
  848. }
  849. static av_cold void init_bitstream_params(TwinContext *tctx)
  850. {
  851. const ModeTab *mtab = tctx->mtab;
  852. int n_ch = tctx->avctx->channels;
  853. int total_fr_bits = tctx->avctx->bit_rate*mtab->size/
  854. tctx->avctx->sample_rate;
  855. int lsp_bits_per_block = n_ch*(mtab->lsp_bit0 + mtab->lsp_bit1 +
  856. mtab->lsp_split*mtab->lsp_bit2);
  857. int ppc_bits = n_ch*(mtab->pgain_bit + mtab->ppc_shape_bit +
  858. mtab->ppc_period_bit);
  859. int bsize_no_main_cb[3];
  860. int bse_bits[3];
  861. int i;
  862. enum FrameType frametype;
  863. for (i = 0; i < 3; i++)
  864. // +1 for history usage switch
  865. bse_bits[i] = n_ch *
  866. (mtab->fmode[i].bark_n_coef * mtab->fmode[i].bark_n_bit + 1);
  867. bsize_no_main_cb[2] = bse_bits[2] + lsp_bits_per_block + ppc_bits +
  868. WINDOW_TYPE_BITS + n_ch*GAIN_BITS;
  869. for (i = 0; i < 2; i++)
  870. bsize_no_main_cb[i] =
  871. lsp_bits_per_block + n_ch*GAIN_BITS + WINDOW_TYPE_BITS +
  872. mtab->fmode[i].sub*(bse_bits[i] + n_ch*SUB_GAIN_BITS);
  873. // The remaining bits are all used for the main spectrum coefficients
  874. for (i = 0; i < 4; i++) {
  875. int bit_size;
  876. int vect_size;
  877. int rounded_up, rounded_down, num_rounded_down, num_rounded_up;
  878. if (i == 3) {
  879. bit_size = n_ch * mtab->ppc_shape_bit;
  880. vect_size = n_ch * mtab->ppc_shape_len;
  881. } else {
  882. bit_size = total_fr_bits - bsize_no_main_cb[i];
  883. vect_size = n_ch * mtab->size;
  884. }
  885. tctx->n_div[i] = (bit_size + 13) / 14;
  886. rounded_up = (bit_size + tctx->n_div[i] - 1)/tctx->n_div[i];
  887. rounded_down = (bit_size )/tctx->n_div[i];
  888. num_rounded_down = rounded_up * tctx->n_div[i] - bit_size;
  889. num_rounded_up = tctx->n_div[i] - num_rounded_down;
  890. tctx->bits_main_spec[0][i][0] = (rounded_up + 1)/2;
  891. tctx->bits_main_spec[1][i][0] = (rounded_up )/2;
  892. tctx->bits_main_spec[0][i][1] = (rounded_down + 1)/2;
  893. tctx->bits_main_spec[1][i][1] = (rounded_down )/2;
  894. tctx->bits_main_spec_change[i] = num_rounded_up;
  895. rounded_up = (vect_size + tctx->n_div[i] - 1)/tctx->n_div[i];
  896. rounded_down = (vect_size )/tctx->n_div[i];
  897. num_rounded_down = rounded_up * tctx->n_div[i] - vect_size;
  898. num_rounded_up = tctx->n_div[i] - num_rounded_down;
  899. tctx->length[i][0] = rounded_up;
  900. tctx->length[i][1] = rounded_down;
  901. tctx->length_change[i] = num_rounded_up;
  902. }
  903. for (frametype = FT_SHORT; frametype <= FT_PPC; frametype++)
  904. construct_perm_table(tctx, frametype);
  905. }
  906. static av_cold int twin_decode_close(AVCodecContext *avctx)
  907. {
  908. TwinContext *tctx = avctx->priv_data;
  909. int i;
  910. for (i = 0; i < 3; i++) {
  911. ff_mdct_end(&tctx->mdct_ctx[i]);
  912. av_free(tctx->cos_tabs[i]);
  913. }
  914. av_free(tctx->curr_frame);
  915. av_free(tctx->spectrum);
  916. av_free(tctx->prev_frame);
  917. av_free(tctx->tmp_buf);
