You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

2629 lines
71KB

  1. @chapter Filtergraph description
  2. @c man begin FILTERGRAPH DESCRIPTION
  3. A filtergraph is a directed graph of connected filters. It can contain
  4. cycles, and there can be multiple links between a pair of
  5. filters. Each link has one input pad on one side connecting it to one
  6. filter from which it takes its input, and one output pad on the other
  7. side connecting it to the one filter accepting its output.
  8. Each filter in a filtergraph is an instance of a filter class
  9. registered in the application, which defines the features and the
  10. number of input and output pads of the filter.
  11. A filter with no input pads is called a "source", a filter with no
  12. output pads is called a "sink".
  13. @section Filtergraph syntax
  14. A filtergraph can be represented using a textual representation, which
  15. is recognized by the @code{-vf} and @code{-af} options of the ff*
  16. tools, and by the @code{avfilter_graph_parse()} function defined in
  17. @file{libavfilter/avfiltergraph.h}.
  18. A filterchain consists of a sequence of connected filters, each one
  19. connected to the previous one in the sequence. A filterchain is
  20. represented by a list of ","-separated filter descriptions.
  21. A filtergraph consists of a sequence of filterchains. A sequence of
  22. filterchains is represented by a list of ";"-separated filterchain
  23. descriptions.
  24. A filter is represented by a string of the form:
  25. [@var{in_link_1}]...[@var{in_link_N}]@var{filter_name}=@var{arguments}[@var{out_link_1}]...[@var{out_link_M}]
  26. @var{filter_name} is the name of the filter class of which the
  27. described filter is an instance of, and has to be the name of one of
  28. the filter classes registered in the program.
  29. The name of the filter class is optionally followed by a string
  30. "=@var{arguments}".
  31. @var{arguments} is a string which contains the parameters used to
  32. initialize the filter instance, and are described in the filter
  33. descriptions below.
  34. The list of arguments can be quoted using the character "'" as initial
  35. and ending mark, and the character '\' for escaping the characters
  36. within the quoted text; otherwise the argument string is considered
  37. terminated when the next special character (belonging to the set
  38. "[]=;,") is encountered.
  39. The name and arguments of the filter are optionally preceded and
  40. followed by a list of link labels.
  41. A link label allows to name a link and associate it to a filter output
  42. or input pad. The preceding labels @var{in_link_1}
  43. ... @var{in_link_N}, are associated to the filter input pads,
  44. the following labels @var{out_link_1} ... @var{out_link_M}, are
  45. associated to the output pads.
  46. When two link labels with the same name are found in the
  47. filtergraph, a link between the corresponding input and output pad is
  48. created.
  49. If an output pad is not labelled, it is linked by default to the first
  50. unlabelled input pad of the next filter in the filterchain.
  51. For example in the filterchain:
  52. @example
  53. nullsrc, split[L1], [L2]overlay, nullsink
  54. @end example
  55. the split filter instance has two output pads, and the overlay filter
  56. instance two input pads. The first output pad of split is labelled
  57. "L1", the first input pad of overlay is labelled "L2", and the second
  58. output pad of split is linked to the second input pad of overlay,
  59. which are both unlabelled.
  60. In a complete filterchain all the unlabelled filter input and output
  61. pads must be connected. A filtergraph is considered valid if all the
  62. filter input and output pads of all the filterchains are connected.
  63. Follows a BNF description for the filtergraph syntax:
  64. @example
  65. @var{NAME} ::= sequence of alphanumeric characters and '_'
  66. @var{LINKLABEL} ::= "[" @var{NAME} "]"
  67. @var{LINKLABELS} ::= @var{LINKLABEL} [@var{LINKLABELS}]
  68. @var{FILTER_ARGUMENTS} ::= sequence of chars (eventually quoted)
  69. @var{FILTER} ::= [@var{LINKNAMES}] @var{NAME} ["=" @var{ARGUMENTS}] [@var{LINKNAMES}]
  70. @var{FILTERCHAIN} ::= @var{FILTER} [,@var{FILTERCHAIN}]
  71. @var{FILTERGRAPH} ::= @var{FILTERCHAIN} [;@var{FILTERGRAPH}]
  72. @end example
  73. @c man end FILTERGRAPH DESCRIPTION
  74. @chapter Audio Filters
  75. @c man begin AUDIO FILTERS
  76. When you configure your FFmpeg build, you can disable any of the
  77. existing filters using --disable-filters.
  78. The configure output will show the audio filters included in your
  79. build.
  80. Below is a description of the currently available audio filters.
  81. @section aconvert
  82. Convert the input audio format to the specified formats.
  83. The filter accepts a string of the form:
  84. "@var{sample_format}:@var{channel_layout}:@var{packing_format}".
  85. @var{sample_format} specifies the sample format, and can be a string or
  86. the corresponding numeric value defined in @file{libavutil/samplefmt.h}.
  87. @var{channel_layout} specifies the channel layout, and can be a string
  88. or the corresponding number value defined in @file{libavutil/chlayout.h}.
  89. @var{packing_format} specifies the type of packing in output, can be one
  90. of "planar" or "packed", or the corresponding numeric values "0" or "1".
  91. The special parameter "auto", signifies that the filter will
  92. automatically select the output format depending on the output filter.
  93. Some examples follow.
  94. @itemize
  95. @item
  96. Convert input to unsigned 8-bit, stereo, packed:
  97. @example
  98. aconvert=u8:stereo:packed
  99. @end example
  100. @item
  101. Convert input to unsigned 8-bit, automatically select out channel layout
  102. and packing format:
  103. @example
  104. aconvert=u8:auto:auto
  105. @end example
  106. @end itemize
  107. @section aformat
  108. Convert the input audio to one of the specified formats. The framework will
  109. negotiate the most appropriate format to minimize conversions.
  110. The filter accepts three lists of formats, separated by ":", in the form:
  111. "@var{sample_formats}:@var{channel_layouts}:@var{packing_formats}".
  112. Elements in each list are separated by "," which has to be escaped in the
  113. filtergraph specification.
  114. The special parameter "all", in place of a list of elements, signifies all
  115. supported formats.
  116. Some examples follow:
  117. @example
  118. aformat=u8\\,s16:mono:packed
  119. aformat=s16:mono\\,stereo:all
  120. @end example
  121. @section anull
  122. Pass the audio source unchanged to the output.
  123. @section aresample
  124. Resample the input audio to the specified sample rate.
  125. The filter accepts exactly one parameter, the output sample rate. If not
  126. specified then the filter will automatically convert between its input
  127. and output sample rates.
  128. For example, to resample the input audio to 44100Hz:
  129. @example
  130. aresample=44100
  131. @end example
  132. @section ashowinfo
  133. Show a line containing various information for each input audio frame.
  134. The input audio is not modified.
  135. The shown line contains a sequence of key/value pairs of the form
  136. @var{key}:@var{value}.
  137. A description of each shown parameter follows:
  138. @table @option
  139. @item n
  140. sequential number of the input frame, starting from 0
  141. @item pts
  142. presentation TimeStamp of the input frame, expressed as a number of
  143. time base units. The time base unit depends on the filter input pad, and
  144. is usually 1/@var{sample_rate}.
  145. @item pts_time
  146. presentation TimeStamp of the input frame, expressed as a number of
  147. seconds
  148. @item pos
  149. position of the frame in the input stream, -1 if this information in
  150. unavailable and/or meanigless (for example in case of synthetic audio)
  151. @item fmt
  152. sample format name
  153. @item chlayout
  154. channel layout description
  155. @item nb_samples
  156. number of samples (per each channel) contained in the filtered frame
  157. @item rate
  158. sample rate for the audio frame
  159. @item planar
  160. if the packing format is planar, 0 if packed
  161. @item checksum
  162. Adler-32 checksum of all the planes of the input frame
  163. @item plane_checksum
  164. Adler-32 checksum for each input frame plane, expressed in the form
  165. "[@var{c0} @var{c1} @var{c2} @var{c3} @var{c4} @var{c5} @var{c6} @var{c7}]"
  166. @end table
  167. @c man end AUDIO FILTERS
  168. @chapter Audio Sources
  169. @c man begin AUDIO SOURCES
  170. Below is a description of the currently available audio sources.
  171. @section abuffer
  172. Buffer audio frames, and make them available to the filter chain.
  173. This source is mainly intended for a programmatic use, in particular
  174. through the interface defined in @file{libavfilter/asrc_abuffer.h}.
  175. It accepts the following mandatory parameters:
  176. @var{sample_rate}:@var{sample_fmt}:@var{channel_layout}:@var{packing}
  177. @table @option
  178. @item sample_rate
  179. The sample rate of the incoming audio buffers.
  180. @item sample_fmt
  181. The sample format of the incoming audio buffers.
  182. Either a sample format name or its corresponging integer representation from
  183. the enum AVSampleFormat in @file{libavutil/samplefmt.h}
  184. @item channel_layout
  185. The channel layout of the incoming audio buffers.
  186. Either a channel layout name from channel_layout_map in
  187. @file{libavutil/audioconvert.c} or its corresponding integer representation
  188. from the AV_CH_LAYOUT_* macros in @file{libavutil/audioconvert.h}
  189. @item packing
  190. Either "packed" or "planar", or their integer representation: 0 or 1
  191. respectively.
  192. @end table
  193. For example:
  194. @example
  195. abuffer=44100:s16:stereo:planar
  196. @end example
  197. will instruct the source to accept planar 16bit signed stereo at 44100Hz.
  198. Since the sample format with name "s16" corresponds to the number
  199. 1 and the "stereo" channel layout corresponds to the value 3, this is
  200. equivalent to:
  201. @example
  202. abuffer=44100:1:3:1
  203. @end example
  204. @section aevalsrc
  205. Generate an audio signal specified by an expression.
  206. This source accepts in input one or more expressions (one for each
  207. channel), which are evaluated and used to generate a corresponding
  208. audio signal.
  209. It accepts the syntax: @var{exprs}[::@var{options}].
  210. @var{exprs} is a list of expressions separated by ":", one for each
  211. separate channel. The output channel layout depends on the number of
  212. provided expressions, up to 8 channels are supported.
  213. @var{options} is an optional sequence of @var{key}=@var{value} pairs,
  214. separated by ":".
  215. The description of the accepted options follows.
  216. @table @option
  217. @item nb_samples, n
  218. Set the number of samples per channel per each output frame,
  219. default to 1024.
