You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

1038 lines
34KB

  1. /*
  2. * Rate control for video encoders
  3. *
  4. * Copyright (c) 2002-2004 Michael Niedermayer <michaelni@gmx.at>
  5. *
  6. * This file is part of Libav.
  7. *
  8. * Libav is free software; you can redistribute it and/or
  9. * modify it under the terms of the GNU Lesser General Public
  10. * License as published by the Free Software Foundation; either
  11. * version 2.1 of the License, or (at your option) any later version.
  12. *
  13. * Libav is distributed in the hope that it will be useful,
  14. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  15. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  16. * Lesser General Public License for more details.
  17. *
  18. * You should have received a copy of the GNU Lesser General Public
  19. * License along with Libav; if not, write to the Free Software
  20. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  21. */
  22. /**
  23. * @file
  24. * Rate control for video encoders.
  25. */
  26. #include "avcodec.h"
  27. #include "ratecontrol.h"
  28. #include "mpegvideo.h"
  29. #include "libavutil/eval.h"
  30. #undef NDEBUG // Always check asserts, the speed effect is far too small to disable them.
  31. #include <assert.h>
  32. #ifndef M_E
  33. #define M_E 2.718281828
  34. #endif
  35. static int init_pass2(MpegEncContext *s);
  36. static double get_qscale(MpegEncContext *s, RateControlEntry *rce,
  37. double rate_factor, int frame_num);
  38. void ff_write_pass1_stats(MpegEncContext *s)
  39. {
  40. snprintf(s->avctx->stats_out, 256,
  41. "in:%d out:%d type:%d q:%d itex:%d ptex:%d mv:%d misc:%d "
  42. "fcode:%d bcode:%d mc-var:%d var:%d icount:%d skipcount:%d hbits:%d;\n",
  43. s->current_picture_ptr->f.display_picture_number,
  44. s->current_picture_ptr->f.coded_picture_number,
  45. s->pict_type,
  46. s->current_picture.f.quality,
  47. s->i_tex_bits,
  48. s->p_tex_bits,
  49. s->mv_bits,
  50. s->misc_bits,
  51. s->f_code,
  52. s->b_code,
  53. s->current_picture.mc_mb_var_sum,
  54. s->current_picture.mb_var_sum,
  55. s->i_count, s->skip_count,
  56. s->header_bits);
  57. }
  58. static inline double qp2bits(RateControlEntry *rce, double qp)
  59. {
  60. if (qp <= 0.0) {
  61. av_log(NULL, AV_LOG_ERROR, "qp<=0.0\n");
  62. }
  63. return rce->qscale * (double)(rce->i_tex_bits + rce->p_tex_bits + 1) / qp;
  64. }
  65. static inline double bits2qp(RateControlEntry *rce, double bits)
  66. {
  67. if (bits < 0.9) {
  68. av_log(NULL, AV_LOG_ERROR, "bits<0.9\n");
  69. }
  70. return rce->qscale * (double)(rce->i_tex_bits + rce->p_tex_bits + 1) / bits;
  71. }
  72. int ff_rate_control_init(MpegEncContext *s)
  73. {
  74. RateControlContext *rcc = &s->rc_context;
  75. int i, res;
  76. static const char * const const_names[] = {
  77. "PI",
  78. "E",
  79. "iTex",
  80. "pTex",
  81. "tex",
  82. "mv",
  83. "fCode",
  84. "iCount",
  85. "mcVar",
  86. "var",
  87. "isI",
  88. "isP",
  89. "isB",
  90. "avgQP",
  91. "qComp",
  92. #if 0
  93. "lastIQP",
  94. "lastPQP",
  95. "lastBQP",
  96. "nextNonBQP",
  97. #endif
  98. "avgIITex",
  99. "avgPITex",
  100. "avgPPTex",
  101. "avgBPTex",
  102. "avgTex",
  103. NULL
  104. };
  105. static double (* const func1[])(void *, double) = {
  106. (void *)bits2qp,
  107. (void *)qp2bits,
  108. NULL
  109. };
  110. static const char * const func1_names[] = {
  111. "bits2qp",
  112. "qp2bits",
  113. NULL
  114. };
  115. emms_c();
  116. res = av_expr_parse(&rcc->rc_eq_eval,
  117. s->avctx->rc_eq ? s->avctx->rc_eq : "tex^qComp",
  118. const_names, func1_names, func1,
  119. NULL, NULL, 0, s->avctx);
  120. if (res < 0) {
  121. av_log(s->avctx, AV_LOG_ERROR, "Error parsing rc_eq \"%s\"\n", s->avctx->rc_eq);
  122. return res;
  123. }
  124. for (i = 0; i < 5; i++) {
  125. rcc->pred[i].coeff = FF_QP2LAMBDA * 7.0;
  126. rcc->pred[i].count = 1.0;
  127. rcc->pred[i].decay = 0.4;
  128. rcc->i_cplx_sum [i] =
  129. rcc->p_cplx_sum [i] =
  130. rcc->mv_bits_sum[i] =
  131. rcc->qscale_sum [i] =
  132. rcc->frame_count[i] = 1; // 1 is better because of 1/0 and such
  133. rcc->last_qscale_for[i] = FF_QP2LAMBDA * 5;
