You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

2426 lines
86KB

  1. /*
  2. * Copyright (C) 2001-2003 Michael Niedermayer <michaelni@gmx.at>
  3. *
  4. * This file is part of FFmpeg.
  5. *
  6. * FFmpeg is free software; you can redistribute it and/or
  7. * modify it under the terms of the GNU Lesser General Public
  8. * License as published by the Free Software Foundation; either
  9. * version 2.1 of the License, or (at your option) any later version.
  10. *
  11. * FFmpeg is distributed in the hope that it will be useful,
  12. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  13. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  14. * Lesser General Public License for more details.
  15. *
  16. * You should have received a copy of the GNU Lesser General Public
  17. * License along with FFmpeg; if not, write to the Free Software
  18. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  19. */
  20. #include "config.h"
  21. #define _DEFAULT_SOURCE
  22. #define _SVID_SOURCE // needed for MAP_ANONYMOUS
  23. #define _DARWIN_C_SOURCE // needed for MAP_ANON
  24. #include <inttypes.h>
  25. #include <math.h>
  26. #include <stdio.h>
  27. #include <string.h>
  28. #if HAVE_MMAP
  29. #include <sys/mman.h>
  30. #if defined(MAP_ANON) && !defined(MAP_ANONYMOUS)
  31. #define MAP_ANONYMOUS MAP_ANON
  32. #endif
  33. #endif
  34. #if HAVE_VIRTUALALLOC
  35. #define WIN32_LEAN_AND_MEAN
  36. #include <windows.h>
  37. #endif
  38. #include "libavutil/attributes.h"
  39. #include "libavutil/avassert.h"
  40. #include "libavutil/avutil.h"
  41. #include "libavutil/bswap.h"
  42. #include "libavutil/cpu.h"
  43. #include "libavutil/imgutils.h"
  44. #include "libavutil/intreadwrite.h"
  45. #include "libavutil/libm.h"
  46. #include "libavutil/mathematics.h"
  47. #include "libavutil/opt.h"
  48. #include "libavutil/pixdesc.h"
  49. #include "libavutil/aarch64/cpu.h"
  50. #include "libavutil/ppc/cpu.h"
  51. #include "libavutil/x86/asm.h"
  52. #include "libavutil/x86/cpu.h"
  53. // We have to implement deprecated functions until they are removed, this is the
  54. // simplest way to prevent warnings
  55. #undef attribute_deprecated
  56. #define attribute_deprecated
  57. #include "rgb2rgb.h"
  58. #include "swscale.h"
  59. #include "swscale_internal.h"
  60. #if !FF_API_SWS_VECTOR
  61. static SwsVector *sws_getIdentityVec(void);
  62. static void sws_addVec(SwsVector *a, SwsVector *b);
  63. static void sws_shiftVec(SwsVector *a, int shift);
  64. static void sws_printVec2(SwsVector *a, AVClass *log_ctx, int log_level);
