You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

1037 lines
36KB

  1. /*
  2. * VC3/DNxHD encoder
  3. * Copyright (c) 2007 Baptiste Coudurier <baptiste dot coudurier at smartjog dot com>
  4. * Copyright (c) 2011 MirriAd Ltd
  5. *
  6. * VC-3 encoder funded by the British Broadcasting Corporation
  7. * 10 bit support added by MirriAd Ltd, Joseph Artsimovich <joseph@mirriad.com>
  8. *
  9. * This file is part of Libav.
  10. *
  11. * Libav is free software; you can redistribute it and/or
  12. * modify it under the terms of the GNU Lesser General Public
  13. * License as published by the Free Software Foundation; either
  14. * version 2.1 of the License, or (at your option) any later version.
  15. *
  16. * Libav is distributed in the hope that it will be useful,
  17. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  18. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  19. * Lesser General Public License for more details.
  20. *
  21. * You should have received a copy of the GNU Lesser General Public
  22. * License along with Libav; if not, write to the Free Software
  23. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  24. */
  25. //#define DEBUG
  26. #define RC_VARIANCE 1 // use variance or ssd for fast rc
  27. #include "libavutil/attributes.h"
  28. #include "libavutil/internal.h"
  29. #include "libavutil/opt.h"
  30. #include "avcodec.h"
  31. #include "dsputil.h"
  32. #include "internal.h"
  33. #include "mpegvideo.h"
  34. #include "dnxhdenc.h"
  35. #define VE AV_OPT_FLAG_VIDEO_PARAM | AV_OPT_FLAG_ENCODING_PARAM
  36. #define DNX10BIT_QMAT_SHIFT 18 // The largest value that will not lead to overflow for 10bit samples.
  37. static const AVOption options[]={
  38. {"nitris_compat", "encode with Avid Nitris compatibility", offsetof(DNXHDEncContext, nitris_compat), AV_OPT_TYPE_INT, {.i64 = 0}, 0, 1, VE},
  39. {NULL}
  40. };
  41. static const AVClass class = { "dnxhd", av_default_item_name, options, LIBAVUTIL_VERSION_INT };
  42. #define LAMBDA_FRAC_BITS 10
  43. static void dnxhd_8bit_get_pixels_8x4_sym(int16_t *restrict block, const uint8_t *pixels, int line_size)
  44. {
  45. int i;
  46. for (i = 0; i < 4; i++) {
  47. block[0] = pixels[0]; block[1] = pixels[1];
  48. block[2] = pixels[2]; block[3] = pixels[3];
  49. block[4] = pixels[4]; block[5] = pixels[5];
  50. block[6] = pixels[6]; block[7] = pixels[7];
  51. pixels += line_size;
  52. block += 8;
  53. }
  54. memcpy(block, block - 8, sizeof(*block) * 8);
  55. memcpy(block + 8, block - 16, sizeof(*block) * 8);
  56. memcpy(block + 16, block - 24, sizeof(*block) * 8);
  57. memcpy(block + 24, block - 32, sizeof(*block) * 8);
  58. }
  59. static av_always_inline void dnxhd_10bit_get_pixels_8x4_sym(int16_t *restrict block, const uint8_t *pixels, int line_size)
  60. {
  61. int i;
  62. block += 32;
  63. for (i = 0; i < 4; i++) {
  64. memcpy(block + i * 8, pixels + i * line_size, 8 * sizeof(*block));
  65. memcpy(block - (i+1) * 8, pixels + i * line_size, 8 * sizeof(*block));
  66. }
  67. }
  68. static int dnxhd_10bit_dct_quantize(MpegEncContext *ctx, int16_t *block,
  69. int n, int qscale, int *overflow)
  70. {
  71. const uint8_t *scantable= ctx->intra_scantable.scantable;
  72. const int *qmat = ctx->q_intra_matrix[qscale];
  73. int last_non_zero = 0;
  74. int i;
  75. ctx->dsp.fdct(block);
  76. // Divide by 4 with rounding, to compensate scaling of DCT coefficients
  77. block[0] = (block[0] + 2) >> 2;
  78. for (i = 1; i < 64; ++i) {
  79. int j = scantable[i];
  80. int sign = block[j] >> 31;
  81. int level = (block[j] ^ sign) - sign;
  82. level = level * qmat[j] >> DNX10BIT_QMAT_SHIFT;
  83. block[j] = (level ^ sign) - sign;
  84. if (level)
  85. last_non_zero = i;
  86. }
  87. return last_non_zero;
  88. }
  89. static av_cold int dnxhd_init_vlc(DNXHDEncContext *ctx)
  90. {
  91. int i, j, level, run;
  92. int max_level = 1<<(ctx->cid_table->bit_depth+2);
  93. FF_ALLOCZ_OR_GOTO(ctx->m.avctx, ctx->vlc_codes, max_level*4*sizeof(*ctx->vlc_codes), fail);
  94. FF_ALLOCZ_OR_GOTO(ctx->m.avctx, ctx->vlc_bits, max_level*4*sizeof(*ctx->vlc_bits) , fail);
