You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

4130 lines
117KB

  1. @chapter Filtering Introduction
  2. @c man begin FILTERING INTRODUCTION
  3. Filtering in FFmpeg is enabled through the libavfilter library.
  4. Libavfilter is the filtering API of FFmpeg. It is the substitute of
  5. the now deprecated 'vhooks' and started as a Google Summer of Code
  6. project.
  7. Audio filtering integration into the main FFmpeg repository is a work in
  8. progress, so audio API and ABI should not be considered stable yet.
  9. In libavfilter, it is possible for filters to have multiple inputs and
  10. multiple outputs.
  11. To illustrate the sorts of things that are possible, we can
  12. use a complex filter graph. For example, the following one:
  13. @example
  14. input --> split --> fifo -----------------------> overlay --> output
  15. | ^
  16. | |
  17. +------> fifo --> crop --> vflip --------+
  18. @end example
  19. splits the stream in two streams, sends one stream through the crop filter
  20. and the vflip filter before merging it back with the other stream by
  21. overlaying it on top. You can use the following command to achieve this:
  22. @example
  23. ffmpeg -i input -vf "[in] split [T1], fifo, [T2] overlay=0:H/2 [out]; [T1] fifo, crop=iw:ih/2:0:ih/2, vflip [T2]" output
  24. @end example
  25. The result will be that in output the top half of the video is mirrored
  26. onto the bottom half.
  27. Filters are loaded using the @var{-vf} or @var{-af} option passed to
  28. @command{ffmpeg} or to @command{ffplay}. Filters in the same linear
  29. chain are separated by commas. In our example, @var{split, fifo,
  30. overlay} are in one linear chain, and @var{fifo, crop, vflip} are in
  31. another. The points where the linear chains join are labeled by names
  32. enclosed in square brackets. In our example, that is @var{[T1]} and
  33. @var{[T2]}. The special labels @var{[in]} and @var{[out]} are the points
  34. where video is input and output.
  35. Some filters take in input a list of parameters: they are specified
  36. after the filter name and an equal sign, and are separated from each other
  37. by a colon.
  38. There exist so-called @var{source filters} that do not have an
  39. audio/video input, and @var{sink filters} that will not have audio/video
  40. output.
  41. @c man end FILTERING INTRODUCTION
  42. @chapter graph2dot
  43. @c man begin GRAPH2DOT
  44. The @file{graph2dot} program included in the FFmpeg @file{tools}
  45. directory can be used to parse a filter graph description and issue a
  46. corresponding textual representation in the dot language.
  47. Invoke the command:
  48. @example
  49. graph2dot -h
  50. @end example
  51. to see how to use @file{graph2dot}.
  52. You can then pass the dot description to the @file{dot} program (from
  53. the graphviz suite of programs) and obtain a graphical representation
  54. of the filter graph.
  55. For example the sequence of commands:
  56. @example
  57. echo @var{GRAPH_DESCRIPTION} | \
  58. tools/graph2dot -o graph.tmp && \
  59. dot -Tpng graph.tmp -o graph.png && \
  60. display graph.png
  61. @end example
  62. can be used to create and display an image representing the graph
  63. described by the @var{GRAPH_DESCRIPTION} string.
  64. @c man end GRAPH2DOT
  65. @chapter Filtergraph description
  66. @c man begin FILTERGRAPH DESCRIPTION
  67. A filtergraph is a directed graph of connected filters. It can contain
  68. cycles, and there can be multiple links between a pair of
  69. filters. Each link has one input pad on one side connecting it to one
  70. filter from which it takes its input, and one output pad on the other
  71. side connecting it to the one filter accepting its output.
  72. Each filter in a filtergraph is an instance of a filter class
  73. registered in the application, which defines the features and the
  74. number of input and output pads of the filter.
  75. A filter with no input pads is called a "source", a filter with no
  76. output pads is called a "sink".
  77. @anchor{Filtergraph syntax}
  78. @section Filtergraph syntax
  79. A filtergraph can be represented using a textual representation, which is
  80. recognized by the @option{-filter}/@option{-vf} and @option{-filter_complex}
  81. options in @command{ffmpeg} and @option{-vf} in @command{ffplay}, and by the
  82. @code{avfilter_graph_parse()}/@code{avfilter_graph_parse2()} function defined in
  83. @file{libavfilter/avfiltergraph.h}.
  84. A filterchain consists of a sequence of connected filters, each one
  85. connected to the previous one in the sequence. A filterchain is
  86. represented by a list of ","-separated filter descriptions.
  87. A filtergraph consists of a sequence of filterchains. A sequence of
  88. filterchains is represented by a list of ";"-separated filterchain
  89. descriptions.
  90. A filter is represented by a string of the form:
  91. [@var{in_link_1}]...[@var{in_link_N}]@var{filter_name}=@var{arguments}[@var{out_link_1}]...[@var{out_link_M}]
  92. @var{filter_name} is the name of the filter class of which the
  93. described filter is an instance of, and has to be the name of one of
  94. the filter classes registered in the program.
  95. The name of the filter class is optionally followed by a string
  96. "=@var{arguments}".
  97. @var{arguments} is a string which contains the parameters used to
  98. initialize the filter instance, and are described in the filter
  99. descriptions below.
  100. The list of arguments can be quoted using the character "'" as initial
  101. and ending mark, and the character '\' for escaping the characters
  102. within the quoted text; otherwise the argument string is considered
  103. terminated when the next special character (belonging to the set
  104. "[]=;,") is encountered.
  105. The name and arguments of the filter are optionally preceded and
  106. followed by a list of link labels.
  107. A link label allows to name a link and associate it to a filter output
  108. or input pad. The preceding labels @var{in_link_1}
  109. ... @var{in_link_N}, are associated to the filter input pads,
  110. the following labels @var{out_link_1} ... @var{out_link_M}, are
  111. associated to the output pads.
  112. When two link labels with the same name are found in the
  113. filtergraph, a link between the corresponding input and output pad is
  114. created.
  115. If an output pad is not labelled, it is linked by default to the first
  116. unlabelled input pad of the next filter in the filterchain.
  117. For example in the filterchain:
  118. @example
  119. nullsrc, split[L1], [L2]overlay, nullsink
  120. @end example
  121. the split filter instance has two output pads, and the overlay filter
  122. instance two input pads. The first output pad of split is labelled
  123. "L1", the first input pad of overlay is labelled "L2", and the second
  124. output pad of split is linked to the second input pad of overlay,
  125. which are both unlabelled.
  126. In a complete filterchain all the unlabelled filter input and output
  127. pads must be connected. A filtergraph is considered valid if all the
  128. filter input and output pads of all the filterchains are connected.
  129. Libavfilter will automatically insert scale filters where format
  130. conversion is required. It is possible to specify swscale flags
  131. for those automatically inserted scalers by prepending
  132. @code{sws_flags=@var{flags};}
  133. to the filtergraph description.
  134. Follows a BNF description for the filtergraph syntax:
  135. @example
  136. @var{NAME} ::= sequence of alphanumeric characters and '_'
  137. @var{LINKLABEL} ::= "[" @var{NAME} "]"
  138. @var{LINKLABELS} ::= @var{LINKLABEL} [@var{LINKLABELS}]
  139. @var{FILTER_ARGUMENTS} ::= sequence of chars (eventually quoted)
  140. @var{FILTER} ::= [@var{LINKNAMES}] @var{NAME} ["=" @var{ARGUMENTS}] [@var{LINKNAMES}]
  141. @var{FILTERCHAIN} ::= @var{FILTER} [,@var{FILTERCHAIN}]
  142. @var{FILTERGRAPH} ::= [sws_flags=@var{flags};] @var{FILTERCHAIN} [;@var{FILTERGRAPH}]
  143. @end example
  144. @c man end FILTERGRAPH DESCRIPTION
  145. @chapter Audio Filters
  146. @c man begin AUDIO FILTERS
  147. When you configure your FFmpeg build, you can disable any of the
  148. existing filters using @code{--disable-filters}.
  149. The configure output will show the audio filters included in your
  150. build.
  151. Below is a description of the currently available audio filters.
  152. @section aconvert
  153. Convert the input audio format to the specified formats.
  154. The filter accepts a string of the form:
  155. "@var{sample_format}:@var{channel_layout}".
  156. @var{sample_format} specifies the sample format, and can be a string or the
  157. corresponding numeric value defined in @file{libavutil/samplefmt.h}. Use 'p'
  158. suffix for a planar sample format.
  159. @var{channel_layout} specifies the channel layout, and can be a string
  160. or the corresponding number value defined in @file{libavutil/audioconvert.h}.
  161. The special parameter "auto", signifies that the filter will
  162. automatically select the output format depending on the output filter.
  163. Some examples follow.
  164. @itemize
  165. @item
  166. Convert input to float, planar, stereo:
  167. @example
  168. aconvert=fltp:stereo
  169. @end example
  170. @item
  171. Convert input to unsigned 8-bit, automatically select out channel layout:
  172. @example
  173. aconvert=u8:auto
  174. @end example
  175. @end itemize
  176. @section aformat
  177. Convert the input audio to one of the specified formats. The framework will
  178. negotiate the most appropriate format to minimize conversions.
  179. The filter accepts the following named parameters:
  180. @table @option
  181. @item sample_fmts
  182. A comma-separated list of requested sample formats.
  183. @item sample_rates
  184. A comma-separated list of requested sample rates.
  185. @item channel_layouts
  186. A comma-separated list of requested channel layouts.
  187. @end table
  188. If a parameter is omitted, all values are allowed.
  189. For example to force the output to either unsigned 8-bit or signed 16-bit stereo:
  190. @example
  191. aformat=sample_fmts\=u8\,s16:channel_layouts\=stereo
  192. @end example
  193. @section amerge
  194. Merge two or more audio streams into a single multi-channel stream.
  195. The filter accepts the following named options:
  196. @table @option
  197. @item inputs
  198. Set the number of inputs. Default is 2.
  199. @end table
  200. If the channel layouts of the inputs are disjoint, and therefore compatible,
  201. the channel layout of the output will be set accordingly and the channels
  202. will be reordered as necessary. If the channel layouts of the inputs are not
  203. disjoint, the output will have all the channels of the first input then all
  204. the channels of the second input, in that order, and the channel layout of
  205. the output will be the default value corresponding to the total number of
  206. channels.
  207. For example, if the first input is in 2.1 (FL+FR+LF) and the second input
  208. is FC+BL+BR, then the output will be in 5.1, with the channels in the
  209. following order: a1, a2, b1, a3, b2, b3 (a1 is the first channel of the
  210. first input, b1 is the first channel of the second input).
  211. On the other hand, if both input are in stereo, the output channels will be
  212. in the default order: a1, a2, b1, b2, and the channel layout will be
  213. arbitrarily set to 4.0, which may or may not be the expected value.
  214. All inputs must have the same sample rate, and format.
  215. If inputs do not have the same duration, the output will stop with the
  216. shortest.
  217. Example: merge two mono files into a stereo stream:
  218. @example
  219. amovie=left.wav [l] ; amovie=right.mp3 [r] ; [l] [r] amerge
  220. @end example
  221. Example: multiple merges:
  222. @example
  223. ffmpeg -f lavfi -i "
  224. amovie=input.mkv:si=0 [a0];
  225. amovie=input.mkv:si=1 [a1];
  226. amovie=input.mkv:si=2 [a2];
  227. amovie=input.mkv:si=3 [a3];
  228. amovie=input.mkv:si=4 [a4];
  229. amovie=input.mkv:si=5 [a5];
  230. [a0][a1][a2][a3][a4][a5] amerge=inputs=6" -c:a pcm_s16le output.mkv
  231. @end example
  232. @section amix
  233. Mixes multiple audio inputs into a single output.
  234. For example
  235. @example
  236. ffmpeg -i INPUT1 -i INPUT2 -i INPUT3 -filter_complex amix=inputs=3:duration=first:dropout_transition=3 OUTPUT
  237. @end example
  238. will mix 3 input audio streams to a single output with the same duration as the
  239. first input and a dropout transition time of 3 seconds.
  240. The filter accepts the following named parameters:
  241. @table @option
  242. @item inputs
  243. Number of inputs. If unspecified, it defaults to 2.
  244. @item duration
  245. How to determine the end-of-stream.
  246. @table @option
  247. @item longest
  248. Duration of longest input. (default)
  249. @item shortest
  250. Duration of shortest input.
  251. @item first
  252. Duration of first input.
  253. @end table
  254. @item dropout_transition
  255. Transition time, in seconds, for volume renormalization when an input
  256. stream ends. The default value is 2 seconds.
  257. @end table
  258. @section anull
  259. Pass the audio source unchanged to the output.
  260. @section aresample
  261. Resample the input audio to the specified sample rate.
  262. The filter accepts exactly one parameter, the output sample rate. If not
  263. specified then the filter will automatically convert between its input
  264. and output sample rates.
  265. For example, to resample the input audio to 44100Hz:
  266. @example
  267. aresample=44100
  268. @end example
  269. @section asetnsamples
  270. Set the number of samples per each output audio frame.
  271. The last output packet may contain a different number of samples, as
  272. the filter will flush all the remaining samples when the input audio
  273. signal its end.
  274. The filter accepts parameters as a list of @var{key}=@var{value} pairs,
  275. separated by ":".
  276. @table @option
  277. @item nb_out_samples, n
  278. Set the number of frames per each output audio frame. The number is
  279. intended as the number of samples @emph{per each channel}.
  280. Default value is 1024.
  281. @item pad, p
  282. If set to 1, the filter will pad the last audio frame with zeroes, so
  283. that the last frame will contain the same number of samples as the
  284. previous ones. Default value is 1.
  285. @end table
  286. For example, to set the number of per-frame samples to 1234 and
  287. disable padding for the last frame, use:
  288. @example
  289. asetnsamples=n=1234:p=0
  290. @end example
  291. @section ashowinfo
  292. Show a line containing various information for each input audio frame.
  293. The input audio is not modified.
  294. The shown line contains a sequence of key/value pairs of the form
  295. @var{key}:@var{value}.
  296. A description of each shown parameter follows:
  297. @table @option
  298. @item n
  299. sequential number of the input frame, starting from 0
  300. @item pts
  301. presentation TimeStamp of the input frame, expressed as a number of
  302. time base units. The time base unit depends on the filter input pad, and
  303. is usually 1/@var{sample_rate}.
  304. @item pts_time
  305. presentation TimeStamp of the input frame, expressed as a number of
  306. seconds
  307. @item pos
  308. position of the frame in the input stream, -1 if this information in
  309. unavailable and/or meaningless (for example in case of synthetic audio)
  310. @item fmt
  311. sample format name
  312. @item chlayout
  313. channel layout description
  314. @item nb_samples
  315. number of samples (per each channel) contained in the filtered frame
  316. @item rate
  317. sample rate for the audio frame
  318. @item checksum
  319. Adler-32 checksum (printed in hexadecimal) of all the planes of the input frame
  320. @item plane_checksum
  321. Adler-32 checksum (printed in hexadecimal) for each input frame plane,
  322. expressed in the form "[@var{c0} @var{c1} @var{c2} @var{c3} @var{c4} @var{c5}
  323. @var{c6} @var{c7}]"
  324. @end table
  325. @section asplit
  326. Split input audio into several identical outputs.
  327. The filter accepts a single parameter which specifies the number of outputs. If
  328. unspecified, it defaults to 2.
  329. For example:
  330. @example
  331. [in] asplit [out0][out1]
  332. @end example
  333. will create two separate outputs from the same input.
  334. To create 3 or more outputs, you need to specify the number of
  335. outputs, like in:
  336. @example
  337. [in] asplit=3 [out0][out1][out2]
  338. @end example
  339. @example
  340. ffmpeg -i INPUT -filter_complex asplit=5 OUTPUT
  341. @end example
  342. will create 5 copies of the input audio.
  343. @section astreamsync
  344. Forward two audio streams and control the order the buffers are forwarded.
  345. The argument to the filter is an expression deciding which stream should be
  346. forwarded next: if the result is negative, the first stream is forwarded; if
  347. the result is positive or zero, the second stream is forwarded. It can use
  348. the following variables:
  349. @table @var
  350. @item b1 b2
  351. number of buffers forwarded so far on each stream
  352. @item s1 s2
  353. number of samples forwarded so far on each stream
  354. @item t1 t2
  355. current timestamp of each stream
  356. @end table
  357. The default value is @code{t1-t2}, which means to always forward the stream
  358. that has a smaller timestamp.
  359. Example: stress-test @code{amerge} by randomly sending buffers on the wrong
  360. input, while avoiding too much of a desynchronization:
  361. @example
  362. amovie=file.ogg [a] ; amovie=file.mp3 [b] ;
  363. [a] [b] astreamsync=(2*random(1))-1+tanh(5*(t1-t2)) [a2] [b2] ;
  364. [a2] [b2] amerge
  365. @end example
  366. @section atempo
  367. Adjust audio tempo.
  368. The filter accepts exactly one parameter, the audio tempo. If not
  369. specified then the filter will assume nominal 1.0 tempo. Tempo must
  370. be in the [0.5, 2.0] range.