  220. @item sample_rate, s
  221. Specify the sample rate, default to 44100.
  222. @end table
  223. Each expression in @var{exprs} can contain the following constants:
  224. @table @option
  225. @item n
  226. number of the evaluated sample, starting from 0
  227. @item t
  228. time of the evaluated sample expressed in seconds, starting from 0
  229. @item s
  230. sample rate
  231. @end table
  232. @subsection Examples
  233. @itemize
  234. @item
  235. Generate silence:
  236. @example
  237. aevalsrc=0
  238. @end example
  239. @item
  240. Generate a sin signal with frequence of 440 Hz, set sample rate to
  241. 8000 Hz:
  242. @example
  243. aevalsrc="sin(440*2*PI*t)::s=8000"
  244. @end example
  245. @item
  246. Generate white noise:
  247. @example
  248. aevalsrc="-2+random(0)"
  249. @end example
  250. @item
  251. Generate an amplitude modulated signal:
  252. @example
  253. aevalsrc="sin(10*2*PI*t)*sin(880*2*PI*t)"
  254. @end example
  255. @item
  256. Generate 2.5 Hz binaural beats on a 360 Hz carrier:
  257. @example
  258. aevalsrc="0.1*sin(2*PI*(360-2.5/2)*t) : 0.1*sin(2*PI*(360+2.5/2)*t)"
  259. @end example
  260. @end itemize
  261. @section amovie
  262. Read an audio stream from a movie container.
  263. It accepts the syntax: @var{movie_name}[:@var{options}] where
  264. @var{movie_name} is the name of the resource to read (not necessarily
  265. a file but also a device or a stream accessed through some protocol),
  266. and @var{options} is an optional sequence of @var{key}=@var{value}
  267. pairs, separated by ":".
  268. The description of the accepted options follows.
  269. @table @option
  270. @item format_name, f
  271. Specify the format assumed for the movie to read, and can be either
  272. the name of a container or an input device. If not specified the
  273. format is guessed from @var{movie_name} or by probing.
  274. @item seek_point, sp
  275. Specify the seek point in seconds, the frames will be output
  276. starting from this seek point, the parameter is evaluated with
  277. @code{av_strtod} so the numerical value may be suffixed by an IS
  278. postfix. Default value is "0".
  279. @item stream_index, si
  280. Specify the index of the audio stream to read. If the value is -1,
  281. the best suited audio stream will be automatically selected. Default
  282. value is "-1".
  283. @end table
  284. @section anullsrc
  285. Null audio source, return unprocessed audio frames. It is mainly useful
  286. as a template and to be employed in analysis / debugging tools, or as
  287. the source for filters which ignore the input data (for example the sox
  288. synth filter).
  289. It accepts an optional sequence of @var{key}=@var{value} pairs,
  290. separated by ":".
  291. The description of the accepted options follows.
  292. @table @option
  293. @item sample_rate, s
  294. Specify the sample rate, and defaults to 44100.
  295. @item channel_layout, cl
  296. Specify the channel layout, and can be either an integer or a string
  297. representing a channel layout. The default value of @var{channel_layout}
  298. is "stereo".
  299. Check the channel_layout_map definition in
  300. @file{libavcodec/audioconvert.c} for the mapping between strings and
  301. channel layout values.
  302. @item nb_samples, n
  303. Set the number of samples per requested frames.
  304. @end table
  305. Follow some examples:
  306. @example
  307. # set the sample rate to 48000 Hz and the channel layout to AV_CH_LAYOUT_MONO.
  308. anullsrc=r=48000:cl=4
  309. # same as
  310. anullsrc=r=48000:cl=mono
  311. @end example
  312. @c man end AUDIO SOURCES
  313. @chapter Audio Sinks
  314. @c man begin AUDIO SINKS
  315. Below is a description of the currently available audio sinks.
  316. @section abuffersink
  317. Buffer audio frames, and make them available to the end of filter chain.
  318. This sink is mainly intended for programmatic use, in particular
  319. through the interface defined in @file{libavfilter/buffersink.h}.
  320. It requires a pointer to an AVABufferSinkContext structure, which
  321. defines the incoming buffers' formats, to be passed as the opaque
  322. parameter to @code{avfilter_init_filter} for initialization.
  323. @section anullsink
  324. Null audio sink, do absolutely nothing with the input audio. It is
  325. mainly useful as a template and to be employed in analysis / debugging
  326. tools.
  327. @c man end AUDIO SINKS
  328. @chapter Video Filters
  329. @c man begin VIDEO FILTERS
  330. When you configure your FFmpeg build, you can disable any of the
  331. existing filters using --disable-filters.
  332. The configure output will show the video filters included in your
  333. build.
  334. Below is a description of the currently available video filters.
  335. @section blackframe
  336. Detect frames that are (almost) completely black. Can be useful to
  337. detect chapter transitions or commercials. Output lines consist of
  338. the frame number of the detected frame, the percentage of blackness,
  339. the position in the file if known or -1 and the timestamp in seconds.
  340. In order to display the output lines, you need to set the loglevel at
  341. least to the AV_LOG_INFO value.
  342. The filter accepts the syntax:
  343. @example
  344. blackframe[=@var{amount}:[@var{threshold}]]
  345. @end example
  346. @var{amount} is the percentage of the pixels that have to be below the
  347. threshold, and defaults to 98.
  348. @var{threshold} is the threshold below which a pixel value is
  349. considered black, and defaults to 32.
  350. @section boxblur
  351. Apply boxblur algorithm to the input video.
  352. This filter accepts the parameters:
  353. @var{luma_radius}:@var{luma_power}:@var{chroma_radius}:@var{chroma_power}:@var{alpha_radius}:@var{alpha_power}
  354. Chroma and alpha parameters are optional, if not specified they default
  355. to the corresponding values set for @var{luma_radius} and
  356. @var{luma_power}.
  357. @var{luma_radius}, @var{chroma_radius}, and @var{alpha_radius} represent
  358. the radius in pixels of the box used for blurring the corresponding
  359. input plane. They are expressions, and can contain the following
  360. constants:
  361. @table @option
  362. @item w, h
  363. the input width and heigth in pixels
  364. @item cw, ch
  365. the input chroma image width and height in pixels
  366. @item hsub, vsub
  367. horizontal and vertical chroma subsample values. For example for the
  368. pixel format "yuv422p" @var{hsub} is 2 and @var{vsub} is 1.
  369. @end table
  370. The radius must be a non-negative number, and must not be greater than
  371. the value of the expression @code{min(w,h)/2} for the luma and alpha planes,
  372. and of @code{min(cw,ch)/2} for the chroma planes.
  373. @var{luma_power}, @var{chroma_power}, and @var{alpha_power} represent
  374. how many times the boxblur filter is applied to the corresponding
  375. plane.
  376. Some examples follow:
  377. @itemize
  378. @item
  379. Apply a boxblur filter with luma, chroma, and alpha radius
  380. set to 2:
  381. @example
  382. boxblur=2:1
  383. @end example
  384. @item
  385. Set luma radius to 2, alpha and chroma radius to 0
  386. @example
  387. boxblur=2:1:0:0:0:0
  388. @end example
  389. @item
  390. Set luma and chroma radius to a fraction of the video dimension
  391. @example
  392. boxblur=min(h\,w)/10:1:min(cw\,ch)/10:1
  393. @end example
  394. @end itemize
  395. @section copy
  396. Copy the input source unchanged to the output. Mainly useful for
  397. testing purposes.
  398. @section crop
  399. Crop the input video to @var{out_w}:@var{out_h}:@var{x}:@var{y}.
  400. The parameters are expressions containing the following constants:
  401. @table @option
  402. @item x, y
  403. the computed values for @var{x} and @var{y}. They are evaluated for
  404. each new frame.
  405. @item in_w, in_h
  406. the input width and height
  407. @item iw, ih
  408. same as @var{in_w} and @var{in_h}
  409. @item out_w, out_h
  410. the output (cropped) width and height
  411. @item ow, oh
  412. same as @var{out_w} and @var{out_h}
  413. @item a
  414. same as @var{iw} / @var{ih}
  415. @item sar
  416. input sample aspect ratio
  417. @item dar
  418. input display aspect ratio, it is the same as (@var{iw} / @var{ih}) * @var{sar}
  419. @item hsub, vsub
  420. horizontal and vertical chroma subsample values. For example for the
  421. pixel format "yuv422p" @var{hsub} is 2 and @var{vsub} is 1.
  422. @item n
  423. the number of input frame, starting from 0
  424. @item pos
  425. the position in the file of the input frame, NAN if unknown
  426. @item t
  427. timestamp expressed in seconds, NAN if the input timestamp is unknown
  428. @end table
  429. The @var{out_w} and @var{out_h} parameters specify the expressions for
  430. the width and height of the output (cropped) video. They are
  431. evaluated just at the configuration of the filter.
  432. The default value of @var{out_w} is "in_w", and the default value of
  433. @var{out_h} is "in_h".
  434. The expression for @var{out_w} may depend on the value of @var{out_h},
  435. and the expression for @var{out_h} may depend on @var{out_w}, but they
  436. cannot depend on @var{x} and @var{y}, as @var{x} and @var{y} are
  437. evaluated after @var{out_w} and @var{out_h}.
  438. The @var{x} and @var{y} parameters specify the expressions for the
  439. position of the top-left corner of the output (non-cropped) area. They
  440. are evaluated for each frame. If the evaluated value is not valid, it
  441. is approximated to the nearest valid value.
  442. The default value of @var{x} is "(in_w-out_w)/2", and the default
  443. value for @var{y} is "(in_h-out_h)/2", which set the cropped area at
  444. the center of the input image.
  445. The expression for @var{x} may depend on @var{y}, and the expression
  446. for @var{y} may depend on @var{x}.
  447. Follow some examples:
  448. @example
  449. # crop the central input area with size 100x100
  450. crop=100:100
  451. # crop the central input area with size 2/3 of the input video
  452. "crop=2/3*in_w:2/3*in_h"
  453. # crop the input video central square
  454. crop=in_h
  455. # delimit the rectangle with the top-left corner placed at position
  456. # 100:100 and the right-bottom corner corresponding to the right-bottom
  457. # corner of the input image.
  458. crop=in_w-100:in_h-100:100:100
  459. # crop 10 pixels from the left and right borders, and 20 pixels from
  460. # the top and bottom borders
  461. "crop=in_w-2*10:in_h-2*20"
  462. # keep only the bottom right quarter of the input image
  463. "crop=in_w/2:in_h/2:in_w/2:in_h/2"
  464. # crop height for getting Greek harmony
  465. "crop=in_w:1/PHI*in_w"
  466. # trembling effect
  467. "crop=in_w/2:in_h/2:(in_w-out_w)/2+((in_w-out_w)/2)*sin(n/10):(in_h-out_h)/2 +((in_h-out_h)/2)*sin(n/7)"
  468. # erratic camera effect depending on timestamp
  469. "crop=in_w/2:in_h/2:(in_w-out_w)/2+((in_w-out_w)/2)*sin(t*10):(in_h-out_h)/2 +((in_h-out_h)/2)*sin(t*13)"
  470. # set x depending on the value of y
  471. "crop=in_w/2:in_h/2:y:10+10*sin(n/10)"
  472. @end example
  473. @section cropdetect
  474. Auto-detect crop size.
  475. Calculate necessary cropping parameters and prints the recommended
  476. parameters through the logging system. The detected dimensions
  477. correspond to the non-black area of the input video.
