You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

651 lines
20KB

  1. /*
  2. * Wing Commander/Xan Video Decoder
  3. * Copyright (C) 2003 the ffmpeg project
  4. *
  5. * This file is part of FFmpeg.
  6. *
  7. * FFmpeg is free software; you can redistribute it and/or
  8. * modify it under the terms of the GNU Lesser General Public
  9. * License as published by the Free Software Foundation; either
  10. * version 2.1 of the License, or (at your option) any later version.
  11. *
  12. * FFmpeg is distributed in the hope that it will be useful,
  13. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  14. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  15. * Lesser General Public License for more details.
  16. *
  17. * You should have received a copy of the GNU Lesser General Public
  18. * License along with FFmpeg; if not, write to the Free Software
  19. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  20. */
  21. /**
  22. * @file
  23. * Xan video decoder for Wing Commander III computer game
  24. * by Mario Brito (mbrito@student.dei.uc.pt)
  25. * and Mike Melanson (melanson@pcisys.net)
  26. *
  27. * The xan_wc3 decoder outputs PAL8 data.
  28. */
  29. #include <stdio.h>
  30. #include <stdlib.h>
  31. #include <string.h>
  32. #include "libavutil/intreadwrite.h"
  33. #include "libavutil/mem.h"
  34. #include "avcodec.h"
  35. #include "bytestream.h"
  36. #define BITSTREAM_READER_LE
  37. #include "get_bits.h"
  38. #include "internal.h"
  39. #define RUNTIME_GAMMA 0
  40. #define VGA__TAG MKTAG('V', 'G', 'A', ' ')
  41. #define PALT_TAG MKTAG('P', 'A', 'L', 'T')
  42. #define SHOT_TAG MKTAG('S', 'H', 'O', 'T')
  43. #define PALETTE_COUNT 256
  44. #define PALETTE_SIZE (PALETTE_COUNT * 3)
  45. #define PALETTES_MAX 256
  46. typedef struct XanContext {
  47. AVCodecContext *avctx;
  48. AVFrame *last_frame;
  49. const unsigned char *buf;
  50. int size;
  51. /* scratch space */
  52. unsigned char *buffer1;
  53. int buffer1_size;
  54. unsigned char *buffer2;
  55. int buffer2_size;
  56. unsigned *palettes;
  57. int palettes_count;
  58. int cur_palette;
  59. int frame_size;
  60. } XanContext;
  61. static av_cold int xan_decode_end(AVCodecContext *avctx);
  62. static av_cold int xan_decode_init(AVCodecContext *avctx)
  63. {
  64. XanContext *s = avctx->priv_data;
  65. s->avctx = avctx;
  66. s->frame_size = 0;
  67. avctx->pix_fmt = AV_PIX_FMT_PAL8;
  68. s->buffer1_size = avctx->width * avctx->height;
  69. s->buffer1 = av_malloc(s->buffer1_size);
  70. if (!s->buffer1)
  71. return AVERROR(ENOMEM);
  72. s->buffer2_size = avctx->width * avctx->height;
  73. s->buffer2 = av_malloc(s->buffer2_size + 130);
  74. if (!s->buffer2) {
  75. av_freep(&s->buffer1);
  76. return AVERROR(ENOMEM);
  77. }
  78. s->last_frame = av_frame_alloc();
  79. if (!s->last_frame) {
  80. xan_decode_end(avctx);
  81. return AVERROR(ENOMEM);
  82. }
  83. return 0;
  84. }
  85. static int xan_huffman_decode(unsigned char *dest, int dest_len,
  86. const unsigned char *src, int src_len)
  87. {
  88. unsigned char byte = *src++;
  89. unsigned char ival = byte + 0x16;
  90. const unsigned char * ptr = src + byte*2;
  91. int ptr_len = src_len - 1 - byte*2;
  92. unsigned char val = ival;
  93. unsigned char *dest_end = dest + dest_len;
  94. GetBitContext gb;
  95. if (ptr_len < 0)
  96. return AVERROR_INVALIDDATA;
  97. init_get_bits(&gb, ptr, ptr_len * 8);
  98. while (val != 0x16) {
  99. unsigned idx = val - 0x17 + get_bits1(&gb) * byte;
  100. if (idx >= 2 * byte)
