You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

791 lines
23KB

  1. /*
  2. * The simplest mpeg audio layer 2 encoder
  3. * Copyright (c) 2000, 2001 Fabrice Bellard
  4. *
  5. * This file is part of Libav.
  6. *
  7. * Libav is free software; you can redistribute it and/or
  8. * modify it under the terms of the GNU Lesser General Public
  9. * License as published by the Free Software Foundation; either
  10. * version 2.1 of the License, or (at your option) any later version.
  11. *
  12. * Libav is distributed in the hope that it will be useful,
  13. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  14. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  15. * Lesser General Public License for more details.
  16. *
  17. * You should have received a copy of the GNU Lesser General Public
  18. * License along with Libav; if not, write to the Free Software
  19. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  20. */
  21. /**
  22. * @file
  23. * The simplest mpeg audio layer 2 encoder.
  24. */
  25. #include "libavutil/channel_layout.h"
  26. #include "avcodec.h"
  27. #include "internal.h"
  28. #include "put_bits.h"
  29. #define FRAC_BITS 15 /* fractional bits for sb_samples and dct */
  30. #define WFRAC_BITS 14 /* fractional bits for window */
  31. #include "mpegaudio.h"
  32. #include "mpegaudiodsp.h"
  33. /* currently, cannot change these constants (need to modify
  34. quantization stage) */
  35. #define MUL(a,b) (((int64_t)(a) * (int64_t)(b)) >> FRAC_BITS)
  36. #define SAMPLES_BUF_SIZE 4096
  37. typedef struct MpegAudioContext {
  38. PutBitContext pb;
  39. int nb_channels;
  40. int lsf; /* 1 if mpeg2 low bitrate selected */
  41. int bitrate_index; /* bit rate */
  42. int freq_index;
  43. int frame_size; /* frame size, in bits, without padding */
  44. /* padding computation */
  45. int frame_frac, frame_frac_incr, do_padding;
  46. short samples_buf[MPA_MAX_CHANNELS][SAMPLES_BUF_SIZE]; /* buffer for filter */
  47. int samples_offset[MPA_MAX_CHANNELS]; /* offset in samples_buf */
  48. int sb_samples[MPA_MAX_CHANNELS][3][12][SBLIMIT];
  49. unsigned char scale_factors[MPA_MAX_CHANNELS][SBLIMIT][3]; /* scale factors */
  50. /* code to group 3 scale factors */
  51. unsigned char scale_code[MPA_MAX_CHANNELS][SBLIMIT];
  52. int sblimit; /* number of used subbands */
  53. const unsigned char *alloc_table;
  54. } MpegAudioContext;
  55. /* define it to use floats in quantization (I don't like floats !) */
  56. #define USE_FLOATS
  57. #include "mpegaudiodata.h"
  58. #include "mpegaudiotab.h"
  59. static av_cold int MPA_encode_init(AVCodecContext *avctx)
  60. {
  61. MpegAudioContext *s = avctx->priv_data;
  62. int freq = avctx->sample_rate;
  63. int bitrate = avctx->bit_rate;
  64. int channels = avctx->channels;
  65. int i, v, table;
  66. float a;
  67. if (channels <= 0 || channels > 2){
  68. av_log(avctx, AV_LOG_ERROR, "encoding %d channel(s) is not allowed in mp2\n", channels);
  69. return AVERROR(EINVAL);
  70. }
  71. bitrate = bitrate / 1000;
  72. s->nb_channels = channels;
  73. avctx->frame_size = MPA_FRAME_SIZE;
  74. avctx->delay = 512 - 32 + 1;
  75. /* encoding freq */