  478. It accepts the syntax:
  479. @example
  480. cropdetect[=@var{limit}[:@var{round}[:@var{reset}]]]
  481. @end example
  482. @table @option
  483. @item limit
  484. Threshold, which can be optionally specified from nothing (0) to
  485. everything (255), defaults to 24.
  486. @item round
  487. Value which the width/height should be divisible by, defaults to
  488. 16. The offset is automatically adjusted to center the video. Use 2 to
  489. get only even dimensions (needed for 4:2:2 video). 16 is best when
  490. encoding to most video codecs.
  491. @item reset
  492. Counter that determines after how many frames cropdetect will reset
  493. the previously detected largest video area and start over to detect
  494. the current optimal crop area. Defaults to 0.
  495. This can be useful when channel logos distort the video area. 0
  496. indicates never reset and return the largest area encountered during
  497. playback.
  498. @end table
  499. @section delogo
  500. Suppress a TV station logo by a simple interpolation of the surrounding
  501. pixels. Just set a rectangle covering the logo and watch it disappear
  502. (and sometimes something even uglier appear - your mileage may vary).
  503. The filter accepts parameters as a string of the form
  504. "@var{x}:@var{y}:@var{w}:@var{h}:@var{band}", or as a list of
  505. @var{key}=@var{value} pairs, separated by ":".
  506. The description of the accepted parameters follows.
  507. @table @option
  508. @item x, y
  509. Specify the top left corner coordinates of the logo. They must be
  510. specified.
  511. @item w, h
  512. Specify the width and height of the logo to clear. They must be
  513. specified.
  514. @item band, t
  515. Specify the thickness of the fuzzy edge of the rectangle (added to
  516. @var{w} and @var{h}). The default value is 4.
  517. @item show
  518. When set to 1, a green rectangle is drawn on the screen to simplify
  519. finding the right @var{x}, @var{y}, @var{w}, @var{h} parameters, and
  520. @var{band} is set to 4. The default value is 0.
  521. @end table
  522. Some examples follow.
  523. @itemize
  524. @item
  525. Set a rectangle covering the area with top left corner coordinates 0,0
  526. and size 100x77, setting a band of size 10:
  527. @example
  528. delogo=0:0:100:77:10
  529. @end example
  530. @item
  531. As the previous example, but use named options:
  532. @example
  533. delogo=x=0:y=0:w=100:h=77:band=10
  534. @end example
  535. @end itemize
  536. @section drawbox
  537. Draw a colored box on the input image.
  538. It accepts the syntax:
  539. @example
  540. drawbox=@var{x}:@var{y}:@var{width}:@var{height}:@var{color}
  541. @end example
  542. @table @option
  543. @item x, y
  544. Specify the top left corner coordinates of the box. Default to 0.
  545. @item width, height
  546. Specify the width and height of the box, if 0 they are interpreted as
  547. the input width and height. Default to 0.
  548. @item color
  549. Specify the color of the box to write, it can be the name of a color
  550. (case insensitive match) or a 0xRRGGBB[AA] sequence.
  551. @end table
  552. Follow some examples:
  553. @example
  554. # draw a black box around the edge of the input image
  555. drawbox
  556. # draw a box with color red and an opacity of 50%
  557. drawbox=10:20:200:60:red@@0.5"
  558. @end example
  559. @section drawtext
  560. Draw text string or text from specified file on top of video using the
  561. libfreetype library.
  562. To enable compilation of this filter you need to configure FFmpeg with
  563. @code{--enable-libfreetype}.
  564. The filter also recognizes strftime() sequences in the provided text
  565. and expands them accordingly. Check the documentation of strftime().
  566. The filter accepts parameters as a list of @var{key}=@var{value} pairs,
  567. separated by ":".
  568. The description of the accepted parameters follows.
  569. @table @option
  570. @item fontfile
  571. The font file to be used for drawing text. Path must be included.
  572. This parameter is mandatory.
  573. @item text
  574. The text string to be drawn. The text must be a sequence of UTF-8
  575. encoded characters.
  576. This parameter is mandatory if no file is specified with the parameter
  577. @var{textfile}.
  578. @item textfile
  579. A text file containing text to be drawn. The text must be a sequence
  580. of UTF-8 encoded characters.
  581. This parameter is mandatory if no text string is specified with the
  582. parameter @var{text}.
  583. If both text and textfile are specified, an error is thrown.
  584. @item x, y
  585. The expressions which specify the offsets where text will be drawn
  586. within the video frame. They are relative to the top/left border of the
  587. output image.
  588. The default value of @var{x} and @var{y} is "0".
  589. See below for the list of accepted constants.
  590. @item fontsize
  591. The font size to be used for drawing text.
  592. The default value of @var{fontsize} is 16.
  593. @item fontcolor
  594. The color to be used for drawing fonts.
  595. Either a string (e.g. "red") or in 0xRRGGBB[AA] format
  596. (e.g. "0xff000033"), possibly followed by an alpha specifier.
  597. The default value of @var{fontcolor} is "black".
  598. @item boxcolor
  599. The color to be used for drawing box around text.
  600. Either a string (e.g. "yellow") or in 0xRRGGBB[AA] format
  601. (e.g. "0xff00ff"), possibly followed by an alpha specifier.
  602. The default value of @var{boxcolor} is "white".
  603. @item box
  604. Used to draw a box around text using background color.
  605. Value should be either 1 (enable) or 0 (disable).
  606. The default value of @var{box} is 0.
  607. @item shadowx, shadowy
  608. The x and y offsets for the text shadow position with respect to the
  609. position of the text. They can be either positive or negative
  610. values. Default value for both is "0".
  611. @item shadowcolor
  612. The color to be used for drawing a shadow behind the drawn text. It
  613. can be a color name (e.g. "yellow") or a string in the 0xRRGGBB[AA]
  614. form (e.g. "0xff00ff"), possibly followed by an alpha specifier.
  615. The default value of @var{shadowcolor} is "black".
  616. @item ft_load_flags
  617. Flags to be used for loading the fonts.
  618. The flags map the corresponding flags supported by libfreetype, and are
  619. a combination of the following values:
  620. @table @var
  621. @item default
  622. @item no_scale
  623. @item no_hinting
  624. @item render
  625. @item no_bitmap
  626. @item vertical_layout
  627. @item force_autohint
  628. @item crop_bitmap
  629. @item pedantic
  630. @item ignore_global_advance_width
  631. @item no_recurse
  632. @item ignore_transform
  633. @item monochrome
  634. @item linear_design
  635. @item no_autohint
  636. @item end table
  637. @end table
  638. Default value is "render".
  639. For more information consult the documentation for the FT_LOAD_*
  640. libfreetype flags.
  641. @item tabsize
  642. The size in number of spaces to use for rendering the tab.
  643. Default value is 4.
  644. @end table
  645. The parameters for @var{x} and @var{y} are expressions containing the
  646. following constants:
  647. @table @option
  648. @item w, h
  649. the input width and heigth
  650. @item tw, text_w
  651. the width of the rendered text
  652. @item th, text_h
  653. the height of the rendered text
  654. @item lh, line_h
  655. the height of each text line
  656. @item sar
  657. input sample aspect ratio
  658. @item dar
  659. input display aspect ratio, it is the same as (@var{w} / @var{h}) * @var{sar}
  660. @item hsub, vsub
  661. horizontal and vertical chroma subsample values. For example for the
  662. pixel format "yuv422p" @var{hsub} is 2 and @var{vsub} is 1.
  663. @item max_glyph_w
  664. maximum glyph width, that is the maximum width for all the glyphs
  665. contained in the rendered text
  666. @item max_glyph_h
  667. maximum glyph height, that is the maximum height for all the glyphs
  668. contained in the rendered text, it is equivalent to @var{ascent} -
  669. @var{descent}.
  670. @item max_glyph_a, ascent
  671. the maximum distance from the baseline to the highest/upper grid
  672. coordinate used to place a glyph outline point, for all the rendered
  673. glyphs.
  674. It is a positive value, due to the grid's orientation with the Y axis
  675. upwards.
  676. @item max_glyph_d, descent
  677. the maximum distance from the baseline to the lowest grid coordinate
  678. used to place a glyph outline point, for all the rendered glyphs.
  679. This is a negative value, due to the grid's orientation, with the Y axis
  680. upwards.
  681. @item n
  682. the number of input frame, starting from 0
  683. @item t
  684. timestamp expressed in seconds, NAN if the input timestamp is unknown
  685. @end table
  686. Some examples follow.
  687. @itemize
  688. @item
  689. Draw "Test Text" with font FreeSerif, using the default values for the
  690. optional parameters.
  691. @example
  692. drawtext="fontfile=/usr/share/fonts/truetype/freefont/FreeSerif.ttf: text='Test Text'"
  693. @end example
  694. @item
  695. Draw 'Test Text' with font FreeSerif of size 24 at position x=100
  696. and y=50 (counting from the top-left corner of the screen), text is
  697. yellow with a red box around it. Both the text and the box have an
  698. opacity of 20%.
  699. @example
  700. drawtext="fontfile=/usr/share/fonts/truetype/freefont/FreeSerif.ttf: text='Test Text':\
  701. x=100: y=50: fontsize=24: fontcolor=yellow@@0.2: box=1: boxcolor=red@@0.2"
  702. @end example
  703. Note that the double quotes are not necessary if spaces are not used
  704. within the parameter list.
  705. @item
  706. Show the text at the center of the video frame:
  707. @example
  708. drawtext=fontsize=30:fontfile=FreeSerif.ttf:text='hello world':x=(w-text_w)/2:y=(h-text_h-line_h)/2"
  709. @end example
  710. @item
  711. Show a text line sliding from right to left in the last row of the video
  712. frame. The file @file{LONG_LINE} is assumed to contain a single line
  713. with no newlines.
