You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

1089 lines
39KB

  1. /*
  2. * Copyright (c) 2003 The FFmpeg Project
  3. *
  4. * This file is part of FFmpeg.
  5. *
  6. * FFmpeg is free software; you can redistribute it and/or
  7. * modify it under the terms of the GNU Lesser General Public
  8. * License as published by the Free Software Foundation; either
  9. * version 2.1 of the License, or (at your option) any later version.
  10. *
  11. * FFmpeg is distributed in the hope that it will be useful,
  12. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  13. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  14. * Lesser General Public License for more details.
  15. *
  16. * You should have received a copy of the GNU Lesser General Public
  17. * License along with FFmpeg; if not, write to the Free Software
  18. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  19. */
  20. /*
  21. * How to use this decoder:
  22. * SVQ3 data is transported within Apple Quicktime files. Quicktime files
  23. * have stsd atoms to describe media trak properties. A stsd atom for a
  24. * video trak contains 1 or more ImageDescription atoms. These atoms begin
  25. * with the 4-byte length of the atom followed by the codec fourcc. Some
  26. * decoders need information in this atom to operate correctly. Such
  27. * is the case with SVQ3. In order to get the best use out of this decoder,
  28. * the calling app must make the SVQ3 ImageDescription atom available
  29. * via the AVCodecContext's extradata[_size] field:
  30. *
  31. * AVCodecContext.extradata = pointer to ImageDescription, first characters
  32. * are expected to be 'S', 'V', 'Q', and '3', NOT the 4-byte atom length
  33. * AVCodecContext.extradata_size = size of ImageDescription atom memory
  34. * buffer (which will be the same as the ImageDescription atom size field
  35. * from the QT file, minus 4 bytes since the length is missing)
  36. *
  37. * You will know you have these parameters passed correctly when the decoder
  38. * correctly decodes this file:
  39. * http://samples.mplayerhq.hu/V-codecs/SVQ3/Vertical400kbit.sorenson3.mov
  40. */
  41. #include "internal.h"
  42. #include "dsputil.h"
  43. #include "avcodec.h"
  44. #include "mpegvideo.h"
  45. #include "h264.h"
  46. #include "h264data.h" //FIXME FIXME FIXME
  47. #include "h264_mvpred.h"
  48. #include "golomb.h"
  49. #include "rectangle.h"
  50. #include "vdpau_internal.h"
  51. #if ARCH_X86
  52. #include "x86/h264_i386.h"
  53. #endif
  54. #if CONFIG_ZLIB
  55. #include <zlib.h>
  56. #endif
  57. #include "svq1.h"
  58. /**
  59. * @file libavcodec/svq3.c
  60. * svq3 decoder.
  61. */
  62. #define FULLPEL_MODE 1
  63. #define HALFPEL_MODE 2
  64. #define THIRDPEL_MODE 3
  65. #define PREDICT_MODE 4
  66. /* dual scan (from some older h264 draft)
  67. o-->o-->o o
  68. | /|
  69. o o o / o
  70. | / | |/ |
  71. o o o o
  72. /
  73. o-->o-->o-->o
  74. */
  75. static const uint8_t svq3_scan[16] = {
  76. 0+0*4, 1+0*4, 2+0*4, 2+1*4,
  77. 2+2*4, 3+0*4, 3+1*4, 3+2*4,
  78. 0+1*4, 0+2*4, 1+1*4, 1+2*4,
  79. 0+3*4, 1+3*4, 2+3*4, 3+3*4,
  80. };
  81. static const uint8_t svq3_pred_0[25][2] = {
  82. { 0, 0 },
  83. { 1, 0 }, { 0, 1 },
  84. { 0, 2 }, { 1, 1 }, { 2, 0 },
  85. { 3, 0 }, { 2, 1 }, { 1, 2 }, { 0, 3 },
  86. { 0, 4 }, { 1, 3 }, { 2, 2 }, { 3, 1 }, { 4, 0 },
  87. { 4, 1 }, { 3, 2 }, { 2, 3 }, { 1, 4 },
  88. { 2, 4 }, { 3, 3 }, { 4, 2 },
  89. { 4, 3 }, { 3, 4 },
  90. { 4, 4 }
  91. };
  92. static const int8_t svq3_pred_1[6][6][5] = {
  93. { { 2,-1,-1,-1,-1 }, { 2, 1,-1,-1,-1 }, { 1, 2,-1,-1,-1 },
  94. { 2, 1,-1,-1,-1 }, { 1, 2,-1,-1,-1 }, { 1, 2,-1,-1,-1 } },
  95. { { 0, 2,-1,-1,-1 }, { 0, 2, 1, 4, 3 }, { 0, 1, 2, 4, 3 },
  96. { 0, 2, 1, 4, 3 }, { 2, 0, 1, 3, 4 }, { 0, 4, 2, 1, 3 } },
  97. { { 2, 0,-1,-1,-1 }, { 2, 1, 0, 4, 3 }, { 1, 2, 4, 0, 3 },
  98. { 2, 1, 0, 4, 3 }, { 2, 1, 4, 3, 0 }, { 1, 2, 4, 0, 3 } },
  99. { { 2, 0,-1,-1,-1 }, { 2, 0, 1, 4, 3 }, { 1, 2, 0, 4, 3 },
  100. { 2, 1, 0, 4, 3 }, { 2, 1, 3, 4, 0 }, { 2, 4, 1, 0, 3 } },
  101. { { 0, 2,-1,-1,-1 }, { 0, 2, 1, 3, 4 }, { 1, 2, 3, 0, 4 },
  102. { 2, 0, 1, 3, 4 }, { 2, 1, 3, 0, 4 }, { 2, 0, 4, 3, 1 } },
  103. { { 0, 2,-1,-1,-1 }, { 0, 2, 4, 1, 3 }, { 1, 4, 2, 0, 3 },
  104. { 4, 2, 0, 1, 3 }, { 2, 0, 1, 4, 3 }, { 4, 2, 1, 0, 3 } },
  105. };
  106. static const struct { uint8_t run; uint8_t level; } svq3_dct_tables[2][16] = {
  107. { { 0, 0 }, { 0, 1 }, { 1, 1 }, { 2, 1 }, { 0, 2 }, { 3, 1 }, { 4, 1 }, { 5, 1 },
  108. { 0, 3 }, { 1, 2 }, { 2, 2 }, { 6, 1 }, { 7, 1 }, { 8, 1 }, { 9, 1 }, { 0, 4 } },