  134. }
  135. rcc->buffer_index = s->avctx->rc_initial_buffer_occupancy;
  136. if (s->flags & CODEC_FLAG_PASS2) {
  137. int i;
  138. char *p;
  139. /* find number of pics */
  140. p = s->avctx->stats_in;
  141. for (i = -1; p; i++)
  142. p = strchr(p + 1, ';');
  143. i += s->max_b_frames;
  144. if (i <= 0 || i >= INT_MAX / sizeof(RateControlEntry))
  145. return -1;
  146. rcc->entry = av_mallocz(i * sizeof(RateControlEntry));
  147. rcc->num_entries = i;
  148. /* init all to skipped p frames
  149. * (with b frames we might have a not encoded frame at the end FIXME) */
  150. for (i = 0; i < rcc->num_entries; i++) {
  151. RateControlEntry *rce = &rcc->entry[i];
  152. rce->pict_type = rce->new_pict_type = AV_PICTURE_TYPE_P;
  153. rce->qscale = rce->new_qscale = FF_QP2LAMBDA * 2;
  154. rce->misc_bits = s->mb_num + 10;
  155. rce->mb_var_sum = s->mb_num * 100;
  156. }
  157. /* read stats */
  158. p = s->avctx->stats_in;
  159. for (i = 0; i < rcc->num_entries - s->max_b_frames; i++) {
  160. RateControlEntry *rce;
  161. int picture_number;
  162. int e;
  163. char *next;
  164. next = strchr(p, ';');
  165. if (next) {
  166. (*next) = 0; // sscanf in unbelievably slow on looong strings // FIXME copy / do not write
  167. next++;
  168. }
  169. e = sscanf(p, " in:%d ", &picture_number);
  170. assert(picture_number >= 0);
  171. assert(picture_number < rcc->num_entries);
  172. rce = &rcc->entry[picture_number];
  173. e += sscanf(p, " in:%*d out:%*d type:%d q:%f itex:%d ptex:%d mv:%d misc:%d fcode:%d bcode:%d mc-var:%d var:%d icount:%d skipcount:%d hbits:%d",
  174. &rce->pict_type, &rce->qscale, &rce->i_tex_bits, &rce->p_tex_bits,
  175. &rce->mv_bits, &rce->misc_bits,
  176. &rce->f_code, &rce->b_code,
  177. &rce->mc_mb_var_sum, &rce->mb_var_sum,
  178. &rce->i_count, &rce->skip_count, &rce->header_bits);
  179. if (e != 14) {
  180. av_log(s->avctx, AV_LOG_ERROR,
  181. "statistics are damaged at line %d, parser out=%d\n",
  182. i, e);
  183. return -1;
  184. }
  185. p = next;
  186. }
  187. if (init_pass2(s) < 0)
  188. return -1;
  189. // FIXME maybe move to end
  190. if ((s->flags & CODEC_FLAG_PASS2) && s->avctx->rc_strategy == FF_RC_STRATEGY_XVID) {
  191. #if CONFIG_LIBXVID
  192. return ff_xvid_rate_control_init(s);
  193. #else
  194. av_log(s->avctx, AV_LOG_ERROR,
  195. "Xvid ratecontrol requires libavcodec compiled with Xvid support.\n");
  196. return -1;
  197. #endif
  198. }
  199. }
  200. if (!(s->flags & CODEC_FLAG_PASS2)) {
  201. rcc->short_term_qsum = 0.001;
  202. rcc->short_term_qcount = 0.001;
  203. rcc->pass1_rc_eq_output_sum = 0.001;
  204. rcc->pass1_wanted_bits = 0.001;
  205. if (s->avctx->qblur > 1.0) {
  206. av_log(s->avctx, AV_LOG_ERROR, "qblur too large\n");
  207. return -1;
  208. }
  209. /* init stuff with the user specified complexity */
  210. if (s->avctx->rc_initial_cplx) {
  211. for (i = 0; i < 60 * 30; i++) {
  212. double bits = s->avctx->rc_initial_cplx * (i / 10000.0 + 1.0) * s->mb_num;
  213. RateControlEntry rce;
  214. if (i % ((s->gop_size + 3) / 4) == 0)
  215. rce.pict_type = AV_PICTURE_TYPE_I;
  216. else if (i % (s->max_b_frames + 1))
  217. rce.pict_type = AV_PICTURE_TYPE_B;
  218. else
  219. rce.pict_type = AV_PICTURE_TYPE_P;
  220. rce.new_pict_type = rce.pict_type;
  221. rce.mc_mb_var_sum = bits * s->mb_num / 100000;
  222. rce.mb_var_sum = s->mb_num;
  223. rce.qscale = FF_QP2LAMBDA * 2;
  224. rce.f_code = 2;
  225. rce.b_code = 1;
  226. rce.misc_bits = 1;
  227. if (s->pict_type == AV_PICTURE_TYPE_I) {
  228. rce.i_count = s->mb_num;
  229. rce.i_tex_bits = bits;
  230. rce.p_tex_bits = 0;
  231. rce.mv_bits = 0;
  232. } else {
  233. rce.i_count = 0; // FIXME we do know this approx
  234. rce.i_tex_bits = 0;
  235. rce.p_tex_bits = bits * 0.9;
  236. rce.mv_bits = bits * 0.1;
  237. }
  238. rcc->i_cplx_sum[rce.pict_type] += rce.i_tex_bits * rce.qscale;
  239. rcc->p_cplx_sum[rce.pict_type] += rce.p_tex_bits * rce.qscale;
  240. rcc->mv_bits_sum[rce.pict_type] += rce.mv_bits;
  241. rcc->frame_count[rce.pict_type]++;
  242. get_qscale(s, &rce, rcc->pass1_wanted_bits / rcc->pass1_rc_eq_output_sum, i);
  243. // FIXME misbehaves a little for variable fps