  101. return AVERROR_INVALIDDATA;
  102. val = src[idx];
  103. if (val < 0x16) {
  104. if (dest >= dest_end)
  105. return 0;
  106. *dest++ = val;
  107. val = ival;
  108. }
  109. }
  110. return 0;
  111. }
  112. /**
  113. * unpack simple compression
  114. *
  115. * @param dest destination buffer of dest_len, must be padded with at least 130 bytes
  116. */
  117. static void xan_unpack(unsigned char *dest, int dest_len,
  118. const unsigned char *src, int src_len)
  119. {
  120. unsigned char opcode;
  121. int size;
  122. unsigned char *dest_org = dest;
  123. unsigned char *dest_end = dest + dest_len;
  124. GetByteContext ctx;
  125. bytestream2_init(&ctx, src, src_len);
  126. while (dest < dest_end && bytestream2_get_bytes_left(&ctx)) {
  127. opcode = bytestream2_get_byte(&ctx);
  128. if (opcode < 0xe0) {
  129. int size2, back;
  130. if ((opcode & 0x80) == 0) {
  131. size = opcode & 3;
  132. back = ((opcode & 0x60) << 3) + bytestream2_get_byte(&ctx) + 1;
  133. size2 = ((opcode & 0x1c) >> 2) + 3;
  134. } else if ((opcode & 0x40) == 0) {
  135. size = bytestream2_peek_byte(&ctx) >> 6;
  136. back = (bytestream2_get_be16(&ctx) & 0x3fff) + 1;
  137. size2 = (opcode & 0x3f) + 4;
  138. } else {
  139. size = opcode & 3;
  140. back = ((opcode & 0x10) << 12) + bytestream2_get_be16(&ctx) + 1;
  141. size2 = ((opcode & 0x0c) << 6) + bytestream2_get_byte(&ctx) + 5;
  142. }
  143. if (dest_end - dest < size + size2 ||
  144. dest + size - dest_org < back ||
  145. bytestream2_get_bytes_left(&ctx) < size)
  146. return;
  147. bytestream2_get_buffer(&ctx, dest, size);
  148. dest += size;
  149. av_memcpy_backptr(dest, back, size2);
  150. dest += size2;
  151. } else {
  152. int finish = opcode >= 0xfc;
  153. size = finish ? opcode & 3 : ((opcode & 0x1f) << 2) + 4;
  154. if (dest_end - dest < size || bytestream2_get_bytes_left(&ctx) < size)
  155. return;
  156. bytestream2_get_buffer(&ctx, dest, size);
  157. dest += size;
  158. if (finish)
  159. return;
  160. }
  161. }
  162. }
  163. static inline void xan_wc3_output_pixel_run(XanContext *s, AVFrame *frame,
  164. const unsigned char *pixel_buffer, int x, int y, int pixel_count)
  165. {
  166. int stride;
  167. int line_inc;
  168. int index;
  169. int current_x;
  170. int width = s->avctx->width;
  171. unsigned char *palette_plane;
  172. palette_plane = frame->data[0];
  173. stride = frame->linesize[0];
  174. line_inc = stride - width;
  175. index = y * stride + x;
  176. current_x = x;
  177. while (pixel_count && index < s->frame_size) {
  178. int count = FFMIN(pixel_count, width - current_x);
  179. memcpy(palette_plane + index, pixel_buffer, count);
  180. pixel_count -= count;
  181. index += count;
  182. pixel_buffer += count;
  183. current_x += count;
  184. if (current_x >= width) {
  185. index += line_inc;
  186. current_x = 0;
  187. }
  188. }
  189. }
  190. static inline void xan_wc3_copy_pixel_run(XanContext *s, AVFrame *frame,
  191. int x, int y,
  192. int pixel_count, int motion_x,
  193. int motion_y)
  194. {
  195. int stride;
  196. int line_inc;
  197. int curframe_index, prevframe_index;
  198. int curframe_x, prevframe_x;
  199. int width = s->avctx->width;
  200. unsigned char *palette_plane, *prev_palette_plane;
  201. if (y + motion_y < 0 || y + motion_y >= s->avctx->height ||
  202. x + motion_x < 0 || x + motion_x >= s->avctx->width)
  203. return;
  204. palette_plane = frame->data[0];
  205. prev_palette_plane = s->last_frame->data[0];
  206. if (!prev_palette_plane)
  207. prev_palette_plane = palette_plane;