  371. For example, to slow down audio to 80% tempo:
  372. @example
  373. atempo=0.8
  374. @end example
  375. For example, to speed up audio to 125% tempo:
  376. @example
  377. atempo=1.25
  378. @end example
  379. @section earwax
  380. Make audio easier to listen to on headphones.
  381. This filter adds `cues' to 44.1kHz stereo (i.e. audio CD format) audio
  382. so that when listened to on headphones the stereo image is moved from
  383. inside your head (standard for headphones) to outside and in front of
  384. the listener (standard for speakers).
  385. Ported from SoX.
  386. @section pan
  387. Mix channels with specific gain levels. The filter accepts the output
  388. channel layout followed by a set of channels definitions.
  389. This filter is also designed to remap efficiently the channels of an audio
  390. stream.
  391. The filter accepts parameters of the form:
  392. "@var{l}:@var{outdef}:@var{outdef}:..."
  393. @table @option
  394. @item l
  395. output channel layout or number of channels
  396. @item outdef
  397. output channel specification, of the form:
  398. "@var{out_name}=[@var{gain}*]@var{in_name}[+[@var{gain}*]@var{in_name}...]"
  399. @item out_name
  400. output channel to define, either a channel name (FL, FR, etc.) or a channel
  401. number (c0, c1, etc.)
  402. @item gain
  403. multiplicative coefficient for the channel, 1 leaving the volume unchanged
  404. @item in_name
  405. input channel to use, see out_name for details; it is not possible to mix
  406. named and numbered input channels
  407. @end table
  408. If the `=' in a channel specification is replaced by `<', then the gains for
  409. that specification will be renormalized so that the total is 1, thus
  410. avoiding clipping noise.
  411. @subsection Mixing examples
  412. For example, if you want to down-mix from stereo to mono, but with a bigger
  413. factor for the left channel:
  414. @example
  415. pan=1:c0=0.9*c0+0.1*c1
  416. @end example
  417. A customized down-mix to stereo that works automatically for 3-, 4-, 5- and
  418. 7-channels surround:
  419. @example
  420. pan=stereo: FL < FL + 0.5*FC + 0.6*BL + 0.6*SL : FR < FR + 0.5*FC + 0.6*BR + 0.6*SR
  421. @end example
  422. Note that @command{ffmpeg} integrates a default down-mix (and up-mix) system
  423. that should be preferred (see "-ac" option) unless you have very specific
  424. needs.
  425. @subsection Remapping examples
  426. The channel remapping will be effective if, and only if:
  427. @itemize
  428. @item gain coefficients are zeroes or ones,
  429. @item only one input per channel output,
  430. @end itemize
  431. If all these conditions are satisfied, the filter will notify the user ("Pure
  432. channel mapping detected"), and use an optimized and lossless method to do the
  433. remapping.
  434. For example, if you have a 5.1 source and want a stereo audio stream by
  435. dropping the extra channels:
  436. @example
  437. pan="stereo: c0=FL : c1=FR"
  438. @end example
  439. Given the same source, you can also switch front left and front right channels
  440. and keep the input channel layout:
  441. @example
  442. pan="5.1: c0=c1 : c1=c0 : c2=c2 : c3=c3 : c4=c4 : c5=c5"
  443. @end example
  444. If the input is a stereo audio stream, you can mute the front left channel (and
  445. still keep the stereo channel layout) with:
  446. @example
  447. pan="stereo:c1=c1"
  448. @end example
  449. Still with a stereo audio stream input, you can copy the right channel in both
  450. front left and right:
  451. @example
  452. pan="stereo: c0=FR : c1=FR"
  453. @end example
  454. @section silencedetect
  455. Detect silence in an audio stream.
  456. This filter logs a message when it detects that the input audio volume is less
  457. or equal to a noise tolerance value for a duration greater or equal to the
  458. minimum detected noise duration.
  459. The printed times and duration are expressed in seconds.
  460. @table @option
  461. @item duration, d
  462. Set silence duration until notification (default is 2 seconds).
  463. @item noise, n
  464. Set noise tolerance. Can be specified in dB (in case "dB" is appended to the
  465. specified value) or amplitude ratio. Default is -60dB, or 0.001.
  466. @end table
  467. Detect 5 seconds of silence with -50dB noise tolerance:
  468. @example
  469. silencedetect=n=-50dB:d=5
  470. @end example
  471. Complete example with @command{ffmpeg} to detect silence with 0.0001 noise
  472. tolerance in @file{silence.mp3}:
  473. @example
  474. ffmpeg -f lavfi -i amovie=silence.mp3,silencedetect=noise=0.0001 -f null -
  475. @end example
  476. @section volume
  477. Adjust the input audio volume.
  478. The filter accepts exactly one parameter @var{vol}, which expresses
  479. how the audio volume will be increased or decreased.
  480. Output values are clipped to the maximum value.
  481. If @var{vol} is expressed as a decimal number, the output audio
  482. volume is given by the relation:
  483. @example
  484. @var{output_volume} = @var{vol} * @var{input_volume}
  485. @end example
  486. If @var{vol} is expressed as a decimal number followed by the string
  487. "dB", the value represents the requested change in decibels of the
  488. input audio power, and the output audio volume is given by the
  489. relation:
  490. @example
  491. @var{output_volume} = 10^(@var{vol}/20) * @var{input_volume}
  492. @end example
  493. Otherwise @var{vol} is considered an expression and its evaluated
  494. value is used for computing the output audio volume according to the
  495. first relation.
  496. Default value for @var{vol} is 1.0.
  497. @subsection Examples
  498. @itemize
  499. @item
  500. Half the input audio volume:
  501. @example
  502. volume=0.5
  503. @end example
  504. The above example is equivalent to:
  505. @example
  506. volume=1/2
  507. @end example
  508. @item
  509. Decrease input audio power by 12 decibels:
  510. @example
  511. volume=-12dB
  512. @end example
  513. @end itemize
  514. @section asyncts
  515. Synchronize audio data with timestamps by squeezing/stretching it and/or
  516. dropping samples/adding silence when needed.
  517. The filter accepts the following named parameters:
  518. @table @option
  519. @item compensate
  520. Enable stretching/squeezing the data to make it match the timestamps.
  521. @item min_delta
  522. Minimum difference between timestamps and audio data (in seconds) to trigger
  523. adding/dropping samples.
  524. @item max_comp
  525. Maximum compensation in samples per second.
  526. @end table
  527. @section channelsplit
  528. Split each channel in input audio stream into a separate output stream.
  529. This filter accepts the following named parameters:
  530. @table @option
  531. @item channel_layout
  532. Channel layout of the input stream. Default is "stereo".
  533. @end table
  534. For example, assuming a stereo input MP3 file
  535. @example
  536. ffmpeg -i in.mp3 -filter_complex channelsplit out.mkv
  537. @end example
  538. will create an output Matroska file with two audio streams, one containing only
  539. the left channel and the other the right channel.
  540. To split a 5.1 WAV file into per-channel files
  541. @example
  542. ffmpeg -i in.wav -filter_complex
  543. 'channelsplit=channel_layout=5.1[FL][FR][FC][LFE][SL][SR]'
  544. -map '[FL]' front_left.wav -map '[FR]' front_right.wav -map '[FC]'
  545. front_center.wav -map '[LFE]' lfe.wav -map '[SL]' side_left.wav -map '[SR]'
  546. side_right.wav
  547. @end example
  548. @section channelmap
  549. Remap input channels to new locations.
  550. This filter accepts the following named parameters:
  551. @table @option
  552. @item channel_layout
  553. Channel layout of the output stream.
  554. @item map
  555. Map channels from input to output. The argument is a comma-separated list of
  556. mappings, each in the @code{@var{in_channel}-@var{out_channel}} or
  557. @var{in_channel} form. @var{in_channel} can be either the name of the input
  558. channel (e.g. FL for front left) or its index in the input channel layout.
  559. @var{out_channel} is the name of the output channel or its index in the output
  560. channel layout. If @var{out_channel} is not given then it is implicitly an
  561. index, starting with zero and increasing by one for each mapping.
  562. @end table
  563. If no mapping is present, the filter will implicitly map input channels to
  564. output channels preserving index.
  565. For example, assuming a 5.1+downmix input MOV file
  566. @example
  567. ffmpeg -i in.mov -filter 'channelmap=map=DL-FL\,DR-FR' out.wav
  568. @end example
  569. will create an output WAV file tagged as stereo from the downmix channels of
  570. the input.
  571. To fix a 5.1 WAV improperly encoded in AAC's native channel order
  572. @example
  573. ffmpeg -i in.wav -filter 'channelmap=1\,2\,0\,5\,3\,4:channel_layout=5.1' out.wav
  574. @end example
  575. @section join
  576. Join multiple input streams into one multi-channel stream.
  577. The filter accepts the following named parameters:
  578. @table @option
  579. @item inputs
  580. Number of input streams. Defaults to 2.
  581. @item channel_layout
  582. Desired output channel layout. Defaults to stereo.
  583. @item map
  584. Map channels from inputs to output. The argument is a comma-separated list of
  585. mappings, each in the @code{@var{input_idx}.@var{in_channel}-@var{out_channel}}
  586. form. @var{input_idx} is the 0-based index of the input stream. @var{in_channel}
  587. can be either the name of the input channel (e.g. FL for front left) or its
  588. index in the specified input stream. @var{out_channel} is the name of the output
  589. channel.
  590. @end table
  591. The filter will attempt to guess the mappings when those are not specified
  592. explicitly. It does so by first trying to find an unused matching input channel
  593. and if that fails it picks the first unused input channel.
  594. E.g. to join 3 inputs (with properly set channel layouts)
  595. @example
  596. ffmpeg -i INPUT1 -i INPUT2 -i INPUT3 -filter_complex join=inputs=3 OUTPUT
  597. @end example
  598. To build a 5.1 output from 6 single-channel streams:
  599. @example
  600. ffmpeg -i fl -i fr -i fc -i sl -i sr -i lfe -filter_complex
  601. 'join=inputs=6:channel_layout=5.1:map=0.0-FL\,1.0-FR\,2.0-FC\,3.0-SL\,4.0-SR\,5.0-LFE'
  602. out
  603. @end example
  604. @section resample
  605. Convert the audio sample format, sample rate and channel layout. This filter is
  606. not meant to be used directly.
  607. @c man end AUDIO FILTERS
  608. @chapter Audio Sources
  609. @c man begin AUDIO SOURCES
  610. Below is a description of the currently available audio sources.
  611. @section abuffer
  612. Buffer audio frames, and make them available to the filter chain.
  613. This source is mainly intended for a programmatic use, in particular
  614. through the interface defined in @file{libavfilter/asrc_abuffer.h}.
  615. It accepts the following mandatory parameters:
  616. @var{sample_rate}:@var{sample_fmt}:@var{channel_layout}
  617. @table @option
  618. @item sample_rate
  619. The sample rate of the incoming audio buffers.
  620. @item sample_fmt
  621. The sample format of the incoming audio buffers.
  622. Either a sample format name or its corresponging integer representation from
  623. the enum AVSampleFormat in @file{libavutil/samplefmt.h}
  624. @item channel_layout
  625. The channel layout of the incoming audio buffers.
  626. Either a channel layout name from channel_layout_map in
  627. @file{libavutil/audioconvert.c} or its corresponding integer representation
  628. from the AV_CH_LAYOUT_* macros in @file{libavutil/audioconvert.h}
  629. @end table
  630. For example:
  631. @example
  632. abuffer=44100:s16p:stereo
  633. @end example
  634. will instruct the source to accept planar 16bit signed stereo at 44100Hz.
  635. Since the sample format with name "s16p" corresponds to the number
  636. 6 and the "stereo" channel layout corresponds to the value 0x3, this is
  637. equivalent to:
  638. @example
  639. abuffer=44100:6:0x3
  640. @end example
  641. @section aevalsrc
  642. Generate an audio signal specified by an expression.
  643. This source accepts in input one or more expressions (one for each
  644. channel), which are evaluated and used to generate a corresponding
  645. audio signal.
  646. It accepts the syntax: @var{exprs}[::@var{options}].
  647. @var{exprs} is a list of expressions separated by ":", one for each
  648. separate channel. In case the @var{channel_layout} is not
  649. specified, the selected channel layout depends on the number of
  650. provided expressions.
  651. @var{options} is an optional sequence of @var{key}=@var{value} pairs,
  652. separated by ":".
  653. The description of the accepted options follows.
  654. @table @option
  655. @item channel_layout, c
  656. Set the channel layout. The number of channels in the specified layout
  657. must be equal to the number of specified expressions.
  658. @item duration, d
  659. Set the minimum duration of the sourced audio. See the function
  660. @code{av_parse_time()} for the accepted format.
  661. Note that the resulting duration may be greater than the specified
  662. duration, as the generated audio is always cut at the end of a
  663. complete frame.
  664. If not specified, or the expressed duration is negative, the audio is
  665. supposed to be generated forever.
  666. @item nb_samples, n
  667. Set the number of samples per channel per each output frame,
  668. default to 1024.
  669. @item sample_rate, s
  670. Specify the sample rate, default to 44100.
  671. @end table
  672. Each expression in @var{exprs} can contain the following constants:
  673. @table @option
  674. @item n
  675. number of the evaluated sample, starting from 0
  676. @item t
  677. time of the evaluated sample expressed in seconds, starting from 0
  678. @item s
  679. sample rate
  680. @end table
  681. @subsection Examples
  682. @itemize
  683. @item
  684. Generate silence:
  685. @example
  686. aevalsrc=0
  687. @end example
  688. @item
  689. Generate a sin signal with frequency of 440 Hz, set sample rate to
  690. 8000 Hz:
  691. @example
  692. aevalsrc="sin(440*2*PI*t)::s=8000"
  693. @end example
  694. @item
  695. Generate a two channels signal, specify the channel layout (Front
  696. Center + Back Center) explicitly:
  697. @example
  698. aevalsrc="sin(420*2*PI*t):cos(430*2*PI*t)::c=FC|BC"
  699. @end example
  700. @item
  701. Generate white noise:
  702. @example
  703. aevalsrc="-2+random(0)"
  704. @end example
  705. @item
  706. Generate an amplitude modulated signal:
  707. @example
  708. aevalsrc="sin(10*2*PI*t)*sin(880*2*PI*t)"
  709. @end example
  710. @item
  711. Generate 2.5 Hz binaural beats on a 360 Hz carrier:
  712. @example
  713. aevalsrc="0.1*sin(2*PI*(360-2.5/2)*t) : 0.1*sin(2*PI*(360+2.5/2)*t)"
  714. @end example
  715. @end itemize
  716. @section amovie
  717. Read an audio stream from a movie container.
  718. It accepts the syntax: @var{movie_name}[:@var{options}] where
  719. @var{movie_name} is the name of the resource to read (not necessarily
  720. a file but also a device or a stream accessed through some protocol),
  721. and @var{options} is an optional sequence of @var{key}=@var{value}
  722. pairs, separated by ":".
  723. The description of the accepted options follows.
  724. @table @option
  725. @item format_name, f
  726. Specify the format assumed for the movie to read, and can be either
  727. the name of a container or an input device. If not specified the
  728. format is guessed from @var{movie_name} or by probing.
  729. @item seek_point, sp
  730. Specify the seek point in seconds, the frames will be output
  731. starting from this seek point, the parameter is evaluated with
  732. @code{av_strtod} so the numerical value may be suffixed by an IS
  733. postfix. Default value is "0".
  734. @item stream_index, si
  735. Specify the index of the audio stream to read. If the value is -1,
  736. the best suited audio stream will be automatically selected. Default
  737. value is "-1".
  738. @end table
  739. @section anullsrc
  740. Null audio source, return unprocessed audio frames. It is mainly useful
  741. as a template and to be employed in analysis / debugging tools, or as
  742. the source for filters which ignore the input data (for example the sox
  743. synth filter).
  744. It accepts an optional sequence of @var{key}=@var{value} pairs,
  745. separated by ":".
  746. The description of the accepted options follows.
  747. @table @option
  748. @item sample_rate, s
  749. Specify the sample rate, and defaults to 44100.
  750. @item channel_layout, cl
  751. Specify the channel layout, and can be either an integer or a string
  752. representing a channel layout. The default value of @var{channel_layout}
  753. is "stereo".
  754. Check the channel_layout_map definition in
  755. @file{libavcodec/audioconvert.c} for the mapping between strings and
  756. channel layout values.
  757. @item nb_samples, n
  758. Set the number of samples per requested frames.
  759. @end table
  760. Follow some examples:
  761. @example
  762. # set the sample rate to 48000 Hz and the channel layout to AV_CH_LAYOUT_MONO.
  763. anullsrc=r=48000:cl=4
  764. # same as
  765. anullsrc=r=48000:cl=mono
  766. @end example
  767. @section abuffer
  768. Buffer audio frames, and make them available to the filter chain.
  769. This source is not intended to be part of user-supplied graph descriptions but
  770. for insertion by calling programs through the interface defined in
  771. @file{libavfilter/buffersrc.h}.
  772. It accepts the following named parameters:
  773. @table @option
  774. @item time_base
  775. Timebase which will be used for timestamps of submitted frames. It must be
  776. either a floating-point number or in @var{numerator}/@var{denominator} form.