  244. rcc->pass1_wanted_bits += s->bit_rate / (1 / av_q2d(s->avctx->time_base));
  245. }
  246. }
  247. }
  248. return 0;
  249. }
  250. void ff_rate_control_uninit(MpegEncContext *s)
  251. {
  252. RateControlContext *rcc = &s->rc_context;
  253. emms_c();
  254. av_expr_free(rcc->rc_eq_eval);
  255. av_freep(&rcc->entry);
  256. #if CONFIG_LIBXVID
  257. if ((s->flags & CODEC_FLAG_PASS2) && s->avctx->rc_strategy == FF_RC_STRATEGY_XVID)
  258. ff_xvid_rate_control_uninit(s);
  259. #endif
  260. }
  261. int ff_vbv_update(MpegEncContext *s, int frame_size)
  262. {
  263. RateControlContext *rcc = &s->rc_context;
  264. const double fps = 1 / av_q2d(s->avctx->time_base);
  265. const int buffer_size = s->avctx->rc_buffer_size;
  266. const double min_rate = s->avctx->rc_min_rate / fps;
  267. const double max_rate = s->avctx->rc_max_rate / fps;
  268. av_dlog(s, "%d %f %d %f %f\n",
  269. buffer_size, rcc->buffer_index, frame_size, min_rate, max_rate);
  270. if (buffer_size) {
  271. int left;
  272. rcc->buffer_index -= frame_size;
  273. if (rcc->buffer_index < 0) {
  274. av_log(s->avctx, AV_LOG_ERROR, "rc buffer underflow\n");
  275. rcc->buffer_index = 0;
  276. }
  277. left = buffer_size - rcc->buffer_index - 1;
  278. rcc->buffer_index += av_clip(left, min_rate, max_rate);
  279. if (rcc->buffer_index > buffer_size) {
  280. int stuffing = ceil((rcc->buffer_index - buffer_size) / 8);
  281. if (stuffing < 4 && s->codec_id == AV_CODEC_ID_MPEG4)
  282. stuffing = 4;
  283. rcc->buffer_index -= 8 * stuffing;
  284. if (s->avctx->debug & FF_DEBUG_RC)
  285. av_log(s->avctx, AV_LOG_DEBUG, "stuffing %d bytes\n", stuffing);
  286. return stuffing;
  287. }
  288. }
  289. return 0;
  290. }
  291. /**
  292. * Modify the bitrate curve from pass1 for one frame.
  293. */
  294. static double get_qscale(MpegEncContext *s, RateControlEntry *rce,
  295. double rate_factor, int frame_num)
  296. {
  297. RateControlContext *rcc = &s->rc_context;
  298. AVCodecContext *a = s->avctx;
  299. const int pict_type = rce->new_pict_type;
  300. const double mb_num = s->mb_num;
  301. double q, bits;
  302. int i;
  303. double const_values[] = {
  304. M_PI,
  305. M_E,
  306. rce->i_tex_bits * rce->qscale,
  307. rce->p_tex_bits * rce->qscale,
  308. (rce->i_tex_bits + rce->p_tex_bits) * (double)rce->qscale,
  309. rce->mv_bits / mb_num,
  310. rce->pict_type == AV_PICTURE_TYPE_B ? (rce->f_code + rce->b_code) * 0.5 : rce->f_code,
  311. rce->i_count / mb_num,
  312. rce->mc_mb_var_sum / mb_num,
  313. rce->mb_var_sum / mb_num,
  314. rce->pict_type == AV_PICTURE_TYPE_I,
  315. rce->pict_type == AV_PICTURE_TYPE_P,
  316. rce->pict_type == AV_PICTURE_TYPE_B,
  317. rcc->qscale_sum[pict_type] / (double)rcc->frame_count[pict_type],
  318. a->qcompress,
  319. #if 0
  320. rcc->last_qscale_for[AV_PICTURE_TYPE_I],
  321. rcc->last_qscale_for[AV_PICTURE_TYPE_P],
  322. rcc->last_qscale_for[AV_PICTURE_TYPE_B],
  323. rcc->next_non_b_qscale,
  324. #endif
  325. rcc->i_cplx_sum[AV_PICTURE_TYPE_I] / (double)rcc->frame_count[AV_PICTURE_TYPE_I],
  326. rcc->i_cplx_sum[AV_PICTURE_TYPE_P] / (double)rcc->frame_count[AV_PICTURE_TYPE_P],
  327. rcc->p_cplx_sum[AV_PICTURE_TYPE_P] / (double)rcc->frame_count[AV_PICTURE_TYPE_P],
  328. rcc->p_cplx_sum[AV_PICTURE_TYPE_B] / (double)rcc->frame_count[AV_PICTURE_TYPE_B],
  329. (rcc->i_cplx_sum[pict_type] + rcc->p_cplx_sum[pict_type]) / (double)rcc->frame_count[pict_type],
  330. 0
  331. };
  332. bits = av_expr_eval(rcc->rc_eq_eval, const_values, rce);
  333. if (isnan(bits)) {
  334. av_log(s->avctx, AV_LOG_ERROR, "Error evaluating rc_eq \"%s\"\n", s->avctx->rc_eq);
  335. return -1;
  336. }
  337. rcc->pass1_rc_eq_output_sum += bits;
  338. bits *= rate_factor;
  339. if (bits < 0.0)
  340. bits = 0.0;
  341. bits += 1.0; // avoid 1/0 issues
  342. /* user override */
  343. for (i = 0; i < s->avctx->rc_override_count; i++) {
  344. RcOverride *rco = s->avctx->rc_override;
  345. if (rco[i].start_frame > frame_num)
  346. continue;
  347. if (rco[i].end_frame < frame_num)
  348. continue;
  349. if (rco[i].qscale)
  350. bits = qp2bits(rce, rco[i].qscale); // FIXME move at end to really force it?