  714. @example
  715. drawtext=fontsize=15:fontfile=FreeSerif.ttf:text=LONG_LINE:y=h-line_h:x=-50*t
  716. @end example
  717. @item
  718. Show the content of file @file{CREDITS} off the bottom of the frame and scroll up.
  719. @example
  720. drawtext=fontsize=20:fontfile=FreeSerif.ttf:textfile=CREDITS:y=h-20*t"
  721. @end example
  722. @item
  723. Draw a single green letter "g", at the center of the input video.
  724. The glyph baseline is placed at half screen height.
  725. @example
  726. drawtext=fontsize=60:fontfile=FreeSerif.ttf:fontcolor=green:text=g:x=(w-max_glyph_w)/2:y=h/2-ascent
  727. @end example
  728. @end itemize
  729. For more information about libfreetype, check:
  730. @url{http://www.freetype.org/}.
  731. @section fade
  732. Apply fade-in/out effect to input video.
  733. It accepts the parameters:
  734. @var{type}:@var{start_frame}:@var{nb_frames}
  735. @var{type} specifies if the effect type, can be either "in" for
  736. fade-in, or "out" for a fade-out effect.
  737. @var{start_frame} specifies the number of the start frame for starting
  738. to apply the fade effect.
  739. @var{nb_frames} specifies the number of frames for which the fade
  740. effect has to last. At the end of the fade-in effect the output video
  741. will have the same intensity as the input video, at the end of the
  742. fade-out transition the output video will be completely black.
  743. A few usage examples follow, usable too as test scenarios.
  744. @example
  745. # fade in first 30 frames of video
  746. fade=in:0:30
  747. # fade out last 45 frames of a 200-frame video
  748. fade=out:155:45
  749. # fade in first 25 frames and fade out last 25 frames of a 1000-frame video
  750. fade=in:0:25, fade=out:975:25
  751. # make first 5 frames black, then fade in from frame 5-24
  752. fade=in:5:20
  753. @end example
  754. @section fieldorder
  755. Transform the field order of the input video.
  756. It accepts one parameter which specifies the required field order that
  757. the input interlaced video will be transformed to. The parameter can
  758. assume one of the following values:
  759. @table @option
  760. @item 0 or bff
  761. output bottom field first
  762. @item 1 or tff
  763. output top field first
  764. @end table
  765. Default value is "tff".
  766. Transformation is achieved by shifting the picture content up or down
  767. by one line, and filling the remaining line with appropriate picture content.
  768. This method is consistent with most broadcast field order converters.
  769. If the input video is not flagged as being interlaced, or it is already
  770. flagged as being of the required output field order then this filter does
  771. not alter the incoming video.
  772. This filter is very useful when converting to or from PAL DV material,
  773. which is bottom field first.
  774. For example:
  775. @example
  776. ./ffmpeg -i in.vob -vf "fieldorder=bff" out.dv
  777. @end example
  778. @section fifo
  779. Buffer input images and send them when they are requested.
  780. This filter is mainly useful when auto-inserted by the libavfilter
  781. framework.
  782. The filter does not take parameters.
  783. @section format
  784. Convert the input video to one of the specified pixel formats.
  785. Libavfilter will try to pick one that is supported for the input to
  786. the next filter.
  787. The filter accepts a list of pixel format names, separated by ":",
  788. for example "yuv420p:monow:rgb24".
  789. Some examples follow:
  790. @example
  791. # convert the input video to the format "yuv420p"
  792. format=yuv420p
  793. # convert the input video to any of the formats in the list
  794. format=yuv420p:yuv444p:yuv410p
  795. @end example
  796. @anchor{frei0r}
  797. @section frei0r
  798. Apply a frei0r effect to the input video.
  799. To enable compilation of this filter you need to install the frei0r
  800. header and configure FFmpeg with --enable-frei0r.
  801. The filter supports the syntax:
  802. @example
  803. @var{filter_name}[@{:|=@}@var{param1}:@var{param2}:...:@var{paramN}]
  804. @end example
  805. @var{filter_name} is the name to the frei0r effect to load. If the
  806. environment variable @env{FREI0R_PATH} is defined, the frei0r effect
  807. is searched in each one of the directories specified by the colon
  808. separated list in @env{FREIOR_PATH}, otherwise in the standard frei0r
  809. paths, which are in this order: @file{HOME/.frei0r-1/lib/},
  810. @file{/usr/local/lib/frei0r-1/}, @file{/usr/lib/frei0r-1/}.
  811. @var{param1}, @var{param2}, ... , @var{paramN} specify the parameters
  812. for the frei0r effect.
  813. A frei0r effect parameter can be a boolean (whose values are specified
  814. with "y" and "n"), a double, a color (specified by the syntax
  815. @var{R}/@var{G}/@var{B}, @var{R}, @var{G}, and @var{B} being float
  816. numbers from 0.0 to 1.0) or by an @code{av_parse_color()} color
  817. description), a position (specified by the syntax @var{X}/@var{Y},
  818. @var{X} and @var{Y} being float numbers) and a string.
  819. The number and kind of parameters depend on the loaded effect. If an
  820. effect parameter is not specified the default value is set.
  821. Some examples follow:
  822. @example
  823. # apply the distort0r effect, set the first two double parameters
  824. frei0r=distort0r:0.5:0.01
  825. # apply the colordistance effect, takes a color as first parameter
  826. frei0r=colordistance:0.2/0.3/0.4
  827. frei0r=colordistance:violet
  828. frei0r=colordistance:0x112233
  829. # apply the perspective effect, specify the top left and top right
  830. # image positions
  831. frei0r=perspective:0.2/0.2:0.8/0.2
  832. @end example
  833. For more information see:
  834. @url{http://piksel.org/frei0r}
  835. @section gradfun
  836. Fix the banding artifacts that are sometimes introduced into nearly flat
  837. regions by truncation to 8bit colordepth.
  838. Interpolate the gradients that should go where the bands are, and
  839. dither them.
  840. This filter is designed for playback only. Do not use it prior to
  841. lossy compression, because compression tends to lose the dither and
  842. bring back the bands.
  843. The filter takes two optional parameters, separated by ':':
  844. @var{strength}:@var{radius}
  845. @var{strength} is the maximum amount by which the filter will change
  846. any one pixel. Also the threshold for detecting nearly flat
  847. regions. Acceptable values range from .51 to 255, default value is
  848. 1.2, out-of-range values will be clipped to the valid range.
  849. @var{radius} is the neighborhood to fit the gradient to. A larger
  850. radius makes for smoother gradients, but also prevents the filter from
  851. modifying the pixels near detailed regions. Acceptable values are
  852. 8-32, default value is 16, out-of-range values will be clipped to the
  853. valid range.
  854. @example
  855. # default parameters
  856. gradfun=1.2:16
  857. # omitting radius
  858. gradfun=1.2
  859. @end example
  860. @section hflip
  861. Flip the input video horizontally.
  862. For example to horizontally flip the video in input with
  863. @file{ffmpeg}:
  864. @example
  865. ffmpeg -i in.avi -vf "hflip" out.avi
  866. @end example
  867. @section hqdn3d
  868. High precision/quality 3d denoise filter. This filter aims to reduce
  869. image noise producing smooth images and making still images really
  870. still. It should enhance compressibility.
  871. It accepts the following optional parameters:
  872. @var{luma_spatial}:@var{chroma_spatial}:@var{luma_tmp}:@var{chroma_tmp}
  873. @table @option
  874. @item luma_spatial
  875. a non-negative float number which specifies spatial luma strength,
  876. defaults to 4.0
  877. @item chroma_spatial
  878. a non-negative float number which specifies spatial chroma strength,
  879. defaults to 3.0*@var{luma_spatial}/4.0
  880. @item luma_tmp
  881. a float number which specifies luma temporal strength, defaults to
  882. 6.0*@var{luma_spatial}/4.0
  883. @item chroma_tmp
  884. a float number which specifies chroma temporal strength, defaults to
  885. @var{luma_tmp}*@var{chroma_spatial}/@var{luma_spatial}
  886. @end table
  887. @section lut, lutrgb, lutyuv
  888. Compute a look-up table for binding each pixel component input value
  889. to an output value, and apply it to input video.
  890. @var{lutyuv} applies a lookup table to a YUV input video, @var{lutrgb}
  891. to an RGB input video.
  892. These filters accept in input a ":"-separated list of options, which
  893. specify the expressions used for computing the lookup table for the
  894. corresponding pixel component values.
  895. The @var{lut} filter requires either YUV or RGB pixel formats in
  896. input, and accepts the options:
  897. @table @option
  898. @item c0
  899. first pixel component
  900. @item c1
  901. second pixel component
  902. @item c2
  903. third pixel component
  904. @item c3
  905. fourth pixel component, corresponds to the alpha component
  906. @end table
  907. The exact component associated to each option depends on the format in
  908. input.
  909. The @var{lutrgb} filter requires RGB pixel formats in input, and
  910. accepts the options:
  911. @table @option
  912. @item r
  913. red component
  914. @item g
  915. green component
  916. @item b
  917. blue component
  918. @item a
  919. alpha component
  920. @end table
  921. The @var{lutyuv} filter requires YUV pixel formats in input, and
  922. accepts the options:
  923. @table @option
  924. @item y
  925. Y/luminance component
  926. @item u
  927. U/Cb component
  928. @item v
  929. V/Cr component
  930. @item a
  931. alpha component
  932. @end table
  933. The expressions can contain the following constants and functions:
  934. @table @option
  935. @item w, h
  936. the input width and heigth
  937. @item val
  938. input value for the pixel component
  939. @item clipval
  940. the input value clipped in the @var{minval}-@var{maxval} range
  941. @item maxval
  942. maximum value for the pixel component
  943. @item minval
  944. minimum value for the pixel component
  945. @item negval
  946. the negated value for the pixel component value clipped in the
  947. @var{minval}-@var{maxval} range , it corresponds to the expression
  948. "maxval-clipval+minval"
  949. @item clip(val)
  950. the computed value in @var{val} clipped in the
  951. @var{minval}-@var{maxval} range
  952. @item gammaval(gamma)
  953. the computed gamma correction value of the pixel component value
  954. clipped in the @var{minval}-@var{maxval} range, corresponds to the
  955. expression
  956. "pow((clipval-minval)/(maxval-minval)\,@var{gamma})*(maxval-minval)+minval"
  957. @end table
  958. All expressions default to "val".
  959. Some examples follow:
  960. @example
  961. # negate input video
  962. lutrgb="r=maxval+minval-val:g=maxval+minval-val:b=maxval+minval-val"
  963. lutyuv="y=maxval+minval-val:u=maxval+minval-val:v=maxval+minval-val"
  964. # the above is the same as
  965. lutrgb="r=negval:g=negval:b=negval"
  966. lutyuv="y=negval:u=negval:v=negval"
  967. # negate luminance
  968. lutyuv=y=negval
  969. # remove chroma components, turns the video into a graytone image
  970. lutyuv="u=128:v=128"
  971. # apply a luma burning effect
  972. lutyuv="y=2*val"
  973. # remove green and blue components
  974. lutrgb="g=0:b=0"
  975. # set a constant alpha channel value on input
  976. format=rgba,lutrgb=a="maxval-minval/2"
  977. # correct luminance gamma by a 0.5 factor
  978. lutyuv=y=gammaval(0.5)
  979. @end example
  980. @section mp
  981. Apply an MPlayer filter to the input video.
  982. This filter provides a wrapper around most of the filters of
  983. MPlayer/MEncoder.
  984. This wrapper is considered experimental. Some of the wrapped filters
  985. may not work properly and we may drop support for them, as they will
  986. be implemented natively into FFmpeg. Thus you should avoid
  987. depending on them when writing portable scripts.