  65. #endif
  66. static void handle_formats(SwsContext *c);
  67. unsigned swscale_version(void)
  68. {
  69. av_assert0(LIBSWSCALE_VERSION_MICRO >= 100);
  70. return LIBSWSCALE_VERSION_INT;
  71. }
  72. const char *swscale_configuration(void)
  73. {
  74. return FFMPEG_CONFIGURATION;
  75. }
  76. const char *swscale_license(void)
  77. {
  78. #define LICENSE_PREFIX "libswscale license: "
  79. return LICENSE_PREFIX FFMPEG_LICENSE + sizeof(LICENSE_PREFIX) - 1;
  80. }
  81. typedef struct FormatEntry {
  82. uint8_t is_supported_in :1;
  83. uint8_t is_supported_out :1;
  84. uint8_t is_supported_endianness :1;
  85. } FormatEntry;
  86. static const FormatEntry format_entries[AV_PIX_FMT_NB] = {
  87. [AV_PIX_FMT_YUV420P] = { 1, 1 },
  88. [AV_PIX_FMT_YUYV422] = { 1, 1 },
  89. [AV_PIX_FMT_RGB24] = { 1, 1 },
  90. [AV_PIX_FMT_BGR24] = { 1, 1 },
  91. [AV_PIX_FMT_YUV422P] = { 1, 1 },
  92. [AV_PIX_FMT_YUV444P] = { 1, 1 },
  93. [AV_PIX_FMT_YUV410P] = { 1, 1 },
  94. [AV_PIX_FMT_YUV411P] = { 1, 1 },
  95. [AV_PIX_FMT_GRAY8] = { 1, 1 },
  96. [AV_PIX_FMT_MONOWHITE] = { 1, 1 },
  97. [AV_PIX_FMT_MONOBLACK] = { 1, 1 },
  98. [AV_PIX_FMT_PAL8] = { 1, 0 },
  99. [AV_PIX_FMT_YUVJ420P] = { 1, 1 },
  100. [AV_PIX_FMT_YUVJ411P] = { 1, 1 },
  101. [AV_PIX_FMT_YUVJ422P] = { 1, 1 },
  102. [AV_PIX_FMT_YUVJ444P] = { 1, 1 },
  103. [AV_PIX_FMT_YVYU422] = { 1, 1 },
  104. [AV_PIX_FMT_UYVY422] = { 1, 1 },
  105. [AV_PIX_FMT_UYYVYY411] = { 0, 0 },
  106. [AV_PIX_FMT_BGR8] = { 1, 1 },
  107. [AV_PIX_FMT_BGR4] = { 0, 1 },
  108. [AV_PIX_FMT_BGR4_BYTE] = { 1, 1 },
  109. [AV_PIX_FMT_RGB8] = { 1, 1 },
  110. [AV_PIX_FMT_RGB4] = { 0, 1 },
  111. [AV_PIX_FMT_RGB4_BYTE] = { 1, 1 },
  112. [AV_PIX_FMT_NV12] = { 1, 1 },
  113. [AV_PIX_FMT_NV21] = { 1, 1 },
  114. [AV_PIX_FMT_ARGB] = { 1, 1 },
  115. [AV_PIX_FMT_RGBA] = { 1, 1 },
  116. [AV_PIX_FMT_ABGR] = { 1, 1 },
  117. [AV_PIX_FMT_BGRA] = { 1, 1 },
  118. [AV_PIX_FMT_0RGB] = { 1, 1 },
  119. [AV_PIX_FMT_RGB0] = { 1, 1 },
  120. [AV_PIX_FMT_0BGR] = { 1, 1 },
  121. [AV_PIX_FMT_BGR0] = { 1, 1 },
  122. [AV_PIX_FMT_GRAY9BE] = { 1, 1 },
  123. [AV_PIX_FMT_GRAY9LE] = { 1, 1 },
  124. [AV_PIX_FMT_GRAY10BE] = { 1, 1 },
  125. [AV_PIX_FMT_GRAY10LE] = { 1, 1 },
  126. [AV_PIX_FMT_GRAY12BE] = { 1, 1 },
  127. [AV_PIX_FMT_GRAY12LE] = { 1, 1 },
  128. [AV_PIX_FMT_GRAY14BE] = { 1, 1 },
  129. [AV_PIX_FMT_GRAY14LE] = { 1, 1 },
  130. [AV_PIX_FMT_GRAY16BE] = { 1, 1 },
  131. [AV_PIX_FMT_GRAY16LE] = { 1, 1 },
  132. [AV_PIX_FMT_YUV440P] = { 1, 1 },
  133. [AV_PIX_FMT_YUVJ440P] = { 1, 1 },