  208. stride = frame->linesize[0];
  209. line_inc = stride - width;
  210. curframe_index = y * stride + x;
  211. curframe_x = x;
  212. prevframe_index = (y + motion_y) * stride + x + motion_x;
  213. prevframe_x = x + motion_x;
  214. if (prev_palette_plane == palette_plane && FFABS(curframe_index - prevframe_index) < pixel_count) {
  215. avpriv_request_sample(s->avctx, "Overlapping copy\n");
  216. return ;
  217. }
  218. while (pixel_count &&
  219. curframe_index < s->frame_size &&
  220. prevframe_index < s->frame_size) {
  221. int count = FFMIN3(pixel_count, width - curframe_x,
  222. width - prevframe_x);
  223. memcpy(palette_plane + curframe_index,
  224. prev_palette_plane + prevframe_index, count);
  225. pixel_count -= count;
  226. curframe_index += count;
  227. prevframe_index += count;
  228. curframe_x += count;
  229. prevframe_x += count;
  230. if (curframe_x >= width) {
  231. curframe_index += line_inc;
  232. curframe_x = 0;
  233. }
  234. if (prevframe_x >= width) {
  235. prevframe_index += line_inc;
  236. prevframe_x = 0;
  237. }
  238. }
  239. }
  240. static int xan_wc3_decode_frame(XanContext *s, AVFrame *frame)
  241. {
  242. int width = s->avctx->width;
  243. int height = s->avctx->height;
  244. int total_pixels = width * height;
  245. unsigned char opcode;
  246. unsigned char flag = 0;
  247. int size = 0;
  248. int motion_x, motion_y;
  249. int x, y;
  250. unsigned char *opcode_buffer = s->buffer1;
  251. unsigned char *opcode_buffer_end = s->buffer1 + s->buffer1_size;
  252. int opcode_buffer_size = s->buffer1_size;
  253. const unsigned char *imagedata_buffer = s->buffer2;
  254. /* pointers to segments inside the compressed chunk */
  255. const unsigned char *huffman_segment;
  256. const unsigned char *size_segment;
  257. const unsigned char *vector_segment;
  258. const unsigned char *imagedata_segment;
  259. const unsigned char *buf_end = s->buf + s->size;
  260. int huffman_offset, size_offset, vector_offset, imagedata_offset,
  261. imagedata_size;
  262. if (s->size < 8)
  263. return AVERROR_INVALIDDATA;
  264. huffman_offset = AV_RL16(&s->buf[0]);
  265. size_offset = AV_RL16(&s->buf[2]);
  266. vector_offset = AV_RL16(&s->buf[4]);
  267. imagedata_offset = AV_RL16(&s->buf[6]);
  268. if (huffman_offset >= s->size ||
  269. size_offset >= s->size ||
  270. vector_offset >= s->size ||
  271. imagedata_offset >= s->size)
  272. return AVERROR_INVALIDDATA;
  273. huffman_segment = s->buf + huffman_offset;
  274. size_segment = s->buf + size_offset;
  275. vector_segment = s->buf + vector_offset;
  276. imagedata_segment = s->buf + imagedata_offset;
  277. if (xan_huffman_decode(opcode_buffer, opcode_buffer_size,
  278. huffman_segment, s->size - huffman_offset) < 0)
  279. return AVERROR_INVALIDDATA;
  280. if (imagedata_segment[0] == 2) {
  281. xan_unpack(s->buffer2, s->buffer2_size,
  282. &imagedata_segment[1], s->size - imagedata_offset - 1);
  283. imagedata_size = s->buffer2_size;
  284. } else {
  285. imagedata_size = s->size - imagedata_offset - 1;
  286. imagedata_buffer = &imagedata_segment[1];
  287. }
  288. /* use the decoded data segments to build the frame */
  289. x = y = 0;
  290. while (total_pixels && opcode_buffer < opcode_buffer_end) {
  291. opcode = *opcode_buffer++;
  292. size = 0;
  293. switch (opcode) {
  294. case 0:
  295. flag ^= 1;
  296. continue;
  297. case 1:
  298. case 2:
  299. case 3:
  300. case 4:
  301. case 5:
  302. case 6:
  303. case 7:
  304. case 8:
  305. size = opcode;