  777. @item sample_rate
  778. Audio sample rate.
  779. @item sample_fmt
  780. Name of the sample format, as returned by @code{av_get_sample_fmt_name()}.
  781. @item channel_layout
  782. Channel layout of the audio data, in the form that can be accepted by
  783. @code{av_get_channel_layout()}.
  784. @end table
  785. All the parameters need to be explicitly defined.
  786. @c man end AUDIO SOURCES
  787. @chapter Audio Sinks
  788. @c man begin AUDIO SINKS
  789. Below is a description of the currently available audio sinks.
  790. @section abuffersink
  791. Buffer audio frames, and make them available to the end of filter chain.
  792. This sink is mainly intended for programmatic use, in particular
  793. through the interface defined in @file{libavfilter/buffersink.h}.
  794. It requires a pointer to an AVABufferSinkContext structure, which
  795. defines the incoming buffers' formats, to be passed as the opaque
  796. parameter to @code{avfilter_init_filter} for initialization.
  797. @section anullsink
  798. Null audio sink, do absolutely nothing with the input audio. It is
  799. mainly useful as a template and to be employed in analysis / debugging
  800. tools.
  801. @section abuffersink
  802. This sink is intended for programmatic use. Frames that arrive on this sink can
  803. be retrieved by the calling program using the interface defined in
  804. @file{libavfilter/buffersink.h}.
  805. This filter accepts no parameters.
  806. @c man end AUDIO SINKS
  807. @chapter Video Filters
  808. @c man begin VIDEO FILTERS
  809. When you configure your FFmpeg build, you can disable any of the
  810. existing filters using @code{--disable-filters}.
  811. The configure output will show the video filters included in your
  812. build.
  813. Below is a description of the currently available video filters.
  814. @section alphaextract
  815. Extract the alpha component from the input as a grayscale video. This
  816. is especially useful with the @var{alphamerge} filter.
  817. @section alphamerge
  818. Add or replace the alpha component of the primary input with the
  819. grayscale value of a second input. This is intended for use with
  820. @var{alphaextract} to allow the transmission or storage of frame
  821. sequences that have alpha in a format that doesn't support an alpha
  822. channel.
  823. For example, to reconstruct full frames from a normal YUV-encoded video
  824. and a separate video created with @var{alphaextract}, you might use:
  825. @example
  826. movie=in_alpha.mkv [alpha]; [in][alpha] alphamerge [out]
  827. @end example
  828. Since this filter is designed for reconstruction, it operates on frame
  829. sequences without considering timestamps, and terminates when either
  830. input reaches end of stream. This will cause problems if your encoding
  831. pipeline drops frames. If you're trying to apply an image as an
  832. overlay to a video stream, consider the @var{overlay} filter instead.
  833. @section ass
  834. Draw ASS (Advanced Substation Alpha) subtitles on top of input video
  835. using the libass library.
  836. To enable compilation of this filter you need to configure FFmpeg with
  837. @code{--enable-libass}.
  838. This filter accepts the syntax: @var{ass_filename}[:@var{options}],
  839. where @var{ass_filename} is the filename of the ASS file to read, and
  840. @var{options} is an optional sequence of @var{key}=@var{value} pairs,
  841. separated by ":".
  842. A description of the accepted options follows.
  843. @table @option
  844. @item original_size
  845. Specifies the size of the original video, the video for which the ASS file
  846. was composed. Due to a misdesign in ASS aspect ratio arithmetic, this is
  847. necessary to correctly scale the fonts if the aspect ratio has been changed.
  848. @end table
  849. For example, to render the file @file{sub.ass} on top of the input
  850. video, use the command:
  851. @example
  852. ass=sub.ass
  853. @end example
  854. @section bbox
  855. Compute the bounding box for the non-black pixels in the input frame
  856. luminance plane.
  857. This filter computes the bounding box containing all the pixels with a
  858. luminance value greater than the minimum allowed value.
  859. The parameters describing the bounding box are printed on the filter
  860. log.
  861. @section blackdetect
  862. Detect video intervals that are (almost) completely black. Can be
  863. useful to detect chapter transitions, commercials, or invalid
  864. recordings. Output lines contains the time for the start, end and
  865. duration of the detected black interval expressed in seconds.
  866. In order to display the output lines, you need to set the loglevel at
  867. least to the AV_LOG_INFO value.
  868. This filter accepts a list of options in the form of
  869. @var{key}=@var{value} pairs separated by ":". A description of the
  870. accepted options follows.
  871. @table @option
  872. @item black_min_duration, d
  873. Set the minimum detected black duration expressed in seconds. It must
  874. be a non-negative floating point number.
  875. Default value is 2.0.
  876. @item picture_black_ratio_th, pic_th
  877. Set the threshold for considering a picture "black".
  878. Express the minimum value for the ratio:
  879. @example
  880. @var{nb_black_pixels} / @var{nb_pixels}
  881. @end example
  882. for which a picture is considered black.
  883. Default value is 0.98.
  884. @item pixel_black_th, pix_th
  885. Set the threshold for considering a pixel "black".
  886. The threshold expresses the maximum pixel luminance value for which a
  887. pixel is considered "black". The provided value is scaled according to
  888. the following equation:
  889. @example
  890. @var{absolute_threshold} = @var{luminance_minimum_value} + @var{pixel_black_th} * @var{luminance_range_size}
  891. @end example
  892. @var{luminance_range_size} and @var{luminance_minimum_value} depend on
  893. the input video format, the range is [0-255] for YUV full-range
  894. formats and [16-235] for YUV non full-range formats.
  895. Default value is 0.10.
  896. @end table
  897. The following example sets the maximum pixel threshold to the minimum
  898. value, and detects only black intervals of 2 or more seconds:
  899. @example
  900. blackdetect=d=2:pix_th=0.00
  901. @end example
  902. @section blackframe
  903. Detect frames that are (almost) completely black. Can be useful to
  904. detect chapter transitions or commercials. Output lines consist of
  905. the frame number of the detected frame, the percentage of blackness,
  906. the position in the file if known or -1 and the timestamp in seconds.
  907. In order to display the output lines, you need to set the loglevel at
  908. least to the AV_LOG_INFO value.
  909. The filter accepts the syntax:
  910. @example
  911. blackframe[=@var{amount}:[@var{threshold}]]
  912. @end example
  913. @var{amount} is the percentage of the pixels that have to be below the
  914. threshold, and defaults to 98.
  915. @var{threshold} is the threshold below which a pixel value is
  916. considered black, and defaults to 32.
  917. @section boxblur
  918. Apply boxblur algorithm to the input video.
  919. This filter accepts the parameters:
  920. @var{luma_radius}:@var{luma_power}:@var{chroma_radius}:@var{chroma_power}:@var{alpha_radius}:@var{alpha_power}
  921. Chroma and alpha parameters are optional, if not specified they default
  922. to the corresponding values set for @var{luma_radius} and
  923. @var{luma_power}.
  924. @var{luma_radius}, @var{chroma_radius}, and @var{alpha_radius} represent
  925. the radius in pixels of the box used for blurring the corresponding
  926. input plane. They are expressions, and can contain the following
  927. constants:
  928. @table @option
  929. @item w, h
  930. the input width and height in pixels
  931. @item cw, ch
  932. the input chroma image width and height in pixels
  933. @item hsub, vsub
  934. horizontal and vertical chroma subsample values. For example for the
  935. pixel format "yuv422p" @var{hsub} is 2 and @var{vsub} is 1.
  936. @end table
  937. The radius must be a non-negative number, and must not be greater than
  938. the value of the expression @code{min(w,h)/2} for the luma and alpha planes,
  939. and of @code{min(cw,ch)/2} for the chroma planes.
  940. @var{luma_power}, @var{chroma_power}, and @var{alpha_power} represent
  941. how many times the boxblur filter is applied to the corresponding
  942. plane.
  943. Some examples follow:
  944. @itemize
  945. @item
  946. Apply a boxblur filter with luma, chroma, and alpha radius
  947. set to 2:
  948. @example
  949. boxblur=2:1
  950. @end example
  951. @item
  952. Set luma radius to 2, alpha and chroma radius to 0
  953. @example
  954. boxblur=2:1:0:0:0:0
  955. @end example
  956. @item
  957. Set luma and chroma radius to a fraction of the video dimension
  958. @example
  959. boxblur=min(h\,w)/10:1:min(cw\,ch)/10:1
  960. @end example
  961. @end itemize
  962. @section colormatrix
  963. The colormatrix filter allows conversion between any of the following color
  964. space: BT.709 (@var{bt709}), BT.601 (@var{bt601}), SMPTE-240M (@var{smpte240m})
  965. and FCC (@var{fcc}).
  966. The syntax of the parameters is @var{source}:@var{destination}:
  967. @example
  968. colormatrix=bt601:smpte240m
  969. @end example
  970. @section copy
  971. Copy the input source unchanged to the output. Mainly useful for
  972. testing purposes.
  973. @section crop
  974. Crop the input video to @var{out_w}:@var{out_h}:@var{x}:@var{y}:@var{keep_aspect}
  975. The @var{keep_aspect} parameter is optional, if specified and set to a
  976. non-zero value will force the output display aspect ratio to be the
  977. same of the input, by changing the output sample aspect ratio.
  978. The @var{out_w}, @var{out_h}, @var{x}, @var{y} parameters are
  979. expressions containing the following constants:
  980. @table @option
  981. @item x, y
  982. the computed values for @var{x} and @var{y}. They are evaluated for
  983. each new frame.
  984. @item in_w, in_h
  985. the input width and height
  986. @item iw, ih
  987. same as @var{in_w} and @var{in_h}
  988. @item out_w, out_h
  989. the output (cropped) width and height
  990. @item ow, oh
  991. same as @var{out_w} and @var{out_h}
  992. @item a
  993. same as @var{iw} / @var{ih}
  994. @item sar
  995. input sample aspect ratio
  996. @item dar
  997. input display aspect ratio, it is the same as (@var{iw} / @var{ih}) * @var{sar}
  998. @item hsub, vsub
  999. horizontal and vertical chroma subsample values. For example for the
  1000. pixel format "yuv422p" @var{hsub} is 2 and @var{vsub} is 1.
  1001. @item n
  1002. the number of input frame, starting from 0
  1003. @item pos
  1004. the position in the file of the input frame, NAN if unknown
  1005. @item t
  1006. timestamp expressed in seconds, NAN if the input timestamp is unknown
  1007. @end table
  1008. The @var{out_w} and @var{out_h} parameters specify the expressions for
  1009. the width and height of the output (cropped) video. They are
  1010. evaluated just at the configuration of the filter.
  1011. The default value of @var{out_w} is "in_w", and the default value of
  1012. @var{out_h} is "in_h".
  1013. The expression for @var{out_w} may depend on the value of @var{out_h},
  1014. and the expression for @var{out_h} may depend on @var{out_w}, but they
  1015. cannot depend on @var{x} and @var{y}, as @var{x} and @var{y} are
  1016. evaluated after @var{out_w} and @var{out_h}.
  1017. The @var{x} and @var{y} parameters specify the expressions for the
  1018. position of the top-left corner of the output (non-cropped) area. They
  1019. are evaluated for each frame. If the evaluated value is not valid, it
  1020. is approximated to the nearest valid value.
  1021. The default value of @var{x} is "(in_w-out_w)/2", and the default
  1022. value for @var{y} is "(in_h-out_h)/2", which set the cropped area at
  1023. the center of the input image.
  1024. The expression for @var{x} may depend on @var{y}, and the expression
  1025. for @var{y} may depend on @var{x}.
  1026. Follow some examples:
  1027. @example
  1028. # crop the central input area with size 100x100
  1029. crop=100:100
  1030. # crop the central input area with size 2/3 of the input video
  1031. "crop=2/3*in_w:2/3*in_h"
  1032. # crop the input video central square
  1033. crop=in_h
  1034. # delimit the rectangle with the top-left corner placed at position
  1035. # 100:100 and the right-bottom corner corresponding to the right-bottom
  1036. # corner of the input image.
  1037. crop=in_w-100:in_h-100:100:100
  1038. # crop 10 pixels from the left and right borders, and 20 pixels from
  1039. # the top and bottom borders
  1040. "crop=in_w-2*10:in_h-2*20"
  1041. # keep only the bottom right quarter of the input image
  1042. "crop=in_w/2:in_h/2:in_w/2:in_h/2"
  1043. # crop height for getting Greek harmony
  1044. "crop=in_w:1/PHI*in_w"
  1045. # trembling effect
  1046. "crop=in_w/2:in_h/2:(in_w-out_w)/2+((in_w-out_w)/2)*sin(n/10):(in_h-out_h)/2 +((in_h-out_h)/2)*sin(n/7)"
  1047. # erratic camera effect depending on timestamp
  1048. "crop=in_w/2:in_h/2:(in_w-out_w)/2+((in_w-out_w)/2)*sin(t*10):(in_h-out_h)/2 +((in_h-out_h)/2)*sin(t*13)"
  1049. # set x depending on the value of y
  1050. "crop=in_w/2:in_h/2:y:10+10*sin(n/10)"
  1051. @end example
  1052. @section cropdetect
  1053. Auto-detect crop size.
  1054. Calculate necessary cropping parameters and prints the recommended
  1055. parameters through the logging system. The detected dimensions
  1056. correspond to the non-black area of the input video.
  1057. It accepts the syntax:
  1058. @example
  1059. cropdetect[=@var{limit}[:@var{round}[:@var{reset}]]]
  1060. @end example
  1061. @table @option
  1062. @item limit
  1063. Threshold, which can be optionally specified from nothing (0) to
  1064. everything (255), defaults to 24.
  1065. @item round
  1066. Value which the width/height should be divisible by, defaults to
  1067. 16. The offset is automatically adjusted to center the video. Use 2 to
  1068. get only even dimensions (needed for 4:2:2 video). 16 is best when
  1069. encoding to most video codecs.
  1070. @item reset
  1071. Counter that determines after how many frames cropdetect will reset
  1072. the previously detected largest video area and start over to detect
  1073. the current optimal crop area. Defaults to 0.
  1074. This can be useful when channel logos distort the video area. 0
  1075. indicates never reset and return the largest area encountered during
  1076. playback.
  1077. @end table
  1078. @section delogo
  1079. Suppress a TV station logo by a simple interpolation of the surrounding
  1080. pixels. Just set a rectangle covering the logo and watch it disappear
  1081. (and sometimes something even uglier appear - your mileage may vary).
  1082. The filter accepts parameters as a string of the form
  1083. "@var{x}:@var{y}:@var{w}:@var{h}:@var{band}", or as a list of
  1084. @var{key}=@var{value} pairs, separated by ":".
  1085. The description of the accepted parameters follows.
  1086. @table @option
  1087. @item x, y
  1088. Specify the top left corner coordinates of the logo. They must be
  1089. specified.
  1090. @item w, h
  1091. Specify the width and height of the logo to clear. They must be
  1092. specified.
  1093. @item band, t
  1094. Specify the thickness of the fuzzy edge of the rectangle (added to
  1095. @var{w} and @var{h}). The default value is 4.
  1096. @item show
  1097. When set to 1, a green rectangle is drawn on the screen to simplify
  1098. finding the right @var{x}, @var{y}, @var{w}, @var{h} parameters, and
  1099. @var{band} is set to 4. The default value is 0.
  1100. @end table
  1101. Some examples follow.
  1102. @itemize
  1103. @item
  1104. Set a rectangle covering the area with top left corner coordinates 0,0
  1105. and size 100x77, setting a band of size 10:
  1106. @example
  1107. delogo=0:0:100:77:10
  1108. @end example
  1109. @item
  1110. As the previous example, but use named options:
  1111. @example
  1112. delogo=x=0:y=0:w=100:h=77:band=10
  1113. @end example
  1114. @end itemize
  1115. @section deshake
  1116. Attempt to fix small changes in horizontal and/or vertical shift. This
  1117. filter helps remove camera shake from hand-holding a camera, bumping a
  1118. tripod, moving on a vehicle, etc.
  1119. The filter accepts parameters as a string of the form
  1120. "@var{x}:@var{y}:@var{w}:@var{h}:@var{rx}:@var{ry}:@var{edge}:@var{blocksize}:@var{contrast}:@var{search}:@var{filename}"
  1121. A description of the accepted parameters follows.
  1122. @table @option
  1123. @item x, y, w, h
  1124. Specify a rectangular area where to limit the search for motion
  1125. vectors.
  1126. If desired the search for motion vectors can be limited to a
  1127. rectangular area of the frame defined by its top left corner, width
  1128. and height. These parameters have the same meaning as the drawbox
  1129. filter which can be used to visualise the position of the bounding
  1130. box.
  1131. This is useful when simultaneous movement of subjects within the frame
  1132. might be confused for camera motion by the motion vector search.
  1133. If any or all of @var{x}, @var{y}, @var{w} and @var{h} are set to -1
  1134. then the full frame is used. This allows later options to be set
  1135. without specifying the bounding box for the motion vector search.
  1136. Default - search the whole frame.
  1137. @item rx, ry
  1138. Specify the maximum extent of movement in x and y directions in the
  1139. range 0-64 pixels. Default 16.