  109. { { 0, 0 }, { 0, 1 }, { 1, 1 }, { 0, 2 }, { 2, 1 }, { 0, 3 }, { 0, 4 }, { 0, 5 },
  110. { 3, 1 }, { 4, 1 }, { 1, 2 }, { 1, 3 }, { 0, 6 }, { 0, 7 }, { 0, 8 }, { 0, 9 } }
  111. };
  112. static const uint32_t svq3_dequant_coeff[32] = {
  113. 3881, 4351, 4890, 5481, 6154, 6914, 7761, 8718,
  114. 9781, 10987, 12339, 13828, 15523, 17435, 19561, 21873,
  115. 24552, 27656, 30847, 34870, 38807, 43747, 49103, 54683,
  116. 61694, 68745, 77615, 89113,100253,109366,126635,141533
  117. };
  118. void svq3_luma_dc_dequant_idct_c(DCTELEM *block, int qp)
  119. {
  120. const int qmul = svq3_dequant_coeff[qp];
  121. #define stride 16
  122. int i;
  123. int temp[16];
  124. static const int x_offset[4] = {0, 1*stride, 4* stride, 5*stride};
  125. static const int y_offset[4] = {0, 2*stride, 8* stride, 10*stride};
  126. for (i = 0; i < 4; i++){
  127. const int offset = y_offset[i];
  128. const int z0 = 13*(block[offset+stride*0] + block[offset+stride*4]);
  129. const int z1 = 13*(block[offset+stride*0] - block[offset+stride*4]);
  130. const int z2 = 7* block[offset+stride*1] - 17*block[offset+stride*5];
  131. const int z3 = 17* block[offset+stride*1] + 7*block[offset+stride*5];
  132. temp[4*i+0] = z0+z3;
  133. temp[4*i+1] = z1+z2;
  134. temp[4*i+2] = z1-z2;
  135. temp[4*i+3] = z0-z3;
  136. }
  137. for (i = 0; i < 4; i++){
  138. const int offset = x_offset[i];
  139. const int z0 = 13*(temp[4*0+i] + temp[4*2+i]);
  140. const int z1 = 13*(temp[4*0+i] - temp[4*2+i]);
  141. const int z2 = 7* temp[4*1+i] - 17*temp[4*3+i];
  142. const int z3 = 17* temp[4*1+i] + 7*temp[4*3+i];
  143. block[stride*0 +offset] = ((z0 + z3)*qmul + 0x80000) >> 20;
  144. block[stride*2 +offset] = ((z1 + z2)*qmul + 0x80000) >> 20;
  145. block[stride*8 +offset] = ((z1 - z2)*qmul + 0x80000) >> 20;
  146. block[stride*10+offset] = ((z0 - z3)*qmul + 0x80000) >> 20;
  147. }
  148. }
  149. #undef stride
  150. void svq3_add_idct_c(uint8_t *dst, DCTELEM *block, int stride, int qp,
  151. int dc)
  152. {
  153. const int qmul = svq3_dequant_coeff[qp];
  154. int i;
  155. uint8_t *cm = ff_cropTbl + MAX_NEG_CROP;
  156. if (dc) {
  157. dc = 13*13*((dc == 1) ? 1538*block[0] : ((qmul*(block[0] >> 3)) / 2));
  158. block[0] = 0;
  159. }
  160. for (i = 0; i < 4; i++) {
  161. const int z0 = 13*(block[0 + 4*i] + block[2 + 4*i]);
  162. const int z1 = 13*(block[0 + 4*i] - block[2 + 4*i]);
  163. const int z2 = 7* block[1 + 4*i] - 17*block[3 + 4*i];
  164. const int z3 = 17* block[1 + 4*i] + 7*block[3 + 4*i];
  165. block[0 + 4*i] = z0 + z3;
  166. block[1 + 4*i] = z1 + z2;
  167. block[2 + 4*i] = z1 - z2;
  168. block[3 + 4*i] = z0 - z3;
  169. }
  170. for (i = 0; i < 4; i++) {
  171. const int z0 = 13*(block[i + 4*0] + block[i + 4*2]);
  172. const int z1 = 13*(block[i + 4*0] - block[i + 4*2]);
  173. const int z2 = 7* block[i + 4*1] - 17*block[i + 4*3];
  174. const int z3 = 17* block[i + 4*1] + 7*block[i + 4*3];
  175. const int rr = (dc + 0x80000);
  176. dst[i + stride*0] = cm[ dst[i + stride*0] + (((z0 + z3)*qmul + rr) >> 20) ];
  177. dst[i + stride*1] = cm[ dst[i + stride*1] + (((z1 + z2)*qmul + rr) >> 20) ];
  178. dst[i + stride*2] = cm[ dst[i + stride*2] + (((z1 - z2)*qmul + rr) >> 20) ];
  179. dst[i + stride*3] = cm[ dst[i + stride*3] + (((z0 - z3)*qmul + rr) >> 20) ];
  180. }
  181. }
  182. static inline int svq3_decode_block(GetBitContext *gb, DCTELEM *block,
  183. int index, const int type)
  184. {
  185. static const uint8_t *const scan_patterns[4] =
  186. { luma_dc_zigzag_scan, zigzag_scan, svq3_scan, chroma_dc_scan };
  187. int run, level, sign, vlc, limit;
  188. const int intra = (3 * type) >> 2;
  189. const uint8_t *const scan = scan_patterns[type];
  190. for (limit = (16 >> intra); index < 16; index = limit, limit += 8) {
  191. for (; (vlc = svq3_get_ue_golomb(gb)) != 0; index++) {
  192. if (vlc == INVALID_VLC)
  193. return -1;
  194. sign = (vlc & 0x1) - 1;
  195. vlc = (vlc + 1) >> 1;
  196. if (type == 3) {
  197. if (vlc < 3) {
  198. run = 0;
  199. level = vlc;
  200. } else if (vlc < 4) {
  201. run = 1;
  202. level = 1;
  203. } else {
  204. run = (vlc & 0x3);
  205. level = ((vlc + 9) >> 2) - run;
  206. }
  207. } else {
  208. if (vlc < 16) {
  209. run = svq3_dct_tables[intra][vlc].run;
  210. level = svq3_dct_tables[intra][vlc].level;
  211. } else if (intra) {
  212. run = (vlc & 0x7);
  213. level = (vlc >> 3) + ((run == 0) ? 8 : ((run < 2) ? 2 : ((run < 5) ? 0 : -1)));
  214. } else {
  215. run = (vlc & 0xF);
  216. level = (vlc >> 4) + ((run == 0) ? 4 : ((run < 3) ? 2 : ((run < 10) ? 1 : 0)));
  217. }
  218. }