  918. return 0;
  919. }
  920. static av_cold int twin_decode_init(AVCodecContext *avctx)
  921. {
  922. int ret;
  923. TwinContext *tctx = avctx->priv_data;
  924. int isampf, ibps;
  925. tctx->avctx = avctx;
  926. avctx->sample_fmt = AV_SAMPLE_FMT_FLTP;
  927. if (!avctx->extradata || avctx->extradata_size < 12) {
  928. av_log(avctx, AV_LOG_ERROR, "Missing or incomplete extradata\n");
  929. return AVERROR_INVALIDDATA;
  930. }
  931. avctx->channels = AV_RB32(avctx->extradata ) + 1;
  932. avctx->bit_rate = AV_RB32(avctx->extradata + 4) * 1000;
  933. isampf = AV_RB32(avctx->extradata + 8);
  934. if (isampf < 8 || isampf > 44) {
  935. av_log(avctx, AV_LOG_ERROR, "Unsupported sample rate\n");
  936. return AVERROR_INVALIDDATA;
  937. }
  938. switch (isampf) {
  939. case 44: avctx->sample_rate = 44100; break;
  940. case 22: avctx->sample_rate = 22050; break;
  941. case 11: avctx->sample_rate = 11025; break;
  942. default: avctx->sample_rate = isampf * 1000; break;
  943. }
  944. if (avctx->channels <= 0 || avctx->channels > CHANNELS_MAX) {
  945. av_log(avctx, AV_LOG_ERROR, "Unsupported number of channels: %i\n",
  946. avctx->channels);
  947. return -1;
  948. }
  949. avctx->channel_layout = avctx->channels == 1 ? AV_CH_LAYOUT_MONO :
  950. AV_CH_LAYOUT_STEREO;
  951. ibps = avctx->bit_rate / (1000 * avctx->channels);
  952. switch ((isampf << 8) + ibps) {
  953. case (8 <<8) + 8: tctx->mtab = &mode_08_08; break;
  954. case (11<<8) + 8: tctx->mtab = &mode_11_08; break;
  955. case (11<<8) + 10: tctx->mtab = &mode_11_10; break;
  956. case (16<<8) + 16: tctx->mtab = &mode_16_16; break;
  957. case (22<<8) + 20: tctx->mtab = &mode_22_20; break;
  958. case (22<<8) + 24: tctx->mtab = &mode_22_24; break;
  959. case (22<<8) + 32: tctx->mtab = &mode_22_32; break;
  960. case (44<<8) + 40: tctx->mtab = &mode_44_40; break;
  961. case (44<<8) + 48: tctx->mtab = &mode_44_48; break;
  962. default:
  963. av_log(avctx, AV_LOG_ERROR, "This version does not support %d kHz - %d kbit/s/ch mode.\n", isampf, isampf);
  964. return -1;
  965. }
  966. avpriv_float_dsp_init(&tctx->fdsp, avctx->flags & CODEC_FLAG_BITEXACT);
  967. if ((ret = init_mdct_win(tctx))) {
  968. av_log(avctx, AV_LOG_ERROR, "Error initializing MDCT\n");
  969. twin_decode_close(avctx);
  970. return ret;
  971. }
  972. init_bitstream_params(tctx);
  973. memset_float(tctx->bark_hist[0][0], 0.1, FF_ARRAY_ELEMS(tctx->bark_hist));
  974. return 0;
  975. }
  976. AVCodec ff_twinvq_decoder = {
  977. .name = "twinvq",
  978. .type = AVMEDIA_TYPE_AUDIO,
  979. .id = AV_CODEC_ID_TWINVQ,
  980. .priv_data_size = sizeof(TwinContext),
  981. .init = twin_decode_init,
  982. .close = twin_decode_close,
  983. .decode = twin_decode_frame,
  984. .capabilities = CODEC_CAP_DR1,
  985. .long_name = NULL_IF_CONFIG_SMALL("VQF TwinVQ"),
  986. .sample_fmts = (const enum AVSampleFormat[]) { AV_SAMPLE_FMT_FLTP,
  987. AV_SAMPLE_FMT_NONE },
  988. };