  1140. @item edge
  1141. Specify how to generate pixels to fill blanks at the edge of the
  1142. frame. An integer from 0 to 3 as follows:
  1143. @table @option
  1144. @item 0
  1145. Fill zeroes at blank locations
  1146. @item 1
  1147. Original image at blank locations
  1148. @item 2
  1149. Extruded edge value at blank locations
  1150. @item 3
  1151. Mirrored edge at blank locations
  1152. @end table
  1153. The default setting is mirror edge at blank locations.
  1154. @item blocksize
  1155. Specify the blocksize to use for motion search. Range 4-128 pixels,
  1156. default 8.
  1157. @item contrast
  1158. Specify the contrast threshold for blocks. Only blocks with more than
  1159. the specified contrast (difference between darkest and lightest
  1160. pixels) will be considered. Range 1-255, default 125.
  1161. @item search
  1162. Specify the search strategy 0 = exhaustive search, 1 = less exhaustive
  1163. search. Default - exhaustive search.
  1164. @item filename
  1165. If set then a detailed log of the motion search is written to the
  1166. specified file.
  1167. @end table
  1168. @section drawbox
  1169. Draw a colored box on the input image.
  1170. It accepts the syntax:
  1171. @example
  1172. drawbox=@var{x}:@var{y}:@var{width}:@var{height}:@var{color}
  1173. @end example
  1174. @table @option
  1175. @item x, y
  1176. Specify the top left corner coordinates of the box. Default to 0.
  1177. @item width, height
  1178. Specify the width and height of the box, if 0 they are interpreted as
  1179. the input width and height. Default to 0.
  1180. @item color
  1181. Specify the color of the box to write, it can be the name of a color
  1182. (case insensitive match) or a 0xRRGGBB[AA] sequence.
  1183. @end table
  1184. Follow some examples:
  1185. @example
  1186. # draw a black box around the edge of the input image
  1187. drawbox
  1188. # draw a box with color red and an opacity of 50%
  1189. drawbox=10:20:200:60:red@@0.5"
  1190. @end example
  1191. @section drawtext
  1192. Draw text string or text from specified file on top of video using the
  1193. libfreetype library.
  1194. To enable compilation of this filter you need to configure FFmpeg with
  1195. @code{--enable-libfreetype}.
  1196. The filter also recognizes strftime() sequences in the provided text
  1197. and expands them accordingly. Check the documentation of strftime().
  1198. The filter accepts parameters as a list of @var{key}=@var{value} pairs,
  1199. separated by ":".
  1200. The description of the accepted parameters follows.
  1201. @table @option
  1202. @item box
  1203. Used to draw a box around text using background color.
  1204. Value should be either 1 (enable) or 0 (disable).
  1205. The default value of @var{box} is 0.
  1206. @item boxcolor
  1207. The color to be used for drawing box around text.
  1208. Either a string (e.g. "yellow") or in 0xRRGGBB[AA] format
  1209. (e.g. "0xff00ff"), possibly followed by an alpha specifier.
  1210. The default value of @var{boxcolor} is "white".
  1211. @item draw
  1212. Set an expression which specifies if the text should be drawn. If the
  1213. expression evaluates to 0, the text is not drawn. This is useful for
  1214. specifying that the text should be drawn only when specific conditions
  1215. are met.
  1216. Default value is "1".
  1217. See below for the list of accepted constants and functions.
  1218. @item fix_bounds
  1219. If true, check and fix text coords to avoid clipping.
  1220. @item fontcolor
  1221. The color to be used for drawing fonts.
  1222. Either a string (e.g. "red") or in 0xRRGGBB[AA] format
  1223. (e.g. "0xff000033"), possibly followed by an alpha specifier.
  1224. The default value of @var{fontcolor} is "black".
  1225. @item fontfile
  1226. The font file to be used for drawing text. Path must be included.
  1227. This parameter is mandatory.
  1228. @item fontsize
  1229. The font size to be used for drawing text.
  1230. The default value of @var{fontsize} is 16.
  1231. @item ft_load_flags
  1232. Flags to be used for loading the fonts.
  1233. The flags map the corresponding flags supported by libfreetype, and are
  1234. a combination of the following values:
  1235. @table @var
  1236. @item default
  1237. @item no_scale
  1238. @item no_hinting
  1239. @item render
  1240. @item no_bitmap
  1241. @item vertical_layout
  1242. @item force_autohint
  1243. @item crop_bitmap
  1244. @item pedantic
  1245. @item ignore_global_advance_width
  1246. @item no_recurse
  1247. @item ignore_transform
  1248. @item monochrome
  1249. @item linear_design
  1250. @item no_autohint
  1251. @item end table
  1252. @end table
  1253. Default value is "render".
  1254. For more information consult the documentation for the FT_LOAD_*
  1255. libfreetype flags.
  1256. @item shadowcolor
  1257. The color to be used for drawing a shadow behind the drawn text. It
  1258. can be a color name (e.g. "yellow") or a string in the 0xRRGGBB[AA]
  1259. form (e.g. "0xff00ff"), possibly followed by an alpha specifier.
  1260. The default value of @var{shadowcolor} is "black".
  1261. @item shadowx, shadowy
  1262. The x and y offsets for the text shadow position with respect to the
  1263. position of the text. They can be either positive or negative
  1264. values. Default value for both is "0".
  1265. @item tabsize
  1266. The size in number of spaces to use for rendering the tab.
  1267. Default value is 4.
  1268. @item timecode
  1269. Set the initial timecode representation in "hh:mm:ss[:;.]ff"
  1270. format. It can be used with or without text parameter. @var{timecode_rate}
  1271. option must be specified.
  1272. @item timecode_rate, rate, r
  1273. Set the timecode frame rate (timecode only).
  1274. @item text
  1275. The text string to be drawn. The text must be a sequence of UTF-8
  1276. encoded characters.
  1277. This parameter is mandatory if no file is specified with the parameter
  1278. @var{textfile}.
  1279. @item textfile
  1280. A text file containing text to be drawn. The text must be a sequence
  1281. of UTF-8 encoded characters.
  1282. This parameter is mandatory if no text string is specified with the
  1283. parameter @var{text}.
  1284. If both @var{text} and @var{textfile} are specified, an error is thrown.
  1285. @item x, y
  1286. The expressions which specify the offsets where text will be drawn
  1287. within the video frame. They are relative to the top/left border of the
  1288. output image.
  1289. The default value of @var{x} and @var{y} is "0".
  1290. See below for the list of accepted constants and functions.
  1291. @end table
  1292. The parameters for @var{x} and @var{y} are expressions containing the
  1293. following constants and functions:
  1294. @table @option
  1295. @item dar
  1296. input display aspect ratio, it is the same as (@var{w} / @var{h}) * @var{sar}
  1297. @item hsub, vsub
  1298. horizontal and vertical chroma subsample values. For example for the
  1299. pixel format "yuv422p" @var{hsub} is 2 and @var{vsub} is 1.
  1300. @item line_h, lh
  1301. the height of each text line
  1302. @item main_h, h, H
  1303. the input height
  1304. @item main_w, w, W
  1305. the input width
  1306. @item max_glyph_a, ascent
  1307. the maximum distance from the baseline to the highest/upper grid
  1308. coordinate used to place a glyph outline point, for all the rendered
  1309. glyphs.
  1310. It is a positive value, due to the grid's orientation with the Y axis
  1311. upwards.
  1312. @item max_glyph_d, descent
  1313. the maximum distance from the baseline to the lowest grid coordinate
  1314. used to place a glyph outline point, for all the rendered glyphs.
  1315. This is a negative value, due to the grid's orientation, with the Y axis
  1316. upwards.
  1317. @item max_glyph_h
  1318. maximum glyph height, that is the maximum height for all the glyphs
  1319. contained in the rendered text, it is equivalent to @var{ascent} -
  1320. @var{descent}.
  1321. @item max_glyph_w
  1322. maximum glyph width, that is the maximum width for all the glyphs
  1323. contained in the rendered text
  1324. @item n
  1325. the number of input frame, starting from 0
  1326. @item rand(min, max)
  1327. return a random number included between @var{min} and @var{max}
  1328. @item sar
  1329. input sample aspect ratio
  1330. @item t
  1331. timestamp expressed in seconds, NAN if the input timestamp is unknown
  1332. @item text_h, th
  1333. the height of the rendered text
  1334. @item text_w, tw
  1335. the width of the rendered text
  1336. @item x, y
  1337. the x and y offset coordinates where the text is drawn.
  1338. These parameters allow the @var{x} and @var{y} expressions to refer
  1339. each other, so you can for example specify @code{y=x/dar}.
  1340. @end table
  1341. If libavfilter was built with @code{--enable-fontconfig}, then
  1342. @option{fontfile} can be a fontconfig pattern or omitted.
  1343. Some examples follow.
  1344. @itemize
  1345. @item
  1346. Draw "Test Text" with font FreeSerif, using the default values for the
  1347. optional parameters.
  1348. @example
  1349. drawtext="fontfile=/usr/share/fonts/truetype/freefont/FreeSerif.ttf: text='Test Text'"
  1350. @end example
  1351. @item
  1352. Draw 'Test Text' with font FreeSerif of size 24 at position x=100
  1353. and y=50 (counting from the top-left corner of the screen), text is
  1354. yellow with a red box around it. Both the text and the box have an
  1355. opacity of 20%.
  1356. @example
  1357. drawtext="fontfile=/usr/share/fonts/truetype/freefont/FreeSerif.ttf: text='Test Text':\
  1358. x=100: y=50: fontsize=24: fontcolor=yellow@@0.2: box=1: boxcolor=red@@0.2"
  1359. @end example
  1360. Note that the double quotes are not necessary if spaces are not used
  1361. within the parameter list.
  1362. @item
  1363. Show the text at the center of the video frame:
  1364. @example
  1365. drawtext="fontsize=30:fontfile=FreeSerif.ttf:text='hello world':x=(w-text_w)/2:y=(h-text_h-line_h)/2"
  1366. @end example
  1367. @item
  1368. Show a text line sliding from right to left in the last row of the video
  1369. frame. The file @file{LONG_LINE} is assumed to contain a single line
  1370. with no newlines.
  1371. @example
  1372. drawtext="fontsize=15:fontfile=FreeSerif.ttf:text=LONG_LINE:y=h-line_h:x=-50*t"
  1373. @end example
  1374. @item
  1375. Show the content of file @file{CREDITS} off the bottom of the frame and scroll up.
  1376. @example
  1377. drawtext="fontsize=20:fontfile=FreeSerif.ttf:textfile=CREDITS:y=h-20*t"
  1378. @end example
  1379. @item
  1380. Draw a single green letter "g", at the center of the input video.
  1381. The glyph baseline is placed at half screen height.
  1382. @example
  1383. drawtext="fontsize=60:fontfile=FreeSerif.ttf:fontcolor=green:text=g:x=(w-max_glyph_w)/2:y=h/2-ascent"
  1384. @end example
  1385. @item
  1386. Show text for 1 second every 3 seconds:
  1387. @example
  1388. drawtext="fontfile=FreeSerif.ttf:fontcolor=white:x=100:y=x/dar:draw=lt(mod(t\\,3)\\,1):text='blink'"
  1389. @end example
  1390. @item
  1391. Use fontconfig to set the font. Note that the colons need to be escaped.
  1392. @example
  1393. drawtext='fontfile=Linux Libertine O-40\\:style=Semibold:text=FFmpeg'
  1394. @end example
  1395. @end itemize
  1396. For more information about libfreetype, check:
  1397. @url{http://www.freetype.org/}.
  1398. For more information about fontconfig, check:
  1399. @url{http://freedesktop.org/software/fontconfig/fontconfig-user.html}.
  1400. @section fade
  1401. Apply fade-in/out effect to input video.
  1402. It accepts the parameters:
  1403. @var{type}:@var{start_frame}:@var{nb_frames}[:@var{options}]
  1404. @var{type} specifies if the effect type, can be either "in" for
  1405. fade-in, or "out" for a fade-out effect.
  1406. @var{start_frame} specifies the number of the start frame for starting
  1407. to apply the fade effect.
  1408. @var{nb_frames} specifies the number of frames for which the fade
  1409. effect has to last. At the end of the fade-in effect the output video
  1410. will have the same intensity as the input video, at the end of the
  1411. fade-out transition the output video will be completely black.
  1412. @var{options} is an optional sequence of @var{key}=@var{value} pairs,
  1413. separated by ":". The description of the accepted options follows.
  1414. @table @option
  1415. @item type, t
  1416. See @var{type}.
  1417. @item start_frame, s
  1418. See @var{start_frame}.
  1419. @item nb_frames, n
  1420. See @var{nb_frames}.
  1421. @item alpha
  1422. If set to 1, fade only alpha channel, if one exists on the input.
  1423. Default value is 0.
  1424. @end table
  1425. A few usage examples follow, usable too as test scenarios.
  1426. @example
  1427. # fade in first 30 frames of video
  1428. fade=in:0:30
  1429. # fade out last 45 frames of a 200-frame video
  1430. fade=out:155:45
  1431. # fade in first 25 frames and fade out last 25 frames of a 1000-frame video
  1432. fade=in:0:25, fade=out:975:25
  1433. # make first 5 frames black, then fade in from frame 5-24
  1434. fade=in:5:20
  1435. # fade in alpha over first 25 frames of video
  1436. fade=in:0:25:alpha=1
  1437. @end example
  1438. @section fieldorder
  1439. Transform the field order of the input video.
  1440. It accepts one parameter which specifies the required field order that
  1441. the input interlaced video will be transformed to. The parameter can
  1442. assume one of the following values:
  1443. @table @option
  1444. @item 0 or bff
  1445. output bottom field first
  1446. @item 1 or tff
  1447. output top field first
  1448. @end table
  1449. Default value is "tff".
  1450. Transformation is achieved by shifting the picture content up or down
  1451. by one line, and filling the remaining line with appropriate picture content.
  1452. This method is consistent with most broadcast field order converters.
  1453. If the input video is not flagged as being interlaced, or it is already
  1454. flagged as being of the required output field order then this filter does
  1455. not alter the incoming video.
  1456. This filter is very useful when converting to or from PAL DV material,
  1457. which is bottom field first.
  1458. For example:
  1459. @example
  1460. ffmpeg -i in.vob -vf "fieldorder=bff" out.dv
  1461. @end example
  1462. @section fifo
  1463. Buffer input images and send them when they are requested.
  1464. This filter is mainly useful when auto-inserted by the libavfilter
  1465. framework.
  1466. The filter does not take parameters.
  1467. @section format
  1468. Convert the input video to one of the specified pixel formats.
  1469. Libavfilter will try to pick one that is supported for the input to
  1470. the next filter.
  1471. The filter accepts a list of pixel format names, separated by ":",
  1472. for example "yuv420p:monow:rgb24".
  1473. Some examples follow:
  1474. @example
  1475. # convert the input video to the format "yuv420p"
  1476. format=yuv420p
  1477. # convert the input video to any of the formats in the list
  1478. format=yuv420p:yuv444p:yuv410p
  1479. @end example
  1480. @section fps
  1481. Convert the video to specified constant framerate by duplicating or dropping
  1482. frames as necessary.
  1483. This filter accepts the following named parameters:
  1484. @table @option
  1485. @item fps
  1486. Desired output framerate.
  1487. @end table
  1488. @anchor{frei0r}
  1489. @section frei0r
  1490. Apply a frei0r effect to the input video.
  1491. To enable compilation of this filter you need to install the frei0r
  1492. header and configure FFmpeg with @code{--enable-frei0r}.
  1493. The filter supports the syntax:
  1494. @example
  1495. @var{filter_name}[@{:|=@}@var{param1}:@var{param2}:...:@var{paramN}]
  1496. @end example
  1497. @var{filter_name} is the name to the frei0r effect to load. If the
  1498. environment variable @env{FREI0R_PATH} is defined, the frei0r effect
  1499. is searched in each one of the directories specified by the colon
  1500. separated list in @env{FREIOR_PATH}, otherwise in the standard frei0r
  1501. paths, which are in this order: @file{HOME/.frei0r-1/lib/},
  1502. @file{/usr/local/lib/frei0r-1/}, @file{/usr/lib/frei0r-1/}.
  1503. @var{param1}, @var{param2}, ... , @var{paramN} specify the parameters
  1504. for the frei0r effect.
  1505. A frei0r effect parameter can be a boolean (whose values are specified
  1506. with "y" and "n"), a double, a color (specified by the syntax
  1507. @var{R}/@var{G}/@var{B}, @var{R}, @var{G}, and @var{B} being float
  1508. numbers from 0.0 to 1.0) or by an @code{av_parse_color()} color
  1509. description), a position (specified by the syntax @var{X}/@var{Y},
  1510. @var{X} and @var{Y} being float numbers) and a string.
  1511. The number and kind of parameters depend on the loaded effect. If an
  1512. effect parameter is not specified the default value is set.