  219. if ((index += run) >= limit)
  220. return -1;
  221. block[scan[index]] = (level ^ sign) - sign;
  222. }
  223. if (type != 2) {
  224. break;
  225. }
  226. }
  227. return 0;
  228. }
  229. static inline void svq3_mc_dir_part(MpegEncContext *s,
  230. int x, int y, int width, int height,
  231. int mx, int my, int dxy,
  232. int thirdpel, int dir, int avg)
  233. {
  234. const Picture *pic = (dir == 0) ? &s->last_picture : &s->next_picture;
  235. uint8_t *src, *dest;
  236. int i, emu = 0;
  237. int blocksize = 2 - (width>>3); //16->0, 8->1, 4->2
  238. mx += x;
  239. my += y;
  240. if (mx < 0 || mx >= (s->h_edge_pos - width - 1) ||
  241. my < 0 || my >= (s->v_edge_pos - height - 1)) {
  242. if ((s->flags & CODEC_FLAG_EMU_EDGE)) {
  243. emu = 1;
  244. }
  245. mx = av_clip (mx, -16, (s->h_edge_pos - width + 15));
  246. my = av_clip (my, -16, (s->v_edge_pos - height + 15));
  247. }
  248. /* form component predictions */
  249. dest = s->current_picture.data[0] + x + y*s->linesize;
  250. src = pic->data[0] + mx + my*s->linesize;
  251. if (emu) {
  252. ff_emulated_edge_mc(s->edge_emu_buffer, src, s->linesize, (width + 1), (height + 1),
  253. mx, my, s->h_edge_pos, s->v_edge_pos);
  254. src = s->edge_emu_buffer;
  255. }
  256. if (thirdpel)
  257. (avg ? s->dsp.avg_tpel_pixels_tab : s->dsp.put_tpel_pixels_tab)[dxy](dest, src, s->linesize, width, height);
  258. else
  259. (avg ? s->dsp.avg_pixels_tab : s->dsp.put_pixels_tab)[blocksize][dxy](dest, src, s->linesize, height);
  260. if (!(s->flags & CODEC_FLAG_GRAY)) {
  261. mx = (mx + (mx < (int) x)) >> 1;
  262. my = (my + (my < (int) y)) >> 1;
  263. width = (width >> 1);
  264. height = (height >> 1);
  265. blocksize++;
  266. for (i = 1; i < 3; i++) {
  267. dest = s->current_picture.data[i] + (x >> 1) + (y >> 1)*s->uvlinesize;
  268. src = pic->data[i] + mx + my*s->uvlinesize;
  269. if (emu) {
  270. ff_emulated_edge_mc(s->edge_emu_buffer, src, s->uvlinesize, (width + 1), (height + 1),
  271. mx, my, (s->h_edge_pos >> 1), (s->v_edge_pos >> 1));
  272. src = s->edge_emu_buffer;
  273. }
  274. if (thirdpel)
  275. (avg ? s->dsp.avg_tpel_pixels_tab : s->dsp.put_tpel_pixels_tab)[dxy](dest, src, s->uvlinesize, width, height);
  276. else
  277. (avg ? s->dsp.avg_pixels_tab : s->dsp.put_pixels_tab)[blocksize][dxy](dest, src, s->uvlinesize, height);
  278. }
  279. }
  280. }
  281. static inline int svq3_mc_dir(H264Context *h, int size, int mode, int dir,
  282. int avg)
  283. {
  284. int i, j, k, mx, my, dx, dy, x, y;
  285. MpegEncContext *const s = (MpegEncContext *) h;
  286. const int part_width = ((size & 5) == 4) ? 4 : 16 >> (size & 1);
  287. const int part_height = 16 >> ((unsigned) (size + 1) / 3);
  288. const int extra_width = (mode == PREDICT_MODE) ? -16*6 : 0;
  289. const int h_edge_pos = 6*(s->h_edge_pos - part_width ) - extra_width;
  290. const int v_edge_pos = 6*(s->v_edge_pos - part_height) - extra_width;
  291. for (i = 0; i < 16; i += part_height) {
  292. for (j = 0; j < 16; j += part_width) {
  293. const int b_xy = (4*s->mb_x + (j >> 2)) + (4*s->mb_y + (i >> 2))*h->b_stride;
  294. int dxy;
  295. x = 16*s->mb_x + j;
  296. y = 16*s->mb_y + i;
  297. k = ((j >> 2) & 1) + ((i >> 1) & 2) + ((j >> 1) & 4) + (i & 8);
  298. if (mode != PREDICT_MODE) {
  299. pred_motion(h, k, (part_width >> 2), dir, 1, &mx, &my);
  300. } else {
  301. mx = s->next_picture.motion_val[0][b_xy][0]<<1;
  302. my = s->next_picture.motion_val[0][b_xy][1]<<1;
  303. if (dir == 0) {
  304. mx = ((mx * h->frame_num_offset) / h->prev_frame_num_offset + 1) >> 1;
  305. my = ((my * h->frame_num_offset) / h->prev_frame_num_offset + 1) >> 1;
  306. } else {
  307. mx = ((mx * (h->frame_num_offset - h->prev_frame_num_offset)) / h->prev_frame_num_offset + 1) >> 1;
  308. my = ((my * (h->frame_num_offset - h->prev_frame_num_offset)) / h->prev_frame_num_offset + 1) >> 1;
  309. }
  310. }
  311. /* clip motion vector prediction to frame border */
  312. mx = av_clip(mx, extra_width - 6*x, h_edge_pos - 6*x);
  313. my = av_clip(my, extra_width - 6*y, v_edge_pos - 6*y);
  314. /* get (optional) motion vector differential */
  315. if (mode == PREDICT_MODE) {
  316. dx = dy = 0;
  317. } else {
  318. dy = svq3_get_se_golomb(&s->gb);
  319. dx = svq3_get_se_golomb(&s->gb);
  320. if (dx == INVALID_VLC || dy == INVALID_VLC) {
  321. av_log(h->s.avctx, AV_LOG_ERROR, "invalid MV vlc\n");
  322. return -1;
  323. }
  324. }
  325. /* compute motion vector */
  326. if (mode == THIRDPEL_MODE) {
  327. int fx, fy;
  328. mx = ((mx + 1)>>1) + dx;
  329. my = ((my + 1)>>1) + dy;