  351. else
  352. bits *= rco[i].quality_factor;
  353. }
  354. q = bits2qp(rce, bits);
  355. /* I/B difference */
  356. if (pict_type == AV_PICTURE_TYPE_I && s->avctx->i_quant_factor < 0.0)
  357. q = -q * s->avctx->i_quant_factor + s->avctx->i_quant_offset;
  358. else if (pict_type == AV_PICTURE_TYPE_B && s->avctx->b_quant_factor < 0.0)
  359. q = -q * s->avctx->b_quant_factor + s->avctx->b_quant_offset;
  360. if (q < 1)
  361. q = 1;
  362. return q;
  363. }
  364. static double get_diff_limited_q(MpegEncContext *s, RateControlEntry *rce, double q)
  365. {
  366. RateControlContext *rcc = &s->rc_context;
  367. AVCodecContext *a = s->avctx;
  368. const int pict_type = rce->new_pict_type;
  369. const double last_p_q = rcc->last_qscale_for[AV_PICTURE_TYPE_P];
  370. const double last_non_b_q = rcc->last_qscale_for[rcc->last_non_b_pict_type];
  371. if (pict_type == AV_PICTURE_TYPE_I &&
  372. (a->i_quant_factor > 0.0 || rcc->last_non_b_pict_type == AV_PICTURE_TYPE_P))
  373. q = last_p_q * FFABS(a->i_quant_factor) + a->i_quant_offset;
  374. else if (pict_type == AV_PICTURE_TYPE_B &&
  375. a->b_quant_factor > 0.0)
  376. q = last_non_b_q * a->b_quant_factor + a->b_quant_offset;
  377. if (q < 1)
  378. q = 1;
  379. /* last qscale / qdiff stuff */
  380. if (rcc->last_non_b_pict_type == pict_type || pict_type != AV_PICTURE_TYPE_I) {
  381. double last_q = rcc->last_qscale_for[pict_type];
  382. const int maxdiff = FF_QP2LAMBDA * a->max_qdiff;
  383. if (q > last_q + maxdiff)
  384. q = last_q + maxdiff;
  385. else if (q < last_q - maxdiff)
  386. q = last_q - maxdiff;
  387. }
  388. rcc->last_qscale_for[pict_type] = q; // Note we cannot do that after blurring
  389. if (pict_type != AV_PICTURE_TYPE_B)
  390. rcc->last_non_b_pict_type = pict_type;
  391. return q;
  392. }
  393. /**
  394. * Get the qmin & qmax for pict_type.
  395. */
  396. static void get_qminmax(int *qmin_ret, int *qmax_ret, MpegEncContext *s, int pict_type)
  397. {
  398. int qmin = s->avctx->lmin;
  399. int qmax = s->avctx->lmax;
  400. assert(qmin <= qmax);
  401. switch (pict_type) {
  402. case AV_PICTURE_TYPE_B:
  403. qmin = (int)(qmin * FFABS(s->avctx->b_quant_factor) + s->avctx->b_quant_offset + 0.5);
  404. qmax = (int)(qmax * FFABS(s->avctx->b_quant_factor) + s->avctx->b_quant_offset + 0.5);
  405. break;
  406. case AV_PICTURE_TYPE_I:
  407. qmin = (int)(qmin * FFABS(s->avctx->i_quant_factor) + s->avctx->i_quant_offset + 0.5);
  408. qmax = (int)(qmax * FFABS(s->avctx->i_quant_factor) + s->avctx->i_quant_offset + 0.5);
  409. break;
  410. }
  411. qmin = av_clip(qmin, 1, FF_LAMBDA_MAX);
  412. qmax = av_clip(qmax, 1, FF_LAMBDA_MAX);
  413. if (qmax < qmin)
  414. qmax = qmin;
  415. *qmin_ret = qmin;
  416. *qmax_ret = qmax;
  417. }
  418. static double modify_qscale(MpegEncContext *s, RateControlEntry *rce,
  419. double q, int frame_num)
  420. {
  421. RateControlContext *rcc = &s->rc_context;
  422. const double buffer_size = s->avctx->rc_buffer_size;
  423. const double fps = 1 / av_q2d(s->avctx->time_base);
  424. const double min_rate = s->avctx->rc_min_rate / fps;
  425. const double max_rate = s->avctx->rc_max_rate / fps;
  426. const int pict_type = rce->new_pict_type;
  427. int qmin, qmax;
  428. get_qminmax(&qmin, &qmax, s, pict_type);
  429. /* modulation */
  430. if (s->avctx->rc_qmod_freq &&
  431. frame_num % s->avctx->rc_qmod_freq == 0 &&
  432. pict_type == AV_PICTURE_TYPE_P)
  433. q *= s->avctx->rc_qmod_amp;
  434. /* buffer overflow/underflow protection */
  435. if (buffer_size) {
  436. double expected_size = rcc->buffer_index;
  437. double q_limit;
  438. if (min_rate) {
  439. double d = 2 * (buffer_size - expected_size) / buffer_size;
  440. if (d > 1.0)
  441. d = 1.0;
  442. else if (d < 0.0001)
  443. d = 0.0001;
  444. q *= pow(d, 1.0 / s->avctx->rc_buffer_aggressivity);
  445. q_limit = bits2qp(rce,
  446. FFMAX((min_rate - buffer_size + rcc->buffer_index) *
  447. s->avctx->rc_min_vbv_overflow_use, 1));
  448. if (q > q_limit) {
  449. if (s->avctx->debug & FF_DEBUG_RC)
  450. av_log(s->avctx, AV_LOG_DEBUG,