  1513. Some examples follow:
  1514. @itemize
  1515. @item
  1516. Apply the distort0r effect, set the first two double parameters:
  1517. @example
  1518. frei0r=distort0r:0.5:0.01
  1519. @end example
  1520. @item
  1521. Apply the colordistance effect, takes a color as first parameter:
  1522. @example
  1523. frei0r=colordistance:0.2/0.3/0.4
  1524. frei0r=colordistance:violet
  1525. frei0r=colordistance:0x112233
  1526. @end example
  1527. @item
  1528. Apply the perspective effect, specify the top left and top right image
  1529. positions:
  1530. @example
  1531. frei0r=perspective:0.2/0.2:0.8/0.2
  1532. @end example
  1533. @end itemize
  1534. For more information see:
  1535. @url{http://frei0r.dyne.org}
  1536. @section gradfun
  1537. Fix the banding artifacts that are sometimes introduced into nearly flat
  1538. regions by truncation to 8bit color depth.
  1539. Interpolate the gradients that should go where the bands are, and
  1540. dither them.
  1541. This filter is designed for playback only. Do not use it prior to
  1542. lossy compression, because compression tends to lose the dither and
  1543. bring back the bands.
  1544. The filter takes two optional parameters, separated by ':':
  1545. @var{strength}:@var{radius}
  1546. @var{strength} is the maximum amount by which the filter will change
  1547. any one pixel. Also the threshold for detecting nearly flat
  1548. regions. Acceptable values range from .51 to 255, default value is
  1549. 1.2, out-of-range values will be clipped to the valid range.
  1550. @var{radius} is the neighborhood to fit the gradient to. A larger
  1551. radius makes for smoother gradients, but also prevents the filter from
  1552. modifying the pixels near detailed regions. Acceptable values are
  1553. 8-32, default value is 16, out-of-range values will be clipped to the
  1554. valid range.
  1555. @example
  1556. # default parameters
  1557. gradfun=1.2:16
  1558. # omitting radius
  1559. gradfun=1.2
  1560. @end example
  1561. @section hflip
  1562. Flip the input video horizontally.
  1563. For example to horizontally flip the input video with @command{ffmpeg}:
  1564. @example
  1565. ffmpeg -i in.avi -vf "hflip" out.avi
  1566. @end example
  1567. @section hqdn3d
  1568. High precision/quality 3d denoise filter. This filter aims to reduce
  1569. image noise producing smooth images and making still images really
  1570. still. It should enhance compressibility.
  1571. It accepts the following optional parameters:
  1572. @var{luma_spatial}:@var{chroma_spatial}:@var{luma_tmp}:@var{chroma_tmp}
  1573. @table @option
  1574. @item luma_spatial
  1575. a non-negative float number which specifies spatial luma strength,
  1576. defaults to 4.0
  1577. @item chroma_spatial
  1578. a non-negative float number which specifies spatial chroma strength,
  1579. defaults to 3.0*@var{luma_spatial}/4.0
  1580. @item luma_tmp
  1581. a float number which specifies luma temporal strength, defaults to
  1582. 6.0*@var{luma_spatial}/4.0
  1583. @item chroma_tmp
  1584. a float number which specifies chroma temporal strength, defaults to
  1585. @var{luma_tmp}*@var{chroma_spatial}/@var{luma_spatial}
  1586. @end table
  1587. @section idet
  1588. Interlaceing detect filter. This filter tries to detect if the input is
  1589. interlaced or progressive. Top or bottom field first.
  1590. @section lut, lutrgb, lutyuv
  1591. Compute a look-up table for binding each pixel component input value
  1592. to an output value, and apply it to input video.
  1593. @var{lutyuv} applies a lookup table to a YUV input video, @var{lutrgb}
  1594. to an RGB input video.
  1595. These filters accept in input a ":"-separated list of options, which
  1596. specify the expressions used for computing the lookup table for the
  1597. corresponding pixel component values.
  1598. The @var{lut} filter requires either YUV or RGB pixel formats in
  1599. input, and accepts the options:
  1600. @table @option
  1601. @item c0
  1602. first pixel component
  1603. @item c1
  1604. second pixel component
  1605. @item c2
  1606. third pixel component
  1607. @item c3
  1608. fourth pixel component, corresponds to the alpha component
  1609. @end table
  1610. The exact component associated to each option depends on the format in
  1611. input.
  1612. The @var{lutrgb} filter requires RGB pixel formats in input, and
  1613. accepts the options:
  1614. @table @option
  1615. @item r
  1616. red component
  1617. @item g
  1618. green component
  1619. @item b
  1620. blue component
  1621. @item a
  1622. alpha component
  1623. @end table
  1624. The @var{lutyuv} filter requires YUV pixel formats in input, and
  1625. accepts the options:
  1626. @table @option
  1627. @item y
  1628. Y/luminance component
  1629. @item u
  1630. U/Cb component
  1631. @item v
  1632. V/Cr component
  1633. @item a
  1634. alpha component
  1635. @end table
  1636. The expressions can contain the following constants and functions:
  1637. @table @option
  1638. @item w, h
  1639. the input width and height
  1640. @item val
  1641. input value for the pixel component
  1642. @item clipval
  1643. the input value clipped in the @var{minval}-@var{maxval} range
  1644. @item maxval
  1645. maximum value for the pixel component
  1646. @item minval
  1647. minimum value for the pixel component
  1648. @item negval
  1649. the negated value for the pixel component value clipped in the
  1650. @var{minval}-@var{maxval} range , it corresponds to the expression
  1651. "maxval-clipval+minval"
  1652. @item clip(val)
  1653. the computed value in @var{val} clipped in the
  1654. @var{minval}-@var{maxval} range
  1655. @item gammaval(gamma)
  1656. the computed gamma correction value of the pixel component value
  1657. clipped in the @var{minval}-@var{maxval} range, corresponds to the
  1658. expression
  1659. "pow((clipval-minval)/(maxval-minval)\,@var{gamma})*(maxval-minval)+minval"
  1660. @end table
  1661. All expressions default to "val".
  1662. Some examples follow:
  1663. @example
  1664. # negate input video
  1665. lutrgb="r=maxval+minval-val:g=maxval+minval-val:b=maxval+minval-val"
  1666. lutyuv="y=maxval+minval-val:u=maxval+minval-val:v=maxval+minval-val"
  1667. # the above is the same as
  1668. lutrgb="r=negval:g=negval:b=negval"
  1669. lutyuv="y=negval:u=negval:v=negval"
  1670. # negate luminance
  1671. lutyuv=y=negval
  1672. # remove chroma components, turns the video into a graytone image
  1673. lutyuv="u=128:v=128"
  1674. # apply a luma burning effect
  1675. lutyuv="y=2*val"
  1676. # remove green and blue components
  1677. lutrgb="g=0:b=0"
  1678. # set a constant alpha channel value on input
  1679. format=rgba,lutrgb=a="maxval-minval/2"
  1680. # correct luminance gamma by a 0.5 factor
  1681. lutyuv=y=gammaval(0.5)
  1682. @end example
  1683. @section mp
  1684. Apply an MPlayer filter to the input video.
  1685. This filter provides a wrapper around most of the filters of
  1686. MPlayer/MEncoder.
  1687. This wrapper is considered experimental. Some of the wrapped filters
  1688. may not work properly and we may drop support for them, as they will
  1689. be implemented natively into FFmpeg. Thus you should avoid
  1690. depending on them when writing portable scripts.
  1691. The filters accepts the parameters:
  1692. @var{filter_name}[:=]@var{filter_params}
  1693. @var{filter_name} is the name of a supported MPlayer filter,
  1694. @var{filter_params} is a string containing the parameters accepted by
  1695. the named filter.
  1696. The list of the currently supported filters follows:
  1697. @table @var
  1698. @item decimate
  1699. @item denoise3d
  1700. @item detc
  1701. @item dint
  1702. @item divtc
  1703. @item down3dright
  1704. @item dsize
  1705. @item eq2
  1706. @item eq
  1707. @item field
  1708. @item fil
  1709. @item fixpts
  1710. @item framestep
  1711. @item fspp
  1712. @item geq
  1713. @item harddup
  1714. @item hqdn3d
  1715. @item hue
  1716. @item il
  1717. @item ilpack
  1718. @item ivtc
  1719. @item kerndeint
  1720. @item mcdeint
  1721. @item noise
  1722. @item ow
  1723. @item palette
  1724. @item perspective
  1725. @item phase
  1726. @item pp7
  1727. @item pullup
  1728. @item qp
  1729. @item rectangle
  1730. @item rotate
  1731. @item sab
  1732. @item smartblur
  1733. @item softpulldown
  1734. @item softskip
  1735. @item spp
  1736. @item telecine
  1737. @item tile
  1738. @item tinterlace
  1739. @item unsharp
  1740. @item uspp
  1741. @item yuvcsp
  1742. @item yvu9
  1743. @end table
  1744. The parameter syntax and behavior for the listed filters are the same
  1745. of the corresponding MPlayer filters. For detailed instructions check
  1746. the "VIDEO FILTERS" section in the MPlayer manual.
  1747. Some examples follow:
  1748. @example
  1749. # adjust gamma, brightness, contrast
  1750. mp=eq2=1.0:2:0.5
  1751. # tweak hue and saturation
  1752. mp=hue=100:-10
  1753. @end example
  1754. See also mplayer(1), @url{http://www.mplayerhq.hu/}.
  1755. @section negate
  1756. Negate input video.
  1757. This filter accepts an integer in input, if non-zero it negates the
  1758. alpha component (if available). The default value in input is 0.
  1759. @section noformat
  1760. Force libavfilter not to use any of the specified pixel formats for the
  1761. input to the next filter.
  1762. The filter accepts a list of pixel format names, separated by ":",
  1763. for example "yuv420p:monow:rgb24".
  1764. Some examples follow:
  1765. @example
  1766. # force libavfilter to use a format different from "yuv420p" for the
  1767. # input to the vflip filter
  1768. noformat=yuv420p,vflip
  1769. # convert the input video to any of the formats not contained in the list
  1770. noformat=yuv420p:yuv444p:yuv410p
  1771. @end example
  1772. @section null
  1773. Pass the video source unchanged to the output.
  1774. @section ocv
  1775. Apply video transform using libopencv.
  1776. To enable this filter install libopencv library and headers and
  1777. configure FFmpeg with @code{--enable-libopencv}.
  1778. The filter takes the parameters: @var{filter_name}@{:=@}@var{filter_params}.
  1779. @var{filter_name} is the name of the libopencv filter to apply.
  1780. @var{filter_params} specifies the parameters to pass to the libopencv
  1781. filter. If not specified the default values are assumed.
  1782. Refer to the official libopencv documentation for more precise
  1783. information:
  1784. @url{http://opencv.willowgarage.com/documentation/c/image_filtering.html}
  1785. Follows the list of supported libopencv filters.
  1786. @anchor{dilate}
  1787. @subsection dilate
  1788. Dilate an image by using a specific structuring element.
  1789. This filter corresponds to the libopencv function @code{cvDilate}.
  1790. It accepts the parameters: @var{struct_el}:@var{nb_iterations}.
  1791. @var{struct_el} represents a structuring element, and has the syntax:
  1792. @var{cols}x@var{rows}+@var{anchor_x}x@var{anchor_y}/@var{shape}
  1793. @var{cols} and @var{rows} represent the number of columns and rows of
  1794. the structuring element, @var{anchor_x} and @var{anchor_y} the anchor
  1795. point, and @var{shape} the shape for the structuring element, and
  1796. can be one of the values "rect", "cross", "ellipse", "custom".
  1797. If the value for @var{shape} is "custom", it must be followed by a
  1798. string of the form "=@var{filename}". The file with name
  1799. @var{filename} is assumed to represent a binary image, with each
  1800. printable character corresponding to a bright pixel. When a custom
  1801. @var{shape} is used, @var{cols} and @var{rows} are ignored, the number
  1802. or columns and rows of the read file are assumed instead.
  1803. The default value for @var{struct_el} is "3x3+0x0/rect".
  1804. @var{nb_iterations} specifies the number of times the transform is
  1805. applied to the image, and defaults to 1.
  1806. Follow some example:
  1807. @example
  1808. # use the default values
  1809. ocv=dilate
  1810. # dilate using a structuring element with a 5x5 cross, iterate two times
  1811. ocv=dilate=5x5+2x2/cross:2
  1812. # read the shape from the file diamond.shape, iterate two times
  1813. # the file diamond.shape may contain a pattern of characters like this:
  1814. # *
  1815. # ***
  1816. # *****
  1817. # ***
  1818. # *
  1819. # the specified cols and rows are ignored (but not the anchor point coordinates)
  1820. ocv=0x0+2x2/custom=diamond.shape:2
  1821. @end example
  1822. @subsection erode
  1823. Erode an image by using a specific structuring element.
  1824. This filter corresponds to the libopencv function @code{cvErode}.
  1825. The filter accepts the parameters: @var{struct_el}:@var{nb_iterations},
  1826. with the same syntax and semantics as the @ref{dilate} filter.
  1827. @subsection smooth
  1828. Smooth the input video.
  1829. The filter takes the following parameters:
  1830. @var{type}:@var{param1}:@var{param2}:@var{param3}:@var{param4}.
  1831. @var{type} is the type of smooth filter to apply, and can be one of
  1832. the following values: "blur", "blur_no_scale", "median", "gaussian",
  1833. "bilateral". The default value is "gaussian".
  1834. @var{param1}, @var{param2}, @var{param3}, and @var{param4} are
  1835. parameters whose meanings depend on smooth type. @var{param1} and
  1836. @var{param2} accept integer positive values or 0, @var{param3} and
  1837. @var{param4} accept float values.
  1838. The default value for @var{param1} is 3, the default value for the
  1839. other parameters is 0.
  1840. These parameters correspond to the parameters assigned to the
  1841. libopencv function @code{cvSmooth}.
  1842. @anchor{overlay}
  1843. @section overlay
  1844. Overlay one video on top of another.
  1845. It takes two inputs and one output, the first input is the "main"
  1846. video on which the second input is overlayed.
  1847. It accepts the parameters: @var{x}:@var{y}[:@var{options}].
  1848. @var{x} is the x coordinate of the overlayed video on the main video,
  1849. @var{y} is the y coordinate. @var{x} and @var{y} are expressions containing
  1850. the following parameters:
  1851. @table @option
  1852. @item main_w, main_h
  1853. main input width and height
  1854. @item W, H
  1855. same as @var{main_w} and @var{main_h}
  1856. @item overlay_w, overlay_h
  1857. overlay input width and height
  1858. @item w, h
  1859. same as @var{overlay_w} and @var{overlay_h}
  1860. @end table
  1861. @var{options} is an optional list of @var{key}=@var{value} pairs,
  1862. separated by ":".
  1863. The description of the accepted options follows.
  1864. @table @option
  1865. @item rgb
  1866. If set to 1, force the filter to accept inputs in the RGB
  1867. color space. Default value is 0.
  1868. @end table
  1869. Be aware that frames are taken from each input video in timestamp
  1870. order, hence, if their initial timestamps differ, it is a a good idea
  1871. to pass the two inputs through a @var{setpts=PTS-STARTPTS} filter to
  1872. have them begin in the same zero timestamp, as it does the example for
  1873. the @var{movie} filter.
  1874. Follow some examples:
  1875. @example
  1876. # draw the overlay at 10 pixels from the bottom right
  1877. # corner of the main video.
  1878. overlay=main_w-overlay_w-10:main_h-overlay_h-10
  1879. # insert a transparent PNG logo in the bottom left corner of the input
  1880. ffmpeg -i input -i logo -filter_complex 'overlay=10:main_h-overlay_h-10' output
  1881. # insert 2 different transparent PNG logos (second logo on bottom
  1882. # right corner):
  1883. ffmpeg -i input -i logo1 -i logo2 -filter_complex
  1884. 'overlay=10:H-h-10,overlay=W-w-10:H-h-10' output
  1885. # add a transparent color layer on top of the main video,
  1886. # WxH specifies the size of the main input to the overlay filter
  1887. color=red@.3:WxH [over]; [in][over] overlay [out]
  1888. # play an original video and a filtered version (here with the deshake filter)
  1889. # side by side
  1890. ffplay input.avi -vf 'split[a][b]; [a]pad=iw*2:ih[src]; [b]deshake[filt]; [src][filt]overlay=w'
  1891. # the previous example is the same as:
  1892. ffplay input.avi -vf 'split[b], pad=iw*2[src], [b]deshake, [src]overlay=w'
  1893. @end example
  1894. You can chain together more overlays but the efficiency of such
  1895. approach is yet to be tested.
  1896. @section pad
  1897. Add paddings to the input image, and places the original input at the
  1898. given coordinates @var{x}, @var{y}.
  1899. It accepts the following parameters:
  1900. @var{width}:@var{height}:@var{x}:@var{y}:@var{color}.
  1901. The parameters @var{width}, @var{height}, @var{x}, and @var{y} are
  1902. expressions containing the following constants:
  1903. @table @option
  1904. @item in_w, in_h
  1905. the input video width and height
  1906. @item iw, ih
  1907. same as @var{in_w} and @var{in_h}
  1908. @item out_w, out_h
  1909. the output width and height, that is the size of the padded area as
  1910. specified by the @var{width} and @var{height} expressions
  1911. @item ow, oh
  1912. same as @var{out_w} and @var{out_h}
  1913. @item x, y
  1914. x and y offsets as specified by the @var{x} and @var{y}
  1915. expressions, or NAN if not yet specified
  1916. @item a
  1917. same as @var{iw} / @var{ih}
  1918. @item sar
  1919. input sample aspect ratio
  1920. @item dar
  1921. input display aspect ratio, it is the same as (@var{iw} / @var{ih}) * @var{sar}
  1922. @item hsub, vsub
  1923. horizontal and vertical chroma subsample values. For example for the
  1924. pixel format "yuv422p" @var{hsub} is 2 and @var{vsub} is 1.