  76. s->lsf = 0;
  77. for(i=0;i<3;i++) {
  78. if (avpriv_mpa_freq_tab[i] == freq)
  79. break;
  80. if ((avpriv_mpa_freq_tab[i] / 2) == freq) {
  81. s->lsf = 1;
  82. break;
  83. }
  84. }
  85. if (i == 3){
  86. av_log(avctx, AV_LOG_ERROR, "Sampling rate %d is not allowed in mp2\n", freq);
  87. return AVERROR(EINVAL);
  88. }
  89. s->freq_index = i;
  90. /* encoding bitrate & frequency */
  91. for(i=0;i<15;i++) {
  92. if (avpriv_mpa_bitrate_tab[s->lsf][1][i] == bitrate)
  93. break;
  94. }
  95. if (i == 15){
  96. av_log(avctx, AV_LOG_ERROR, "bitrate %d is not allowed in mp2\n", bitrate);
  97. return AVERROR(EINVAL);
  98. }
  99. s->bitrate_index = i;
  100. /* compute total header size & pad bit */
  101. a = (float)(bitrate * 1000 * MPA_FRAME_SIZE) / (freq * 8.0);
  102. s->frame_size = ((int)a) * 8;
  103. /* frame fractional size to compute padding */
  104. s->frame_frac = 0;
  105. s->frame_frac_incr = (int)((a - floor(a)) * 65536.0);
  106. /* select the right allocation table */
  107. table = ff_mpa_l2_select_table(bitrate, s->nb_channels, freq, s->lsf);
  108. /* number of used subbands */
  109. s->sblimit = ff_mpa_sblimit_table[table];
  110. s->alloc_table = ff_mpa_alloc_tables[table];
  111. av_dlog(avctx, "%d kb/s, %d Hz, frame_size=%d bits, table=%d, padincr=%x\n",
  112. bitrate, freq, s->frame_size, table, s->frame_frac_incr);
  113. for(i=0;i<s->nb_channels;i++)
  114. s->samples_offset[i] = 0;
  115. for(i=0;i<257;i++) {
  116. int v;
  117. v = ff_mpa_enwindow[i];
  118. #if WFRAC_BITS != 16
  119. v = (v + (1 << (16 - WFRAC_BITS - 1))) >> (16 - WFRAC_BITS);
  120. #endif
  121. filter_bank[i] = v;
  122. if ((i & 63) != 0)
  123. v = -v;
  124. if (i != 0)
  125. filter_bank[512 - i] = v;
  126. }
  127. for(i=0;i<64;i++) {
  128. v = (int)(pow(2.0, (3 - i) / 3.0) * (1 << 20));
  129. if (v <= 0)
  130. v = 1;
  131. scale_factor_table[i] = v;
  132. #ifdef USE_FLOATS
  133. scale_factor_inv_table[i] = pow(2.0, -(3 - i) / 3.0) / (float)(1 << 20);
  134. #else
  135. #define P 15
  136. scale_factor_shift[i] = 21 - P - (i / 3);
  137. scale_factor_mult[i] = (1 << P) * pow(2.0, (i % 3) / 3.0);
  138. #endif
  139. }
  140. for(i=0;i<128;i++) {
  141. v = i - 64;
  142. if (v <= -3)
  143. v = 0;
  144. else if (v < 0)
  145. v = 1;
  146. else if (v == 0)
  147. v = 2;
  148. else if (v < 3)
  149. v = 3;
  150. else
  151. v = 4;
  152. scale_diff_table[i] = v;
  153. }
  154. for(i=0;i<17;i++) {
  155. v = ff_mpa_quant_bits[i];
  156. if (v < 0)
  157. v = -v;
  158. else
  159. v = v * 3;
  160. total_quant_bits[i] = 12 * v;
  161. }
  162. return 0;
  163. }
  164. /* 32 point floating point IDCT without 1/sqrt(2) coef zero scaling */
  165. static void idct32(int *out, int *tab)
  166. {
  167. int i, j;
  168. int *t, *t1, xr;
  169. const int *xp = costab32;
  170. for(j=31;j>=3;j-=2) tab[j] += tab[j - 2];
  171. t = tab + 30;
  172. t1 = tab + 2;
  173. do {
  174. t[0] += t[-4];
  175. t[1] += t[1 - 4];
  176. t -= 4;
  177. } while (t != t1);
  178. t = tab + 28;
  179. t1 = tab + 4;
  180. do {
  181. t[0] += t[-8];
  182. t[1] += t[1-8];
  183. t[2] += t[2-8];
  184. t[3] += t[3-8];