  330. fx = ((unsigned)(mx + 0x3000))/3 - 0x1000;
  331. fy = ((unsigned)(my + 0x3000))/3 - 0x1000;
  332. dxy = (mx - 3*fx) + 4*(my - 3*fy);
  333. svq3_mc_dir_part(s, x, y, part_width, part_height, fx, fy, dxy, 1, dir, avg);
  334. mx += mx;
  335. my += my;
  336. } else if (mode == HALFPEL_MODE || mode == PREDICT_MODE) {
  337. mx = ((unsigned)(mx + 1 + 0x3000))/3 + dx - 0x1000;
  338. my = ((unsigned)(my + 1 + 0x3000))/3 + dy - 0x1000;
  339. dxy = (mx&1) + 2*(my&1);
  340. svq3_mc_dir_part(s, x, y, part_width, part_height, mx>>1, my>>1, dxy, 0, dir, avg);
  341. mx *= 3;
  342. my *= 3;
  343. } else {
  344. mx = ((unsigned)(mx + 3 + 0x6000))/6 + dx - 0x1000;
  345. my = ((unsigned)(my + 3 + 0x6000))/6 + dy - 0x1000;
  346. svq3_mc_dir_part(s, x, y, part_width, part_height, mx, my, 0, 0, dir, avg);
  347. mx *= 6;
  348. my *= 6;
  349. }
  350. /* update mv_cache */
  351. if (mode != PREDICT_MODE) {
  352. int32_t mv = pack16to32(mx,my);
  353. if (part_height == 8 && i < 8) {
  354. *(int32_t *) h->mv_cache[dir][scan8[k] + 1*8] = mv;
  355. if (part_width == 8 && j < 8) {
  356. *(int32_t *) h->mv_cache[dir][scan8[k] + 1 + 1*8] = mv;
  357. }
  358. }
  359. if (part_width == 8 && j < 8) {
  360. *(int32_t *) h->mv_cache[dir][scan8[k] + 1] = mv;
  361. }
  362. if (part_width == 4 || part_height == 4) {
  363. *(int32_t *) h->mv_cache[dir][scan8[k]] = mv;
  364. }
  365. }
  366. /* write back motion vectors */
  367. fill_rectangle(s->current_picture.motion_val[dir][b_xy], part_width>>2, part_height>>2, h->b_stride, pack16to32(mx,my), 4);
  368. }
  369. }
  370. return 0;
  371. }
  372. static int svq3_decode_mb(H264Context *h, unsigned int mb_type)
  373. {
  374. int i, j, k, m, dir, mode;
  375. int cbp = 0;
  376. uint32_t vlc;
  377. int8_t *top, *left;
  378. MpegEncContext *const s = (MpegEncContext *) h;
  379. const int mb_xy = h->mb_xy;
  380. const int b_xy = 4*s->mb_x + 4*s->mb_y*h->b_stride;
  381. h->top_samples_available = (s->mb_y == 0) ? 0x33FF : 0xFFFF;
  382. h->left_samples_available = (s->mb_x == 0) ? 0x5F5F : 0xFFFF;
  383. h->topright_samples_available = 0xFFFF;
  384. if (mb_type == 0) { /* SKIP */
  385. if (s->pict_type == FF_P_TYPE || s->next_picture.mb_type[mb_xy] == -1) {
  386. svq3_mc_dir_part(s, 16*s->mb_x, 16*s->mb_y, 16, 16, 0, 0, 0, 0, 0, 0);
  387. if (s->pict_type == FF_B_TYPE) {
  388. svq3_mc_dir_part(s, 16*s->mb_x, 16*s->mb_y, 16, 16, 0, 0, 0, 0, 1, 1);
  389. }
  390. mb_type = MB_TYPE_SKIP;
  391. } else {
  392. mb_type = FFMIN(s->next_picture.mb_type[mb_xy], 6);
  393. if (svq3_mc_dir(h, mb_type, PREDICT_MODE, 0, 0) < 0)
  394. return -1;
  395. if (svq3_mc_dir(h, mb_type, PREDICT_MODE, 1, 1) < 0)
  396. return -1;
  397. mb_type = MB_TYPE_16x16;
  398. }
  399. } else if (mb_type < 8) { /* INTER */
  400. if (h->thirdpel_flag && h->halfpel_flag == !get_bits1 (&s->gb)) {
  401. mode = THIRDPEL_MODE;
  402. } else if (h->halfpel_flag && h->thirdpel_flag == !get_bits1 (&s->gb)) {
  403. mode = HALFPEL_MODE;
  404. } else {
  405. mode = FULLPEL_MODE;
  406. }
  407. /* fill caches */
  408. /* note ref_cache should contain here:
  409. ????????
  410. ???11111
  411. N??11111
  412. N??11111
  413. N??11111
  414. */
  415. for (m = 0; m < 2; m++) {
  416. if (s->mb_x > 0 && h->intra4x4_pred_mode[mb_xy - 1][0] != -1) {
  417. for (i = 0; i < 4; i++) {
  418. *(uint32_t *) h->mv_cache[m][scan8[0] - 1 + i*8] = *(uint32_t *) s->current_picture.motion_val[m][b_xy - 1 + i*h->b_stride];
  419. }
  420. } else {
  421. for (i = 0; i < 4; i++) {
  422. *(uint32_t *) h->mv_cache[m][scan8[0] - 1 + i*8] = 0;
  423. }
  424. }
  425. if (s->mb_y > 0) {
  426. memcpy(h->mv_cache[m][scan8[0] - 1*8], s->current_picture.motion_val[m][b_xy - h->b_stride], 4*2*sizeof(int16_t));
  427. memset(&h->ref_cache[m][scan8[0] - 1*8], (h->intra4x4_pred_mode[mb_xy - s->mb_stride][4] == -1) ? PART_NOT_AVAILABLE : 1, 4);
  428. if (s->mb_x < (s->mb_width - 1)) {
  429. *(uint32_t *) h->mv_cache[m][scan8[0] + 4 - 1*8] = *(uint32_t *) s->current_picture.motion_val[m][b_xy - h->b_stride + 4];
  430. h->ref_cache[m][scan8[0] + 4 - 1*8] =
  431. (h->intra4x4_pred_mode[mb_xy - s->mb_stride + 1][0] == -1 ||
  432. h->intra4x4_pred_mode[mb_xy - s->mb_stride ][4] == -1) ? PART_NOT_AVAILABLE : 1;
  433. }else
  434. h->ref_cache[m][scan8[0] + 4 - 1*8] = PART_NOT_AVAILABLE;
  435. if (s->mb_x > 0) {
  436. *(uint32_t *) h->mv_cache[m][scan8[0] - 1 - 1*8] = *(uint32_t *) s->current_picture.motion_val[m][b_xy - h->b_stride - 1];
  437. h->ref_cache[m][scan8[0] - 1 - 1*8] = (h->intra4x4_pred_mode[mb_xy - s->mb_stride - 1][3] == -1) ? PART_NOT_AVAILABLE : 1;