  1925. @end table
  1926. Follows the description of the accepted parameters.
  1927. @table @option
  1928. @item width, height
  1929. Specify the size of the output image with the paddings added. If the
  1930. value for @var{width} or @var{height} is 0, the corresponding input size
  1931. is used for the output.
  1932. The @var{width} expression can reference the value set by the
  1933. @var{height} expression, and vice versa.
  1934. The default value of @var{width} and @var{height} is 0.
  1935. @item x, y
  1936. Specify the offsets where to place the input image in the padded area
  1937. with respect to the top/left border of the output image.
  1938. The @var{x} expression can reference the value set by the @var{y}
  1939. expression, and vice versa.
  1940. The default value of @var{x} and @var{y} is 0.
  1941. @item color
  1942. Specify the color of the padded area, it can be the name of a color
  1943. (case insensitive match) or a 0xRRGGBB[AA] sequence.
  1944. The default value of @var{color} is "black".
  1945. @end table
  1946. Some examples follow:
  1947. @example
  1948. # Add paddings with color "violet" to the input video. Output video
  1949. # size is 640x480, the top-left corner of the input video is placed at
  1950. # column 0, row 40.
  1951. pad=640:480:0:40:violet
  1952. # pad the input to get an output with dimensions increased bt 3/2,
  1953. # and put the input video at the center of the padded area
  1954. pad="3/2*iw:3/2*ih:(ow-iw)/2:(oh-ih)/2"
  1955. # pad the input to get a squared output with size equal to the maximum
  1956. # value between the input width and height, and put the input video at
  1957. # the center of the padded area
  1958. pad="max(iw\,ih):ow:(ow-iw)/2:(oh-ih)/2"
  1959. # pad the input to get a final w/h ratio of 16:9
  1960. pad="ih*16/9:ih:(ow-iw)/2:(oh-ih)/2"
  1961. # for anamorphic video, in order to set the output display aspect ratio,
  1962. # it is necessary to use sar in the expression, according to the relation:
  1963. # (ih * X / ih) * sar = output_dar
  1964. # X = output_dar / sar
  1965. pad="ih*16/9/sar:ih:(ow-iw)/2:(oh-ih)/2"
  1966. # double output size and put the input video in the bottom-right
  1967. # corner of the output padded area
  1968. pad="2*iw:2*ih:ow-iw:oh-ih"
  1969. @end example
  1970. @section pixdesctest
  1971. Pixel format descriptor test filter, mainly useful for internal
  1972. testing. The output video should be equal to the input video.
  1973. For example:
  1974. @example
  1975. format=monow, pixdesctest
  1976. @end example
  1977. can be used to test the monowhite pixel format descriptor definition.
  1978. @section removelogo
  1979. Suppress a TV station logo, using an image file to determine which
  1980. pixels comprise the logo. It works by filling in the pixels that
  1981. comprise the logo with neighboring pixels.
  1982. This filter requires one argument which specifies the filter bitmap
  1983. file, which can be any image format supported by libavformat. The
  1984. width and height of the image file must match those of the video
  1985. stream being processed.
  1986. Pixels in the provided bitmap image with a value of zero are not
  1987. considered part of the logo, non-zero pixels are considered part of
  1988. the logo. If you use white (255) for the logo and black (0) for the
  1989. rest, you will be safe. For making the filter bitmap, it is
  1990. recommended to take a screen capture of a black frame with the logo
  1991. visible, and then using a threshold filter followed by the erode
  1992. filter once or twice.
  1993. If needed, little splotches can be fixed manually. Remember that if
  1994. logo pixels are not covered, the filter quality will be much
  1995. reduced. Marking too many pixels as part of the logo does not hurt as
  1996. much, but it will increase the amount of blurring needed to cover over
  1997. the image and will destroy more information than necessary, and extra
  1998. pixels will slow things down on a large logo.
  1999. @section scale
  2000. Scale the input video to @var{width}:@var{height}[:@var{interl}=@{1|-1@}] and/or convert the image format.
  2001. The scale filter forces the output display aspect ratio to be the same
  2002. of the input, by changing the output sample aspect ratio.
  2003. The parameters @var{width} and @var{height} are expressions containing
  2004. the following constants:
  2005. @table @option
  2006. @item in_w, in_h
  2007. the input width and height
  2008. @item iw, ih
  2009. same as @var{in_w} and @var{in_h}
  2010. @item out_w, out_h
  2011. the output (cropped) width and height
  2012. @item ow, oh
  2013. same as @var{out_w} and @var{out_h}
  2014. @item a
  2015. same as @var{iw} / @var{ih}
  2016. @item sar
  2017. input sample aspect ratio
  2018. @item dar
  2019. input display aspect ratio, it is the same as (@var{iw} / @var{ih}) * @var{sar}
  2020. @item hsub, vsub
  2021. horizontal and vertical chroma subsample values. For example for the
  2022. pixel format "yuv422p" @var{hsub} is 2 and @var{vsub} is 1.
  2023. @end table
  2024. If the input image format is different from the format requested by
  2025. the next filter, the scale filter will convert the input to the
  2026. requested format.
  2027. If the value for @var{width} or @var{height} is 0, the respective input
  2028. size is used for the output.
  2029. If the value for @var{width} or @var{height} is -1, the scale filter will
  2030. use, for the respective output size, a value that maintains the aspect
  2031. ratio of the input image.
  2032. The default value of @var{width} and @var{height} is 0.
  2033. Valid values for the optional parameter @var{interl} are:
  2034. @table @option
  2035. @item 1
  2036. force interlaced aware scaling
  2037. @item -1
  2038. select interlaced aware scaling depending on whether the source frames
  2039. are flagged as interlaced or not
  2040. @end table
  2041. Unless @var{interl} is set to one of the above options, interlaced scaling will not be used.
  2042. Some examples follow:
  2043. @example
  2044. # scale the input video to a size of 200x100.
  2045. scale=200:100
  2046. # scale the input to 2x
  2047. scale=2*iw:2*ih
  2048. # the above is the same as
  2049. scale=2*in_w:2*in_h
  2050. # scale the input to 2x with forced interlaced scaling
  2051. scale=2*iw:2*ih:interl=1
  2052. # scale the input to half size
  2053. scale=iw/2:ih/2
  2054. # increase the width, and set the height to the same size
  2055. scale=3/2*iw:ow
  2056. # seek for Greek harmony
  2057. scale=iw:1/PHI*iw
  2058. scale=ih*PHI:ih
  2059. # increase the height, and set the width to 3/2 of the height
  2060. scale=3/2*oh:3/5*ih
  2061. # increase the size, but make the size a multiple of the chroma
  2062. scale="trunc(3/2*iw/hsub)*hsub:trunc(3/2*ih/vsub)*vsub"
  2063. # increase the width to a maximum of 500 pixels, keep the same input aspect ratio
  2064. scale='min(500\, iw*3/2):-1'
  2065. @end example
  2066. @section select
  2067. Select frames to pass in output.
  2068. It accepts in input an expression, which is evaluated for each input
  2069. frame. If the expression is evaluated to a non-zero value, the frame
  2070. is selected and passed to the output, otherwise it is discarded.
  2071. The expression can contain the following constants:
  2072. @table @option
  2073. @item n
  2074. the sequential number of the filtered frame, starting from 0
  2075. @item selected_n
  2076. the sequential number of the selected frame, starting from 0
  2077. @item prev_selected_n
  2078. the sequential number of the last selected frame, NAN if undefined
  2079. @item TB
  2080. timebase of the input timestamps
  2081. @item pts
  2082. the PTS (Presentation TimeStamp) of the filtered video frame,
  2083. expressed in @var{TB} units, NAN if undefined
  2084. @item t
  2085. the PTS (Presentation TimeStamp) of the filtered video frame,
  2086. expressed in seconds, NAN if undefined
  2087. @item prev_pts
  2088. the PTS of the previously filtered video frame, NAN if undefined
  2089. @item prev_selected_pts
  2090. the PTS of the last previously filtered video frame, NAN if undefined
  2091. @item prev_selected_t
  2092. the PTS of the last previously selected video frame, NAN if undefined
  2093. @item start_pts
  2094. the PTS of the first video frame in the video, NAN if undefined
  2095. @item start_t
  2096. the time of the first video frame in the video, NAN if undefined
  2097. @item pict_type
  2098. the type of the filtered frame, can assume one of the following
  2099. values:
  2100. @table @option
  2101. @item I
  2102. @item P
  2103. @item B
  2104. @item S
  2105. @item SI
  2106. @item SP
  2107. @item BI
  2108. @end table
  2109. @item interlace_type
  2110. the frame interlace type, can assume one of the following values:
  2111. @table @option
  2112. @item PROGRESSIVE
  2113. the frame is progressive (not interlaced)
  2114. @item TOPFIRST
  2115. the frame is top-field-first
  2116. @item BOTTOMFIRST
  2117. the frame is bottom-field-first
  2118. @end table
  2119. @item key
  2120. 1 if the filtered frame is a key-frame, 0 otherwise
  2121. @item pos
  2122. the position in the file of the filtered frame, -1 if the information
  2123. is not available (e.g. for synthetic video)
  2124. @item scene
  2125. value between 0 and 1 to indicate a new scene; a low value reflects a low
  2126. probability for the current frame to introduce a new scene, while a higher
  2127. value means the current frame is more likely to be one (see the example below)
  2128. @end table
  2129. The default value of the select expression is "1".
  2130. Some examples follow:
  2131. @example
  2132. # select all frames in input
  2133. select
  2134. # the above is the same as:
  2135. select=1
  2136. # skip all frames:
  2137. select=0
  2138. # select only I-frames
  2139. select='eq(pict_type\,I)'
  2140. # select one frame every 100
  2141. select='not(mod(n\,100))'
  2142. # select only frames contained in the 10-20 time interval
  2143. select='gte(t\,10)*lte(t\,20)'
  2144. # select only I frames contained in the 10-20 time interval
  2145. select='gte(t\,10)*lte(t\,20)*eq(pict_type\,I)'
  2146. # select frames with a minimum distance of 10 seconds
  2147. select='isnan(prev_selected_t)+gte(t-prev_selected_t\,10)'
  2148. @end example
  2149. Complete example to create a mosaic of the first scenes:
  2150. @example
  2151. ffmpeg -i video.avi -vf select='gt(scene\,0.4)',scale=160:120,tile -frames:v 1 preview.png
  2152. @end example
  2153. Comparing @var{scene} against a value between 0.3 and 0.5 is generally a sane
  2154. choice.
  2155. @section setdar, setsar
  2156. The @code{setdar} filter sets the Display Aspect Ratio for the filter
  2157. output video.
  2158. This is done by changing the specified Sample (aka Pixel) Aspect
  2159. Ratio, according to the following equation:
  2160. @example
  2161. @var{DAR} = @var{HORIZONTAL_RESOLUTION} / @var{VERTICAL_RESOLUTION} * @var{SAR}
  2162. @end example
  2163. Keep in mind that the @code{setdar} filter does not modify the pixel
  2164. dimensions of the video frame. Also the display aspect ratio set by
  2165. this filter may be changed by later filters in the filterchain,
  2166. e.g. in case of scaling or if another "setdar" or a "setsar" filter is
  2167. applied.
  2168. The @code{setsar} filter sets the Sample (aka Pixel) Aspect Ratio for
  2169. the filter output video.
  2170. Note that as a consequence of the application of this filter, the
  2171. output display aspect ratio will change according to the equation
  2172. above.
  2173. Keep in mind that the sample aspect ratio set by the @code{setsar}
  2174. filter may be changed by later filters in the filterchain, e.g. if
  2175. another "setsar" or a "setdar" filter is applied.
  2176. The @code{setdar} and @code{setsar} filters accept a parameter string
  2177. which represents the wanted aspect ratio. The parameter can
  2178. be a floating point number string, an expression, or a string of the form
  2179. @var{num}:@var{den}, where @var{num} and @var{den} are the numerator
  2180. and denominator of the aspect ratio. If the parameter is not
  2181. specified, it is assumed the value "0:1".
  2182. For example to change the display aspect ratio to 16:9, specify:
  2183. @example
  2184. setdar=16:9
  2185. @end example
  2186. The example above is equivalent to:
  2187. @example
  2188. setdar=1.77777
  2189. @end example
  2190. To change the sample aspect ratio to 10:11, specify:
  2191. @example
  2192. setsar=10:11
  2193. @end example
  2194. @section setfield
  2195. Force field for the output video frame.
  2196. The @code{setfield} filter marks the interlace type field for the
  2197. output frames. It does not change the input frame, but only sets the
  2198. corresponding property, which affects how the frame is treated by
  2199. following filters (e.g. @code{fieldorder} or @code{yadif}).
  2200. It accepts a string parameter, which can assume the following values:
  2201. @table @samp
  2202. @item auto
  2203. Keep the same field property.
  2204. @item bff
  2205. Mark the frame as bottom-field-first.
  2206. @item tff
  2207. Mark the frame as top-field-first.
  2208. @item prog
  2209. Mark the frame as progressive.
  2210. @end table
  2211. @section setpts
  2212. Change the PTS (presentation timestamp) of the input video frames.
  2213. Accept in input an expression evaluated through the eval API, which
  2214. can contain the following constants:
  2215. @table @option
  2216. @item PTS
  2217. the presentation timestamp in input
  2218. @item N
  2219. the count of the input frame, starting from 0.
  2220. @item STARTPTS
  2221. the PTS of the first video frame
  2222. @item INTERLACED
  2223. tell if the current frame is interlaced
  2224. @item POS
  2225. original position in the file of the frame, or undefined if undefined
  2226. for the current frame
  2227. @item PREV_INPTS
  2228. previous input PTS
  2229. @item PREV_OUTPTS
  2230. previous output PTS
  2231. @end table
  2232. Some examples follow:
  2233. @example
  2234. # start counting PTS from zero
  2235. setpts=PTS-STARTPTS
  2236. # fast motion
  2237. setpts=0.5*PTS
  2238. # slow motion
  2239. setpts=2.0*PTS
  2240. # fixed rate 25 fps
  2241. setpts=N/(25*TB)
  2242. # fixed rate 25 fps with some jitter
  2243. setpts='1/(25*TB) * (N + 0.05 * sin(N*2*PI/25))'
  2244. @end example
  2245. @section settb, asettb
  2246. Set the timebase to use for the output frames timestamps.
  2247. It is mainly useful for testing timebase configuration.
  2248. It accepts in input an arithmetic expression representing a rational.
  2249. The expression can contain the constants "AVTB" (the
  2250. default timebase), "intb" (the input timebase) and "sr" (the sample rate,
  2251. audio only).
  2252. The default value for the input is "intb".
  2253. Follow some examples.
  2254. @example
  2255. # set the timebase to 1/25
  2256. settb=1/25
  2257. # set the timebase to 1/10
  2258. settb=0.1
  2259. #set the timebase to 1001/1000
  2260. settb=1+0.001
  2261. #set the timebase to 2*intb
  2262. settb=2*intb
  2263. #set the default timebase value
  2264. settb=AVTB
  2265. @end example
  2266. @section showinfo
  2267. Show a line containing various information for each input video frame.
  2268. The input video is not modified.
  2269. The shown line contains a sequence of key/value pairs of the form
  2270. @var{key}:@var{value}.
  2271. A description of each shown parameter follows:
  2272. @table @option
  2273. @item n
  2274. sequential number of the input frame, starting from 0
  2275. @item pts
  2276. Presentation TimeStamp of the input frame, expressed as a number of
  2277. time base units. The time base unit depends on the filter input pad.
  2278. @item pts_time
  2279. Presentation TimeStamp of the input frame, expressed as a number of
  2280. seconds
  2281. @item pos
  2282. position of the frame in the input stream, -1 if this information in
  2283. unavailable and/or meaningless (for example in case of synthetic video)
  2284. @item fmt
  2285. pixel format name
  2286. @item sar
  2287. sample aspect ratio of the input frame, expressed in the form
  2288. @var{num}/@var{den}
  2289. @item s
  2290. size of the input frame, expressed in the form
  2291. @var{width}x@var{height}
  2292. @item i
  2293. interlaced mode ("P" for "progressive", "T" for top field first, "B"
  2294. for bottom field first)
  2295. @item iskey
  2296. 1 if the frame is a key frame, 0 otherwise
  2297. @item type
  2298. picture type of the input frame ("I" for an I-frame, "P" for a
  2299. P-frame, "B" for a B-frame, "?" for unknown type).
  2300. Check also the documentation of the @code{AVPictureType} enum and of
  2301. the @code{av_get_picture_type_char} function defined in
  2302. @file{libavutil/avutil.h}.