  451. "limiting QP %f -> %f\n", q, q_limit);
  452. q = q_limit;
  453. }
  454. }
  455. if (max_rate) {
  456. double d = 2 * expected_size / buffer_size;
  457. if (d > 1.0)
  458. d = 1.0;
  459. else if (d < 0.0001)
  460. d = 0.0001;
  461. q /= pow(d, 1.0 / s->avctx->rc_buffer_aggressivity);
  462. q_limit = bits2qp(rce,
  463. FFMAX(rcc->buffer_index *
  464. s->avctx->rc_max_available_vbv_use,
  465. 1));
  466. if (q < q_limit) {
  467. if (s->avctx->debug & FF_DEBUG_RC)
  468. av_log(s->avctx, AV_LOG_DEBUG,
  469. "limiting QP %f -> %f\n", q, q_limit);
  470. q = q_limit;
  471. }
  472. }
  473. }
  474. av_dlog(s, "q:%f max:%f min:%f size:%f index:%f agr:%f\n",
  475. q, max_rate, min_rate, buffer_size, rcc->buffer_index,
  476. s->avctx->rc_buffer_aggressivity);
  477. if (s->avctx->rc_qsquish == 0.0 || qmin == qmax) {
  478. if (q < qmin)
  479. q = qmin;
  480. else if (q > qmax)
  481. q = qmax;
  482. } else {
  483. double min2 = log(qmin);
  484. double max2 = log(qmax);
  485. q = log(q);
  486. q = (q - min2) / (max2 - min2) - 0.5;
  487. q *= -4.0;
  488. q = 1.0 / (1.0 + exp(q));
  489. q = q * (max2 - min2) + min2;
  490. q = exp(q);
  491. }
  492. return q;
  493. }
  494. // ----------------------------------
  495. // 1 Pass Code
  496. static double predict_size(Predictor *p, double q, double var)
  497. {
  498. return p->coeff * var / (q * p->count);
  499. }
  500. static void update_predictor(Predictor *p, double q, double var, double size)
  501. {
  502. double new_coeff = size * q / (var + 1);
  503. if (var < 10)
  504. return;
  505. p->count *= p->decay;
  506. p->coeff *= p->decay;
  507. p->count++;
  508. p->coeff += new_coeff;
  509. }
  510. static void adaptive_quantization(MpegEncContext *s, double q)
  511. {
  512. int i;
  513. const float lumi_masking = s->avctx->lumi_masking / (128.0 * 128.0);
  514. const float dark_masking = s->avctx->dark_masking / (128.0 * 128.0);
  515. const float temp_cplx_masking = s->avctx->temporal_cplx_masking;
  516. const float spatial_cplx_masking = s->avctx->spatial_cplx_masking;
  517. const float p_masking = s->avctx->p_masking;
  518. const float border_masking = s->avctx->border_masking;
  519. float bits_sum = 0.0;
  520. float cplx_sum = 0.0;
  521. float *cplx_tab = s->cplx_tab;
  522. float *bits_tab = s->bits_tab;
  523. const int qmin = s->avctx->mb_lmin;
  524. const int qmax = s->avctx->mb_lmax;
  525. Picture *const pic = &s->current_picture;
  526. const int mb_width = s->mb_width;
  527. const int mb_height = s->mb_height;
  528. for (i = 0; i < s->mb_num; i++) {
  529. const int mb_xy = s->mb_index2xy[i];
  530. float temp_cplx = sqrt(pic->mc_mb_var[mb_xy]); // FIXME merge in pow()
  531. float spat_cplx = sqrt(pic->mb_var[mb_xy]);
  532. const int lumi = pic->mb_mean[mb_xy];
  533. float bits, cplx, factor;
  534. int mb_x = mb_xy % s->mb_stride;
  535. int mb_y = mb_xy / s->mb_stride;
  536. int mb_distance;
  537. float mb_factor = 0.0;
  538. if (spat_cplx < 4)
  539. spat_cplx = 4; // FIXME finetune
  540. if (temp_cplx < 4)
  541. temp_cplx = 4; // FIXME finetune
  542. if ((s->mb_type[mb_xy] & CANDIDATE_MB_TYPE_INTRA)) { // FIXME hq mode
  543. cplx = spat_cplx;
  544. factor = 1.0 + p_masking;
  545. } else {
  546. cplx = temp_cplx;
  547. factor = pow(temp_cplx, -temp_cplx_masking);
  548. }
  549. factor *= pow(spat_cplx, -spatial_cplx_masking);
  550. if (lumi > 127)
  551. factor *= (1.0 - (lumi - 128) * (lumi - 128) * lumi_masking);
  552. else
  553. factor *= (1.0 - (lumi - 128) * (lumi - 128) * dark_masking);
  554. if (mb_x < mb_width / 5) {
  555. mb_distance = mb_width / 5 - mb_x;
  556. mb_factor = (float)mb_distance / (float)(mb_width / 5);
  557. } else if (mb_x > 4 * mb_width / 5) {
  558. mb_distance = mb_x - 4 * mb_width / 5;
  559. mb_factor = (float)mb_distance / (float)(mb_width / 5);
  560. }
  561. if (mb_y < mb_height / 5) {
  562. mb_distance = mb_height / 5 - mb_y;
  563. mb_factor = FFMAX(mb_factor,
  564. (float)mb_distance / (float)(mb_height / 5));
  565. } else if (mb_y > 4 * mb_height / 5) {