  185. t -= 8;
  186. } while (t != t1);
  187. t = tab;
  188. t1 = tab + 32;
  189. do {
  190. t[ 3] = -t[ 3];
  191. t[ 6] = -t[ 6];
  192. t[11] = -t[11];
  193. t[12] = -t[12];
  194. t[13] = -t[13];
  195. t[15] = -t[15];
  196. t += 16;
  197. } while (t != t1);
  198. t = tab;
  199. t1 = tab + 8;
  200. do {
  201. int x1, x2, x3, x4;
  202. x3 = MUL(t[16], FIX(SQRT2*0.5));
  203. x4 = t[0] - x3;
  204. x3 = t[0] + x3;
  205. x2 = MUL(-(t[24] + t[8]), FIX(SQRT2*0.5));
  206. x1 = MUL((t[8] - x2), xp[0]);
  207. x2 = MUL((t[8] + x2), xp[1]);
  208. t[ 0] = x3 + x1;
  209. t[ 8] = x4 - x2;
  210. t[16] = x4 + x2;
  211. t[24] = x3 - x1;
  212. t++;
  213. } while (t != t1);
  214. xp += 2;
  215. t = tab;
  216. t1 = tab + 4;
  217. do {
  218. xr = MUL(t[28],xp[0]);
  219. t[28] = (t[0] - xr);
  220. t[0] = (t[0] + xr);
  221. xr = MUL(t[4],xp[1]);
  222. t[ 4] = (t[24] - xr);
  223. t[24] = (t[24] + xr);
  224. xr = MUL(t[20],xp[2]);
  225. t[20] = (t[8] - xr);
  226. t[ 8] = (t[8] + xr);
  227. xr = MUL(t[12],xp[3]);
  228. t[12] = (t[16] - xr);
  229. t[16] = (t[16] + xr);
  230. t++;
  231. } while (t != t1);
  232. xp += 4;
  233. for (i = 0; i < 4; i++) {
  234. xr = MUL(tab[30-i*4],xp[0]);
  235. tab[30-i*4] = (tab[i*4] - xr);
  236. tab[ i*4] = (tab[i*4] + xr);
  237. xr = MUL(tab[ 2+i*4],xp[1]);
  238. tab[ 2+i*4] = (tab[28-i*4] - xr);
  239. tab[28-i*4] = (tab[28-i*4] + xr);
  240. xr = MUL(tab[31-i*4],xp[0]);
  241. tab[31-i*4] = (tab[1+i*4] - xr);
  242. tab[ 1+i*4] = (tab[1+i*4] + xr);
  243. xr = MUL(tab[ 3+i*4],xp[1]);
  244. tab[ 3+i*4] = (tab[29-i*4] - xr);
  245. tab[29-i*4] = (tab[29-i*4] + xr);
  246. xp += 2;
  247. }
  248. t = tab + 30;
  249. t1 = tab + 1;
  250. do {
  251. xr = MUL(t1[0], *xp);
  252. t1[0] = (t[0] - xr);
  253. t[0] = (t[0] + xr);
  254. t -= 2;
  255. t1 += 2;
  256. xp++;
  257. } while (t >= tab);
  258. for(i=0;i<32;i++) {
  259. out[i] = tab[bitinv32[i]];
  260. }
  261. }
  262. #define WSHIFT (WFRAC_BITS + 15 - FRAC_BITS)
  263. static void filter(MpegAudioContext *s, int ch, const short *samples, int incr)
  264. {
  265. short *p, *q;
  266. int sum, offset, i, j;
  267. int tmp[64];
  268. int tmp1[32];
  269. int *out;
  270. offset = s->samples_offset[ch];
  271. out = &s->sb_samples[ch][0][0][0];
  272. for(j=0;j<36;j++) {
  273. /* 32 samples at once */
  274. for(i=0;i<32;i++) {
  275. s->samples_buf[ch][offset + (31 - i)] = samples[0];
  276. samples += incr;
  277. }
  278. /* filter */
  279. p = s->samples_buf[ch] + offset;
  280. q = filter_bank;
  281. /* maxsum = 23169 */
  282. for(i=0;i<64;i++) {
  283. sum = p[0*64] * q[0*64];
  284. sum += p[1*64] * q[1*64];
  285. sum += p[2*64] * q[2*64];
  286. sum += p[3*64] * q[3*64];
  287. sum += p[4*64] * q[4*64];
  288. sum += p[5*64] * q[5*64];
  289. sum += p[6*64] * q[6*64];
  290. sum += p[7*64] * q[7*64];
  291. tmp[i] = sum;
  292. p++;
  293. q++;
  294. }
  295. tmp1[0] = tmp[16] >> WSHIFT;
  296. for( i=1; i<=16; i++ ) tmp1[i] = (tmp[i+16]+tmp[16-i]) >> WSHIFT;
  297. for( i=17; i<=31; i++ ) tmp1[i] = (tmp[i+16]-tmp[80-i]) >> WSHIFT;
  298. idct32(out, tmp1);
  299. /* advance of 32 samples */
  300. offset -= 32;