  95. FF_ALLOCZ_OR_GOTO(ctx->m.avctx, ctx->run_codes, 63*2, fail);
  96. FF_ALLOCZ_OR_GOTO(ctx->m.avctx, ctx->run_bits, 63, fail);
  97. ctx->vlc_codes += max_level*2;
  98. ctx->vlc_bits += max_level*2;
  99. for (level = -max_level; level < max_level; level++) {
  100. for (run = 0; run < 2; run++) {
  101. int index = (level<<1)|run;
  102. int sign, offset = 0, alevel = level;
  103. MASK_ABS(sign, alevel);
  104. if (alevel > 64) {
  105. offset = (alevel-1)>>6;
  106. alevel -= offset<<6;
  107. }
  108. for (j = 0; j < 257; j++) {
  109. if (ctx->cid_table->ac_level[j] == alevel &&
  110. (!offset || (ctx->cid_table->ac_index_flag[j] && offset)) &&
  111. (!run || (ctx->cid_table->ac_run_flag [j] && run))) {
  112. assert(!ctx->vlc_codes[index]);
  113. if (alevel) {
  114. ctx->vlc_codes[index] = (ctx->cid_table->ac_codes[j]<<1)|(sign&1);
  115. ctx->vlc_bits [index] = ctx->cid_table->ac_bits[j]+1;
  116. } else {
  117. ctx->vlc_codes[index] = ctx->cid_table->ac_codes[j];
  118. ctx->vlc_bits [index] = ctx->cid_table->ac_bits [j];
  119. }
  120. break;
  121. }
  122. }
  123. assert(!alevel || j < 257);
  124. if (offset) {
  125. ctx->vlc_codes[index] = (ctx->vlc_codes[index]<<ctx->cid_table->index_bits)|offset;
  126. ctx->vlc_bits [index]+= ctx->cid_table->index_bits;
  127. }
  128. }
  129. }
  130. for (i = 0; i < 62; i++) {
  131. int run = ctx->cid_table->run[i];
  132. assert(run < 63);
  133. ctx->run_codes[run] = ctx->cid_table->run_codes[i];
  134. ctx->run_bits [run] = ctx->cid_table->run_bits[i];
  135. }
  136. return 0;
  137. fail:
  138. return -1;
  139. }
  140. static av_cold int dnxhd_init_qmat(DNXHDEncContext *ctx, int lbias, int cbias)
  141. {
  142. // init first elem to 1 to avoid div by 0 in convert_matrix
  143. uint16_t weight_matrix[64] = {1,}; // convert_matrix needs uint16_t*
  144. int qscale, i;
  145. const uint8_t *luma_weight_table = ctx->cid_table->luma_weight;
  146. const uint8_t *chroma_weight_table = ctx->cid_table->chroma_weight;
  147. FF_ALLOCZ_OR_GOTO(ctx->m.avctx, ctx->qmatrix_l, (ctx->m.avctx->qmax+1) * 64 * sizeof(int), fail);
  148. FF_ALLOCZ_OR_GOTO(ctx->m.avctx, ctx->qmatrix_c, (ctx->m.avctx->qmax+1) * 64 * sizeof(int), fail);
  149. FF_ALLOCZ_OR_GOTO(ctx->m.avctx, ctx->qmatrix_l16, (ctx->m.avctx->qmax+1) * 64 * 2 * sizeof(uint16_t), fail);
  150. FF_ALLOCZ_OR_GOTO(ctx->m.avctx, ctx->qmatrix_c16, (ctx->m.avctx->qmax+1) * 64 * 2 * sizeof(uint16_t), fail);
  151. if (ctx->cid_table->bit_depth == 8) {
  152. for (i = 1; i < 64; i++) {
  153. int j = ctx->m.dsp.idct_permutation[ff_zigzag_direct[i]];
  154. weight_matrix[j] = ctx->cid_table->luma_weight[i];
  155. }
  156. ff_convert_matrix(&ctx->m.dsp, ctx->qmatrix_l, ctx->qmatrix_l16, weight_matrix,
  157. ctx->m.intra_quant_bias, 1, ctx->m.avctx->qmax, 1);
  158. for (i = 1; i < 64; i++) {
  159. int j = ctx->m.dsp.idct_permutation[ff_zigzag_direct[i]];
  160. weight_matrix[j] = ctx->cid_table->chroma_weight[i];
  161. }
  162. ff_convert_matrix(&ctx->m.dsp, ctx->qmatrix_c, ctx->qmatrix_c16, weight_matrix,
  163. ctx->m.intra_quant_bias, 1, ctx->m.avctx->qmax, 1);
  164. for (qscale = 1; qscale <= ctx->m.avctx->qmax; qscale++) {
  165. for (i = 0; i < 64; i++) {
  166. ctx->qmatrix_l [qscale] [i] <<= 2; ctx->qmatrix_c [qscale] [i] <<= 2;
  167. ctx->qmatrix_l16[qscale][0][i] <<= 2; ctx->qmatrix_l16[qscale][1][i] <<= 2;
  168. ctx->qmatrix_c16[qscale][0][i] <<= 2; ctx->qmatrix_c16[qscale][1][i] <<= 2;
  169. }
  170. }
  171. } else {
  172. // 10-bit
  173. for (qscale = 1; qscale <= ctx->m.avctx->qmax; qscale++) {
  174. for (i = 1; i < 64; i++) {
  175. int j = ctx->m.dsp.idct_permutation[ff_zigzag_direct[i]];
  176. // The quantization formula from the VC-3 standard is:
  177. // quantized = sign(block[i]) * floor(abs(block[i]/s) * p / (qscale * weight_table[i]))
  178. // Where p is 32 for 8-bit samples and 8 for 10-bit ones.
  179. // The s factor compensates scaling of DCT coefficients done by the DCT routines,
  180. // and therefore is not present in standard. It's 8 for 8-bit samples and 4 for 10-bit ones.