  566. mb_distance = mb_y - 4 * mb_height / 5;
  567. mb_factor = FFMAX(mb_factor,
  568. (float)mb_distance / (float)(mb_height / 5));
  569. }
  570. factor *= 1.0 - border_masking * mb_factor;
  571. if (factor < 0.00001)
  572. factor = 0.00001;
  573. bits = cplx * factor;
  574. cplx_sum += cplx;
  575. bits_sum += bits;
  576. cplx_tab[i] = cplx;
  577. bits_tab[i] = bits;
  578. }
  579. /* handle qmin/qmax clipping */
  580. if (s->flags & CODEC_FLAG_NORMALIZE_AQP) {
  581. float factor = bits_sum / cplx_sum;
  582. for (i = 0; i < s->mb_num; i++) {
  583. float newq = q * cplx_tab[i] / bits_tab[i];
  584. newq *= factor;
  585. if (newq > qmax) {
  586. bits_sum -= bits_tab[i];
  587. cplx_sum -= cplx_tab[i] * q / qmax;
  588. } else if (newq < qmin) {
  589. bits_sum -= bits_tab[i];
  590. cplx_sum -= cplx_tab[i] * q / qmin;
  591. }
  592. }
  593. if (bits_sum < 0.001)
  594. bits_sum = 0.001;
  595. if (cplx_sum < 0.001)
  596. cplx_sum = 0.001;
  597. }
  598. for (i = 0; i < s->mb_num; i++) {
  599. const int mb_xy = s->mb_index2xy[i];
  600. float newq = q * cplx_tab[i] / bits_tab[i];
  601. int intq;
  602. if (s->flags & CODEC_FLAG_NORMALIZE_AQP) {
  603. newq *= bits_sum / cplx_sum;
  604. }
  605. intq = (int)(newq + 0.5);
  606. if (intq > qmax)
  607. intq = qmax;
  608. else if (intq < qmin)
  609. intq = qmin;
  610. s->lambda_table[mb_xy] = intq;
  611. }
  612. }
  613. void ff_get_2pass_fcode(MpegEncContext *s)
  614. {
  615. RateControlContext *rcc = &s->rc_context;
  616. RateControlEntry *rce = &rcc->entry[s->picture_number];
  617. s->f_code = rce->f_code;
  618. s->b_code = rce->b_code;
  619. }
  620. // FIXME rd or at least approx for dquant
  621. float ff_rate_estimate_qscale(MpegEncContext *s, int dry_run)
  622. {
  623. float q;
  624. int qmin, qmax;
  625. float br_compensation;
  626. double diff;
  627. double short_term_q;
  628. double fps;
  629. int picture_number = s->picture_number;
  630. int64_t wanted_bits;
  631. RateControlContext *rcc = &s->rc_context;
  632. AVCodecContext *a = s->avctx;
  633. RateControlEntry local_rce, *rce;
  634. double bits;
  635. double rate_factor;
  636. int var;
  637. const int pict_type = s->pict_type;
  638. Picture * const pic = &s->current_picture;
  639. emms_c();
  640. #if CONFIG_LIBXVID
  641. if ((s->flags & CODEC_FLAG_PASS2) &&
  642. s->avctx->rc_strategy == FF_RC_STRATEGY_XVID)
  643. return ff_xvid_rate_estimate_qscale(s, dry_run);
  644. #endif
  645. get_qminmax(&qmin, &qmax, s, pict_type);
  646. fps = 1 / av_q2d(s->avctx->time_base);
  647. /* update predictors */
  648. if (picture_number > 2 && !dry_run) {
  649. const int last_var = s->last_pict_type == AV_PICTURE_TYPE_I ? rcc->last_mb_var_sum
  650. : rcc->last_mc_mb_var_sum;
  651. update_predictor(&rcc->pred[s->last_pict_type],
  652. rcc->last_qscale,
  653. sqrt(last_var), s->frame_bits);
  654. }
  655. if (s->flags & CODEC_FLAG_PASS2) {
  656. assert(picture_number >= 0);
  657. assert(picture_number < rcc->num_entries);
  658. rce = &rcc->entry[picture_number];
  659. wanted_bits = rce->expected_bits;
  660. } else {
  661. Picture *dts_pic;
  662. rce = &local_rce;
  663. /* FIXME add a dts field to AVFrame and ensure it is set and use it
  664. * here instead of reordering but the reordering is simpler for now
  665. * until H.264 B-pyramid must be handled. */
  666. if (s->pict_type == AV_PICTURE_TYPE_B || s->low_delay)
  667. dts_pic = s->current_picture_ptr;
  668. else
  669. dts_pic = s->last_picture_ptr;
  670. if (!dts_pic || dts_pic->f.pts == AV_NOPTS_VALUE)
  671. wanted_bits = (uint64_t)(s->bit_rate * (double)picture_number / fps);
  672. else
  673. wanted_bits = (uint64_t)(s->bit_rate * (double)dts_pic->f.pts / fps);
  674. }
  675. diff = s->total_bits - wanted_bits;
  676. br_compensation = (a->bit_rate_tolerance - diff) / a->bit_rate_tolerance;
  677. if (br_compensation <= 0.0)
  678. br_compensation = 0.001;
  679. var = pict_type == AV_PICTURE_TYPE_I ? pic->mb_var_sum : pic->mc_mb_var_sum;
  680. short_term_q = 0; /* avoid warning */