  301. out += 32;
  302. /* handle the wrap around */
  303. if (offset < 0) {
  304. memmove(s->samples_buf[ch] + SAMPLES_BUF_SIZE - (512 - 32),
  305. s->samples_buf[ch], (512 - 32) * 2);
  306. offset = SAMPLES_BUF_SIZE - 512;
  307. }
  308. }
  309. s->samples_offset[ch] = offset;
  310. }
  311. static void compute_scale_factors(unsigned char scale_code[SBLIMIT],
  312. unsigned char scale_factors[SBLIMIT][3],
  313. int sb_samples[3][12][SBLIMIT],
  314. int sblimit)
  315. {
  316. int *p, vmax, v, n, i, j, k, code;
  317. int index, d1, d2;
  318. unsigned char *sf = &scale_factors[0][0];
  319. for(j=0;j<sblimit;j++) {
  320. for(i=0;i<3;i++) {
  321. /* find the max absolute value */
  322. p = &sb_samples[i][0][j];
  323. vmax = abs(*p);
  324. for(k=1;k<12;k++) {
  325. p += SBLIMIT;
  326. v = abs(*p);
  327. if (v > vmax)
  328. vmax = v;
  329. }
  330. /* compute the scale factor index using log 2 computations */
  331. if (vmax > 1) {
  332. n = av_log2(vmax);
  333. /* n is the position of the MSB of vmax. now
  334. use at most 2 compares to find the index */
  335. index = (21 - n) * 3 - 3;
  336. if (index >= 0) {
  337. while (vmax <= scale_factor_table[index+1])
  338. index++;
  339. } else {
  340. index = 0; /* very unlikely case of overflow */
  341. }
  342. } else {
  343. index = 62; /* value 63 is not allowed */
  344. }
  345. av_dlog(NULL, "%2d:%d in=%x %x %d\n",
  346. j, i, vmax, scale_factor_table[index], index);
  347. /* store the scale factor */
  348. assert(index >=0 && index <= 63);
  349. sf[i] = index;
  350. }
  351. /* compute the transmission factor : look if the scale factors
  352. are close enough to each other */
  353. d1 = scale_diff_table[sf[0] - sf[1] + 64];
  354. d2 = scale_diff_table[sf[1] - sf[2] + 64];
  355. /* handle the 25 cases */
  356. switch(d1 * 5 + d2) {
  357. case 0*5+0:
  358. case 0*5+4:
  359. case 3*5+4:
  360. case 4*5+0:
  361. case 4*5+4:
  362. code = 0;
  363. break;
  364. case 0*5+1:
  365. case 0*5+2:
  366. case 4*5+1:
  367. case 4*5+2:
  368. code = 3;
  369. sf[2] = sf[1];
  370. break;
  371. case 0*5+3:
  372. case 4*5+3:
  373. code = 3;
  374. sf[1] = sf[2];
  375. break;
  376. case 1*5+0:
  377. case 1*5+4:
  378. case 2*5+4:
  379. code = 1;
  380. sf[1] = sf[0];
  381. break;
  382. case 1*5+1:
  383. case 1*5+2:
  384. case 2*5+0:
  385. case 2*5+1:
  386. case 2*5+2:
  387. code = 2;
  388. sf[1] = sf[2] = sf[0];
  389. break;
  390. case 2*5+3:
  391. case 3*5+3:
  392. code = 2;
  393. sf[0] = sf[1] = sf[2];
  394. break;
  395. case 3*5+0:
  396. case 3*5+1:
  397. case 3*5+2:
  398. code = 2;
  399. sf[0] = sf[2] = sf[1];
  400. break;
  401. case 1*5+3:
  402. code = 2;
  403. if (sf[0] > sf[2])
  404. sf[0] = sf[2];
  405. sf[1] = sf[2] = sf[0];
  406. break;
  407. default:
  408. assert(0); //cannot happen
  409. code = 0; /* kill warning */
  410. }
  411. av_dlog(NULL, "%d: %2d %2d %2d %d %d -> %d\n", j,
  412. sf[0], sf[1], sf[2], d1, d2, code);
  413. scale_code[j] = code;
  414. sf += 3;
  415. }
  416. }
  417. /* The most important function : psycho acoustic module. In this
  418. encoder there is basically none, so this is the worst you can do,