  181. // We want values of ctx->qtmatrix_l and ctx->qtmatrix_r to be:
  182. // ((1 << DNX10BIT_QMAT_SHIFT) * (p / s)) / (qscale * weight_table[i])
  183. // For 10-bit samples, p / s == 2
  184. ctx->qmatrix_l[qscale][j] = (1 << (DNX10BIT_QMAT_SHIFT + 1)) / (qscale * luma_weight_table[i]);
  185. ctx->qmatrix_c[qscale][j] = (1 << (DNX10BIT_QMAT_SHIFT + 1)) / (qscale * chroma_weight_table[i]);
  186. }
  187. }
  188. }
  189. return 0;
  190. fail:
  191. return -1;
  192. }
  193. static av_cold int dnxhd_init_rc(DNXHDEncContext *ctx)
  194. {
  195. FF_ALLOCZ_OR_GOTO(ctx->m.avctx, ctx->mb_rc, 8160*ctx->m.avctx->qmax*sizeof(RCEntry), fail);
  196. if (ctx->m.avctx->mb_decision != FF_MB_DECISION_RD)
  197. FF_ALLOCZ_OR_GOTO(ctx->m.avctx, ctx->mb_cmp, ctx->m.mb_num*sizeof(RCCMPEntry), fail);
  198. ctx->frame_bits = (ctx->cid_table->coding_unit_size - 640 - 4 - ctx->min_padding) * 8;
  199. ctx->qscale = 1;
  200. ctx->lambda = 2<<LAMBDA_FRAC_BITS; // qscale 2
  201. return 0;
  202. fail:
  203. return -1;
  204. }
  205. static av_cold int dnxhd_encode_init(AVCodecContext *avctx)
  206. {
  207. DNXHDEncContext *ctx = avctx->priv_data;
  208. int i, index, bit_depth;
  209. switch (avctx->pix_fmt) {
  210. case AV_PIX_FMT_YUV422P:
  211. bit_depth = 8;
  212. break;
  213. case AV_PIX_FMT_YUV422P10:
  214. bit_depth = 10;
  215. break;
  216. default:
  217. av_log(avctx, AV_LOG_ERROR, "pixel format is incompatible with DNxHD\n");
  218. return -1;
  219. }
  220. ctx->cid = ff_dnxhd_find_cid(avctx, bit_depth);
  221. if (!ctx->cid) {
  222. av_log(avctx, AV_LOG_ERROR, "video parameters incompatible with DNxHD\n");
  223. return -1;
  224. }
  225. av_log(avctx, AV_LOG_DEBUG, "cid %d\n", ctx->cid);
  226. index = ff_dnxhd_get_cid_table(ctx->cid);
  227. ctx->cid_table = &ff_dnxhd_cid_table[index];
  228. ctx->m.avctx = avctx;
  229. ctx->m.mb_intra = 1;
  230. ctx->m.h263_aic = 1;
  231. avctx->bits_per_raw_sample = ctx->cid_table->bit_depth;
  232. ff_dsputil_init(&ctx->m.dsp, avctx);
  233. ff_dct_common_init(&ctx->m);
  234. if (!ctx->m.dct_quantize)
  235. ctx->m.dct_quantize = ff_dct_quantize_c;
  236. if (ctx->cid_table->bit_depth == 10) {
  237. ctx->m.dct_quantize = dnxhd_10bit_dct_quantize;
  238. ctx->get_pixels_8x4_sym = dnxhd_10bit_get_pixels_8x4_sym;
  239. ctx->block_width_l2 = 4;
  240. } else {
  241. ctx->get_pixels_8x4_sym = dnxhd_8bit_get_pixels_8x4_sym;
  242. ctx->block_width_l2 = 3;
  243. }
  244. if (ARCH_X86)
  245. ff_dnxhdenc_init_x86(ctx);
  246. ctx->m.mb_height = (avctx->height + 15) / 16;
  247. ctx->m.mb_width = (avctx->width + 15) / 16;
  248. if (avctx->flags & CODEC_FLAG_INTERLACED_DCT) {
  249. ctx->interlaced = 1;
  250. ctx->m.mb_height /= 2;
  251. }
  252. ctx->m.mb_num = ctx->m.mb_height * ctx->m.mb_width;
  253. if (avctx->intra_quant_bias != FF_DEFAULT_QUANT_BIAS)
  254. ctx->m.intra_quant_bias = avctx->intra_quant_bias;
  255. if (dnxhd_init_qmat(ctx, ctx->m.intra_quant_bias, 0) < 0) // XXX tune lbias/cbias
  256. return -1;
  257. // Avid Nitris hardware decoder requires a minimum amount of padding in the coding unit payload
  258. if (ctx->nitris_compat)
  259. ctx->min_padding = 1600;
  260. if (dnxhd_init_vlc(ctx) < 0)
  261. return -1;
  262. if (dnxhd_init_rc(ctx) < 0)
  263. return -1;
  264. FF_ALLOCZ_OR_GOTO(ctx->m.avctx, ctx->slice_size, ctx->m.mb_height*sizeof(uint32_t), fail);
  265. FF_ALLOCZ_OR_GOTO(ctx->m.avctx, ctx->slice_offs, ctx->m.mb_height*sizeof(uint32_t), fail);
  266. FF_ALLOCZ_OR_GOTO(ctx->m.avctx, ctx->mb_bits, ctx->m.mb_num *sizeof(uint16_t), fail);
  267. FF_ALLOCZ_OR_GOTO(ctx->m.avctx, ctx->mb_qscale, ctx->m.mb_num *sizeof(uint8_t), fail);
  268. ctx->frame.key_frame = 1;
  269. ctx->frame.pict_type = AV_PICTURE_TYPE_I;
  270. ctx->m.avctx->coded_frame = &ctx->frame;
  271. if (avctx->thread_count > MAX_THREADS) {
  272. av_log(avctx, AV_LOG_ERROR, "too many threads\n");
  273. return -1;
  274. }
  275. ctx->thread[0] = ctx;
  276. for (i = 1; i < avctx->thread_count; i++) {
  277. ctx->thread[i] = av_malloc(sizeof(DNXHDEncContext));
  278. memcpy(ctx->thread[i], ctx, sizeof(DNXHDEncContext));
  279. }
  280. return 0;
  281. fail: //for FF_ALLOCZ_OR_GOTO
  282. return -1;
  283. }
  284. static int dnxhd_write_header(AVCodecContext *avctx, uint8_t *buf)
  285. {
  286. DNXHDEncContext *ctx = avctx->priv_data;
  287. const uint8_t header_prefix[5] = { 0x00,0x00,0x02,0x80,0x01 };
  288. memset(buf, 0, 640);
  289. memcpy(buf, header_prefix, 5);
  290. buf[5] = ctx->interlaced ? ctx->cur_field+2 : 0x01;
  291. buf[6] = 0x80; // crc flag off