  681. if (s->flags & CODEC_FLAG_PASS2) {
  682. if (pict_type != AV_PICTURE_TYPE_I)
  683. assert(pict_type == rce->new_pict_type);
  684. q = rce->new_qscale / br_compensation;
  685. av_dlog(s, "%f %f %f last:%d var:%d type:%d//\n", q, rce->new_qscale,
  686. br_compensation, s->frame_bits, var, pict_type);
  687. } else {
  688. rce->pict_type =
  689. rce->new_pict_type = pict_type;
  690. rce->mc_mb_var_sum = pic->mc_mb_var_sum;
  691. rce->mb_var_sum = pic->mb_var_sum;
  692. rce->qscale = FF_QP2LAMBDA * 2;
  693. rce->f_code = s->f_code;
  694. rce->b_code = s->b_code;
  695. rce->misc_bits = 1;
  696. bits = predict_size(&rcc->pred[pict_type], rce->qscale, sqrt(var));
  697. if (pict_type == AV_PICTURE_TYPE_I) {
  698. rce->i_count = s->mb_num;
  699. rce->i_tex_bits = bits;
  700. rce->p_tex_bits = 0;
  701. rce->mv_bits = 0;
  702. } else {
  703. rce->i_count = 0; // FIXME we do know this approx
  704. rce->i_tex_bits = 0;
  705. rce->p_tex_bits = bits * 0.9;
  706. rce->mv_bits = bits * 0.1;
  707. }
  708. rcc->i_cplx_sum[pict_type] += rce->i_tex_bits * rce->qscale;
  709. rcc->p_cplx_sum[pict_type] += rce->p_tex_bits * rce->qscale;
  710. rcc->mv_bits_sum[pict_type] += rce->mv_bits;
  711. rcc->frame_count[pict_type]++;
  712. bits = rce->i_tex_bits + rce->p_tex_bits;
  713. rate_factor = rcc->pass1_wanted_bits /
  714. rcc->pass1_rc_eq_output_sum * br_compensation;
  715. q = get_qscale(s, rce, rate_factor, picture_number);
  716. if (q < 0)
  717. return -1;
  718. assert(q > 0.0);
  719. q = get_diff_limited_q(s, rce, q);
  720. assert(q > 0.0);
  721. // FIXME type dependent blur like in 2-pass
  722. if (pict_type == AV_PICTURE_TYPE_P || s->intra_only) {
  723. rcc->short_term_qsum *= a->qblur;
  724. rcc->short_term_qcount *= a->qblur;
  725. rcc->short_term_qsum += q;
  726. rcc->short_term_qcount++;
  727. q = short_term_q = rcc->short_term_qsum / rcc->short_term_qcount;
  728. }
  729. assert(q > 0.0);
  730. q = modify_qscale(s, rce, q, picture_number);
  731. rcc->pass1_wanted_bits += s->bit_rate / fps;
  732. assert(q > 0.0);
  733. }
  734. if (s->avctx->debug & FF_DEBUG_RC) {
  735. av_log(s->avctx, AV_LOG_DEBUG,
  736. "%c qp:%d<%2.1f<%d %d want:%d total:%d comp:%f st_q:%2.2f "
  737. "size:%d var:%d/%d br:%d fps:%d\n",
  738. av_get_picture_type_char(pict_type),
  739. qmin, q, qmax, picture_number,
  740. (int)wanted_bits / 1000, (int)s->total_bits / 1000,
  741. br_compensation, short_term_q, s->frame_bits,
  742. pic->mb_var_sum, pic->mc_mb_var_sum,
  743. s->bit_rate / 1000, (int)fps);
  744. }
  745. if (q < qmin)
  746. q = qmin;
  747. else if (q > qmax)
  748. q = qmax;
  749. if (s->adaptive_quant)
  750. adaptive_quantization(s, q);
  751. else
  752. q = (int)(q + 0.5);
  753. if (!dry_run) {
  754. rcc->last_qscale = q;
  755. rcc->last_mc_mb_var_sum = pic->mc_mb_var_sum;
  756. rcc->last_mb_var_sum = pic->mb_var_sum;
  757. }
  758. return q;
  759. }
  760. // ----------------------------------------------
  761. // 2-Pass code
  762. static int init_pass2(MpegEncContext *s)
  763. {
  764. RateControlContext *rcc = &s->rc_context;
  765. AVCodecContext *a = s->avctx;
  766. int i, toobig;
  767. double fps = 1 / av_q2d(s->avctx->time_base);
  768. double complexity[5] = { 0 }; // approximate bits at quant=1
  769. uint64_t const_bits[5] = { 0 }; // quantizer independent bits
  770. uint64_t all_const_bits;
  771. uint64_t all_available_bits = (uint64_t)(s->bit_rate *
  772. (double)rcc->num_entries / fps);
  773. double rate_factor = 0;
  774. double step;
  775. const int filter_size = (int)(a->qblur * 4) | 1;
  776. double expected_bits;
  777. double *qscale, *blurred_qscale, qscale_sum;
  778. /* find complexity & const_bits & decide the pict_types */
  779. for (i = 0; i < rcc->num_entries; i++) {
  780. RateControlEntry *rce = &rcc->entry[i];
  781. rce->new_pict_type = rce->pict_type;
  782. rcc->i_cplx_sum[rce->pict_type] += rce->i_tex_bits * rce->qscale;
  783. rcc->p_cplx_sum[rce->pict_type] += rce->p_tex_bits * rce->qscale;
  784. rcc->mv_bits_sum[rce->pict_type] += rce->mv_bits;