  438. }else
  439. h->ref_cache[m][scan8[0] - 1 - 1*8] = PART_NOT_AVAILABLE;
  440. }else
  441. memset(&h->ref_cache[m][scan8[0] - 1*8 - 1], PART_NOT_AVAILABLE, 8);
  442. if (s->pict_type != FF_B_TYPE)
  443. break;
  444. }
  445. /* decode motion vector(s) and form prediction(s) */
  446. if (s->pict_type == FF_P_TYPE) {
  447. if (svq3_mc_dir(h, (mb_type - 1), mode, 0, 0) < 0)
  448. return -1;
  449. } else { /* FF_B_TYPE */
  450. if (mb_type != 2) {
  451. if (svq3_mc_dir(h, 0, mode, 0, 0) < 0)
  452. return -1;
  453. } else {
  454. for (i = 0; i < 4; i++) {
  455. memset(s->current_picture.motion_val[0][b_xy + i*h->b_stride], 0, 4*2*sizeof(int16_t));
  456. }
  457. }
  458. if (mb_type != 1) {
  459. if (svq3_mc_dir(h, 0, mode, 1, (mb_type == 3)) < 0)
  460. return -1;
  461. } else {
  462. for (i = 0; i < 4; i++) {
  463. memset(s->current_picture.motion_val[1][b_xy + i*h->b_stride], 0, 4*2*sizeof(int16_t));
  464. }
  465. }
  466. }
  467. mb_type = MB_TYPE_16x16;
  468. } else if (mb_type == 8 || mb_type == 33) { /* INTRA4x4 */
  469. memset(h->intra4x4_pred_mode_cache, -1, 8*5*sizeof(int8_t));
  470. if (mb_type == 8) {
  471. if (s->mb_x > 0) {
  472. for (i = 0; i < 4; i++) {
  473. h->intra4x4_pred_mode_cache[scan8[0] - 1 + i*8] = h->intra4x4_pred_mode[mb_xy - 1][i];
  474. }
  475. if (h->intra4x4_pred_mode_cache[scan8[0] - 1] == -1) {
  476. h->left_samples_available = 0x5F5F;
  477. }
  478. }
  479. if (s->mb_y > 0) {
  480. h->intra4x4_pred_mode_cache[4+8*0] = h->intra4x4_pred_mode[mb_xy - s->mb_stride][4];
  481. h->intra4x4_pred_mode_cache[5+8*0] = h->intra4x4_pred_mode[mb_xy - s->mb_stride][5];
  482. h->intra4x4_pred_mode_cache[6+8*0] = h->intra4x4_pred_mode[mb_xy - s->mb_stride][6];
  483. h->intra4x4_pred_mode_cache[7+8*0] = h->intra4x4_pred_mode[mb_xy - s->mb_stride][3];
  484. if (h->intra4x4_pred_mode_cache[4+8*0] == -1) {
  485. h->top_samples_available = 0x33FF;
  486. }
  487. }
  488. /* decode prediction codes for luma blocks */
  489. for (i = 0; i < 16; i+=2) {
  490. vlc = svq3_get_ue_golomb(&s->gb);
  491. if (vlc >= 25){
  492. av_log(h->s.avctx, AV_LOG_ERROR, "luma prediction:%d\n", vlc);
  493. return -1;
  494. }
  495. left = &h->intra4x4_pred_mode_cache[scan8[i] - 1];
  496. top = &h->intra4x4_pred_mode_cache[scan8[i] - 8];
  497. left[1] = svq3_pred_1[top[0] + 1][left[0] + 1][svq3_pred_0[vlc][0]];
  498. left[2] = svq3_pred_1[top[1] + 1][left[1] + 1][svq3_pred_0[vlc][1]];
  499. if (left[1] == -1 || left[2] == -1){
  500. av_log(h->s.avctx, AV_LOG_ERROR, "weird prediction\n");
  501. return -1;
  502. }
  503. }
  504. } else { /* mb_type == 33, DC_128_PRED block type */
  505. for (i = 0; i < 4; i++) {
  506. memset(&h->intra4x4_pred_mode_cache[scan8[0] + 8*i], DC_PRED, 4);
  507. }
  508. }
  509. ff_h264_write_back_intra_pred_mode(h);
  510. if (mb_type == 8) {
  511. ff_h264_check_intra4x4_pred_mode(h);
  512. h->top_samples_available = (s->mb_y == 0) ? 0x33FF : 0xFFFF;
  513. h->left_samples_available = (s->mb_x == 0) ? 0x5F5F : 0xFFFF;
  514. } else {
  515. for (i = 0; i < 4; i++) {
  516. memset(&h->intra4x4_pred_mode_cache[scan8[0] + 8*i], DC_128_PRED, 4);
  517. }
  518. h->top_samples_available = 0x33FF;
  519. h->left_samples_available = 0x5F5F;
  520. }
  521. mb_type = MB_TYPE_INTRA4x4;
  522. } else { /* INTRA16x16 */
  523. dir = i_mb_type_info[mb_type - 8].pred_mode;
  524. dir = (dir >> 1) ^ 3*(dir & 1) ^ 1;
  525. if ((h->intra16x16_pred_mode = ff_h264_check_intra_pred_mode(h, dir)) == -1){
  526. av_log(h->s.avctx, AV_LOG_ERROR, "check_intra_pred_mode = -1\n");
  527. return -1;
  528. }
  529. cbp = i_mb_type_info[mb_type - 8].cbp;
  530. mb_type = MB_TYPE_INTRA16x16;
  531. }
  532. if (!IS_INTER(mb_type) && s->pict_type != FF_I_TYPE) {
  533. for (i = 0; i < 4; i++) {
  534. memset(s->current_picture.motion_val[0][b_xy + i*h->b_stride], 0, 4*2*sizeof(int16_t));
  535. }
  536. if (s->pict_type == FF_B_TYPE) {
  537. for (i = 0; i < 4; i++) {
  538. memset(s->current_picture.motion_val[1][b_xy + i*h->b_stride], 0, 4*2*sizeof(int16_t));
  539. }
  540. }
  541. }
  542. if (!IS_INTRA4x4(mb_type)) {
  543. memset(h->intra4x4_pred_mode[mb_xy], DC_PRED, 8);
  544. }
  545. if (!IS_SKIP(mb_type) || s->pict_type == FF_B_TYPE) {
  546. memset(h->non_zero_count_cache + 8, 0, 4*9*sizeof(uint8_t));
  547. s->dsp.clear_blocks(h->mb);
  548. }
  549. if (!IS_INTRA16x16(mb_type) && (!IS_SKIP(mb_type) || s->pict_type == FF_B_TYPE)) {
  550. if ((vlc = svq3_get_ue_golomb(&s->gb)) >= 48){
  551. av_log(h->s.avctx, AV_LOG_ERROR, "cbp_vlc=%d\n", vlc);
  552. return -1;
  553. }