  134. [AV_PIX_FMT_YUV440P10LE] = { 1, 1 },
  135. [AV_PIX_FMT_YUV440P10BE] = { 1, 1 },
  136. [AV_PIX_FMT_YUV440P12LE] = { 1, 1 },
  137. [AV_PIX_FMT_YUV440P12BE] = { 1, 1 },
  138. [AV_PIX_FMT_YUVA420P] = { 1, 1 },
  139. [AV_PIX_FMT_YUVA422P] = { 1, 1 },
  140. [AV_PIX_FMT_YUVA444P] = { 1, 1 },
  141. [AV_PIX_FMT_YUVA420P9BE] = { 1, 1 },
  142. [AV_PIX_FMT_YUVA420P9LE] = { 1, 1 },
  143. [AV_PIX_FMT_YUVA422P9BE] = { 1, 1 },
  144. [AV_PIX_FMT_YUVA422P9LE] = { 1, 1 },
  145. [AV_PIX_FMT_YUVA444P9BE] = { 1, 1 },
  146. [AV_PIX_FMT_YUVA444P9LE] = { 1, 1 },
  147. [AV_PIX_FMT_YUVA420P10BE]= { 1, 1 },
  148. [AV_PIX_FMT_YUVA420P10LE]= { 1, 1 },
  149. [AV_PIX_FMT_YUVA422P10BE]= { 1, 1 },
  150. [AV_PIX_FMT_YUVA422P10LE]= { 1, 1 },
  151. [AV_PIX_FMT_YUVA444P10BE]= { 1, 1 },
  152. [AV_PIX_FMT_YUVA444P10LE]= { 1, 1 },
  153. [AV_PIX_FMT_YUVA420P16BE]= { 1, 1 },
  154. [AV_PIX_FMT_YUVA420P16LE]= { 1, 1 },
  155. [AV_PIX_FMT_YUVA422P16BE]= { 1, 1 },
  156. [AV_PIX_FMT_YUVA422P16LE]= { 1, 1 },
  157. [AV_PIX_FMT_YUVA444P16BE]= { 1, 1 },
  158. [AV_PIX_FMT_YUVA444P16LE]= { 1, 1 },
  159. [AV_PIX_FMT_RGB48BE] = { 1, 1 },
  160. [AV_PIX_FMT_RGB48LE] = { 1, 1 },
  161. [AV_PIX_FMT_RGBA64BE] = { 1, 1, 1 },
  162. [AV_PIX_FMT_RGBA64LE] = { 1, 1, 1 },
  163. [AV_PIX_FMT_RGB565BE] = { 1, 1 },
  164. [AV_PIX_FMT_RGB565LE] = { 1, 1 },
  165. [AV_PIX_FMT_RGB555BE] = { 1, 1 },
  166. [AV_PIX_FMT_RGB555LE] = { 1, 1 },
  167. [AV_PIX_FMT_BGR565BE] = { 1, 1 },
  168. [AV_PIX_FMT_BGR565LE] = { 1, 1 },
  169. [AV_PIX_FMT_BGR555BE] = { 1, 1 },
  170. [AV_PIX_FMT_BGR555LE] = { 1, 1 },
  171. [AV_PIX_FMT_YUV420P16LE] = { 1, 1 },
  172. [AV_PIX_FMT_YUV420P16BE] = { 1, 1 },
  173. [AV_PIX_FMT_YUV422P16LE] = { 1, 1 },
  174. [AV_PIX_FMT_YUV422P16BE] = { 1, 1 },
  175. [AV_PIX_FMT_YUV444P16LE] = { 1, 1 },
  176. [AV_PIX_FMT_YUV444P16BE] = { 1, 1 },
  177. [AV_PIX_FMT_RGB444LE] = { 1, 1 },
  178. [AV_PIX_FMT_RGB444BE] = { 1, 1 },
  179. [AV_PIX_FMT_BGR444LE] = { 1, 1 },
  180. [AV_PIX_FMT_BGR444BE] = { 1, 1 },
  181. [AV_PIX_FMT_YA8] = { 1, 1 },
  182. [AV_PIX_FMT_YA16BE] = { 1, 0 },
  183. [AV_PIX_FMT_YA16LE] = { 1, 0 },
  184. [AV_PIX_FMT_BGR48BE] = { 1, 1 },
  185. [AV_PIX_FMT_BGR48LE] = { 1, 1 },
  186. [AV_PIX_FMT_BGRA64BE] = { 1, 1, 1 },
  187. [AV_PIX_FMT_BGRA64LE] = { 1, 1, 1 },
  188. [AV_PIX_FMT_YUV420P9BE] = { 1, 1 },
  189. [AV_PIX_FMT_YUV420P9LE] = { 1, 1 },
  190. [AV_PIX_FMT_YUV420P10BE] = { 1, 1 },
  191. [AV_PIX_FMT_YUV420P10LE] = { 1, 1 },
  192. [AV_PIX_FMT_YUV420P12BE] = { 1, 1 },
  193. [AV_PIX_FMT_YUV420P12LE] = { 1, 1 },