  306. break;
  307. case 12:
  308. case 13:
  309. case 14:
  310. case 15:
  311. case 16:
  312. case 17:
  313. case 18:
  314. size += (opcode - 10);
  315. break;
  316. case 9:
  317. case 19:
  318. if (buf_end - size_segment < 1) {
  319. av_log(s->avctx, AV_LOG_ERROR, "size_segment overread\n");
  320. return AVERROR_INVALIDDATA;
  321. }
  322. size = *size_segment++;
  323. break;
  324. case 10:
  325. case 20:
  326. if (buf_end - size_segment < 2) {
  327. av_log(s->avctx, AV_LOG_ERROR, "size_segment overread\n");
  328. return AVERROR_INVALIDDATA;
  329. }
  330. size = AV_RB16(&size_segment[0]);
  331. size_segment += 2;
  332. break;
  333. case 11:
  334. case 21:
  335. if (buf_end - size_segment < 3) {
  336. av_log(s->avctx, AV_LOG_ERROR, "size_segment overread\n");
  337. return AVERROR_INVALIDDATA;
  338. }
  339. size = AV_RB24(size_segment);
  340. size_segment += 3;
  341. break;
  342. }
  343. if (size > total_pixels)
  344. break;
  345. if (opcode < 12) {
  346. flag ^= 1;
  347. if (flag) {
  348. /* run of (size) pixels is unchanged from last frame */
  349. xan_wc3_copy_pixel_run(s, frame, x, y, size, 0, 0);
  350. } else {
  351. /* output a run of pixels from imagedata_buffer */
  352. if (imagedata_size < size)
  353. break;
  354. xan_wc3_output_pixel_run(s, frame, imagedata_buffer, x, y, size);
  355. imagedata_buffer += size;
  356. imagedata_size -= size;
  357. }
  358. } else {
  359. if (vector_segment >= buf_end) {
  360. av_log(s->avctx, AV_LOG_ERROR, "vector_segment overread\n");
  361. return AVERROR_INVALIDDATA;
  362. }
  363. /* run-based motion compensation from last frame */
  364. motion_x = sign_extend(*vector_segment >> 4, 4);
  365. motion_y = sign_extend(*vector_segment & 0xF, 4);
  366. vector_segment++;
  367. /* copy a run of pixels from the previous frame */
  368. xan_wc3_copy_pixel_run(s, frame, x, y, size, motion_x, motion_y);
  369. flag = 0;
  370. }
  371. /* coordinate accounting */
  372. total_pixels -= size;
  373. y += (x + size) / width;
  374. x = (x + size) % width;
  375. }
  376. return 0;
  377. }
  378. #if RUNTIME_GAMMA
  379. static inline unsigned mul(unsigned a, unsigned b)
  380. {
  381. return (a * b) >> 16;
  382. }
  383. static inline unsigned pow4(unsigned a)
  384. {
  385. unsigned square = mul(a, a);
  386. return mul(square, square);
  387. }
  388. static inline unsigned pow5(unsigned a)
  389. {
  390. return mul(pow4(a), a);
  391. }
  392. static uint8_t gamma_corr(uint8_t in) {
  393. unsigned lo, hi = 0xff40, target;
  394. int i = 15;
  395. in = (in << 2) | (in >> 6);
  396. /* equivalent float code:
  397. if (in >= 252)
  398. return 253;
  399. return round(pow(in / 256.0, 0.8) * 256);
  400. */
  401. lo = target = in << 8;
  402. do {
  403. unsigned mid = (lo + hi) >> 1;
  404. unsigned pow = pow5(mid);
  405. if (pow > target) hi = mid;
  406. else lo = mid;
  407. } while (--i);
  408. return (pow4((lo + hi) >> 1) + 0x80) >> 8;
  409. }
  410. #else
  411. /**
  412. * This is a gamma correction that xan3 applies to all palette entries.
  413. *
  414. * There is a peculiarity, namely that the values are clamped to 253 -
  415. * it seems likely that this table was calculated by a buggy fixed-point
  416. * implementation, the one above under RUNTIME_GAMMA behaves like this for
  417. * example.
  418. * The exponent value of 0.8 can be explained by this as well, since 0.8 = 4/5
  419. * and thus pow(x, 0.8) is still easy to calculate.
  420. * Also, the input values are first rotated to the left by 2.