  292. buf[7] = 0xa0; // reserved
  293. AV_WB16(buf + 0x18, avctx->height>>ctx->interlaced); // ALPF
  294. AV_WB16(buf + 0x1a, avctx->width); // SPL
  295. AV_WB16(buf + 0x1d, avctx->height>>ctx->interlaced); // NAL
  296. buf[0x21] = ctx->cid_table->bit_depth == 10 ? 0x58 : 0x38;
  297. buf[0x22] = 0x88 + (ctx->interlaced<<2);
  298. AV_WB32(buf + 0x28, ctx->cid); // CID
  299. buf[0x2c] = ctx->interlaced ? 0 : 0x80;
  300. buf[0x5f] = 0x01; // UDL
  301. buf[0x167] = 0x02; // reserved
  302. AV_WB16(buf + 0x16a, ctx->m.mb_height * 4 + 4); // MSIPS
  303. buf[0x16d] = ctx->m.mb_height; // Ns
  304. buf[0x16f] = 0x10; // reserved
  305. ctx->msip = buf + 0x170;
  306. return 0;
  307. }
  308. static av_always_inline void dnxhd_encode_dc(DNXHDEncContext *ctx, int diff)
  309. {
  310. int nbits;
  311. if (diff < 0) {
  312. nbits = av_log2_16bit(-2*diff);
  313. diff--;
  314. } else {
  315. nbits = av_log2_16bit(2*diff);
  316. }
  317. put_bits(&ctx->m.pb, ctx->cid_table->dc_bits[nbits] + nbits,
  318. (ctx->cid_table->dc_codes[nbits]<<nbits) + (diff & ((1 << nbits) - 1)));
  319. }
  320. static av_always_inline void dnxhd_encode_block(DNXHDEncContext *ctx, int16_t *block, int last_index, int n)
  321. {
  322. int last_non_zero = 0;
  323. int slevel, i, j;
  324. dnxhd_encode_dc(ctx, block[0] - ctx->m.last_dc[n]);
  325. ctx->m.last_dc[n] = block[0];
  326. for (i = 1; i <= last_index; i++) {
  327. j = ctx->m.intra_scantable.permutated[i];
  328. slevel = block[j];
  329. if (slevel) {
  330. int run_level = i - last_non_zero - 1;
  331. int rlevel = (slevel<<1)|!!run_level;
  332. put_bits(&ctx->m.pb, ctx->vlc_bits[rlevel], ctx->vlc_codes[rlevel]);
  333. if (run_level)
  334. put_bits(&ctx->m.pb, ctx->run_bits[run_level], ctx->run_codes[run_level]);
  335. last_non_zero = i;
  336. }
  337. }
  338. put_bits(&ctx->m.pb, ctx->vlc_bits[0], ctx->vlc_codes[0]); // EOB
  339. }
  340. static av_always_inline void dnxhd_unquantize_c(DNXHDEncContext *ctx, int16_t *block, int n, int qscale, int last_index)
  341. {
  342. const uint8_t *weight_matrix;
  343. int level;
  344. int i;
  345. weight_matrix = (n&2) ? ctx->cid_table->chroma_weight : ctx->cid_table->luma_weight;
  346. for (i = 1; i <= last_index; i++) {
  347. int j = ctx->m.intra_scantable.permutated[i];
  348. level = block[j];
  349. if (level) {
  350. if (level < 0) {
  351. level = (1-2*level) * qscale * weight_matrix[i];
  352. if (ctx->cid_table->bit_depth == 10) {
  353. if (weight_matrix[i] != 8)
  354. level += 8;
  355. level >>= 4;
  356. } else {
  357. if (weight_matrix[i] != 32)
  358. level += 32;
  359. level >>= 6;
  360. }
  361. level = -level;
  362. } else {
  363. level = (2*level+1) * qscale * weight_matrix[i];
  364. if (ctx->cid_table->bit_depth == 10) {
  365. if (weight_matrix[i] != 8)
  366. level += 8;
  367. level >>= 4;
  368. } else {
  369. if (weight_matrix[i] != 32)
  370. level += 32;
  371. level >>= 6;
  372. }
  373. }
  374. block[j] = level;
  375. }
  376. }
  377. }
  378. static av_always_inline int dnxhd_ssd_block(int16_t *qblock, int16_t *block)
  379. {
  380. int score = 0;
  381. int i;
  382. for (i = 0; i < 64; i++)
  383. score += (block[i] - qblock[i]) * (block[i] - qblock[i]);
  384. return score;
  385. }
  386. static av_always_inline int dnxhd_calc_ac_bits(DNXHDEncContext *ctx, int16_t *block, int last_index)
  387. {
  388. int last_non_zero = 0;
  389. int bits = 0;
  390. int i, j, level;
  391. for (i = 1; i <= last_index; i++) {
  392. j = ctx->m.intra_scantable.permutated[i];
  393. level = block[j];
  394. if (level) {
  395. int run_level = i - last_non_zero - 1;
  396. bits += ctx->vlc_bits[(level<<1)|!!run_level]+ctx->run_bits[run_level];
  397. last_non_zero = i;
  398. }
  399. }
  400. return bits;
  401. }
  402. static av_always_inline void dnxhd_get_blocks(DNXHDEncContext *ctx, int mb_x, int mb_y)
  403. {
  404. const int bs = ctx->block_width_l2;
  405. const int bw = 1 << bs;
  406. const uint8_t *ptr_y = ctx->thread[0]->src[0] + ((mb_y << 4) * ctx->m.linesize) + (mb_x << bs+1);
  407. const uint8_t *ptr_u = ctx->thread[0]->src[1] + ((mb_y << 4) * ctx->m.uvlinesize) + (mb_x << bs);
  408. const uint8_t *ptr_v = ctx->thread[0]->src[2] + ((mb_y << 4) * ctx->m.uvlinesize) + (mb_x << bs);
  409. DSPContext *dsp = &ctx->m.dsp;
  410. dsp->get_pixels(ctx->blocks[0], ptr_y, ctx->m.linesize);
  411. dsp->get_pixels(ctx->blocks[1], ptr_y + bw, ctx->m.linesize);
  412. dsp->get_pixels(ctx->blocks[2], ptr_u, ctx->m.uvlinesize);
  413. dsp->get_pixels(ctx->blocks[3], ptr_v, ctx->m.uvlinesize);