  988. The filters accepts the parameters:
  989. @var{filter_name}[:=]@var{filter_params}
  990. @var{filter_name} is the name of a supported MPlayer filter,
  991. @var{filter_params} is a string containing the parameters accepted by
  992. the named filter.
  993. The list of the currently supported filters follows:
  994. @table @var
  995. @item 2xsai
  996. @item decimate
  997. @item denoise3d
  998. @item detc
  999. @item dint
  1000. @item divtc
  1001. @item down3dright
  1002. @item dsize
  1003. @item eq2
  1004. @item eq
  1005. @item field
  1006. @item fil
  1007. @item fixpts
  1008. @item framestep
  1009. @item fspp
  1010. @item geq
  1011. @item harddup
  1012. @item hqdn3d
  1013. @item hue
  1014. @item il
  1015. @item ilpack
  1016. @item ivtc
  1017. @item kerndeint
  1018. @item mcdeint
  1019. @item mirror
  1020. @item noise
  1021. @item ow
  1022. @item palette
  1023. @item perspective
  1024. @item phase
  1025. @item pp7
  1026. @item pullup
  1027. @item qp
  1028. @item rectangle
  1029. @item remove-logo
  1030. @item rotate
  1031. @item sab
  1032. @item screenshot
  1033. @item smartblur
  1034. @item softpulldown
  1035. @item softskip
  1036. @item spp
  1037. @item swapuv
  1038. @item telecine
  1039. @item tile
  1040. @item tinterlace
  1041. @item unsharp
  1042. @item uspp
  1043. @item yuvcsp
  1044. @item yvu9
  1045. @end table
  1046. The parameter syntax and behavior for the listed filters are the same
  1047. of the corresponding MPlayer filters. For detailed instructions check
  1048. the "VIDEO FILTERS" section in the MPlayer manual.
  1049. Some examples follow:
  1050. @example
  1051. # remove a logo by interpolating the surrounding pixels
  1052. mp=delogo=200:200:80:20:1
  1053. # adjust gamma, brightness, contrast
  1054. mp=eq2=1.0:2:0.5
  1055. # tweak hue and saturation
  1056. mp=hue=100:-10
  1057. @end example
  1058. See also mplayer(1), @url{http://www.mplayerhq.hu/}.
  1059. @section negate
  1060. Negate input video.
  1061. This filter accepts an integer in input, if non-zero it negates the
  1062. alpha component (if available). The default value in input is 0.
  1063. @section noformat
  1064. Force libavfilter not to use any of the specified pixel formats for the
  1065. input to the next filter.
  1066. The filter accepts a list of pixel format names, separated by ":",
  1067. for example "yuv420p:monow:rgb24".
  1068. Some examples follow:
  1069. @example
  1070. # force libavfilter to use a format different from "yuv420p" for the
  1071. # input to the vflip filter
  1072. noformat=yuv420p,vflip
  1073. # convert the input video to any of the formats not contained in the list
  1074. noformat=yuv420p:yuv444p:yuv410p
  1075. @end example
  1076. @section null
  1077. Pass the video source unchanged to the output.
  1078. @section ocv
  1079. Apply video transform using libopencv.
  1080. To enable this filter install libopencv library and headers and
  1081. configure FFmpeg with --enable-libopencv.
  1082. The filter takes the parameters: @var{filter_name}@{:=@}@var{filter_params}.
  1083. @var{filter_name} is the name of the libopencv filter to apply.
  1084. @var{filter_params} specifies the parameters to pass to the libopencv
  1085. filter. If not specified the default values are assumed.
  1086. Refer to the official libopencv documentation for more precise
  1087. informations:
  1088. @url{http://opencv.willowgarage.com/documentation/c/image_filtering.html}
  1089. Follows the list of supported libopencv filters.
  1090. @anchor{dilate}
  1091. @subsection dilate
  1092. Dilate an image by using a specific structuring element.
  1093. This filter corresponds to the libopencv function @code{cvDilate}.
  1094. It accepts the parameters: @var{struct_el}:@var{nb_iterations}.
  1095. @var{struct_el} represents a structuring element, and has the syntax:
  1096. @var{cols}x@var{rows}+@var{anchor_x}x@var{anchor_y}/@var{shape}
  1097. @var{cols} and @var{rows} represent the number of colums and rows of
  1098. the structuring element, @var{anchor_x} and @var{anchor_y} the anchor
  1099. point, and @var{shape} the shape for the structuring element, and
  1100. can be one of the values "rect", "cross", "ellipse", "custom".
  1101. If the value for @var{shape} is "custom", it must be followed by a
  1102. string of the form "=@var{filename}". The file with name
  1103. @var{filename} is assumed to represent a binary image, with each
  1104. printable character corresponding to a bright pixel. When a custom
  1105. @var{shape} is used, @var{cols} and @var{rows} are ignored, the number
  1106. or columns and rows of the read file are assumed instead.
  1107. The default value for @var{struct_el} is "3x3+0x0/rect".
  1108. @var{nb_iterations} specifies the number of times the transform is
  1109. applied to the image, and defaults to 1.
  1110. Follow some example:
  1111. @example
  1112. # use the default values
  1113. ocv=dilate
  1114. # dilate using a structuring element with a 5x5 cross, iterate two times
  1115. ocv=dilate=5x5+2x2/cross:2
  1116. # read the shape from the file diamond.shape, iterate two times
  1117. # the file diamond.shape may contain a pattern of characters like this:
  1118. # *
  1119. # ***
  1120. # *****
  1121. # ***
  1122. # *
  1123. # the specified cols and rows are ignored (but not the anchor point coordinates)
  1124. ocv=0x0+2x2/custom=diamond.shape:2
  1125. @end example
  1126. @subsection erode
  1127. Erode an image by using a specific structuring element.
  1128. This filter corresponds to the libopencv function @code{cvErode}.
  1129. The filter accepts the parameters: @var{struct_el}:@var{nb_iterations},
  1130. with the same syntax and semantics as the @ref{dilate} filter.
  1131. @subsection smooth
  1132. Smooth the input video.
  1133. The filter takes the following parameters:
  1134. @var{type}:@var{param1}:@var{param2}:@var{param3}:@var{param4}.
  1135. @var{type} is the type of smooth filter to apply, and can be one of
  1136. the following values: "blur", "blur_no_scale", "median", "gaussian",
  1137. "bilateral". The default value is "gaussian".
  1138. @var{param1}, @var{param2}, @var{param3}, and @var{param4} are
  1139. parameters whose meanings depend on smooth type. @var{param1} and
  1140. @var{param2} accept integer positive values or 0, @var{param3} and
  1141. @var{param4} accept float values.
  1142. The default value for @var{param1} is 3, the default value for the
  1143. other parameters is 0.
  1144. These parameters correspond to the parameters assigned to the
  1145. libopencv function @code{cvSmooth}.
  1146. @section overlay
  1147. Overlay one video on top of another.
  1148. It takes two inputs and one output, the first input is the "main"
  1149. video on which the second input is overlayed.
  1150. It accepts the parameters: @var{x}:@var{y}.
  1151. @var{x} is the x coordinate of the overlayed video on the main video,
  1152. @var{y} is the y coordinate. The parameters are expressions containing
  1153. the following parameters:
  1154. @table @option
  1155. @item main_w, main_h
  1156. main input width and height
  1157. @item W, H
  1158. same as @var{main_w} and @var{main_h}
  1159. @item overlay_w, overlay_h
  1160. overlay input width and height
  1161. @item w, h
  1162. same as @var{overlay_w} and @var{overlay_h}
  1163. @end table
  1164. Be aware that frames are taken from each input video in timestamp
  1165. order, hence, if their initial timestamps differ, it is a a good idea
  1166. to pass the two inputs through a @var{setpts=PTS-STARTPTS} filter to
  1167. have them begin in the same zero timestamp, as it does the example for
  1168. the @var{movie} filter.
  1169. Follow some examples:
  1170. @example
  1171. # draw the overlay at 10 pixels from the bottom right
  1172. # corner of the main video.
  1173. overlay=main_w-overlay_w-10:main_h-overlay_h-10
  1174. # insert a transparent PNG logo in the bottom left corner of the input
  1175. movie=logo.png [logo];
  1176. [in][logo] overlay=10:main_h-overlay_h-10 [out]
  1177. # insert 2 different transparent PNG logos (second logo on bottom
  1178. # right corner):
  1179. movie=logo1.png [logo1];
  1180. movie=logo2.png [logo2];
  1181. [in][logo1] overlay=10:H-h-10 [in+logo1];
  1182. [in+logo1][logo2] overlay=W-w-10:H-h-10 [out]
  1183. # add a transparent color layer on top of the main video,
  1184. # WxH specifies the size of the main input to the overlay filter
  1185. color=red@.3:WxH [over]; [in][over] overlay [out]
  1186. @end example
  1187. You can chain togheter more overlays but the efficiency of such
  1188. approach is yet to be tested.
  1189. @section pad
  1190. Add paddings to the input image, and places the original input at the
  1191. given coordinates @var{x}, @var{y}.
  1192. It accepts the following parameters:
  1193. @var{width}:@var{height}:@var{x}:@var{y}:@var{color}.
  1194. The parameters @var{width}, @var{height}, @var{x}, and @var{y} are
  1195. expressions containing the following constants:
  1196. @table @option
  1197. @item in_w, in_h
  1198. the input video width and height
  1199. @item iw, ih
  1200. same as @var{in_w} and @var{in_h}
  1201. @item out_w, out_h
  1202. the output width and height, that is the size of the padded area as
  1203. specified by the @var{width} and @var{height} expressions
  1204. @item ow, oh
  1205. same as @var{out_w} and @var{out_h}
  1206. @item x, y
  1207. x and y offsets as specified by the @var{x} and @var{y}
  1208. expressions, or NAN if not yet specified
  1209. @item a
  1210. same as @var{iw} / @var{ih}
  1211. @item sar
  1212. input sample aspect ratio
  1213. @item dar
  1214. input display aspect ratio, it is the same as (@var{iw} / @var{ih}) * @var{sar}
  1215. @item hsub, vsub
  1216. horizontal and vertical chroma subsample values. For example for the
  1217. pixel format "yuv422p" @var{hsub} is 2 and @var{vsub} is 1.