  554. cbp = IS_INTRA(mb_type) ? golomb_to_intra4x4_cbp[vlc] : golomb_to_inter_cbp[vlc];
  555. }
  556. if (IS_INTRA16x16(mb_type) || (s->pict_type != FF_I_TYPE && s->adaptive_quant && cbp)) {
  557. s->qscale += svq3_get_se_golomb(&s->gb);
  558. if (s->qscale > 31){
  559. av_log(h->s.avctx, AV_LOG_ERROR, "qscale:%d\n", s->qscale);
  560. return -1;
  561. }
  562. }
  563. if (IS_INTRA16x16(mb_type)) {
  564. if (svq3_decode_block(&s->gb, h->mb, 0, 0)){
  565. av_log(h->s.avctx, AV_LOG_ERROR, "error while decoding intra luma dc\n");
  566. return -1;
  567. }
  568. }
  569. if (cbp) {
  570. const int index = IS_INTRA16x16(mb_type) ? 1 : 0;
  571. const int type = ((s->qscale < 24 && IS_INTRA4x4(mb_type)) ? 2 : 1);
  572. for (i = 0; i < 4; i++) {
  573. if ((cbp & (1 << i))) {
  574. for (j = 0; j < 4; j++) {
  575. k = index ? ((j&1) + 2*(i&1) + 2*(j&2) + 4*(i&2)) : (4*i + j);
  576. h->non_zero_count_cache[ scan8[k] ] = 1;
  577. if (svq3_decode_block(&s->gb, &h->mb[16*k], index, type)){
  578. av_log(h->s.avctx, AV_LOG_ERROR, "error while decoding block\n");
  579. return -1;
  580. }
  581. }
  582. }
  583. }
  584. if ((cbp & 0x30)) {
  585. for (i = 0; i < 2; ++i) {
  586. if (svq3_decode_block(&s->gb, &h->mb[16*(16 + 4*i)], 0, 3)){
  587. av_log(h->s.avctx, AV_LOG_ERROR, "error while decoding chroma dc block\n");
  588. return -1;
  589. }
  590. }
  591. if ((cbp & 0x20)) {
  592. for (i = 0; i < 8; i++) {
  593. h->non_zero_count_cache[ scan8[16+i] ] = 1;
  594. if (svq3_decode_block(&s->gb, &h->mb[16*(16 + i)], 1, 1)){
  595. av_log(h->s.avctx, AV_LOG_ERROR, "error while decoding chroma ac block\n");
  596. return -1;
  597. }
  598. }
  599. }
  600. }
  601. }
  602. h->cbp= cbp;
  603. s->current_picture.mb_type[mb_xy] = mb_type;
  604. if (IS_INTRA(mb_type)) {
  605. h->chroma_pred_mode = ff_h264_check_intra_pred_mode(h, DC_PRED8x8);
  606. }
  607. return 0;
  608. }
  609. static int svq3_decode_slice_header(H264Context *h)
  610. {
  611. MpegEncContext *const s = (MpegEncContext *) h;
  612. const int mb_xy = h->mb_xy;
  613. int i, header;
  614. header = get_bits(&s->gb, 8);
  615. if (((header & 0x9F) != 1 && (header & 0x9F) != 2) || (header & 0x60) == 0) {
  616. /* TODO: what? */
  617. av_log(h->s.avctx, AV_LOG_ERROR, "unsupported slice header (%02X)\n", header);
  618. return -1;
  619. } else {
  620. int length = (header >> 5) & 3;
  621. h->next_slice_index = get_bits_count(&s->gb) + 8*show_bits(&s->gb, 8*length) + 8*length;
  622. if (h->next_slice_index > s->gb.size_in_bits) {
  623. av_log(h->s.avctx, AV_LOG_ERROR, "slice after bitstream end\n");
  624. return -1;
  625. }
  626. s->gb.size_in_bits = h->next_slice_index - 8*(length - 1);
  627. skip_bits(&s->gb, 8);
  628. if (h->svq3_watermark_key) {
  629. uint32_t header = AV_RL32(&s->gb.buffer[(get_bits_count(&s->gb)>>3)+1]);
  630. AV_WL32(&s->gb.buffer[(get_bits_count(&s->gb)>>3)+1], header ^ h->svq3_watermark_key);
  631. }
  632. if (length > 0) {
  633. memcpy((uint8_t *) &s->gb.buffer[get_bits_count(&s->gb) >> 3],
  634. &s->gb.buffer[s->gb.size_in_bits >> 3], (length - 1));
  635. }
  636. skip_bits_long(&s->gb, 0);
  637. }
  638. if ((i = svq3_get_ue_golomb(&s->gb)) == INVALID_VLC || i >= 3){
  639. av_log(h->s.avctx, AV_LOG_ERROR, "illegal slice type %d \n", i);
  640. return -1;
  641. }
  642. h->slice_type = golomb_to_pict_type[i];
  643. if ((header & 0x9F) == 2) {
  644. i = (s->mb_num < 64) ? 6 : (1 + av_log2 (s->mb_num - 1));
  645. s->mb_skip_run = get_bits(&s->gb, i) - (s->mb_x + (s->mb_y * s->mb_width));
  646. } else {
  647. skip_bits1(&s->gb);
  648. s->mb_skip_run = 0;
  649. }
  650. h->slice_num = get_bits(&s->gb, 8);
  651. s->qscale = get_bits(&s->gb, 5);
  652. s->adaptive_quant = get_bits1(&s->gb);
  653. /* unknown fields */
  654. skip_bits1(&s->gb);
  655. if (h->unknown_svq3_flag) {
  656. skip_bits1(&s->gb);
  657. }
  658. skip_bits1(&s->gb);
  659. skip_bits(&s->gb, 2);
  660. while (get_bits1(&s->gb)) {
  661. skip_bits(&s->gb, 8);
  662. }
  663. /* reset intra predictors and invalidate motion vector references */
  664. if (s->mb_x > 0) {
  665. memset(h->intra4x4_pred_mode[mb_xy - 1], -1, 4*sizeof(int8_t));
  666. memset(h->intra4x4_pred_mode[mb_xy - s->mb_x], -1, 8*sizeof(int8_t)*s->mb_x);
  667. }
  668. if (s->mb_y > 0) {
  669. memset(h->intra4x4_pred_mode[mb_xy - s->mb_stride], -1, 8*sizeof(int8_t)*(s->mb_width - s->mb_x));
  670. if (s->mb_x > 0) {
  671. h->intra4x4_pred_mode[mb_xy - s->mb_stride - 1][3] = -1;
  672. }
  673. }
  674. return 0;
  675. }
  676. static av_cold int svq3_decode_init(AVCodecContext *avctx)