  414. if (mb_y+1 == ctx->m.mb_height && ctx->m.avctx->height == 1080) {
  415. if (ctx->interlaced) {
  416. ctx->get_pixels_8x4_sym(ctx->blocks[4], ptr_y + ctx->dct_y_offset, ctx->m.linesize);
  417. ctx->get_pixels_8x4_sym(ctx->blocks[5], ptr_y + ctx->dct_y_offset + bw, ctx->m.linesize);
  418. ctx->get_pixels_8x4_sym(ctx->blocks[6], ptr_u + ctx->dct_uv_offset, ctx->m.uvlinesize);
  419. ctx->get_pixels_8x4_sym(ctx->blocks[7], ptr_v + ctx->dct_uv_offset, ctx->m.uvlinesize);
  420. } else {
  421. dsp->clear_block(ctx->blocks[4]);
  422. dsp->clear_block(ctx->blocks[5]);
  423. dsp->clear_block(ctx->blocks[6]);
  424. dsp->clear_block(ctx->blocks[7]);
  425. }
  426. } else {
  427. dsp->get_pixels(ctx->blocks[4], ptr_y + ctx->dct_y_offset, ctx->m.linesize);
  428. dsp->get_pixels(ctx->blocks[5], ptr_y + ctx->dct_y_offset + bw, ctx->m.linesize);
  429. dsp->get_pixels(ctx->blocks[6], ptr_u + ctx->dct_uv_offset, ctx->m.uvlinesize);
  430. dsp->get_pixels(ctx->blocks[7], ptr_v + ctx->dct_uv_offset, ctx->m.uvlinesize);
  431. }
  432. }
  433. static av_always_inline int dnxhd_switch_matrix(DNXHDEncContext *ctx, int i)
  434. {
  435. if (i&2) {
  436. ctx->m.q_intra_matrix16 = ctx->qmatrix_c16;
  437. ctx->m.q_intra_matrix = ctx->qmatrix_c;
  438. return 1 + (i&1);
  439. } else {
  440. ctx->m.q_intra_matrix16 = ctx->qmatrix_l16;
  441. ctx->m.q_intra_matrix = ctx->qmatrix_l;
  442. return 0;
  443. }
  444. }
  445. static int dnxhd_calc_bits_thread(AVCodecContext *avctx, void *arg, int jobnr, int threadnr)
  446. {
  447. DNXHDEncContext *ctx = avctx->priv_data;
  448. int mb_y = jobnr, mb_x;
  449. int qscale = ctx->qscale;
  450. LOCAL_ALIGNED_16(int16_t, block, [64]);
  451. ctx = ctx->thread[threadnr];
  452. ctx->m.last_dc[0] =
  453. ctx->m.last_dc[1] =
  454. ctx->m.last_dc[2] = 1 << (ctx->cid_table->bit_depth + 2);
  455. for (mb_x = 0; mb_x < ctx->m.mb_width; mb_x++) {
  456. unsigned mb = mb_y * ctx->m.mb_width + mb_x;
  457. int ssd = 0;
  458. int ac_bits = 0;
  459. int dc_bits = 0;
  460. int i;
  461. dnxhd_get_blocks(ctx, mb_x, mb_y);
  462. for (i = 0; i < 8; i++) {
  463. int16_t *src_block = ctx->blocks[i];
  464. int overflow, nbits, diff, last_index;
  465. int n = dnxhd_switch_matrix(ctx, i);
  466. memcpy(block, src_block, 64*sizeof(*block));
  467. last_index = ctx->m.dct_quantize(&ctx->m, block, i, qscale, &overflow);
  468. ac_bits += dnxhd_calc_ac_bits(ctx, block, last_index);
  469. diff = block[0] - ctx->m.last_dc[n];
  470. if (diff < 0) nbits = av_log2_16bit(-2*diff);
  471. else nbits = av_log2_16bit( 2*diff);
  472. assert(nbits < ctx->cid_table->bit_depth + 4);
  473. dc_bits += ctx->cid_table->dc_bits[nbits] + nbits;
  474. ctx->m.last_dc[n] = block[0];
  475. if (avctx->mb_decision == FF_MB_DECISION_RD || !RC_VARIANCE) {
  476. dnxhd_unquantize_c(ctx, block, i, qscale, last_index);
  477. ctx->m.dsp.idct(block);
  478. ssd += dnxhd_ssd_block(block, src_block);
  479. }
  480. }
  481. ctx->mb_rc[qscale][mb].ssd = ssd;
  482. ctx->mb_rc[qscale][mb].bits = ac_bits+dc_bits+12+8*ctx->vlc_bits[0];
  483. }
  484. return 0;
  485. }
  486. static int dnxhd_encode_thread(AVCodecContext *avctx, void *arg, int jobnr, int threadnr)
  487. {
  488. DNXHDEncContext *ctx = avctx->priv_data;
  489. int mb_y = jobnr, mb_x;
  490. ctx = ctx->thread[threadnr];
  491. init_put_bits(&ctx->m.pb, (uint8_t *)arg + 640 + ctx->slice_offs[jobnr], ctx->slice_size[jobnr]);
  492. ctx->m.last_dc[0] =
  493. ctx->m.last_dc[1] =
  494. ctx->m.last_dc[2] = 1 << (ctx->cid_table->bit_depth + 2);
  495. for (mb_x = 0; mb_x < ctx->m.mb_width; mb_x++) {
  496. unsigned mb = mb_y * ctx->m.mb_width + mb_x;
  497. int qscale = ctx->mb_qscale[mb];
  498. int i;
  499. put_bits(&ctx->m.pb, 12, qscale<<1);
  500. dnxhd_get_blocks(ctx, mb_x, mb_y);
  501. for (i = 0; i < 8; i++) {
  502. int16_t *block = ctx->blocks[i];
  503. int overflow, n = dnxhd_switch_matrix(ctx, i);
  504. int last_index = ctx->m.dct_quantize(&ctx->m, block, i,
  505. qscale, &overflow);
  506. //START_TIMER;
  507. dnxhd_encode_block(ctx, block, last_index, n);
  508. //STOP_TIMER("encode_block");
  509. }
  510. }
  511. if (put_bits_count(&ctx->m.pb)&31)
  512. put_bits(&ctx->m.pb, 32-(put_bits_count(&ctx->m.pb)&31), 0);
  513. flush_put_bits(&ctx->m.pb);
  514. return 0;
  515. }
  516. static void dnxhd_setup_threads_slices(DNXHDEncContext *ctx)
  517. {
  518. int mb_y, mb_x;
  519. int offset = 0;
  520. for (mb_y = 0; mb_y < ctx->m.mb_height; mb_y++) {
  521. int thread_size;
  522. ctx->slice_offs[mb_y] = offset;
  523. ctx->slice_size[mb_y] = 0;