  419. but also this is the simpler. */
  420. static void psycho_acoustic_model(MpegAudioContext *s, short smr[SBLIMIT])
  421. {
  422. int i;
  423. for(i=0;i<s->sblimit;i++) {
  424. smr[i] = (int)(fixed_smr[i] * 10);
  425. }
  426. }
  427. #define SB_NOTALLOCATED 0
  428. #define SB_ALLOCATED 1
  429. #define SB_NOMORE 2
  430. /* Try to maximize the smr while using a number of bits inferior to
  431. the frame size. I tried to make the code simpler, faster and
  432. smaller than other encoders :-) */
  433. static void compute_bit_allocation(MpegAudioContext *s,
  434. short smr1[MPA_MAX_CHANNELS][SBLIMIT],
  435. unsigned char bit_alloc[MPA_MAX_CHANNELS][SBLIMIT],
  436. int *padding)
  437. {
  438. int i, ch, b, max_smr, max_ch, max_sb, current_frame_size, max_frame_size;
  439. int incr;
  440. short smr[MPA_MAX_CHANNELS][SBLIMIT];
  441. unsigned char subband_status[MPA_MAX_CHANNELS][SBLIMIT];
  442. const unsigned char *alloc;
  443. memcpy(smr, smr1, s->nb_channels * sizeof(short) * SBLIMIT);
  444. memset(subband_status, SB_NOTALLOCATED, s->nb_channels * SBLIMIT);
  445. memset(bit_alloc, 0, s->nb_channels * SBLIMIT);
  446. /* compute frame size and padding */
  447. max_frame_size = s->frame_size;
  448. s->frame_frac += s->frame_frac_incr;
  449. if (s->frame_frac >= 65536) {
  450. s->frame_frac -= 65536;
  451. s->do_padding = 1;
  452. max_frame_size += 8;
  453. } else {
  454. s->do_padding = 0;
  455. }
  456. /* compute the header + bit alloc size */
  457. current_frame_size = 32;
  458. alloc = s->alloc_table;
  459. for(i=0;i<s->sblimit;i++) {
  460. incr = alloc[0];
  461. current_frame_size += incr * s->nb_channels;
  462. alloc += 1 << incr;
  463. }
  464. for(;;) {
  465. /* look for the subband with the largest signal to mask ratio */
  466. max_sb = -1;
  467. max_ch = -1;
  468. max_smr = INT_MIN;
  469. for(ch=0;ch<s->nb_channels;ch++) {
  470. for(i=0;i<s->sblimit;i++) {
  471. if (smr[ch][i] > max_smr && subband_status[ch][i] != SB_NOMORE) {
  472. max_smr = smr[ch][i];
  473. max_sb = i;
  474. max_ch = ch;
  475. }
  476. }
  477. }
  478. if (max_sb < 0)
  479. break;
  480. av_dlog(NULL, "current=%d max=%d max_sb=%d max_ch=%d alloc=%d\n",
  481. current_frame_size, max_frame_size, max_sb, max_ch,
  482. bit_alloc[max_ch][max_sb]);
  483. /* find alloc table entry (XXX: not optimal, should use
  484. pointer table) */
  485. alloc = s->alloc_table;
  486. for(i=0;i<max_sb;i++) {
  487. alloc += 1 << alloc[0];
  488. }
  489. if (subband_status[max_ch][max_sb] == SB_NOTALLOCATED) {
  490. /* nothing was coded for this band: add the necessary bits */
  491. incr = 2 + nb_scale_factors[s->scale_code[max_ch][max_sb]] * 6;
  492. incr += total_quant_bits[alloc[1]];
  493. } else {
  494. /* increments bit allocation */
  495. b = bit_alloc[max_ch][max_sb];
  496. incr = total_quant_bits[alloc[b + 1]] -
  497. total_quant_bits[alloc[b]];
  498. }
  499. if (current_frame_size + incr <= max_frame_size) {
  500. /* can increase size */
  501. b = ++bit_alloc[max_ch][max_sb];
  502. current_frame_size += incr;
  503. /* decrease smr by the resolution we added */