  194. [AV_PIX_FMT_YUV420P14BE] = { 1, 1 },
  195. [AV_PIX_FMT_YUV420P14LE] = { 1, 1 },
  196. [AV_PIX_FMT_YUV422P9BE] = { 1, 1 },
  197. [AV_PIX_FMT_YUV422P9LE] = { 1, 1 },
  198. [AV_PIX_FMT_YUV422P10BE] = { 1, 1 },
  199. [AV_PIX_FMT_YUV422P10LE] = { 1, 1 },
  200. [AV_PIX_FMT_YUV422P12BE] = { 1, 1 },
  201. [AV_PIX_FMT_YUV422P12LE] = { 1, 1 },
  202. [AV_PIX_FMT_YUV422P14BE] = { 1, 1 },
  203. [AV_PIX_FMT_YUV422P14LE] = { 1, 1 },
  204. [AV_PIX_FMT_YUV444P9BE] = { 1, 1 },
  205. [AV_PIX_FMT_YUV444P9LE] = { 1, 1 },
  206. [AV_PIX_FMT_YUV444P10BE] = { 1, 1 },
  207. [AV_PIX_FMT_YUV444P10LE] = { 1, 1 },
  208. [AV_PIX_FMT_YUV444P12BE] = { 1, 1 },
  209. [AV_PIX_FMT_YUV444P12LE] = { 1, 1 },
  210. [AV_PIX_FMT_YUV444P14BE] = { 1, 1 },
  211. [AV_PIX_FMT_YUV444P14LE] = { 1, 1 },
  212. [AV_PIX_FMT_GBRP] = { 1, 1 },
  213. [AV_PIX_FMT_GBRP9LE] = { 1, 1 },
  214. [AV_PIX_FMT_GBRP9BE] = { 1, 1 },
  215. [AV_PIX_FMT_GBRP10LE] = { 1, 1 },
  216. [AV_PIX_FMT_GBRP10BE] = { 1, 1 },
  217. [AV_PIX_FMT_GBRAP10LE] = { 1, 1 },
  218. [AV_PIX_FMT_GBRAP10BE] = { 1, 1 },
  219. [AV_PIX_FMT_GBRP12LE] = { 1, 1 },
  220. [AV_PIX_FMT_GBRP12BE] = { 1, 1 },
  221. [AV_PIX_FMT_GBRAP12LE] = { 1, 1 },
  222. [AV_PIX_FMT_GBRAP12BE] = { 1, 1 },
  223. [AV_PIX_FMT_GBRP14LE] = { 1, 1 },
  224. [AV_PIX_FMT_GBRP14BE] = { 1, 1 },
  225. [AV_PIX_FMT_GBRP16LE] = { 1, 1 },
  226. [AV_PIX_FMT_GBRP16BE] = { 1, 1 },
  227. [AV_PIX_FMT_GBRAP] = { 1, 1 },
  228. [AV_PIX_FMT_GBRAP16LE] = { 1, 1 },
  229. [AV_PIX_FMT_GBRAP16BE] = { 1, 1 },
  230. [AV_PIX_FMT_BAYER_BGGR8] = { 1, 0 },
  231. [AV_PIX_FMT_BAYER_RGGB8] = { 1, 0 },
  232. [AV_PIX_FMT_BAYER_GBRG8] = { 1, 0 },
  233. [AV_PIX_FMT_BAYER_GRBG8] = { 1, 0 },
  234. [AV_PIX_FMT_BAYER_BGGR16LE] = { 1, 0 },
  235. [AV_PIX_FMT_BAYER_BGGR16BE] = { 1, 0 },
  236. [AV_PIX_FMT_BAYER_RGGB16LE] = { 1, 0 },
  237. [AV_PIX_FMT_BAYER_RGGB16BE] = { 1, 0 },
  238. [AV_PIX_FMT_BAYER_GBRG16LE] = { 1, 0 },
  239. [AV_PIX_FMT_BAYER_GBRG16BE] = { 1, 0 },
  240. [AV_PIX_FMT_BAYER_GRBG16LE] = { 1, 0 },
  241. [AV_PIX_FMT_BAYER_GRBG16BE] = { 1, 0 },
  242. [AV_PIX_FMT_XYZ12BE] = { 1, 1, 1 },
  243. [AV_PIX_FMT_XYZ12LE] = { 1, 1, 1 },
  244. [AV_PIX_FMT_AYUV64LE] = { 1, 1},
  245. [AV_PIX_FMT_P010LE] = { 1, 1 },
  246. [AV_PIX_FMT_P010BE] = { 1, 1 },
  247. [AV_PIX_FMT_P016LE] = { 1, 1 },
  248. [AV_PIX_FMT_P016BE] = { 1, 1 },
  249. [AV_PIX_FMT_GRAYF32LE] = { 1, 1 },
  250. [AV_PIX_FMT_GRAYF32BE] = { 1, 1 },
  251. };
  252. int sws_isSupportedInput(enum AVPixelFormat pix_fmt)
  253. {
  254. return (unsigned)pix_fmt < AV_PIX_FMT_NB ?