  524. for (mb_x = 0; mb_x < ctx->m.mb_width; mb_x++) {
  525. unsigned mb = mb_y * ctx->m.mb_width + mb_x;
  526. ctx->slice_size[mb_y] += ctx->mb_bits[mb];
  527. }
  528. ctx->slice_size[mb_y] = (ctx->slice_size[mb_y]+31)&~31;
  529. ctx->slice_size[mb_y] >>= 3;
  530. thread_size = ctx->slice_size[mb_y];
  531. offset += thread_size;
  532. }
  533. }
  534. static int dnxhd_mb_var_thread(AVCodecContext *avctx, void *arg, int jobnr, int threadnr)
  535. {
  536. DNXHDEncContext *ctx = avctx->priv_data;
  537. int mb_y = jobnr, mb_x, x, y;
  538. int partial_last_row = (mb_y == ctx->m.mb_height - 1) &&
  539. ((avctx->height >> ctx->interlaced) & 0xF);
  540. ctx = ctx->thread[threadnr];
  541. if (ctx->cid_table->bit_depth == 8) {
  542. uint8_t *pix = ctx->thread[0]->src[0] + ((mb_y<<4) * ctx->m.linesize);
  543. for (mb_x = 0; mb_x < ctx->m.mb_width; ++mb_x, pix += 16) {
  544. unsigned mb = mb_y * ctx->m.mb_width + mb_x;
  545. int sum;
  546. int varc;
  547. if (!partial_last_row && mb_x * 16 <= avctx->width - 16) {
  548. sum = ctx->m.dsp.pix_sum(pix, ctx->m.linesize);
  549. varc = ctx->m.dsp.pix_norm1(pix, ctx->m.linesize);
  550. } else {
  551. int bw = FFMIN(avctx->width - 16 * mb_x, 16);
  552. int bh = FFMIN((avctx->height >> ctx->interlaced) - 16 * mb_y, 16);
  553. sum = varc = 0;
  554. for (y = 0; y < bh; y++) {
  555. for (x = 0; x < bw; x++) {
  556. uint8_t val = pix[x + y * ctx->m.linesize];
  557. sum += val;
  558. varc += val * val;
  559. }
  560. }
  561. }
  562. varc = (varc - (((unsigned)sum * sum) >> 8) + 128) >> 8;
  563. ctx->mb_cmp[mb].value = varc;
  564. ctx->mb_cmp[mb].mb = mb;
  565. }
  566. } else { // 10-bit
  567. int const linesize = ctx->m.linesize >> 1;
  568. for (mb_x = 0; mb_x < ctx->m.mb_width; ++mb_x) {
  569. uint16_t *pix = (uint16_t*)ctx->thread[0]->src[0] + ((mb_y << 4) * linesize) + (mb_x << 4);
  570. unsigned mb = mb_y * ctx->m.mb_width + mb_x;
  571. int sum = 0;
  572. int sqsum = 0;
  573. int mean, sqmean;
  574. int i, j;
  575. // Macroblocks are 16x16 pixels, unlike DCT blocks which are 8x8.
  576. for (i = 0; i < 16; ++i) {
  577. for (j = 0; j < 16; ++j) {
  578. // Turn 16-bit pixels into 10-bit ones.
  579. int const sample = (unsigned)pix[j] >> 6;
  580. sum += sample;
  581. sqsum += sample * sample;
  582. // 2^10 * 2^10 * 16 * 16 = 2^28, which is less than INT_MAX
  583. }
  584. pix += linesize;
  585. }
  586. mean = sum >> 8; // 16*16 == 2^8
  587. sqmean = sqsum >> 8;
  588. ctx->mb_cmp[mb].value = sqmean - mean * mean;
  589. ctx->mb_cmp[mb].mb = mb;
  590. }
  591. }
  592. return 0;
  593. }
  594. static int dnxhd_encode_rdo(AVCodecContext *avctx, DNXHDEncContext *ctx)
  595. {
  596. int lambda, up_step, down_step;
  597. int last_lower = INT_MAX, last_higher = 0;
  598. int x, y, q;
  599. for (q = 1; q < avctx->qmax; q++) {
  600. ctx->qscale = q;
  601. avctx->execute2(avctx, dnxhd_calc_bits_thread, NULL, NULL, ctx->m.mb_height);
  602. }
  603. up_step = down_step = 2<<LAMBDA_FRAC_BITS;
  604. lambda = ctx->lambda;
  605. for (;;) {
  606. int bits = 0;
  607. int end = 0;
  608. if (lambda == last_higher) {
  609. lambda++;
  610. end = 1; // need to set final qscales/bits
  611. }
  612. for (y = 0; y < ctx->m.mb_height; y++) {
  613. for (x = 0; x < ctx->m.mb_width; x++) {
  614. unsigned min = UINT_MAX;
  615. int qscale = 1;
  616. int mb = y*ctx->m.mb_width+x;
  617. for (q = 1; q < avctx->qmax; q++) {
  618. unsigned score = ctx->mb_rc[q][mb].bits*lambda+
  619. ((unsigned)ctx->mb_rc[q][mb].ssd<<LAMBDA_FRAC_BITS);
  620. if (score < min) {
  621. min = score;
  622. qscale = q;
  623. }
  624. }
  625. bits += ctx->mb_rc[qscale][mb].bits;
  626. ctx->mb_qscale[mb] = qscale;
  627. ctx->mb_bits[mb] = ctx->mb_rc[qscale][mb].bits;
  628. }
  629. bits = (bits+31)&~31; // padding
  630. if (bits > ctx->frame_bits)
  631. break;
  632. }
  633. //av_dlog(ctx->m.avctx, "lambda %d, up %u, down %u, bits %d, frame %d\n",
  634. // lambda, last_higher, last_lower, bits, ctx->frame_bits);
  635. if (end) {
  636. if (bits > ctx->frame_bits)
  637. return -1;
  638. break;
  639. }
  640. if (bits < ctx->frame_bits) {
  641. last_lower = FFMIN(lambda, last_lower);
  642. if (last_higher != 0)
  643. lambda = (lambda+last_higher)>>1;
  644. else
  645. lambda -= down_step;
  646. down_step = FFMIN((int64_t)down_step*5, INT_MAX);
  647. up_step = 1<<LAMBDA_FRAC_BITS;
  648. lambda = FFMAX(1, lambda);
  649. if (lambda == last_lower)
  650. break;
  651. } else {
  652. last_higher = FFMAX(lambda, last_higher);
  653. if (last_lower != INT_MAX)