  1218. @end table
  1219. Follows the description of the accepted parameters.
  1220. @table @option
  1221. @item width, height
  1222. Specify the size of the output image with the paddings added. If the
  1223. value for @var{width} or @var{height} is 0, the corresponding input size
  1224. is used for the output.
  1225. The @var{width} expression can reference the value set by the
  1226. @var{height} expression, and viceversa.
  1227. The default value of @var{width} and @var{height} is 0.
  1228. @item x, y
  1229. Specify the offsets where to place the input image in the padded area
  1230. with respect to the top/left border of the output image.
  1231. The @var{x} expression can reference the value set by the @var{y}
  1232. expression, and viceversa.
  1233. The default value of @var{x} and @var{y} is 0.
  1234. @item color
  1235. Specify the color of the padded area, it can be the name of a color
  1236. (case insensitive match) or a 0xRRGGBB[AA] sequence.
  1237. The default value of @var{color} is "black".
  1238. @end table
  1239. Some examples follow:
  1240. @example
  1241. # Add paddings with color "violet" to the input video. Output video
  1242. # size is 640x480, the top-left corner of the input video is placed at
  1243. # column 0, row 40.
  1244. pad=640:480:0:40:violet
  1245. # pad the input to get an output with dimensions increased bt 3/2,
  1246. # and put the input video at the center of the padded area
  1247. pad="3/2*iw:3/2*ih:(ow-iw)/2:(oh-ih)/2"
  1248. # pad the input to get a squared output with size equal to the maximum
  1249. # value between the input width and height, and put the input video at
  1250. # the center of the padded area
  1251. pad="max(iw\,ih):ow:(ow-iw)/2:(oh-ih)/2"
  1252. # pad the input to get a final w/h ratio of 16:9
  1253. pad="ih*16/9:ih:(ow-iw)/2:(oh-ih)/2"
  1254. # for anamorphic video, in order to set the output display aspect ratio,
  1255. # it is necessary to use sar in the expression, according to the relation:
  1256. # (ih * X / ih) * sar = output_dar
  1257. # X = output_dar / sar
  1258. pad="ih*16/9/sar:ih:(ow-iw)/2:(oh-ih)/2"
  1259. # double output size and put the input video in the bottom-right
  1260. # corner of the output padded area
  1261. pad="2*iw:2*ih:ow-iw:oh-ih"
  1262. @end example
  1263. @section pixdesctest
  1264. Pixel format descriptor test filter, mainly useful for internal
  1265. testing. The output video should be equal to the input video.
  1266. For example:
  1267. @example
  1268. format=monow, pixdesctest
  1269. @end example
  1270. can be used to test the monowhite pixel format descriptor definition.
  1271. @section scale
  1272. Scale the input video to @var{width}:@var{height} and/or convert the image format.
  1273. The parameters @var{width} and @var{height} are expressions containing
  1274. the following constants:
  1275. @table @option
  1276. @item in_w, in_h
  1277. the input width and height
  1278. @item iw, ih
  1279. same as @var{in_w} and @var{in_h}
  1280. @item out_w, out_h
  1281. the output (cropped) width and height
  1282. @item ow, oh
  1283. same as @var{out_w} and @var{out_h}
  1284. @item a
  1285. same as @var{iw} / @var{ih}
  1286. @item sar
  1287. input sample aspect ratio
  1288. @item dar
  1289. input display aspect ratio, it is the same as (@var{iw} / @var{ih}) * @var{sar}
  1290. @item sar
  1291. input sample aspect ratio
  1292. @item hsub, vsub
  1293. horizontal and vertical chroma subsample values. For example for the
  1294. pixel format "yuv422p" @var{hsub} is 2 and @var{vsub} is 1.
  1295. @end table
  1296. If the input image format is different from the format requested by
  1297. the next filter, the scale filter will convert the input to the
  1298. requested format.
  1299. If the value for @var{width} or @var{height} is 0, the respective input
  1300. size is used for the output.
  1301. If the value for @var{width} or @var{height} is -1, the scale filter will
  1302. use, for the respective output size, a value that maintains the aspect
  1303. ratio of the input image.
  1304. The default value of @var{width} and @var{height} is 0.
  1305. Some examples follow:
  1306. @example
  1307. # scale the input video to a size of 200x100.
  1308. scale=200:100
  1309. # scale the input to 2x
  1310. scale=2*iw:2*ih
  1311. # the above is the same as
  1312. scale=2*in_w:2*in_h
  1313. # scale the input to half size
  1314. scale=iw/2:ih/2
  1315. # increase the width, and set the height to the same size
  1316. scale=3/2*iw:ow
  1317. # seek for Greek harmony
  1318. scale=iw:1/PHI*iw
  1319. scale=ih*PHI:ih
  1320. # increase the height, and set the width to 3/2 of the height
  1321. scale=3/2*oh:3/5*ih
  1322. # increase the size, but make the size a multiple of the chroma
  1323. scale="trunc(3/2*iw/hsub)*hsub:trunc(3/2*ih/vsub)*vsub"
  1324. # increase the width to a maximum of 500 pixels, keep the same input aspect ratio
  1325. scale='min(500\, iw*3/2):-1'
  1326. @end example
  1327. @section select
  1328. Select frames to pass in output.
  1329. It accepts in input an expression, which is evaluated for each input
  1330. frame. If the expression is evaluated to a non-zero value, the frame
  1331. is selected and passed to the output, otherwise it is discarded.
  1332. The expression can contain the following constants:
  1333. @table @option
  1334. @item n
  1335. the sequential number of the filtered frame, starting from 0
  1336. @item selected_n
  1337. the sequential number of the selected frame, starting from 0
  1338. @item prev_selected_n
  1339. the sequential number of the last selected frame, NAN if undefined
  1340. @item TB
  1341. timebase of the input timestamps
  1342. @item pts
  1343. the PTS (Presentation TimeStamp) of the filtered video frame,
  1344. expressed in @var{TB} units, NAN if undefined
  1345. @item t
  1346. the PTS (Presentation TimeStamp) of the filtered video frame,
  1347. expressed in seconds, NAN if undefined
  1348. @item prev_pts
  1349. the PTS of the previously filtered video frame, NAN if undefined
  1350. @item prev_selected_pts
  1351. the PTS of the last previously filtered video frame, NAN if undefined
  1352. @item prev_selected_t
  1353. the PTS of the last previously selected video frame, NAN if undefined
  1354. @item start_pts
  1355. the PTS of the first video frame in the video, NAN if undefined
  1356. @item start_t
  1357. the time of the first video frame in the video, NAN if undefined
  1358. @item pict_type
  1359. the type of the filtered frame, can assume one of the following
  1360. values:
  1361. @table @option
  1362. @item I
  1363. @item P
  1364. @item B
  1365. @item S
  1366. @item SI
  1367. @item SP
  1368. @item BI
  1369. @end table
  1370. @item interlace_type
  1371. the frame interlace type, can assume one of the following values:
  1372. @table @option
  1373. @item PROGRESSIVE
  1374. the frame is progressive (not interlaced)
  1375. @item TOPFIRST
  1376. the frame is top-field-first
  1377. @item BOTTOMFIRST
  1378. the frame is bottom-field-first
  1379. @end table
  1380. @item key
  1381. 1 if the filtered frame is a key-frame, 0 otherwise
  1382. @item pos
  1383. the position in the file of the filtered frame, -1 if the information
  1384. is not available (e.g. for synthetic video)
  1385. @end table
  1386. The default value of the select expression is "1".
  1387. Some examples follow:
  1388. @example
  1389. # select all frames in input
  1390. select
  1391. # the above is the same as:
  1392. select=1
  1393. # skip all frames:
  1394. select=0
  1395. # select only I-frames
  1396. select='eq(pict_type\,I)'
  1397. # select one frame every 100
  1398. select='not(mod(n\,100))'
  1399. # select only frames contained in the 10-20 time interval
  1400. select='gte(t\,10)*lte(t\,20)'
  1401. # select only I frames contained in the 10-20 time interval
  1402. select='gte(t\,10)*lte(t\,20)*eq(pict_type\,I)'
  1403. # select frames with a minimum distance of 10 seconds
  1404. select='isnan(prev_selected_t)+gte(t-prev_selected_t\,10)'
  1405. @end example
  1406. @anchor{setdar}
  1407. @section setdar
  1408. Set the Display Aspect Ratio for the filter output video.
  1409. This is done by changing the specified Sample (aka Pixel) Aspect
  1410. Ratio, according to the following equation:
  1411. @math{DAR = HORIZONTAL_RESOLUTION / VERTICAL_RESOLUTION * SAR}
  1412. Keep in mind that this filter does not modify the pixel dimensions of
  1413. the video frame. Also the display aspect ratio set by this filter may
  1414. be changed by later filters in the filterchain, e.g. in case of
  1415. scaling or if another "setdar" or a "setsar" filter is applied.
  1416. The filter accepts a parameter string which represents the wanted
  1417. display aspect ratio.
  1418. The parameter can be a floating point number string, or an expression
  1419. of the form @var{num}:@var{den}, where @var{num} and @var{den} are the
  1420. numerator and denominator of the aspect ratio.
  1421. If the parameter is not specified, it is assumed the value "0:1".
  1422. For example to change the display aspect ratio to 16:9, specify:
  1423. @example
  1424. setdar=16:9
  1425. # the above is equivalent to
  1426. setdar=1.77777
  1427. @end example
  1428. See also the @ref{setsar} filter documentation.
  1429. @section setpts
  1430. Change the PTS (presentation timestamp) of the input video frames.
  1431. Accept in input an expression evaluated through the eval API, which
  1432. can contain the following constants:
  1433. @table @option
  1434. @item PTS
  1435. the presentation timestamp in input
  1436. @item N
  1437. the count of the input frame, starting from 0.
