You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

274 lines
6.8KB

  1. /*
  2. * adaptive and fixed codebook vector operations for ACELP-based codecs
  3. *
  4. * Copyright (c) 2008 Vladimir Voroshilov
  5. *
  6. * This file is part of FFmpeg.
  7. *
  8. * FFmpeg is free software; you can redistribute it and/or
  9. * modify it under the terms of the GNU Lesser General Public
  10. * License as published by the Free Software Foundation; either
  11. * version 2.1 of the License, or (at your option) any later version.
  12. *
  13. * FFmpeg is distributed in the hope that it will be useful,
  14. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  15. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  16. * Lesser General Public License for more details.
  17. *
  18. * You should have received a copy of the GNU Lesser General Public
  19. * License along with FFmpeg; if not, write to the Free Software
  20. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  21. */
  22. #include <inttypes.h>
  23. #include "avcodec.h"
  24. #include "acelp_vectors.h"
  25. #include "celp_math.h"
  26. const uint8_t ff_fc_2pulses_9bits_track1[16] =
  27. {
  28. 1, 3,
  29. 6, 8,
  30. 11, 13,
  31. 16, 18,
  32. 21, 23,
  33. 26, 28,
  34. 31, 33,
  35. 36, 38
  36. };
  37. const uint8_t ff_fc_2pulses_9bits_track1_gray[16] =
  38. {
  39. 1, 3,
  40. 8, 6,
  41. 18, 16,
  42. 11, 13,
  43. 38, 36,
  44. 31, 33,
  45. 21, 23,
  46. 28, 26,
  47. };
  48. const uint8_t ff_fc_2pulses_9bits_track2_gray[32] =
  49. {
  50. 0, 2,
  51. 5, 4,
  52. 12, 10,
  53. 7, 9,
  54. 25, 24,
  55. 20, 22,
  56. 14, 15,
  57. 19, 17,
  58. 36, 31,
  59. 21, 26,
  60. 1, 6,
  61. 16, 11,
  62. 27, 29,
  63. 32, 30,
  64. 39, 37,
  65. 34, 35,
  66. };
  67. const uint8_t ff_fc_4pulses_8bits_tracks_13[16] =
  68. {
  69. 0, 5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75,
  70. };
  71. const uint8_t ff_fc_4pulses_8bits_track_4[32] =
  72. {
  73. 3, 4,
  74. 8, 9,
  75. 13, 14,
  76. 18, 19,
  77. 23, 24,
  78. 28, 29,
  79. 33, 34,
  80. 38, 39,
  81. 43, 44,
  82. 48, 49,
  83. 53, 54,
  84. 58, 59,
  85. 63, 64,
  86. 68, 69,
  87. 73, 74,
  88. 78, 79,
  89. };
  90. #if 0
  91. static uint8_t gray_decode[32] =
  92. {
  93. 0, 1, 3, 2, 7, 6, 4, 5,
  94. 15, 14, 12, 13, 8, 9, 11, 10,
  95. 31, 30, 28, 29, 24, 25, 27, 26,
  96. 16, 17, 19, 18, 23, 22, 20, 21
  97. };
  98. #endif
  99. const float ff_pow_0_7[10] = {
  100. 0.700000, 0.490000, 0.343000, 0.240100, 0.168070,
  101. 0.117649, 0.082354, 0.057648, 0.040354, 0.028248
  102. };
  103. const float ff_pow_0_75[10] = {
  104. 0.750000, 0.562500, 0.421875, 0.316406, 0.237305,
  105. 0.177979, 0.133484, 0.100113, 0.075085, 0.056314
  106. };
  107. const float ff_pow_0_55[10] = {
  108. 0.550000, 0.302500, 0.166375, 0.091506, 0.050328,
  109. 0.027681, 0.015224, 0.008373, 0.004605, 0.002533
  110. };
  111. const float ff_b60_sinc[61] = {
  112. 0.898529 , 0.865051 , 0.769257 , 0.624054 , 0.448639 , 0.265289 ,
  113. 0.0959167 , -0.0412598 , -0.134338 , -0.178986 , -0.178528 , -0.142609 ,
  114. -0.0849304 , -0.0205078 , 0.0369568 , 0.0773926 , 0.0955200 , 0.0912781 ,
  115. 0.0689392 , 0.0357056 , 0. , -0.0305481 , -0.0504150 , -0.0570068 ,
  116. -0.0508423 , -0.0350037 , -0.0141602 , 0.00665283, 0.0230713 , 0.0323486 ,
  117. 0.0335388 , 0.0275879 , 0.0167847 , 0.00411987, -0.00747681, -0.0156860 ,
  118. -0.0193481 , -0.0183716 , -0.0137634 , -0.00704956, 0. , 0.00582886 ,
  119. 0.00939941, 0.0103760 , 0.00903320, 0.00604248, 0.00238037, -0.00109863 ,
  120. -0.00366211, -0.00497437, -0.00503540, -0.00402832, -0.00241089, -0.000579834,
  121. 0.00103760, 0.00222778, 0.00277710, 0.00271606, 0.00213623, 0.00115967 ,
  122. 0.