  677. {
  678. MpegEncContext *const s = avctx->priv_data;
  679. H264Context *const h = avctx->priv_data;
  680. int m;
  681. unsigned char *extradata;
  682. unsigned int size;
  683. if(avctx->thread_count > 1){
  684. av_log(avctx, AV_LOG_ERROR, "SVQ3 does not support multithreaded decoding, patch welcome! (check latest SVN too)\n");
  685. return -1;
  686. }
  687. if (ff_h264_decode_init(avctx) < 0)
  688. return -1;
  689. s->flags = avctx->flags;
  690. s->flags2 = avctx->flags2;
  691. s->unrestricted_mv = 1;
  692. h->is_complex=1;
  693. avctx->pix_fmt = avctx->codec->pix_fmts[0];
  694. if (!s->context_initialized) {
  695. s->width = avctx->width;
  696. s->height = avctx->height;
  697. h->halfpel_flag = 1;
  698. h->thirdpel_flag = 1;
  699. h->unknown_svq3_flag = 0;
  700. h->chroma_qp[0] = h->chroma_qp[1] = 4;
  701. if (MPV_common_init(s) < 0)
  702. return -1;
  703. h->b_stride = 4*s->mb_width;
  704. ff_h264_alloc_tables(h);
  705. /* prowl for the "SEQH" marker in the extradata */
  706. extradata = (unsigned char *)avctx->extradata;
  707. for (m = 0; m < avctx->extradata_size; m++) {
  708. if (!memcmp(extradata, "SEQH", 4))
  709. break;
  710. extradata++;
  711. }
  712. /* if a match was found, parse the extra data */
  713. if (extradata && !memcmp(extradata, "SEQH", 4)) {
  714. GetBitContext gb;
  715. int frame_size_code;
  716. size = AV_RB32(&extradata[4]);
  717. init_get_bits(&gb, extradata + 8, size*8);
  718. /* 'frame size code' and optional 'width, height' */
  719. frame_size_code = get_bits(&gb, 3);
  720. switch (frame_size_code) {
  721. case 0: avctx->width = 160; avctx->height = 120; break;
  722. case 1: avctx->width = 128; avctx->height = 96; break;
  723. case 2: avctx->width = 176; avctx->height = 144; break;
  724. case 3: avctx->width = 352; avctx->height = 288; break;
  725. case 4: avctx->width = 704; avctx->height = 576; break;
  726. case 5: avctx->width = 240; avctx->height = 180; break;
  727. case 6: avctx->width = 320; avctx->height = 240; break;
  728. case 7:
  729. avctx->width = get_bits(&gb, 12);
  730. avctx->height = get_bits(&gb, 12);
  731. break;
  732. }
  733. h->halfpel_flag = get_bits1(&gb);
  734. h->thirdpel_flag = get_bits1(&gb);
  735. /* unknown fields */
  736. skip_bits1(&gb);
  737. skip_bits1(&gb);
  738. skip_bits1(&gb);
  739. skip_bits1(&gb);
  740. s->low_delay = get_bits1(&gb);
  741. /* unknown field */
  742. skip_bits1(&gb);
  743. while (get_bits1(&gb)) {
  744. skip_bits(&gb, 8);
  745. }
  746. h->unknown_svq3_flag = get_bits1(&gb);
  747. avctx->has_b_frames = !s->low_delay;
  748. if (h->unknown_svq3_flag) {
  749. #if CONFIG_ZLIB
  750. unsigned watermark_width = svq3_get_ue_golomb(&gb);
  751. unsigned watermark_height = svq3_get_ue_golomb(&gb);
  752. int u1 = svq3_get_ue_golomb(&gb);
  753. int u2 = get_bits(&gb, 8);
  754. int u3 = get_bits(&gb, 2);
  755. int u4 = svq3_get_ue_golomb(&gb);
  756. unsigned buf_len = watermark_width*watermark_height*4;
  757. int offset = (get_bits_count(&gb)+7)>>3;
  758. uint8_t *buf;
  759. if ((uint64_t)watermark_width*4 > UINT_MAX/watermark_height)
  760. return -1;
  761. buf = av_malloc(buf_len);
  762. av_log(avctx, AV_LOG_DEBUG, "watermark size: %dx%d\n", watermark_width, watermark_height);
  763. av_log(avctx, AV_LOG_DEBUG, "u1: %x u2: %x u3: %x compressed data size: %d offset: %d\n", u1, u2, u3, u4, offset);
  764. if (uncompress(buf, (uLong*)&buf_len, extradata + 8 + offset, size - offset) != Z_OK) {
  765. av_log(avctx, AV_LOG_ERROR, "could not uncompress watermark logo\n");
  766. av_free(buf);
  767. return -1;
  768. }
  769. h->svq3_watermark_key = ff_svq1_packet_checksum(buf, buf_len, 0);
  770. h->svq3_watermark_key = h->svq3_watermark_key << 16 | h->svq3_watermark_key;
  771. av_log(avctx, AV_LOG_DEBUG, "watermark key %#x\n", h->svq3_watermark_key);
  772. av_free(buf);
  773. #else
  774. av_log(avctx, AV_LOG_ERROR, "this svq3 file contains watermark which need zlib support compiled in\n");
  775. return -1;
  776. #endif
  777. }
  778. }
  779. }
  780. return 0;
  781. }
  782. static int svq3_decode_frame(AVCodecContext *avctx,
  783. void *data, int *data_size,
  784. AVPacket *avpkt)
  785. {
  786. const uint8_t *buf = avpkt->data;
  787. int buf_size = avpkt->size;
  788. MpegEncContext *const s = avctx->priv_data;
  789. H264Context *const h = avctx->priv_data;
  790. int m, mb_type;
  791. /* special case for last picture */
  792. if (buf_size == 0) {
  793. if (s->next_picture_ptr && !s->low_delay) {
  794. *(AVFrame *) data = *(AVFrame *) &s->next_picture;