  785. rcc->frame_count[rce->pict_type]++;
  786. complexity[rce->new_pict_type] += (rce->i_tex_bits + rce->p_tex_bits) *
  787. (double)rce->qscale;
  788. const_bits[rce->new_pict_type] += rce->mv_bits + rce->misc_bits;
  789. }
  790. all_const_bits = const_bits[AV_PICTURE_TYPE_I] +
  791. const_bits[AV_PICTURE_TYPE_P] +
  792. const_bits[AV_PICTURE_TYPE_B];
  793. if (all_available_bits < all_const_bits) {
  794. av_log(s->avctx, AV_LOG_ERROR, "requested bitrate is too low\n");
  795. return -1;
  796. }
  797. qscale = av_malloc(sizeof(double) * rcc->num_entries);
  798. blurred_qscale = av_malloc(sizeof(double) * rcc->num_entries);
  799. toobig = 0;
  800. for (step = 256 * 256; step > 0.0000001; step *= 0.5) {
  801. expected_bits = 0;
  802. rate_factor += step;
  803. rcc->buffer_index = s->avctx->rc_buffer_size / 2;
  804. /* find qscale */
  805. for (i = 0; i < rcc->num_entries; i++) {
  806. RateControlEntry *rce = &rcc->entry[i];
  807. qscale[i] = get_qscale(s, &rcc->entry[i], rate_factor, i);
  808. rcc->last_qscale_for[rce->pict_type] = qscale[i];
  809. }
  810. assert(filter_size % 2 == 1);
  811. /* fixed I/B QP relative to P mode */
  812. for (i = rcc->num_entries - 1; i >= 0; i--) {
  813. RateControlEntry *rce = &rcc->entry[i];
  814. qscale[i] = get_diff_limited_q(s, rce, qscale[i]);
  815. }
  816. /* smooth curve */
  817. for (i = 0; i < rcc->num_entries; i++) {
  818. RateControlEntry *rce = &rcc->entry[i];
  819. const int pict_type = rce->new_pict_type;
  820. int j;
  821. double q = 0.0, sum = 0.0;
  822. for (j = 0; j < filter_size; j++) {
  823. int index = i + j - filter_size / 2;
  824. double d = index - i;
  825. double coeff = a->qblur == 0 ? 1.0 : exp(-d * d / (a->qblur * a->qblur));
  826. if (index < 0 || index >= rcc->num_entries)
  827. continue;
  828. if (pict_type != rcc->entry[index].new_pict_type)
  829. continue;
  830. q += qscale[index] * coeff;
  831. sum += coeff;
  832. }
  833. blurred_qscale[i] = q / sum;
  834. }
  835. /* find expected bits */
  836. for (i = 0; i < rcc->num_entries; i++) {
  837. RateControlEntry *rce = &rcc->entry[i];
  838. double bits;
  839. rce->new_qscale = modify_qscale(s, rce, blurred_qscale[i], i);
  840. bits = qp2bits(rce, rce->new_qscale) + rce->mv_bits + rce->misc_bits;
  841. bits += 8 * ff_vbv_update(s, bits);
  842. rce->expected_bits = expected_bits;
  843. expected_bits += bits;
  844. }
  845. av_dlog(s->avctx,
  846. "expected_bits: %f all_available_bits: %d rate_factor: %f\n",
  847. expected_bits, (int)all_available_bits, rate_factor);
  848. if (expected_bits > all_available_bits) {
  849. rate_factor -= step;
  850. ++toobig;
  851. }
  852. }
  853. av_free(qscale);
  854. av_free(blurred_qscale);
  855. /* check bitrate calculations and print info */
  856. qscale_sum = 0.0;
  857. for (i = 0; i < rcc->num_entries; i++) {
  858. av_dlog(s, "[lavc rc] entry[%d].new_qscale = %.3f qp = %.3f\n",
  859. i,
  860. rcc->entry[i].new_qscale,
  861. rcc->entry[i].new_qscale / FF_QP2LAMBDA);
  862. qscale_sum += av_clip(rcc->entry[i].new_qscale / FF_QP2LAMBDA,
  863. s->avctx->qmin, s->avctx->qmax);
  864. }
  865. assert(toobig <= 40);
  866. av_log(s->avctx, AV_LOG_DEBUG,
  867. "[lavc rc] requested bitrate: %d bps expected bitrate: %d bps\n",
  868. s->bit_rate,
  869. (int)(expected_bits / ((double)all_available_bits / s->bit_rate)));
  870. av_log(s->avctx, AV_LOG_DEBUG,
  871. "[lavc rc] estimated target average qp: %.3f\n",
  872. (float)qscale_sum / rcc->num_entries);
  873. if (toobig == 0) {
  874. av_log(s->avctx, AV_LOG_INFO,
  875. "[lavc rc] Using all of requested bitrate is not "
  876. "necessary for this video with these parameters.\n");
  877. } else if (toobig == 40) {
  878. av_log(s->avctx, AV_LOG_ERROR,
  879. "[lavc rc] Error: bitrate too low for this video "
  880. "with these parameters.\n");
  881. return -1;
  882. } else if (fabs(expected_bits / all_available_bits - 1.0) > 0.01) {
  883. av_log(s->avctx, AV_LOG_ERROR,
  884. "[lavc rc] Error: 2pass curve failed to converge\n");
  885. return -1;
  886. }
  887. return 0;
  888. }