  421. */
  422. static const uint8_t gamma_lookup[256] = {
  423. 0x00, 0x09, 0x10, 0x16, 0x1C, 0x21, 0x27, 0x2C,
  424. 0x31, 0x35, 0x3A, 0x3F, 0x43, 0x48, 0x4C, 0x50,
  425. 0x54, 0x59, 0x5D, 0x61, 0x65, 0x69, 0x6D, 0x71,
  426. 0x75, 0x79, 0x7D, 0x80, 0x84, 0x88, 0x8C, 0x8F,
  427. 0x93, 0x97, 0x9A, 0x9E, 0xA2, 0xA5, 0xA9, 0xAC,
  428. 0xB0, 0xB3, 0xB7, 0xBA, 0xBE, 0xC1, 0xC5, 0xC8,
  429. 0xCB, 0xCF, 0xD2, 0xD5, 0xD9, 0xDC, 0xDF, 0xE3,
  430. 0xE6, 0xE9, 0xED, 0xF0, 0xF3, 0xF6, 0xFA, 0xFD,
  431. 0x03, 0x0B, 0x12, 0x18, 0x1D, 0x23, 0x28, 0x2D,
  432. 0x32, 0x36, 0x3B, 0x40, 0x44, 0x49, 0x4D, 0x51,
  433. 0x56, 0x5A, 0x5E, 0x62, 0x66, 0x6A, 0x6E, 0x72,
  434. 0x76, 0x7A, 0x7D, 0x81, 0x85, 0x89, 0x8D, 0x90,
  435. 0x94, 0x98, 0x9B, 0x9F, 0xA2, 0xA6, 0xAA, 0xAD,
  436. 0xB1, 0xB4, 0xB8, 0xBB, 0xBF, 0xC2, 0xC5, 0xC9,
  437. 0xCC, 0xD0, 0xD3, 0xD6, 0xDA, 0xDD, 0xE0, 0xE4,
  438. 0xE7, 0xEA, 0xED, 0xF1, 0xF4, 0xF7, 0xFA, 0xFD,
  439. 0x05, 0x0D, 0x13, 0x19, 0x1F, 0x24, 0x29, 0x2E,
  440. 0x33, 0x38, 0x3C, 0x41, 0x45, 0x4A, 0x4E, 0x52,
  441. 0x57, 0x5B, 0x5F, 0x63, 0x67, 0x6B, 0x6F, 0x73,
  442. 0x77, 0x7B, 0x7E, 0x82, 0x86, 0x8A, 0x8D, 0x91,
  443. 0x95, 0x99, 0x9C, 0xA0, 0xA3, 0xA7, 0xAA, 0xAE,
  444. 0xB2, 0xB5, 0xB9, 0xBC, 0xBF, 0xC3, 0xC6, 0xCA,
  445. 0xCD, 0xD0, 0xD4, 0xD7, 0xDA, 0xDE, 0xE1, 0xE4,
  446. 0xE8, 0xEB, 0xEE, 0xF1, 0xF5, 0xF8, 0xFB, 0xFD,
  447. 0x07, 0x0E, 0x15, 0x1A, 0x20, 0x25, 0x2A, 0x2F,
  448. 0x34, 0x39, 0x3D, 0x42, 0x46, 0x4B, 0x4F, 0x53,
  449. 0x58, 0x5C, 0x60, 0x64, 0x68, 0x6C, 0x70, 0x74,
  450. 0x78, 0x7C, 0x7F, 0x83, 0x87, 0x8B, 0x8E, 0x92,
  451. 0x96, 0x99, 0x9D, 0xA1, 0xA4, 0xA8, 0xAB, 0xAF,
  452. 0xB2, 0xB6, 0xB9, 0xBD, 0xC0, 0xC4, 0xC7, 0xCB,
  453. 0xCE, 0xD1, 0xD5, 0xD8, 0xDB, 0xDF, 0xE2, 0xE5,
  454. 0xE9, 0xEC, 0xEF, 0xF2, 0xF6, 0xF9, 0xFC, 0xFD
  455. };
  456. #endif
  457. static int xan_decode_frame(AVCodecContext *avctx,
  458. void *data, int *got_frame,
  459. AVPacket *avpkt)
  460. {
  461. AVFrame *frame = data;
  462. const uint8_t *buf = avpkt->data;
  463. int ret, buf_size = avpkt->size;
  464. XanContext *s = avctx->priv_data;
  465. GetByteContext ctx;
  466. int tag = 0;
  467. bytestream2_init(&ctx, buf, buf_size);
  468. while (bytestream2_get_bytes_left(&ctx) > 8 && tag != VGA__TAG) {
  469. unsigned *tmpptr;
  470. uint32_t new_pal;
  471. int size;
  472. int i;
  473. tag = bytestream2_get_le32(&ctx);
  474. size = bytestream2_get_be32(&ctx);
  475. if(size < 0) {
  476. av_log(avctx, AV_LOG_ERROR, "Invalid tag size %d\n", size);
  477. return AVERROR_INVALIDDATA;
  478. }
  479. size = FFMIN(size, bytestream2_get_bytes_left(&ctx));
  480. switch (tag) {
  481. case PALT_TAG:
  482. if (size < PALETTE_SIZE)
  483. return AVERROR_INVALIDDATA;