  504. smr[max_ch][max_sb] = smr1[max_ch][max_sb] - quant_snr[alloc[b]];
  505. /* max allocation size reached ? */
  506. if (b == ((1 << alloc[0]) - 1))
  507. subband_status[max_ch][max_sb] = SB_NOMORE;
  508. else
  509. subband_status[max_ch][max_sb] = SB_ALLOCATED;
  510. } else {
  511. /* cannot increase the size of this subband */
  512. subband_status[max_ch][max_sb] = SB_NOMORE;
  513. }
  514. }
  515. *padding = max_frame_size - current_frame_size;
  516. assert(*padding >= 0);
  517. }
  518. /*
  519. * Output the mpeg audio layer 2 frame. Note how the code is small
  520. * compared to other encoders :-)
  521. */
  522. static void encode_frame(MpegAudioContext *s,
  523. unsigned char bit_alloc[MPA_MAX_CHANNELS][SBLIMIT],
  524. int padding)
  525. {
  526. int i, j, k, l, bit_alloc_bits, b, ch;
  527. unsigned char *sf;
  528. int q[3];
  529. PutBitContext *p = &s->pb;
  530. /* header */
  531. put_bits(p, 12, 0xfff);
  532. put_bits(p, 1, 1 - s->lsf); /* 1 = mpeg1 ID, 0 = mpeg2 lsf ID */
  533. put_bits(p, 2, 4-2); /* layer 2 */
  534. put_bits(p, 1, 1); /* no error protection */
  535. put_bits(p, 4, s->bitrate_index);
  536. put_bits(p, 2, s->freq_index);
  537. put_bits(p, 1, s->do_padding); /* use padding */
  538. put_bits(p, 1, 0); /* private_bit */
  539. put_bits(p, 2, s->nb_channels == 2 ? MPA_STEREO : MPA_MONO);
  540. put_bits(p, 2, 0); /* mode_ext */
  541. put_bits(p, 1, 0); /* no copyright */
  542. put_bits(p, 1, 1); /* original */
  543. put_bits(p, 2, 0); /* no emphasis */
  544. /* bit allocation */
  545. j = 0;
  546. for(i=0;i<s->sblimit;i++) {
  547. bit_alloc_bits = s->alloc_table[j];
  548. for(ch=0;ch<s->nb_channels;ch++) {
  549. put_bits(p, bit_alloc_bits, bit_alloc[ch][i]);
  550. }
  551. j += 1 << bit_alloc_bits;
  552. }
  553. /* scale codes */
  554. for(i=0;i<s->sblimit;i++) {
  555. for(ch=0;ch<s->nb_channels;ch++) {
  556. if (bit_alloc[ch][i])
  557. put_bits(p, 2, s->scale_code[ch][i]);
  558. }
  559. }
  560. /* scale factors */
  561. for(i=0;i<s->sblimit;i++) {
  562. for(ch=0;ch<s->nb_channels;ch++) {
  563. if (bit_alloc[ch][i]) {
  564. sf = &s->scale_factors[ch][i][0];
  565. switch(s->scale_code[ch][i]) {
  566. case 0:
  567. put_bits(p, 6, sf[0]);
  568. put_bits(p, 6, sf[1]);
  569. put_bits(p, 6, sf[2]);
  570. break;
  571. case 3:
  572. case 1:
  573. put_bits(p, 6, sf[0]);
  574. put_bits(p, 6, sf[2]);
  575. break;
  576. case 2:
  577. put_bits(p, 6, sf[0]);
  578. break;
  579. }
  580. }
  581. }
  582. }
  583. /* quantization & write sub band samples */
  584. for(k=0;k<3;k++) {
  585. for(l=0;l<12;l+=3) {
  586. j = 0;
  587. for(i=0;i<s->sblimit;i++) {
  588. bit_alloc_bits = s->alloc_table[j];
  589. for(ch=0;ch<s->nb_channels;ch++) {
  590. b = bit_alloc[ch][i];
  591. if (b) {
  592. int qindex, steps, m, sample, bits;
  593. /* we encode 3 sub band samples of the same sub band at a time */
  594. qindex = s->alloc_table[j+b];
  595. steps = ff_mpa_quant_steps[qindex];
  596. for(m=0;m<3;m++) {
  597. sample = s->sb_samples[ch][k][l + m][i];
  598. /* divide by scale factor */
  599. #ifdef USE_FLOATS
  600. {
  601. float a;