  1438. @item STARTPTS
  1439. the PTS of the first video frame
  1440. @item INTERLACED
  1441. tell if the current frame is interlaced
  1442. @item POS
  1443. original position in the file of the frame, or undefined if undefined
  1444. for the current frame
  1445. @item PREV_INPTS
  1446. previous input PTS
  1447. @item PREV_OUTPTS
  1448. previous output PTS
  1449. @end table
  1450. Some examples follow:
  1451. @example
  1452. # start counting PTS from zero
  1453. setpts=PTS-STARTPTS
  1454. # fast motion
  1455. setpts=0.5*PTS
  1456. # slow motion
  1457. setpts=2.0*PTS
  1458. # fixed rate 25 fps
  1459. setpts=N/(25*TB)
  1460. # fixed rate 25 fps with some jitter
  1461. setpts='1/(25*TB) * (N + 0.05 * sin(N*2*PI/25))'
  1462. @end example
  1463. @anchor{setsar}
  1464. @section setsar
  1465. Set the Sample (aka Pixel) Aspect Ratio for the filter output video.
  1466. Note that as a consequence of the application of this filter, the
  1467. output display aspect ratio will change according to the following
  1468. equation:
  1469. @math{DAR = HORIZONTAL_RESOLUTION / VERTICAL_RESOLUTION * SAR}
  1470. Keep in mind that the sample aspect ratio set by this filter may be
  1471. changed by later filters in the filterchain, e.g. if another "setsar"
  1472. or a "setdar" filter is applied.
  1473. The filter accepts a parameter string which represents the wanted
  1474. sample aspect ratio.
  1475. The parameter can be a floating point number string, or an expression
  1476. of the form @var{num}:@var{den}, where @var{num} and @var{den} are the
  1477. numerator and denominator of the aspect ratio.
  1478. If the parameter is not specified, it is assumed the value "0:1".
  1479. For example to change the sample aspect ratio to 10:11, specify:
  1480. @example
  1481. setsar=10:11
  1482. @end example
  1483. @section settb
  1484. Set the timebase to use for the output frames timestamps.
  1485. It is mainly useful for testing timebase configuration.
  1486. It accepts in input an arithmetic expression representing a rational.
  1487. The expression can contain the constants "AVTB" (the
  1488. default timebase), and "intb" (the input timebase).
  1489. The default value for the input is "intb".
  1490. Follow some examples.
  1491. @example
  1492. # set the timebase to 1/25
  1493. settb=1/25
  1494. # set the timebase to 1/10
  1495. settb=0.1
  1496. #set the timebase to 1001/1000
  1497. settb=1+0.001
  1498. #set the timebase to 2*intb
  1499. settb=2*intb
  1500. #set the default timebase value
  1501. settb=AVTB
  1502. @end example
  1503. @section showinfo
  1504. Show a line containing various information for each input video frame.
  1505. The input video is not modified.
  1506. The shown line contains a sequence of key/value pairs of the form
  1507. @var{key}:@var{value}.
  1508. A description of each shown parameter follows:
  1509. @table @option
  1510. @item n
  1511. sequential number of the input frame, starting from 0
  1512. @item pts
  1513. Presentation TimeStamp of the input frame, expressed as a number of
  1514. time base units. The time base unit depends on the filter input pad.
  1515. @item pts_time
  1516. Presentation TimeStamp of the input frame, expressed as a number of
  1517. seconds
  1518. @item pos
  1519. position of the frame in the input stream, -1 if this information in
  1520. unavailable and/or meanigless (for example in case of synthetic video)
  1521. @item fmt
  1522. pixel format name
  1523. @item sar
  1524. sample aspect ratio of the input frame, expressed in the form
  1525. @var{num}/@var{den}
  1526. @item s
  1527. size of the input frame, expressed in the form
  1528. @var{width}x@var{height}
  1529. @item i
  1530. interlaced mode ("P" for "progressive", "T" for top field first, "B"
  1531. for bottom field first)
  1532. @item iskey
  1533. 1 if the frame is a key frame, 0 otherwise
  1534. @item type
  1535. picture type of the input frame ("I" for an I-frame, "P" for a
  1536. P-frame, "B" for a B-frame, "?" for unknown type).
  1537. Check also the documentation of the @code{AVPictureType} enum and of
  1538. the @code{av_get_picture_type_char} function defined in
  1539. @file{libavutil/avutil.h}.
  1540. @item checksum
  1541. Adler-32 checksum of all the planes of the input frame
  1542. @item plane_checksum
  1543. Adler-32 checksum of each plane of the input frame, expressed in the form
  1544. "[@var{c0} @var{c1} @var{c2} @var{c3}]"
  1545. @end table
  1546. @section slicify
  1547. Pass the images of input video on to next video filter as multiple
  1548. slices.
  1549. @example
  1550. ./ffmpeg -i in.avi -vf "slicify=32" out.avi
  1551. @end example
  1552. The filter accepts the slice height as parameter. If the parameter is
  1553. not specified it will use the default value of 16.
  1554. Adding this in the beginning of filter chains should make filtering
  1555. faster due to better use of the memory cache.
  1556. @section split
  1557. Pass on the input video to two outputs. Both outputs are identical to
  1558. the input video.
  1559. For example:
  1560. @example
  1561. [in] split [splitout1][splitout2];
  1562. [splitout1] crop=100:100:0:0 [cropout];
  1563. [splitout2] pad=200:200:100:100 [padout];
  1564. @end example
  1565. will create two separate outputs from the same input, one cropped and
  1566. one padded.
  1567. @section transpose
  1568. Transpose rows with columns in the input video and optionally flip it.
  1569. It accepts a parameter representing an integer, which can assume the
  1570. values:
  1571. @table @samp
  1572. @item 0
  1573. Rotate by 90 degrees counterclockwise and vertically flip (default), that is:
  1574. @example
  1575. L.R L.l
  1576. . . -> . .
  1577. l.r R.r
  1578. @end example
  1579. @item 1
  1580. Rotate by 90 degrees clockwise, that is:
  1581. @example
  1582. L.R l.L
  1583. . . -> . .
  1584. l.r r.R
  1585. @end example
  1586. @item 2
  1587. Rotate by 90 degrees counterclockwise, that is:
  1588. @example
  1589. L.R R.r
  1590. . . -> . .
  1591. l.r L.l
  1592. @end example
  1593. @item 3
  1594. Rotate by 90 degrees clockwise and vertically flip, that is:
  1595. @example
  1596. L.R r.R
  1597. . . -> . .
  1598. l.r l.L
  1599. @end example
  1600. @end table
  1601. @section unsharp
  1602. Sharpen or blur the input video.
  1603. It accepts the following parameters:
  1604. @var{luma_msize_x}:@var{luma_msize_y}:@var{luma_amount}:@var{chroma_msize_x}:@var{chroma_msize_y}:@var{chroma_amount}
  1605. Negative values for the amount will blur the input video, while positive
  1606. values will sharpen. All parameters are optional and default to the
  1607. equivalent of the string '5:5:1.0:5:5:0.0'.
  1608. @table @option
  1609. @item luma_msize_x
  1610. Set the luma matrix horizontal size. It can be an integer between 3
  1611. and 13, default value is 5.
  1612. @item luma_msize_y
  1613. Set the luma matrix vertical size. It can be an integer between 3
  1614. and 13, default value is 5.
  1615. @item luma_amount
  1616. Set the luma effect strength. It can be a float number between -2.0
  1617. and 5.0, default value is 1.0.
  1618. @item chroma_msize_x
  1619. Set the chroma matrix horizontal size. It can be an integer between 3
  1620. and 13, default value is 5.
  1621. @item chroma_msize_y
  1622. Set the chroma matrix vertical size. It can be an integer between 3
  1623. and 13, default value is 5.
  1624. @item chroma_amount
  1625. Set the chroma effect strength. It can be a float number between -2.0
  1626. and 5.0, default value is 0.0.
  1627. @end table
  1628. @example
  1629. # Strong luma sharpen effect parameters
  1630. unsharp=7:7:2.5
  1631. # Strong blur of both luma and chroma parameters
  1632. unsharp=7:7:-2:7:7:-2
  1633. # Use the default values with @command{ffmpeg}
  1634. ./ffmpeg -i in.avi -vf "unsharp" out.mp4
  1635. @end example
  1636. @section vflip
  1637. Flip the input video vertically.
  1638. @example
  1639. ./ffmpeg -i in.avi -vf "vflip" out.avi
  1640. @end example
  1641. @section yadif
  1642. Deinterlace the input video ("yadif" means "yet another deinterlacing
  1643. filter").
  1644. It accepts the optional parameters: @var{mode}:@var{parity}:@var{auto}.
  1645. @var{mode} specifies the interlacing mode to adopt, accepts one of the
  1646. following values:
  1647. @table @option
  1648. @item 0
  1649. output 1 frame for each frame
  1650. @item 1
  1651. output 1 frame for each field
  1652. @item 2
  1653. like 0 but skips spatial interlacing check
  1654. @item 3
  1655. like 1 but skips spatial interlacing check
  1656. @end table
  1657. Default value is 0.
  1658. @var{parity} specifies the picture field parity assumed for the input
  1659. interlaced video, accepts one of the following values:
  1660. @table @option
  1661. @item 0
  1662. assume top field first
  1663. @item 1
  1664. assume bottom field first
  1665. @item -1
  1666. enable automatic detection
  1667. @end table
  1668. Default value is -1.
  1669. If interlacing is unknown or decoder does not export this information,
  1670. top field first will be assumed.
  1671. @var{auto} specifies if deinterlacer should trust the interlaced flag
  1672. and only deinterlace frames marked as interlaced
  1673. @table @option
  1674. @item 0
  1675. deinterlace all frames
  1676. @item 1
  1677. only deinterlace frames marked as interlaced
  1678. @end table
  1679. Default value is 0.
  1680. @c man end VIDEO FILTERS
  1681. @chapter Video Sources
  1682. @c man begin VIDEO SOURCES
  1683. Below is a description of the currently available video sources.
  1684. @section buffer
  1685. Buffer video frames, and make them available to the filter chain.
  1686. This source is mainly intended for a programmatic use, in particular
  1687. through the interface defined in @file{libavfilter/vsrc_buffer.h}.
  1688. It accepts the following parameters:
  1689. @var{width}:@var{height}:@var{pix_fmt_string}:@var{timebase_num}:@var{timebase_den}:@var{sample_aspect_ratio_num}:@var{sample_aspect_ratio.den}:@var{scale_params}
  1690. All the parameters but @var{scale_params} need to be explicitely
  1691. defined.
  1692. Follows the list of the accepted parameters.
  1693. @table @option
  1694. @item width, height
  1695. Specify the width and height of the buffered video frames.
  1696. @item pix_fmt_string
  1697. A string representing the pixel format of the buffered video frames.
  1698. It may be a number corresponding to a pixel format, or a pixel format
  1699. name.
  1700. @item timebase_num, timebase_den
  1701. Specify numerator and denomitor of the timebase assumed by the
  1702. timestamps of the buffered frames.