  2303. @item checksum
  2304. Adler-32 checksum (printed in hexadecimal) of all the planes of the input frame
  2305. @item plane_checksum
  2306. Adler-32 checksum (printed in hexadecimal) of each plane of the input frame,
  2307. expressed in the form "[@var{c0} @var{c1} @var{c2} @var{c3}]"
  2308. @end table
  2309. @section slicify
  2310. Pass the images of input video on to next video filter as multiple
  2311. slices.
  2312. @example
  2313. ffmpeg -i in.avi -vf "slicify=32" out.avi
  2314. @end example
  2315. The filter accepts the slice height as parameter. If the parameter is
  2316. not specified it will use the default value of 16.
  2317. Adding this in the beginning of filter chains should make filtering
  2318. faster due to better use of the memory cache.
  2319. @section split
  2320. Split input video into several identical outputs.
  2321. The filter accepts a single parameter which specifies the number of outputs. If
  2322. unspecified, it defaults to 2.
  2323. For example
  2324. @example
  2325. ffmpeg -i INPUT -filter_complex split=5 OUTPUT
  2326. @end example
  2327. will create 5 copies of the input video.
  2328. For example:
  2329. @example
  2330. [in] split [splitout1][splitout2];
  2331. [splitout1] crop=100:100:0:0 [cropout];
  2332. [splitout2] pad=200:200:100:100 [padout];
  2333. @end example
  2334. will create two separate outputs from the same input, one cropped and
  2335. one padded.
  2336. @section super2xsai
  2337. Scale the input by 2x and smooth using the Super2xSaI (Scale and
  2338. Interpolate) pixel art scaling algorithm.
  2339. Useful for enlarging pixel art images without reducing sharpness.
  2340. @section swapuv
  2341. Swap U & V plane.
  2342. @section thumbnail
  2343. Select the most representative frame in a given sequence of consecutive frames.
  2344. It accepts as argument the frames batch size to analyze (default @var{N}=100);
  2345. in a set of @var{N} frames, the filter will pick one of them, and then handle
  2346. the next batch of @var{N} frames until the end.
  2347. Since the filter keeps track of the whole frames sequence, a bigger @var{N}
  2348. value will result in a higher memory usage, so a high value is not recommended.
  2349. The following example extract one picture each 50 frames:
  2350. @example
  2351. thumbnail=50
  2352. @end example
  2353. Complete example of a thumbnail creation with @command{ffmpeg}:
  2354. @example
  2355. ffmpeg -i in.avi -vf thumbnail,scale=300:200 -frames:v 1 out.png
  2356. @end example
  2357. @section tile
  2358. Tile several successive frames together.
  2359. It accepts as argument the tile size (i.e. the number of lines and columns)
  2360. in the form "@var{w}x@var{h}".
  2361. For example, produce 8×8 PNG tiles of all keyframes (@option{-skip_frame
  2362. nokey}) in a movie:
  2363. @example
  2364. ffmpeg -skip_frame nokey -i file.avi -vf 'scale=128:72,tile=8x8' -an -vsync 0 keyframes%03d.png
  2365. @end example
  2366. The @option{-vsync 0} is necessary to prevent @command{ffmpeg} from
  2367. duplicating each output frame to accomodate the originally detected frame
  2368. rate.
  2369. @section tinterlace
  2370. Perform various types of temporal field interlacing.
  2371. Frames are counted starting from 1, so the first input frame is
  2372. considered odd.
  2373. This filter accepts a single parameter specifying the mode. Available
  2374. modes are:
  2375. @table @samp
  2376. @item merge, 0
  2377. Move odd frames into the upper field, even into the lower field,
  2378. generating a double height frame at half framerate.
  2379. @item drop_odd, 1
  2380. Only output even frames, odd frames are dropped, generating a frame with
  2381. unchanged height at half framerate.
  2382. @item drop_even, 2
  2383. Only output odd frames, even frames are dropped, generating a frame with
  2384. unchanged height at half framerate.
  2385. @item pad, 3
  2386. Expand each frame to full height, but pad alternate lines with black,
  2387. generating a frame with double height at the same input framerate.
  2388. @item interleave_top, 4
  2389. Interleave the upper field from odd frames with the lower field from
  2390. even frames, generating a frame with unchanged height at half framerate.
  2391. @item interleave_bottom, 5
  2392. Interleave the lower field from odd frames with the upper field from
  2393. even frames, generating a frame with unchanged height at half framerate.
  2394. @item interlacex2, 6
  2395. Double frame rate with unchanged height. Frames are inserted each
  2396. containing the second temporal field from the previous input frame and
  2397. the first temporal field from the next input frame. This mode relies on
  2398. the top_field_first flag. Useful for interlaced video displays with no
  2399. field synchronisation.
  2400. @end table
  2401. Numeric values are deprecated but are accepted for backward
  2402. compatibility reasons.
  2403. Default mode is @code{merge}.
  2404. @section transpose
  2405. Transpose rows with columns in the input video and optionally flip it.
  2406. It accepts a parameter representing an integer, which can assume the
  2407. values:
  2408. @table @samp
  2409. @item 0
  2410. Rotate by 90 degrees counterclockwise and vertically flip (default), that is:
  2411. @example
  2412. L.R L.l
  2413. . . -> . .
  2414. l.r R.r
  2415. @end example
  2416. @item 1
  2417. Rotate by 90 degrees clockwise, that is:
  2418. @example
  2419. L.R l.L
  2420. . . -> . .
  2421. l.r r.R
  2422. @end example
  2423. @item 2
  2424. Rotate by 90 degrees counterclockwise, that is:
  2425. @example
  2426. L.R R.r
  2427. . . -> . .
  2428. l.r L.l
  2429. @end example
  2430. @item 3
  2431. Rotate by 90 degrees clockwise and vertically flip, that is:
  2432. @example
  2433. L.R r.R
  2434. . . -> . .
  2435. l.r l.L
  2436. @end example
  2437. @end table
  2438. @section unsharp
  2439. Sharpen or blur the input video.
  2440. It accepts the following parameters:
  2441. @var{luma_msize_x}:@var{luma_msize_y}:@var{luma_amount}:@var{chroma_msize_x}:@var{chroma_msize_y}:@var{chroma_amount}
  2442. Negative values for the amount will blur the input video, while positive
  2443. values will sharpen. All parameters are optional and default to the
  2444. equivalent of the string '5:5:1.0:5:5:0.0'.
  2445. @table @option
  2446. @item luma_msize_x
  2447. Set the luma matrix horizontal size. It can be an integer between 3
  2448. and 13, default value is 5.
  2449. @item luma_msize_y
  2450. Set the luma matrix vertical size. It can be an integer between 3
  2451. and 13, default value is 5.
  2452. @item luma_amount
  2453. Set the luma effect strength. It can be a float number between -2.0
  2454. and 5.0, default value is 1.0.
  2455. @item chroma_msize_x
  2456. Set the chroma matrix horizontal size. It can be an integer between 3
  2457. and 13, default value is 5.
  2458. @item chroma_msize_y
  2459. Set the chroma matrix vertical size. It can be an integer between 3
  2460. and 13, default value is 5.
  2461. @item chroma_amount
  2462. Set the chroma effect strength. It can be a float number between -2.0
  2463. and 5.0, default value is 0.0.
  2464. @end table
  2465. @example
  2466. # Strong luma sharpen effect parameters
  2467. unsharp=7:7:2.5
  2468. # Strong blur of both luma and chroma parameters
  2469. unsharp=7:7:-2:7:7:-2
  2470. # Use the default values with @command{ffmpeg}
  2471. ffmpeg -i in.avi -vf "unsharp" out.mp4
  2472. @end example
  2473. @section vflip
  2474. Flip the input video vertically.
  2475. @example
  2476. ffmpeg -i in.avi -vf "vflip" out.avi
  2477. @end example
  2478. @section yadif
  2479. Deinterlace the input video ("yadif" means "yet another deinterlacing
  2480. filter").
  2481. It accepts the optional parameters: @var{mode}:@var{parity}:@var{auto}.
  2482. @var{mode} specifies the interlacing mode to adopt, accepts one of the
  2483. following values:
  2484. @table @option
  2485. @item 0
  2486. output 1 frame for each frame
  2487. @item 1
  2488. output 1 frame for each field
  2489. @item 2
  2490. like 0 but skips spatial interlacing check
  2491. @item 3
  2492. like 1 but skips spatial interlacing check
  2493. @end table
  2494. Default value is 0.
  2495. @var{parity} specifies the picture field parity assumed for the input
  2496. interlaced video, accepts one of the following values:
  2497. @table @option
  2498. @item 0
  2499. assume top field first
  2500. @item 1
  2501. assume bottom field first
  2502. @item -1
  2503. enable automatic detection
  2504. @end table
  2505. Default value is -1.
  2506. If interlacing is unknown or decoder does not export this information,
  2507. top field first will be assumed.
  2508. @var{auto} specifies if deinterlacer should trust the interlaced flag
  2509. and only deinterlace frames marked as interlaced
  2510. @table @option
  2511. @item 0
  2512. deinterlace all frames
  2513. @item 1
  2514. only deinterlace frames marked as interlaced
  2515. @end table
  2516. Default value is 0.
  2517. @c man end VIDEO FILTERS
  2518. @chapter Video Sources
  2519. @c man begin VIDEO SOURCES
  2520. Below is a description of the currently available video sources.
  2521. @section buffer
  2522. Buffer video frames, and make them available to the filter chain.
  2523. This source is mainly intended for a programmatic use, in particular
  2524. through the interface defined in @file{libavfilter/vsrc_buffer.h}.
  2525. It accepts a list of options in the form of @var{key}=@var{value} pairs
  2526. separated by ":". A descroption of the accepted options follows.
  2527. @table @option
  2528. @item video_size
  2529. Specify the size (width and height) of the buffered video frames.
  2530. @item pix_fmt
  2531. A string representing the pixel format of the buffered video frames.
  2532. It may be a number corresponding to a pixel format, or a pixel format
  2533. name.
  2534. @item time_base
  2535. Specify the timebase assumed by the timestamps of the buffered frames.
  2536. @item time_base
  2537. Specify the frame rate expected for the video stream.
  2538. @item pixel_aspect
  2539. Specify the sample aspect ratio assumed by the video frames.
  2540. @item sws_param
  2541. Specify the optional parameters to be used for the scale filter which
  2542. is automatically inserted when an input change is detected in the
  2543. input size or format.
  2544. @end table
  2545. For example:
  2546. @example
  2547. buffer=size=320x240:pix_fmt=yuv410p:time_base=1/24:pixel_aspect=1/1
  2548. @end example
  2549. will instruct the source to accept video frames with size 320x240 and
  2550. with format "yuv410p", assuming 1/24 as the timestamps timebase and
  2551. square pixels (1:1 sample aspect ratio).
  2552. Since the pixel format with name "yuv410p" corresponds to the number 6
  2553. (check the enum PixelFormat definition in @file{libavutil/pixfmt.h}),
  2554. this example corresponds to:
  2555. @example
  2556. buffer=size=320x240:pixfmt=6:time_base=1/24:pixel_aspect=1/1
  2557. @end example
  2558. Alternatively, the options can be specified as a flat string, but this
  2559. syntax is deprecated:
  2560. @var{width}:@var{height}:@var{pix_fmt}:@var{time_base.num}:@var{time_base.den}:@var{pixel_aspect.num}:@var{pixel_aspect.den}[:@var{sws_param}]
  2561. @section cellauto
  2562. Create a pattern generated by an elementary cellular automaton.
  2563. The initial state of the cellular automaton can be defined through the
  2564. @option{filename}, and @option{pattern} options. If such options are
  2565. not specified an initial state is created randomly.
  2566. At each new frame a new row in the video is filled with the result of
  2567. the cellular automaton next generation. The behavior when the whole
  2568. frame is filled is defined by the @option{scroll} option.
  2569. This source accepts a list of options in the form of
  2570. @var{key}=@var{value} pairs separated by ":". A description of the
  2571. accepted options follows.
  2572. @table @option
  2573. @item filename, f
  2574. Read the initial cellular automaton state, i.e. the starting row, from
  2575. the specified file.
  2576. In the file, each non-whitespace character is considered an alive
  2577. cell, a newline will terminate the row, and further characters in the
  2578. file will be ignored.
  2579. @item pattern, p
  2580. Read the initial cellular automaton state, i.e. the starting row, from
  2581. the specified string.
  2582. Each non-whitespace character in the string is considered an alive
  2583. cell, a newline will terminate the row, and further characters in the
  2584. string will be ignored.
  2585. @item rate, r
  2586. Set the video rate, that is the number of frames generated per second.
  2587. Default is 25.
  2588. @item random_fill_ratio, ratio
  2589. Set the random fill ratio for the initial cellular automaton row. It
  2590. is a floating point number value ranging from 0 to 1, defaults to
  2591. 1/PHI.
  2592. This option is ignored when a file or a pattern is specified.
  2593. @item random_seed, seed
  2594. Set the seed for filling randomly the initial row, must be an integer
  2595. included between 0 and UINT32_MAX. If not specified, or if explicitly
  2596. set to -1, the filter will try to use a good random seed on a best
  2597. effort basis.
  2598. @item rule
  2599. Set the cellular automaton rule, it is a number ranging from 0 to 255.
  2600. Default value is 110.
  2601. @item size, s
  2602. Set the size of the output video.
  2603. If @option{filename} or @option{pattern} is specified, the size is set
  2604. by default to the width of the specified initial state row, and the
  2605. height is set to @var{width} * PHI.
  2606. If @option{size} is set, it must contain the width of the specified
  2607. pattern string, and the specified pattern will be centered in the
  2608. larger row.
  2609. If a filename or a pattern string is not specified, the size value
  2610. defaults to "320x518" (used for a randomly generated initial state).
  2611. @item scroll
  2612. If set to 1, scroll the output upward when all the rows in the output
  2613. have been already filled. If set to 0, the new generated row will be
  2614. written over the top row just after the bottom row is filled.
  2615. Defaults to 1.
  2616. @item start_full, full
  2617. If set to 1, completely fill the output with generated rows before
  2618. outputting the first frame.
  2619. This is the default behavior, for disabling set the value to 0.
  2620. @item stitch
  2621. If set to 1, stitch the left and right row edges together.
  2622. This is the default behavior, for disabling set the value to 0.
  2623. @end table
  2624. @subsection Examples
  2625. @itemize
  2626. @item
  2627. Read the initial state from @file{pattern}, and specify an output of
  2628. size 200x400.
  2629. @example
  2630. cellauto=f=pattern:s=200x400
  2631. @end example
  2632. @item
  2633. Generate a random initial row with a width of 200 cells, with a fill
  2634. ratio of 2/3:
  2635. @example
  2636. cellauto=ratio=2/3:s=200x200
  2637. @end example
  2638. @item
  2639. Create a pattern generated by rule 18 starting by a single alive cell
  2640. centered on an initial row with width 100:
  2641. @example
  2642. cellauto=p=@@:s=100x400:full=0:rule=18
  2643. @end example
  2644. @item
  2645. Specify a more elaborated initial pattern:
  2646. @example
  2647. cellauto=p='@@@@ @@ @@@@':s=100x400:full=0:rule=18
  2648. @end example
  2649. @end itemize
  2650. @section color
  2651. Provide an uniformly colored input.
  2652. This source accepts list of options in the form of
  2653. @var{key}=@var{value} pairs separated by ":".
  2654. Alternatively, it accepts a string in the form
  2655. @var{color}:@var{size}:@var{rate}, but this syntax is
  2656. deprecated.
  2657. Follows the description of the accepted parameters.
  2658. @table @option
  2659. @item color, c
  2660. Specify the color of the source. It can be the name of a color (case
  2661. insensitive match) or a 0xRRGGBB[AA] sequence, possibly followed by an
  2662. alpha specifier. The default value is "black".
  2663. @item size, s
  2664. Specify the size of the sourced video, it may be a string of the form
  2665. @var{width}x@var{height}, or the name of a size abbreviation. The
  2666. default value is "320x240".
  2667. @item rate, r
  2668. Specify the frame rate of the sourced video, as the number of frames
  2669. generated per second. It has to be a string in the format
  2670. @var{frame_rate_num}/@var{frame_rate_den}, an integer number, a float
  2671. number or a valid video frame rate abbreviation. The default value is
  2672. "25".
  2673. @end table
  2674. For example the following graph description will generate a red source
  2675. with an opacity of 0.2, with size "qcif" and a frame rate of 10
  2676. frames per second, which will be overlayed over the source connected
  2677. to the pad with identifier "in".
  2678. @example
  2679. "color=c=red@@0.2:s=qcif:r=10 [color]; [in][color] overlay [out]"
  2680. @end example
  2681. @section movie
  2682. Read a video stream from a movie container.
  2683. It accepts the syntax: @var{movie_name}[:@var{options}] where
  2684. @var{movie_name} is the name of the resource to read (not necessarily
  2685. a file but also a device or a stream accessed through some protocol),
  2686. and @var{options} is an optional sequence of @var{key}=@var{value}
  2687. pairs, separated by ":".
  2688. The description of the accepted options follows.
  2689. @table @option
  2690. @item format_name, f
  2691. Specifies the format assumed for the movie to read, and can be either
  2692. the name of a container or an input device. If not specified the
  2693. format is guessed from @var{movie_name} or by probing.