  123. };
  124. void ff_acelp_fc_pulse_per_track(
  125. int16_t* fc_v,
  126. const uint8_t *tab1,
  127. const uint8_t *tab2,
  128. int pulse_indexes,
  129. int pulse_signs,
  130. int pulse_count,
  131. int bits)
  132. {
  133. int mask = (1 << bits) - 1;
  134. int i;
  135. for(i=0; i<pulse_count; i++)
  136. {
  137. fc_v[i + tab1[pulse_indexes & mask]] +=
  138. (pulse_signs & 1) ? 8191 : -8192; // +/-1 in (2.13)
  139. pulse_indexes >>= bits;
  140. pulse_signs >>= 1;
  141. }
  142. fc_v[tab2[pulse_indexes]] += (pulse_signs & 1) ? 8191 : -8192;
  143. }
  144. void ff_decode_10_pulses_35bits(const int16_t *fixed_index,
  145. AMRFixed *fixed_sparse,
  146. const uint8_t *gray_decode,
  147. int half_pulse_count, int bits)
  148. {
  149. int i;
  150. int mask = (1 << bits) - 1;
  151. fixed_sparse->n = 2 * half_pulse_count;
  152. for (i = 0; i < half_pulse_count; i++) {
  153. const int pos1 = gray_decode[fixed_index[2*i+1] & mask] + i;
  154. const int pos2 = gray_decode[fixed_index[2*i ] & mask] + i;
  155. const float sign = (fixed_index[2*i+1] & (1 << bits)) ? -1.0 : 1.0;
  156. fixed_sparse->x[2*i+1] = pos1;
  157. fixed_sparse->x[2*i ] = pos2;
  158. fixed_sparse->y[2*i+1] = sign;
  159. fixed_sparse->y[2*i ] = pos2 < pos1 ? -sign : sign;
  160. }
  161. }
  162. void ff_acelp_weighted_vector_sum(
  163. int16_t* out,
  164. const int16_t *in_a,
  165. const int16_t *in_b,
  166. int16_t weight_coeff_a,
  167. int16_t weight_coeff_b,
  168. int16_t rounder,
  169. int shift,
  170. int length)
  171. {
  172. int i;
  173. // Clipping required here; breaks OVERFLOW test.
  174. for(i=0; i<length; i++)
  175. out[i] = av_clip_int16((
  176. in_a[i] * weight_coeff_a +
  177. in_b[i] * weight_coeff_b +
  178. rounder) >> shift);
  179. }
  180. void ff_weighted_vector_sumf(float *out, const float *in_a, const float *in_b,
  181. float weight_coeff_a, float weight_coeff_b, int length)
  182. {
  183. int i;
  184. for(i=0; i<length; i++)
  185. out[i] = weight_coeff_a * in_a[i]
  186. + weight_coeff_b * in_b[i];
  187. }
  188. void ff_adaptative_gain_control(float *buf_out, float speech_energ,
  189. int size, float alpha, float *gain_mem)
  190. {
  191. int i;
  192. float postfilter_energ = ff_dot_productf(buf_out, buf_out, size);
  193. float gain_scale_factor = 1.0;
  194. float mem = *gain_mem;
  195. if (postfilter_energ)
  196. gain_scale_factor = sqrt(speech_energ / postfilter_energ);
  197. gain_scale_factor *= 1.0 - alpha;
  198. for (i = 0; i < size; i++) {
  199. mem = alpha * mem + gain_scale_factor;
  200. buf_out[i] *= mem;
  201. }
  202. *gain_mem = mem;
  203. }
  204. void ff_scale_vector_to_given_sum_of_squares(float *out, const float *in,
  205. float sum_of_squares, const int n)
  206. {
  207. int i;
  208. float scalefactor = ff_dot_productf(in, in, n);
  209. if (scalefactor)
  210. scalefactor = sqrt(sum_of_squares / scalefactor);
  211. for (i = 0; i < n; i++)
  212. out[i] = in[i] * scalefactor;
  213. }
  214. void ff_set_fixed_vector(float *out, const AMRFixed *in, float scale, int size)
  215. {
  216. int i;
  217. for (i=0; i < in->n; i++) {
  218. int x = in->x[i];
  219. float y = in->y[i] * scale;
  220. out[x] += y;
  221. x += in->pitch_lag;
  222. while (x < size) {
  223. y *= in->pitch_fac;
  224. out[x] += y;
  225. x += in->pitch_lag;
  226. }
  227. }
  228. }
  229. void ff_clear_fixed_vector(float *out, const AMRFixed *in, int size)
  230. {
  231. int i;
  232. for (i=0; i < in->n; i++) {
  233. int x = in->x[i];
  234. out[x] = 0.0;
  235. x += in->pitch_lag;
  236. while (x < size) {
  237. out[x] = 0.0;
  238. x += in->pitch_lag;
  239. }
  240. }
  241. }