  1703. @item sample_aspect_ratio.num, sample_aspect_ratio.den
  1704. Specify numerator and denominator of the sample aspect ratio assumed
  1705. by the video frames.
  1706. @item scale_params
  1707. Specify the optional parameters to be used for the scale filter which
  1708. is automatically inserted when an input change is detected in the
  1709. input size or format.
  1710. @end table
  1711. For example:
  1712. @example
  1713. buffer=320:240:yuv410p:1:24:1:1
  1714. @end example
  1715. will instruct the source to accept video frames with size 320x240 and
  1716. with format "yuv410p", assuming 1/24 as the timestamps timebase and
  1717. square pixels (1:1 sample aspect ratio).
  1718. Since the pixel format with name "yuv410p" corresponds to the number 6
  1719. (check the enum PixelFormat definition in @file{libavutil/pixfmt.h}),
  1720. this example corresponds to:
  1721. @example
  1722. buffer=320:240:6:1:24:1:1
  1723. @end example
  1724. @section color
  1725. Provide an uniformly colored input.
  1726. It accepts the following parameters:
  1727. @var{color}:@var{frame_size}:@var{frame_rate}
  1728. Follows the description of the accepted parameters.
  1729. @table @option
  1730. @item color
  1731. Specify the color of the source. It can be the name of a color (case
  1732. insensitive match) or a 0xRRGGBB[AA] sequence, possibly followed by an
  1733. alpha specifier. The default value is "black".
  1734. @item frame_size
  1735. Specify the size of the sourced video, it may be a string of the form
  1736. @var{width}x@var{height}, or the name of a size abbreviation. The
  1737. default value is "320x240".
  1738. @item frame_rate
  1739. Specify the frame rate of the sourced video, as the number of frames
  1740. generated per second. It has to be a string in the format
  1741. @var{frame_rate_num}/@var{frame_rate_den}, an integer number, a float
  1742. number or a valid video frame rate abbreviation. The default value is
  1743. "25".
  1744. @end table
  1745. For example the following graph description will generate a red source
  1746. with an opacity of 0.2, with size "qcif" and a frame rate of 10
  1747. frames per second, which will be overlayed over the source connected
  1748. to the pad with identifier "in".
  1749. @example
  1750. "color=red@@0.2:qcif:10 [color]; [in][color] overlay [out]"
  1751. @end example
  1752. @section movie
  1753. Read a video stream from a movie container.
  1754. It accepts the syntax: @var{movie_name}[:@var{options}] where
  1755. @var{movie_name} is the name of the resource to read (not necessarily
  1756. a file but also a device or a stream accessed through some protocol),
  1757. and @var{options} is an optional sequence of @var{key}=@var{value}
  1758. pairs, separated by ":".
  1759. The description of the accepted options follows.
  1760. @table @option
  1761. @item format_name, f
  1762. Specifies the format assumed for the movie to read, and can be either
  1763. the name of a container or an input device. If not specified the
  1764. format is guessed from @var{movie_name} or by probing.
  1765. @item seek_point, sp
  1766. Specifies the seek point in seconds, the frames will be output
  1767. starting from this seek point, the parameter is evaluated with
  1768. @code{av_strtod} so the numerical value may be suffixed by an IS
  1769. postfix. Default value is "0".
  1770. @item stream_index, si
  1771. Specifies the index of the video stream to read. If the value is -1,
  1772. the best suited video stream will be automatically selected. Default
  1773. value is "-1".
  1774. @end table
  1775. This filter allows to overlay a second video on top of main input of
  1776. a filtergraph as shown in this graph:
  1777. @example
  1778. input -----------> deltapts0 --> overlay --> output
  1779. ^
  1780. |
  1781. movie --> scale--> deltapts1 -------+
  1782. @end example
  1783. Some examples follow:
  1784. @example
  1785. # skip 3.2 seconds from the start of the avi file in.avi, and overlay it
  1786. # on top of the input labelled as "in".
  1787. movie=in.avi:seek_point=3.2, scale=180:-1, setpts=PTS-STARTPTS [movie];
  1788. [in] setpts=PTS-STARTPTS, [movie] overlay=16:16 [out]
  1789. # read from a video4linux2 device, and overlay it on top of the input
  1790. # labelled as "in"
  1791. movie=/dev/video0:f=video4linux2, scale=180:-1, setpts=PTS-STARTPTS [movie];
  1792. [in] setpts=PTS-STARTPTS, [movie] overlay=16:16 [out]
  1793. @end example
  1794. @section mptestsrc
  1795. Generate various test patterns, as generated by the MPlayer test filter.
  1796. The size of the generated video is fixed, and is 256x256.
  1797. This source is useful in particular for testing encoding features.
  1798. This source accepts an optional sequence of @var{key}=@var{value} pairs,
  1799. separated by ":". The description of the accepted options follows.
  1800. @table @option
  1801. @item rate, r
  1802. Specify the frame rate of the sourced video, as the number of frames
  1803. generated per second. It has to be a string in the format
  1804. @var{frame_rate_num}/@var{frame_rate_den}, an integer number, a float
  1805. number or a valid video frame rate abbreviation. The default value is
  1806. "25".
  1807. @item duration, d
  1808. Set the video duration of the sourced video. The accepted syntax is:
  1809. @example
  1810. [-]HH[:MM[:SS[.m...]]]
  1811. [-]S+[.m...]
  1812. @end example
  1813. See also the function @code{av_parse_time()}.
  1814. If not specified, or the expressed duration is negative, the video is
  1815. supposed to be generated forever.
  1816. @item test, t
  1817. Set the number or the name of the test to perform. Supported tests are:
  1818. @table @option
  1819. @item dc_luma
  1820. @item dc_chroma
  1821. @item freq_luma
  1822. @item freq_chroma
  1823. @item amp_luma
  1824. @item amp_chroma
  1825. @item cbp
  1826. @item mv
  1827. @item ring1
  1828. @item ring2
  1829. @item all
  1830. @end table
  1831. Default value is "all", which will cycle through the list of all tests.
  1832. @end table
  1833. For example the following:
  1834. @example
  1835. testsrc=t=dc_luma
  1836. @end example
  1837. will generate a "dc_luma" test pattern.
  1838. @section nullsrc
  1839. Null video source, never return images. It is mainly useful as a
  1840. template and to be employed in analysis / debugging tools.
  1841. It accepts as optional parameter a string of the form
  1842. @var{width}:@var{height}:@var{timebase}.
  1843. @var{width} and @var{height} specify the size of the configured
  1844. source. The default values of @var{width} and @var{height} are
  1845. respectively 352 and 288 (corresponding to the CIF size format).
  1846. @var{timebase} specifies an arithmetic expression representing a
  1847. timebase. The expression can contain the constant
  1848. "AVTB" (the default timebase), and defaults to the value "AVTB".
  1849. @section frei0r_src
  1850. Provide a frei0r source.
  1851. To enable compilation of this filter you need to install the frei0r
  1852. header and configure FFmpeg with --enable-frei0r.
  1853. The source supports the syntax:
  1854. @example
  1855. @var{size}:@var{rate}:@var{src_name}[@{=|:@}@var{param1}:@var{param2}:...:@var{paramN}]
  1856. @end example
  1857. @var{size} is the size of the video to generate, may be a string of the
  1858. form @var{width}x@var{height} or a frame size abbreviation.
  1859. @var{rate} is the rate of the video to generate, may be a string of
  1860. the form @var{num}/@var{den} or a frame rate abbreviation.
  1861. @var{src_name} is the name to the frei0r source to load. For more
  1862. information regarding frei0r and how to set the parameters read the
  1863. section @ref{frei0r} in the description of the video filters.
  1864. Some examples follow:
  1865. @example
  1866. # generate a frei0r partik0l source with size 200x200 and framerate 10
  1867. # which is overlayed on the overlay filter main input
  1868. frei0r_src=200x200:10:partik0l=1234 [overlay]; [in][overlay] overlay
  1869. @end example
  1870. @section rgbtestsrc, testsrc
  1871. The @code{rgbtestsrc} source generates an RGB test pattern useful for
  1872. detecting RGB vs BGR issues. You should see a red, green and blue
  1873. stripe from top to bottom.
  1874. The @code{testsrc} source generates a test video pattern, showing a
  1875. color pattern, a scrolling gradient and a timestamp. This is mainly
  1876. intended for testing purposes.
  1877. Both sources accept an optional sequence of @var{key}=@var{value} pairs,
  1878. separated by ":". The description of the accepted options follows.
  1879. @table @option
  1880. @item size, s
  1881. Specify the size of the sourced video, it may be a string of the form
  1882. @var{width}x@var{heigth}, or the name of a size abbreviation. The
  1883. default value is "320x240".
  1884. @item rate, r
  1885. Specify the frame rate of the sourced video, as the number of frames
  1886. generated per second. It has to be a string in the format
  1887. @var{frame_rate_num}/@var{frame_rate_den}, an integer number, a float
  1888. number or a valid video frame rate abbreviation. The default value is
  1889. "25".
  1890. @item sar
  1891. Set the sample aspect ratio of the sourced video.
  1892. @item duration
  1893. Set the video duration of the sourced video. The accepted syntax is:
  1894. @example
  1895. [-]HH[:MM[:SS[.m...]]]
  1896. [-]S+[.m...]
  1897. @end example
  1898. See also the function @code{av_parse_time()}.
  1899. If not specified, or the expressed duration is negative, the video is
  1900. supposed to be generated forever.
  1901. @end table
  1902. For example the following:
  1903. @example
  1904. testsrc=duration=5.3:size=qcif:rate=10
  1905. @end example
  1906. will generate a video with a duration of 5.3 seconds, with size
  1907. 176x144 and a framerate of 10 frames per second.
  1908. @c man end VIDEO SOURCES
  1909. @chapter Video Sinks
  1910. @c man begin VIDEO SINKS
  1911. Below is a description of the currently available video sinks.
  1912. @section buffersink
  1913. Buffer video frames, and make them available to the end of the filter
  1914. graph.
  1915. This sink is mainly intended for a programmatic use, in particular
  1916. through the interface defined in @file{libavfilter/buffersink.h}.
  1917. It does not require a string parameter in input, but you need to
  1918. specify a pointer to a list of supported pixel formats terminated by
  1919. -1 in the opaque parameter provided to @code{avfilter_init_filter}
  1920. when initializing this sink.
  1921. @section nullsink
  1922. Null video sink, do absolutely nothing with the input video. It is
  1923. mainly useful as a template and to be employed in analysis / debugging
  1924. tools.
  1925. @c man end VIDEO SINKS