  654. lambda = (lambda+last_lower)>>1;
  655. else if ((int64_t)lambda + up_step > INT_MAX)
  656. return -1;
  657. else
  658. lambda += up_step;
  659. up_step = FFMIN((int64_t)up_step*5, INT_MAX);
  660. down_step = 1<<LAMBDA_FRAC_BITS;
  661. }
  662. }
  663. //av_dlog(ctx->m.avctx, "out lambda %d\n", lambda);
  664. ctx->lambda = lambda;
  665. return 0;
  666. }
  667. static int dnxhd_find_qscale(DNXHDEncContext *ctx)
  668. {
  669. int bits = 0;
  670. int up_step = 1;
  671. int down_step = 1;
  672. int last_higher = 0;
  673. int last_lower = INT_MAX;
  674. int qscale;
  675. int x, y;
  676. qscale = ctx->qscale;
  677. for (;;) {
  678. bits = 0;
  679. ctx->qscale = qscale;
  680. // XXX avoid recalculating bits
  681. ctx->m.avctx->execute2(ctx->m.avctx, dnxhd_calc_bits_thread, NULL, NULL, ctx->m.mb_height);
  682. for (y = 0; y < ctx->m.mb_height; y++) {
  683. for (x = 0; x < ctx->m.mb_width; x++)
  684. bits += ctx->mb_rc[qscale][y*ctx->m.mb_width+x].bits;
  685. bits = (bits+31)&~31; // padding
  686. if (bits > ctx->frame_bits)
  687. break;
  688. }
  689. //av_dlog(ctx->m.avctx, "%d, qscale %d, bits %d, frame %d, higher %d, lower %d\n",
  690. // ctx->m.avctx->frame_number, qscale, bits, ctx->frame_bits, last_higher, last_lower);
  691. if (bits < ctx->frame_bits) {
  692. if (qscale == 1)
  693. return 1;
  694. if (last_higher == qscale - 1) {
  695. qscale = last_higher;
  696. break;
  697. }
  698. last_lower = FFMIN(qscale, last_lower);
  699. if (last_higher != 0)
  700. qscale = (qscale+last_higher)>>1;
  701. else
  702. qscale -= down_step++;
  703. if (qscale < 1)
  704. qscale = 1;
  705. up_step = 1;
  706. } else {
  707. if (last_lower == qscale + 1)
  708. break;
  709. last_higher = FFMAX(qscale, last_higher);
  710. if (last_lower != INT_MAX)
  711. qscale = (qscale+last_lower)>>1;
  712. else
  713. qscale += up_step++;
  714. down_step = 1;
  715. if (qscale >= ctx->m.avctx->qmax)
  716. return -1;
  717. }
  718. }
  719. //av_dlog(ctx->m.avctx, "out qscale %d\n", qscale);
  720. ctx->qscale = qscale;
  721. return 0;
  722. }
  723. #define BUCKET_BITS 8
  724. #define RADIX_PASSES 4
  725. #define NBUCKETS (1 << BUCKET_BITS)
  726. static inline int get_bucket(int value, int shift)
  727. {
  728. value >>= shift;
  729. value &= NBUCKETS - 1;
  730. return NBUCKETS - 1 - value;
  731. }
  732. static void radix_count(const RCCMPEntry *data, int size, int buckets[RADIX_PASSES][NBUCKETS])
  733. {
  734. int i, j;
  735. memset(buckets, 0, sizeof(buckets[0][0]) * RADIX_PASSES * NBUCKETS);
  736. for (i = 0; i < size; i++) {
  737. int v = data[i].value;
  738. for (j = 0; j < RADIX_PASSES; j++) {
  739. buckets[j][get_bucket(v, 0)]++;
  740. v >>= BUCKET_BITS;
  741. }
  742. assert(!v);
  743. }
  744. for (j = 0; j < RADIX_PASSES; j++) {
  745. int offset = size;
  746. for (i = NBUCKETS - 1; i >= 0; i--)
  747. buckets[j][i] = offset -= buckets[j][i];
  748. assert(!buckets[j][0]);
  749. }
  750. }
  751. static void radix_sort_pass(RCCMPEntry *dst, const RCCMPEntry *data, int size, int buckets[NBUCKETS], int pass)
  752. {
  753. int shift = pass * BUCKET_BITS;
  754. int i;
  755. for (i = 0; i < size; i++) {
  756. int v = get_bucket(data[i].value, shift);
  757. int pos = buckets[v]++;
  758. dst[pos] = data[i];
  759. }
  760. }
  761. static void radix_sort(RCCMPEntry *data, int size)
  762. {
  763. int buckets[RADIX_PASSES][NBUCKETS];
  764. RCCMPEntry *tmp = av_malloc(sizeof(*tmp) * size);
  765. radix_count(data, size, buckets);
  766. radix_sort_pass(tmp, data, size, buckets[0], 0);
  767. radix_sort_pass(data, tmp, size, buckets[1], 1);
  768. if (buckets[2][NBUCKETS - 1] || buckets[3][NBUCKETS - 1]) {
  769. radix_sort_pass(tmp, data, size, buckets[2], 2);
  770. radix_sort_pass(data, tmp, size, buckets[3], 3);
  771. }
  772. av_free(tmp);
  773. }
  774. static int dnxhd_encode_fast(AVCodecContext *avctx, DNXHDEncContext *ctx)
  775. {
  776. int max_bits = 0;
  777. int ret, x, y;
  778. if ((ret = dnxhd_find_qscale(ctx)) < 0)
  779. return -1;
  780. for (y = 0; y < ctx->m.mb_height; y++) {
  781. for (x = 0; x < ctx->m.mb_width; x++) {
  782. int mb = y*ctx->m.mb_width+x;
  783. int delta_bits;
  784. ctx->mb_qscale[mb] = ctx->qscale;
  785. ctx->mb_bits[mb] = ctx->mb_rc[ctx->qscale][mb].bits;
  786. max_bits += ctx->mb_rc[ctx->qscale][mb].bits;
  787. if (!RC_VARIANCE) {
  788. delta_bits = ctx->mb_rc[ctx->qscale][mb].bits-ctx->mb_rc[ctx->qscale+1][mb].bits;
  789. ctx->mb_cmp[mb].mb = mb;
  790. ctx->mb_cmp[mb].value = delta_bits ?