  2694. @item seek_point, sp
  2695. Specifies the seek point in seconds, the frames will be output
  2696. starting from this seek point, the parameter is evaluated with
  2697. @code{av_strtod} so the numerical value may be suffixed by an IS
  2698. postfix. Default value is "0".
  2699. @item stream_index, si
  2700. Specifies the index of the video stream to read. If the value is -1,
  2701. the best suited video stream will be automatically selected. Default
  2702. value is "-1".
  2703. @item loop
  2704. Specifies how many times to read the video stream in sequence.
  2705. If the value is less than 1, the stream will be read again and again.
  2706. Default value is "1".
  2707. Note that when the movie is looped the source timestamps are not
  2708. changed, so it will generate non monotonically increasing timestamps.
  2709. @end table
  2710. This filter allows to overlay a second video on top of main input of
  2711. a filtergraph as shown in this graph:
  2712. @example
  2713. input -----------> deltapts0 --> overlay --> output
  2714. ^
  2715. |
  2716. movie --> scale--> deltapts1 -------+
  2717. @end example
  2718. Some examples follow:
  2719. @example
  2720. # skip 3.2 seconds from the start of the avi file in.avi, and overlay it
  2721. # on top of the input labelled as "in".
  2722. movie=in.avi:seek_point=3.2, scale=180:-1, setpts=PTS-STARTPTS [movie];
  2723. [in] setpts=PTS-STARTPTS, [movie] overlay=16:16 [out]
  2724. # read from a video4linux2 device, and overlay it on top of the input
  2725. # labelled as "in"
  2726. movie=/dev/video0:f=video4linux2, scale=180:-1, setpts=PTS-STARTPTS [movie];
  2727. [in] setpts=PTS-STARTPTS, [movie] overlay=16:16 [out]
  2728. @end example
  2729. @section mptestsrc
  2730. Generate various test patterns, as generated by the MPlayer test filter.
  2731. The size of the generated video is fixed, and is 256x256.
  2732. This source is useful in particular for testing encoding features.
  2733. This source accepts an optional sequence of @var{key}=@var{value} pairs,
  2734. separated by ":". The description of the accepted options follows.
  2735. @table @option
  2736. @item rate, r
  2737. Specify the frame rate of the sourced video, as the number of frames
  2738. generated per second. It has to be a string in the format
  2739. @var{frame_rate_num}/@var{frame_rate_den}, an integer number, a float
  2740. number or a valid video frame rate abbreviation. The default value is
  2741. "25".
  2742. @item duration, d
  2743. Set the video duration of the sourced video. The accepted syntax is:
  2744. @example
  2745. [-]HH:MM:SS[.m...]
  2746. [-]S+[.m...]
  2747. @end example
  2748. See also the function @code{av_parse_time()}.
  2749. If not specified, or the expressed duration is negative, the video is
  2750. supposed to be generated forever.
  2751. @item test, t
  2752. Set the number or the name of the test to perform. Supported tests are:
  2753. @table @option
  2754. @item dc_luma
  2755. @item dc_chroma
  2756. @item freq_luma
  2757. @item freq_chroma
  2758. @item amp_luma
  2759. @item amp_chroma
  2760. @item cbp
  2761. @item mv
  2762. @item ring1
  2763. @item ring2
  2764. @item all
  2765. @end table
  2766. Default value is "all", which will cycle through the list of all tests.
  2767. @end table
  2768. For example the following:
  2769. @example
  2770. testsrc=t=dc_luma
  2771. @end example
  2772. will generate a "dc_luma" test pattern.
  2773. @section frei0r_src
  2774. Provide a frei0r source.
  2775. To enable compilation of this filter you need to install the frei0r
  2776. header and configure FFmpeg with @code{--enable-frei0r}.
  2777. The source supports the syntax:
  2778. @example
  2779. @var{size}:@var{rate}:@var{src_name}[@{=|:@}@var{param1}:@var{param2}:...:@var{paramN}]
  2780. @end example
  2781. @var{size} is the size of the video to generate, may be a string of the
  2782. form @var{width}x@var{height} or a frame size abbreviation.
  2783. @var{rate} is the rate of the video to generate, may be a string of
  2784. the form @var{num}/@var{den} or a frame rate abbreviation.
  2785. @var{src_name} is the name to the frei0r source to load. For more
  2786. information regarding frei0r and how to set the parameters read the
  2787. section @ref{frei0r} in the description of the video filters.
  2788. For example, to generate a frei0r partik0l source with size 200x200
  2789. and frame rate 10 which is overlayed on the overlay filter main input:
  2790. @example
  2791. frei0r_src=200x200:10:partik0l=1234 [overlay]; [in][overlay] overlay
  2792. @end example
  2793. @section life
  2794. Generate a life pattern.
  2795. This source is based on a generalization of John Conway's life game.
  2796. The sourced input represents a life grid, each pixel represents a cell
  2797. which can be in one of two possible states, alive or dead. Every cell
  2798. interacts with its eight neighbours, which are the cells that are
  2799. horizontally, vertically, or diagonally adjacent.
  2800. At each interaction the grid evolves according to the adopted rule,
  2801. which specifies the number of neighbor alive cells which will make a
  2802. cell stay alive or born. The @option{rule} option allows to specify
  2803. the rule to adopt.
  2804. This source accepts a list of options in the form of
  2805. @var{key}=@var{value} pairs separated by ":". A description of the
  2806. accepted options follows.
  2807. @table @option
  2808. @item filename, f
  2809. Set the file from which to read the initial grid state. In the file,
  2810. each non-whitespace character is considered an alive cell, and newline
  2811. is used to delimit the end of each row.
  2812. If this option is not specified, the initial grid is generated
  2813. randomly.
  2814. @item rate, r
  2815. Set the video rate, that is the number of frames generated per second.
  2816. Default is 25.
  2817. @item random_fill_ratio, ratio
  2818. Set the random fill ratio for the initial random grid. It is a
  2819. floating point number value ranging from 0 to 1, defaults to 1/PHI.
  2820. It is ignored when a file is specified.
  2821. @item random_seed, seed
  2822. Set the seed for filling the initial random grid, must be an integer
  2823. included between 0 and UINT32_MAX. If not specified, or if explicitly
  2824. set to -1, the filter will try to use a good random seed on a best
  2825. effort basis.
  2826. @item rule
  2827. Set the life rule.
  2828. A rule can be specified with a code of the kind "S@var{NS}/B@var{NB}",
  2829. where @var{NS} and @var{NB} are sequences of numbers in the range 0-8,
  2830. @var{NS} specifies the number of alive neighbor cells which make a
  2831. live cell stay alive, and @var{NB} the number of alive neighbor cells
  2832. which make a dead cell to become alive (i.e. to "born").
  2833. "s" and "b" can be used in place of "S" and "B", respectively.
  2834. Alternatively a rule can be specified by an 18-bits integer. The 9
  2835. high order bits are used to encode the next cell state if it is alive
  2836. for each number of neighbor alive cells, the low order bits specify
  2837. the rule for "borning" new cells. Higher order bits encode for an
  2838. higher number of neighbor cells.
  2839. For example the number 6153 = @code{(12<<9)+9} specifies a stay alive
  2840. rule of 12 and a born rule of 9, which corresponds to "S23/B03".
  2841. Default value is "S23/B3", which is the original Conway's game of life
  2842. rule, and will keep a cell alive if it has 2 or 3 neighbor alive
  2843. cells, and will born a new cell if there are three alive cells around
  2844. a dead cell.
  2845. @item size, s
  2846. Set the size of the output video.
  2847. If @option{filename} is specified, the size is set by default to the
  2848. same size of the input file. If @option{size} is set, it must contain
  2849. the size specified in the input file, and the initial grid defined in
  2850. that file is centered in the larger resulting area.
  2851. If a filename is not specified, the size value defaults to "320x240"
  2852. (used for a randomly generated initial grid).
  2853. @item stitch
  2854. If set to 1, stitch the left and right grid edges together, and the
  2855. top and bottom edges also. Defaults to 1.
  2856. @item mold
  2857. Set cell mold speed. If set, a dead cell will go from @option{death_color} to
  2858. @option{mold_color} with a step of @option{mold}. @option{mold} can have a
  2859. value from 0 to 255.
  2860. @item life_color
  2861. Set the color of living (or new born) cells.
  2862. @item death_color
  2863. Set the color of dead cells. If @option{mold} is set, this is the first color
  2864. used to represent a dead cell.
  2865. @item mold_color
  2866. Set mold color, for definitely dead and moldy cells.
  2867. @end table
  2868. @subsection Examples
  2869. @itemize
  2870. @item
  2871. Read a grid from @file{pattern}, and center it on a grid of size
  2872. 300x300 pixels:
  2873. @example
  2874. life=f=pattern:s=300x300
  2875. @end example
  2876. @item
  2877. Generate a random grid of size 200x200, with a fill ratio of 2/3:
  2878. @example
  2879. life=ratio=2/3:s=200x200
  2880. @end example
  2881. @item
  2882. Specify a custom rule for evolving a randomly generated grid:
  2883. @example
  2884. life=rule=S14/B34
  2885. @end example
  2886. @item
  2887. Full example with slow death effect (mold) using @command{ffplay}:
  2888. @example
  2889. ffplay -f lavfi life=s=300x200:mold=10:r=60:ratio=0.1:death_color=#C83232:life_color=#00ff00,scale=1200:800:flags=16
  2890. @end example
  2891. @end itemize
  2892. @section nullsrc, rgbtestsrc, testsrc
  2893. The @code{nullsrc} source returns unprocessed video frames. It is
  2894. mainly useful to be employed in analysis / debugging tools, or as the
  2895. source for filters which ignore the input data.
  2896. The @code{rgbtestsrc} source generates an RGB test pattern useful for
  2897. detecting RGB vs BGR issues. You should see a red, green and blue
  2898. stripe from top to bottom.
  2899. The @code{testsrc} source generates a test video pattern, showing a
  2900. color pattern, a scrolling gradient and a timestamp. This is mainly
  2901. intended for testing purposes.
  2902. These sources accept an optional sequence of @var{key}=@var{value} pairs,
  2903. separated by ":". The description of the accepted options follows.
  2904. @table @option
  2905. @item size, s
  2906. Specify the size of the sourced video, it may be a string of the form
  2907. @var{width}x@var{height}, or the name of a size abbreviation. The
  2908. default value is "320x240".
  2909. @item rate, r
  2910. Specify the frame rate of the sourced video, as the number of frames
  2911. generated per second. It has to be a string in the format
  2912. @var{frame_rate_num}/@var{frame_rate_den}, an integer number, a float
  2913. number or a valid video frame rate abbreviation. The default value is
  2914. "25".
  2915. @item sar
  2916. Set the sample aspect ratio of the sourced video.
  2917. @item duration, d
  2918. Set the video duration of the sourced video. The accepted syntax is:
  2919. @example
  2920. [-]HH[:MM[:SS[.m...]]]
  2921. [-]S+[.m...]
  2922. @end example
  2923. See also the function @code{av_parse_time()}.
  2924. If not specified, or the expressed duration is negative, the video is
  2925. supposed to be generated forever.
  2926. @item decimals, n
  2927. Set the number of decimals to show in the timestamp, only used in the
  2928. @code{testsrc} source.
  2929. The displayed timestamp value will correspond to the original
  2930. timestamp value multiplied by the power of 10 of the specified
  2931. value. Default value is 0.
  2932. @end table
  2933. For example the following:
  2934. @example
  2935. testsrc=duration=5.3:size=qcif:rate=10
  2936. @end example
  2937. will generate a video with a duration of 5.3 seconds, with size
  2938. 176x144 and a frame rate of 10 frames per second.
  2939. If the input content is to be ignored, @code{nullsrc} can be used. The
  2940. following command generates noise in the luminance plane by employing
  2941. the @code{mp=geq} filter:
  2942. @example
  2943. nullsrc=s=256x256, mp=geq=random(1)*255:128:128
  2944. @end example
  2945. @c man end VIDEO SOURCES
  2946. @chapter Video Sinks
  2947. @c man begin VIDEO SINKS
  2948. Below is a description of the currently available video sinks.
  2949. @section buffersink
  2950. Buffer video frames, and make them available to the end of the filter
  2951. graph.
  2952. This sink is mainly intended for a programmatic use, in particular
  2953. through the interface defined in @file{libavfilter/buffersink.h}.
  2954. It does not require a string parameter in input, but you need to
  2955. specify a pointer to a list of supported pixel formats terminated by
  2956. -1 in the opaque parameter provided to @code{avfilter_init_filter}
  2957. when initializing this sink.
  2958. @section nullsink
  2959. Null video sink, do absolutely nothing with the input video. It is
  2960. mainly useful as a template and to be employed in analysis / debugging
  2961. tools.
  2962. @c man end VIDEO SINKS
  2963. @chapter Transmedia Filters
  2964. @c man begin TRANSMEDIA FILTERS
  2965. Below is a description of the currently available transmedia filters.
  2966. @section concat
  2967. Concatenate audio and video streams, joining them together one after the
  2968. other.
  2969. The filter works on segments of synchronized video and audio streams. All
  2970. segments must have the same number of streams of each type, and that will
  2971. also be the number of streams at output.
  2972. The filter accepts the following named parameters:
  2973. @table @option
  2974. @item n
  2975. Set the number of segments. Default is 2.
  2976. @item v
  2977. Set the number of output video streams, that is also the number of video
  2978. streams in each segment. Default is 1.
  2979. @item a
  2980. Set the number of output audio streams, that is also the number of video
  2981. streams in each segment. Default is 0.
  2982. @end table
  2983. The filter has @var{v}+@var{a} outputs: first @var{v} video outputs, then
  2984. @var{a} audio outputs.
  2985. There are @var{n}×(@var{v}+@var{a}) inputs: first the inputs for the first
  2986. segment, in the same order as the outputs, then the inputs for the second
  2987. segment, etc.
  2988. Related streams do not always have exactly the same duration, for various
  2989. reasons including codec frame size or sloppy authoring. For that reason,
  2990. related synchronized streams (e.g. a video and its audio track) should be
  2991. concatenated at once. The concat filter will use the duration of the longest
  2992. stream in each segment (except the last one), and if necessary pad shorter
  2993. audio streams with silence.
  2994. For this filter to work correctly, all segments must start at timestamp 0.
  2995. All corresponding streams must have the same parameters in all segments; the
  2996. filtering system will automatically select a common pixel format for video
  2997. streams, and a common sample format, sample rate and channel layout for
  2998. audio streams, but other settings, such as resolution, must be converted
  2999. explicitly by the user.
  3000. Different frame rates are acceptable but will result in variable frame rate
  3001. at output; be sure to configure the output file to handle it.
  3002. Examples:
  3003. @itemize
  3004. @item
  3005. Concatenate an opening, an episode and an ending, all in bilingual version
  3006. (video in stream 0, audio in streams 1 and 2):
  3007. @example
  3008. ffmpeg -i opening.mkv -i episode.mkv -i ending.mkv -filter_complex \
  3009. '[0:0] [0:1] [0:2] [1:0] [1:1] [1:2] [2:0] [2:1] [2:2]
  3010. concat=n=3:v=1:a=2 [v] [a1] [a2]' \
  3011. -map '[v]' -map '[a1]' -map '[a2]' output.mkv
  3012. @end example
  3013. @item
  3014. Concatenate two parts, handling audio and video separately, using the
  3015. (a)movie sources, and adjusting the resolution:
  3016. @example
  3017. movie=part1.mp4, scale=512:288 [v1] ; amovie=part1.mp4 [a1] ;
  3018. movie=part2.mp4, scale=512:288 [v2] ; amovie=part2.mp4 [a2] ;
  3019. [v1] [v2] concat [outv] ; [a1] [a2] concat=v=0:a=1 [outa]
  3020. @end example
  3021. Note that a desync will happen at the stitch if the audio and video streams
  3022. do not have exactly the same duration in the first file.
  3023. @end itemize
  3024. @section showwaves
  3025. Convert input audio to a video output, representing the samples waves.
  3026. The filter accepts the following named parameters:
  3027. @table @option
  3028. @item n
  3029. Set the number of samples which are printed on the same column. A
  3030. larger value will decrease the frame rate. Must be a positive
  3031. integer. This option can be set only if the value for @var{rate}
  3032. is not explicitly specified.
  3033. @item rate, r
  3034. Set the (approximate) output frame rate. This is done by setting the
  3035. option @var{n}. Default value is "25".
  3036. @item size, s
  3037. Specify the video size for the output. Default value is "600x240".
  3038. @end table
  3039. Some examples follow.
  3040. @itemize
  3041. @item
  3042. Output the input file audio and the corresponding video representation
  3043. at the same time:
  3044. @example
  3045. amovie=a.mp3,asplit[out0],showwaves[out1]
  3046. @end example
  3047. @item
  3048. Create a synthetic signal and show it with showwaves, forcing a
  3049. framerate of 30 frames per second:
  3050. @example
  3051. aevalsrc=sin(1*2*PI*t)*sin(880*2*PI*t):cos(2*PI*200*t),asplit[out0],showwaves=r=30[out1]
  3052. @end example
  3053. @end itemize
  3054. @c man end TRANSMEDIA FILTERS