  602. a = (float)sample * scale_factor_inv_table[s->scale_factors[ch][i][k]];
  603. q[m] = (int)((a + 1.0) * steps * 0.5);
  604. }
  605. #else
  606. {
  607. int q1, e, shift, mult;
  608. e = s->scale_factors[ch][i][k];
  609. shift = scale_factor_shift[e];
  610. mult = scale_factor_mult[e];
  611. /* normalize to P bits */
  612. if (shift < 0)
  613. q1 = sample << (-shift);
  614. else
  615. q1 = sample >> shift;
  616. q1 = (q1 * mult) >> P;
  617. q[m] = ((q1 + (1 << P)) * steps) >> (P + 1);
  618. }
  619. #endif
  620. if (q[m] >= steps)
  621. q[m] = steps - 1;
  622. assert(q[m] >= 0 && q[m] < steps);
  623. }
  624. bits = ff_mpa_quant_bits[qindex];
  625. if (bits < 0) {
  626. /* group the 3 values to save bits */
  627. put_bits(p, -bits,
  628. q[0] + steps * (q[1] + steps * q[2]));
  629. } else {
  630. put_bits(p, bits, q[0]);
  631. put_bits(p, bits, q[1]);
  632. put_bits(p, bits, q[2]);
  633. }
  634. }
  635. }
  636. /* next subband in alloc table */
  637. j += 1 << bit_alloc_bits;
  638. }
  639. }
  640. }
  641. /* padding */
  642. for(i=0;i<padding;i++)
  643. put_bits(p, 1, 0);
  644. /* flush */
  645. flush_put_bits(p);
  646. }
  647. static int MPA_encode_frame(AVCodecContext *avctx, AVPacket *avpkt,
  648. const AVFrame *frame, int *got_packet_ptr)
  649. {
  650. MpegAudioContext *s = avctx->priv_data;
  651. const int16_t *samples = (const int16_t *)frame->data[0];
  652. short smr[MPA_MAX_CHANNELS][SBLIMIT];
  653. unsigned char bit_alloc[MPA_MAX_CHANNELS][SBLIMIT];
  654. int padding, i, ret;
  655. for(i=0;i<s->nb_channels;i++) {
  656. filter(s, i, samples + i, s->nb_channels);
  657. }
  658. for(i=0;i<s->nb_channels;i++) {
  659. compute_scale_factors(s->scale_code[i], s->scale_factors[i],
  660. s->sb_samples[i], s->sblimit);
  661. }
  662. for(i=0;i<s->nb_channels;i++) {
  663. psycho_acoustic_model(s, smr[i]);
  664. }
  665. compute_bit_allocation(s, smr, bit_alloc, &padding);
  666. if ((ret = ff_alloc_packet(avpkt, MPA_MAX_CODED_FRAME_SIZE))) {
  667. av_log(avctx, AV_LOG_ERROR, "Error getting output packet\n");
  668. return ret;
  669. }
  670. init_put_bits(&s->pb, avpkt->data, avpkt->size);
  671. encode_frame(s, bit_alloc, padding);
  672. if (frame->pts != AV_NOPTS_VALUE)
  673. avpkt->pts = frame->pts - ff_samples_to_time_base(avctx, avctx->delay);
  674. avpkt->size = put_bits_count(&s->pb) / 8;
  675. *got_packet_ptr = 1;
  676. return 0;
  677. }
  678. static const AVCodecDefault mp2_defaults[] = {
  679. { "b", "128k" },
  680. { NULL },
  681. };
  682. AVCodec ff_mp2_encoder = {
  683. .name = "mp2",
  684. .type = AVMEDIA_TYPE_AUDIO,
  685. .id = AV_CODEC_ID_MP2,
  686. .priv_data_size = sizeof(MpegAudioContext),
  687. .init = MPA_encode_init,
  688. .encode2 = MPA_encode_frame,
  689. .sample_fmts = (const enum AVSampleFormat[]){ AV_SAMPLE_FMT_S16,
  690. AV_SAMPLE_FMT_NONE },
  691. .supported_samplerates = (const int[]){
  692. 44100, 48000, 32000, 22050, 24000, 16000, 0
  693. },
  694. .channel_layouts = (const uint64_t[]){ AV_CH_LAYOUT_MONO,
  695. AV_CH_LAYOUT_STEREO,
  696. 0 },
  697. .long_name = NULL_IF_CONFIG_SMALL("MP2 (MPEG audio layer 2)"),
  698. .defaults = mp2_defaults,
  699. };