  484. if (s->palettes_count >= PALETTES_MAX)
  485. return AVERROR_INVALIDDATA;
  486. tmpptr = av_realloc(s->palettes,
  487. (s->palettes_count + 1) * AVPALETTE_SIZE);
  488. if (!tmpptr)
  489. return AVERROR(ENOMEM);
  490. s->palettes = tmpptr;
  491. tmpptr += s->palettes_count * AVPALETTE_COUNT;
  492. for (i = 0; i < PALETTE_COUNT; i++) {
  493. #if RUNTIME_GAMMA
  494. int r = gamma_corr(bytestream2_get_byteu(&ctx));
  495. int g = gamma_corr(bytestream2_get_byteu(&ctx));
  496. int b = gamma_corr(bytestream2_get_byteu(&ctx));
  497. #else
  498. int r = gamma_lookup[bytestream2_get_byteu(&ctx)];
  499. int g = gamma_lookup[bytestream2_get_byteu(&ctx)];
  500. int b = gamma_lookup[bytestream2_get_byteu(&ctx)];
  501. #endif
  502. *tmpptr++ = (0xFFU << 24) | (r << 16) | (g << 8) | b;
  503. }
  504. s->palettes_count++;
  505. break;
  506. case SHOT_TAG:
  507. if (size < 4)
  508. return AVERROR_INVALIDDATA;
  509. new_pal = bytestream2_get_le32(&ctx);
  510. if (new_pal < s->palettes_count) {
  511. s->cur_palette = new_pal;
  512. } else
  513. av_log(avctx, AV_LOG_ERROR, "Invalid palette selected\n");
  514. break;
  515. case VGA__TAG:
  516. break;
  517. default:
  518. bytestream2_skip(&ctx, size);
  519. break;
  520. }
  521. }
  522. buf_size = bytestream2_get_bytes_left(&ctx);
  523. if (s->palettes_count <= 0) {
  524. av_log(s->avctx, AV_LOG_ERROR, "No palette found\n");
  525. return AVERROR_INVALIDDATA;
  526. }
  527. if ((ret = ff_get_buffer(avctx, frame, AV_GET_BUFFER_FLAG_REF)) < 0)
  528. return ret;
  529. if (!s->frame_size)
  530. s->frame_size = frame->linesize[0] * s->avctx->height;
  531. memcpy(frame->data[1],
  532. s->palettes + s->cur_palette * AVPALETTE_COUNT, AVPALETTE_SIZE);
  533. s->buf = ctx.buffer;
  534. s->size = buf_size;
  535. if (xan_wc3_decode_frame(s, frame) < 0)
  536. return AVERROR_INVALIDDATA;
  537. av_frame_unref(s->last_frame);
  538. if ((ret = av_frame_ref(s->last_frame, frame)) < 0)
  539. return ret;
  540. *got_frame = 1;
  541. /* always report that the buffer was completely consumed */
  542. return buf_size;
  543. }
  544. static av_cold int xan_decode_end(AVCodecContext *avctx)
  545. {
  546. XanContext *s = avctx->priv_data;
  547. av_frame_free(&s->last_frame);
  548. av_freep(&s->buffer1);
  549. av_freep(&s->buffer2);
  550. av_freep(&s->palettes);
  551. return 0;
  552. }
  553. AVCodec ff_xan_wc3_decoder = {
  554. .name = "xan_wc3",
  555. .type = AVMEDIA_TYPE_VIDEO,
  556. .id = AV_CODEC_ID_XAN_WC3,
  557. .priv_data_size = sizeof(XanContext),
  558. .init = xan_decode_init,
  559. .close = xan_decode_end,
  560. .decode = xan_decode_frame,
  561. .capabilities = CODEC_CAP_DR1,
  562. .long_name = NULL_IF_CONFIG_SMALL("Wing Commander III / Xan"),
  563. };