  791. ((ctx->mb_rc[ctx->qscale][mb].ssd-ctx->mb_rc[ctx->qscale+1][mb].ssd)*100)/delta_bits
  792. : INT_MIN; //avoid increasing qscale
  793. }
  794. }
  795. max_bits += 31; //worst padding
  796. }
  797. if (!ret) {
  798. if (RC_VARIANCE)
  799. avctx->execute2(avctx, dnxhd_mb_var_thread, NULL, NULL, ctx->m.mb_height);
  800. radix_sort(ctx->mb_cmp, ctx->m.mb_num);
  801. for (x = 0; x < ctx->m.mb_num && max_bits > ctx->frame_bits; x++) {
  802. int mb = ctx->mb_cmp[x].mb;
  803. max_bits -= ctx->mb_rc[ctx->qscale][mb].bits - ctx->mb_rc[ctx->qscale+1][mb].bits;
  804. ctx->mb_qscale[mb] = ctx->qscale+1;
  805. ctx->mb_bits[mb] = ctx->mb_rc[ctx->qscale+1][mb].bits;
  806. }
  807. }
  808. return 0;
  809. }
  810. static void dnxhd_load_picture(DNXHDEncContext *ctx, const AVFrame *frame)
  811. {
  812. int i;
  813. for (i = 0; i < 3; i++) {
  814. ctx->frame.data[i] = frame->data[i];
  815. ctx->frame.linesize[i] = frame->linesize[i];
  816. }
  817. for (i = 0; i < ctx->m.avctx->thread_count; i++) {
  818. ctx->thread[i]->m.linesize = ctx->frame.linesize[0]<<ctx->interlaced;
  819. ctx->thread[i]->m.uvlinesize = ctx->frame.linesize[1]<<ctx->interlaced;
  820. ctx->thread[i]->dct_y_offset = ctx->m.linesize *8;
  821. ctx->thread[i]->dct_uv_offset = ctx->m.uvlinesize*8;
  822. }
  823. ctx->frame.interlaced_frame = frame->interlaced_frame;
  824. ctx->cur_field = frame->interlaced_frame && !frame->top_field_first;
  825. }
  826. static int dnxhd_encode_picture(AVCodecContext *avctx, AVPacket *pkt,
  827. const AVFrame *frame, int *got_packet)
  828. {
  829. DNXHDEncContext *ctx = avctx->priv_data;
  830. int first_field = 1;
  831. int offset, i, ret;
  832. uint8_t *buf;
  833. if ((ret = ff_alloc_packet(pkt, ctx->cid_table->frame_size)) < 0) {
  834. av_log(avctx, AV_LOG_ERROR, "output buffer is too small to compress picture\n");
  835. return ret;
  836. }
  837. buf = pkt->data;
  838. dnxhd_load_picture(ctx, frame);
  839. encode_coding_unit:
  840. for (i = 0; i < 3; i++) {
  841. ctx->src[i] = ctx->frame.data[i];
  842. if (ctx->interlaced && ctx->cur_field)
  843. ctx->src[i] += ctx->frame.linesize[i];
  844. }
  845. dnxhd_write_header(avctx, buf);
  846. if (avctx->mb_decision == FF_MB_DECISION_RD)
  847. ret = dnxhd_encode_rdo(avctx, ctx);
  848. else
  849. ret = dnxhd_encode_fast(avctx, ctx);
  850. if (ret < 0) {
  851. av_log(avctx, AV_LOG_ERROR,
  852. "picture could not fit ratecontrol constraints, increase qmax\n");
  853. return -1;
  854. }
  855. dnxhd_setup_threads_slices(ctx);
  856. offset = 0;
  857. for (i = 0; i < ctx->m.mb_height; i++) {
  858. AV_WB32(ctx->msip + i * 4, offset);
  859. offset += ctx->slice_size[i];
  860. assert(!(ctx->slice_size[i] & 3));
  861. }
  862. avctx->execute2(avctx, dnxhd_encode_thread, buf, NULL, ctx->m.mb_height);
  863. assert(640 + offset + 4 <= ctx->cid_table->coding_unit_size);
  864. memset(buf + 640 + offset, 0, ctx->cid_table->coding_unit_size - 4 - offset - 640);
  865. AV_WB32(buf + ctx->cid_table->coding_unit_size - 4, 0x600DC0DE); // EOF
  866. if (ctx->interlaced && first_field) {
  867. first_field = 0;
  868. ctx->cur_field ^= 1;
  869. buf += ctx->cid_table->coding_unit_size;
  870. goto encode_coding_unit;
  871. }
  872. ctx->frame.quality = ctx->qscale*FF_QP2LAMBDA;
  873. pkt->flags |= AV_PKT_FLAG_KEY;
  874. *got_packet = 1;
  875. return 0;
  876. }
  877. static av_cold int dnxhd_encode_end(AVCodecContext *avctx)
  878. {
  879. DNXHDEncContext *ctx = avctx->priv_data;
  880. int max_level = 1<<(ctx->cid_table->bit_depth+2);
  881. int i;
  882. av_free(ctx->vlc_codes-max_level*2);
  883. av_free(ctx->vlc_bits -max_level*2);
  884. av_freep(&ctx->run_codes);
  885. av_freep(&ctx->run_bits);
  886. av_freep(&ctx->mb_bits);
  887. av_freep(&ctx->mb_qscale);
  888. av_freep(&ctx->mb_rc);
  889. av_freep(&ctx->mb_cmp);
  890. av_freep(&ctx->slice_size);
  891. av_freep(&ctx->slice_offs);
  892. av_freep(&ctx->qmatrix_c);
  893. av_freep(&ctx->qmatrix_l);
  894. av_freep(&ctx->qmatrix_c16);
  895. av_freep(&ctx->qmatrix_l16);
  896. for (i = 1; i < avctx->thread_count; i++)
  897. av_freep(&ctx->thread[i]);
  898. return 0;
  899. }
  900. AVCodec ff_dnxhd_encoder = {
  901. .name = "dnxhd",
  902. .type = AVMEDIA_TYPE_VIDEO,
  903. .id = AV_CODEC_ID_DNXHD,
  904. .priv_data_size = sizeof(DNXHDEncContext),
  905. .init = dnxhd_encode_init,
  906. .encode2 = dnxhd_encode_picture,
  907. .close = dnxhd_encode_end,
  908. .capabilities = CODEC_CAP_SLICE_THREADS,
  909. .pix_fmts = (const enum AVPixelFormat[]){ AV_PIX_FMT_YUV422P,
  910. AV_PIX_FMT_YUV422P10,
  911. AV_PIX_FMT_NONE },
  912. .long_name = NULL_IF_CONFIG_SMALL("VC3/DNxHD"),
  913. .priv_class = &class,
  914. };