  795. s->next_picture_ptr = NULL;
  796. *data_size = sizeof(AVFrame);
  797. }
  798. return 0;
  799. }
  800. init_get_bits (&s->gb, buf, 8*buf_size);
  801. s->mb_x = s->mb_y = h->mb_xy = 0;
  802. if (svq3_decode_slice_header(h))
  803. return -1;
  804. s->pict_type = h->slice_type;
  805. s->picture_number = h->slice_num;
  806. if (avctx->debug&FF_DEBUG_PICT_INFO){
  807. av_log(h->s.avctx, AV_LOG_DEBUG, "%c hpel:%d, tpel:%d aqp:%d qp:%d, slice_num:%02X\n",
  808. av_get_pict_type_char(s->pict_type), h->halfpel_flag, h->thirdpel_flag,
  809. s->adaptive_quant, s->qscale, h->slice_num);
  810. }
  811. /* for hurry_up == 5 */
  812. s->current_picture.pict_type = s->pict_type;
  813. s->current_picture.key_frame = (s->pict_type == FF_I_TYPE);
  814. /* Skip B-frames if we do not have reference frames. */
  815. if (s->last_picture_ptr == NULL && s->pict_type == FF_B_TYPE)
  816. return 0;
  817. /* Skip B-frames if we are in a hurry. */
  818. if (avctx->hurry_up && s->pict_type == FF_B_TYPE)
  819. return 0;
  820. /* Skip everything if we are in a hurry >= 5. */
  821. if (avctx->hurry_up >= 5)
  822. return 0;
  823. if ( (avctx->skip_frame >= AVDISCARD_NONREF && s->pict_type == FF_B_TYPE)
  824. ||(avctx->skip_frame >= AVDISCARD_NONKEY && s->pict_type != FF_I_TYPE)
  825. || avctx->skip_frame >= AVDISCARD_ALL)
  826. return 0;
  827. if (s->next_p_frame_damaged) {
  828. if (s->pict_type == FF_B_TYPE)
  829. return 0;
  830. else
  831. s->next_p_frame_damaged = 0;
  832. }
  833. if (ff_h264_frame_start(h) < 0)
  834. return -1;
  835. if (s->pict_type == FF_B_TYPE) {
  836. h->frame_num_offset = (h->slice_num - h->prev_frame_num);
  837. if (h->frame_num_offset < 0) {
  838. h->frame_num_offset += 256;
  839. }
  840. if (h->frame_num_offset == 0 || h->frame_num_offset >= h->prev_frame_num_offset) {
  841. av_log(h->s.avctx, AV_LOG_ERROR, "error in B-frame picture id\n");
  842. return -1;
  843. }
  844. } else {
  845. h->prev_frame_num = h->frame_num;
  846. h->frame_num = h->slice_num;
  847. h->prev_frame_num_offset = (h->frame_num - h->prev_frame_num);
  848. if (h->prev_frame_num_offset < 0) {
  849. h->prev_frame_num_offset += 256;
  850. }
  851. }
  852. for (m = 0; m < 2; m++){
  853. int i;
  854. for (i = 0; i < 4; i++){
  855. int j;
  856. for (j = -1; j < 4; j++)
  857. h->ref_cache[m][scan8[0] + 8*i + j]= 1;
  858. if (i < 3)
  859. h->ref_cache[m][scan8[0] + 8*i + j]= PART_NOT_AVAILABLE;
  860. }
  861. }
  862. for (s->mb_y = 0; s->mb_y < s->mb_height; s->mb_y++) {
  863. for (s->mb_x = 0; s->mb_x < s->mb_width; s->mb_x++) {
  864. h->mb_xy = s->mb_x + s->mb_y*s->mb_stride;
  865. if ( (get_bits_count(&s->gb) + 7) >= s->gb.size_in_bits &&
  866. ((get_bits_count(&s->gb) & 7) == 0 || show_bits(&s->gb, (-get_bits_count(&s->gb) & 7)) == 0)) {
  867. skip_bits(&s->gb, h->next_slice_index - get_bits_count(&s->gb));
  868. s->gb.size_in_bits = 8*buf_size;
  869. if (svq3_decode_slice_header(h))
  870. return -1;
  871. /* TODO: support s->mb_skip_run */
  872. }
  873. mb_type = svq3_get_ue_golomb(&s->gb);
  874. if (s->pict_type == FF_I_TYPE) {
  875. mb_type += 8;
  876. } else if (s->pict_type == FF_B_TYPE && mb_type >= 4) {
  877. mb_type += 4;
  878. }
  879. if (mb_type > 33 || svq3_decode_mb(h, mb_type)) {
  880. av_log(h->s.avctx, AV_LOG_ERROR, "error while decoding MB %d %d\n", s->mb_x, s->mb_y);
  881. return -1;
  882. }
  883. if (mb_type != 0) {
  884. ff_h264_hl_decode_mb (h);
  885. }
  886. if (s->pict_type != FF_B_TYPE && !s->low_delay) {
  887. s->current_picture.mb_type[s->mb_x + s->mb_y*s->mb_stride] =
  888. (s->pict_type == FF_P_TYPE && mb_type < 8) ? (mb_type - 1) : -1;
  889. }
  890. }
  891. ff_draw_horiz_band(s, 16*s->mb_y, 16);
  892. }
  893. MPV_frame_end(s);
  894. if (s->pict_type == FF_B_TYPE || s->low_delay) {
  895. *(AVFrame *) data = *(AVFrame *) &s->current_picture;
  896. } else {
  897. *(AVFrame *) data = *(AVFrame *) &s->last_picture;
  898. }
  899. /* Do not output the last pic after seeking. */
  900. if (s->last_picture_ptr || s->low_delay) {
  901. *data_size = sizeof(AVFrame);
  902. }
  903. return buf_size;
  904. }
  905. AVCodec svq3_decoder = {
  906. "svq3",
  907. CODEC_TYPE_VIDEO,
  908. CODEC_ID_SVQ3,
  909. sizeof(H264Context),
  910. svq3_decode_init,
  911. NULL,
  912. ff_h264_decode_end,
  913. svq3_decode_frame,
  914. CODEC_CAP_DRAW_HORIZ_BAND | CODEC_CAP_DR1 | CODEC_CAP_DELAY,
  915. .long_name = NULL_IF_CONFIG_SMALL("Sorenson Vector Quantizer 3 / Sorenson Video 3 / SVQ3"),
  916. .pix_fmts= (const enum PixelFormat[]){PIX_FMT_YUVJ420P, PIX_FMT_NONE},
  917. };