  255. format_entries[pix_fmt].is_supported_in : 0;
  256. }
  257. int sws_isSupportedOutput(enum AVPixelFormat pix_fmt)
  258. {
  259. return (unsigned)pix_fmt < AV_PIX_FMT_NB ?
  260. format_entries[pix_fmt].is_supported_out : 0;
  261. }
  262. int sws_isSupportedEndiannessConversion(enum AVPixelFormat pix_fmt)
  263. {
  264. return (unsigned)pix_fmt < AV_PIX_FMT_NB ?
  265. format_entries[pix_fmt].is_supported_endianness : 0;
  266. }
  267. static double getSplineCoeff(double a, double b, double c, double d,
  268. double dist)
  269. {
  270. if (dist <= 1.0)
  271. return ((d * dist + c) * dist + b) * dist + a;
  272. else
  273. return getSplineCoeff(0.0,
  274. b + 2.0 * c + 3.0 * d,
  275. c + 3.0 * d,
  276. -b - 3.0 * c - 6.0 * d,
  277. dist - 1.0);
  278. }
  279. static av_cold int get_local_pos(SwsContext *s, int chr_subsample, int pos, int dir)
  280. {
  281. if (pos == -1 || pos <= -513) {
  282. pos = (128 << chr_subsample) - 128;
  283. }
  284. pos += 128; // relative to ideal left edge
  285. return pos >> chr_subsample;
  286. }
  287. typedef struct {
  288. int flag; ///< flag associated to the algorithm
  289. const char *description; ///< human-readable description
  290. int size_factor; ///< size factor used when initing the filters
  291. } ScaleAlgorithm;
  292. static const ScaleAlgorithm scale_algorithms[] = {
  293. { SWS_AREA, "area averaging", 1 /* downscale only, for upscale it is bilinear */ },
  294. { SWS_BICUBIC, "bicubic", 4 },
  295. { SWS_BICUBLIN, "luma bicubic / chroma bilinear", -1 },
  296. { SWS_BILINEAR, "bilinear", 2 },
  297. { SWS_FAST_BILINEAR, "fast bilinear", -1 },
  298. { SWS_GAUSS, "Gaussian", 8 /* infinite ;) */ },
  299. { SWS_LANCZOS, "Lanczos", -1 /* custom */ },
  300. { SWS_POINT, "nearest neighbor / point", -1 },
  301. { SWS_SINC, "sinc", 20 /* infinite ;) */ },
  302. { SWS_SPLINE, "bicubic spline", 20 /* infinite :)*/ },
  303. { SWS_X, "experimental", 8 },
  304. };
  305. static av_cold int initFilter(int16_t **outFilter, int32_t **filterPos,
  306. int *outFilterSize, int xInc, int srcW,
  307. int dstW, int filterAlign, int one,
  308. int flags, int cpu_flags,
  309. SwsVector *srcFilter, SwsVector *dstFilter,
  310. double param[2], int srcPos, int dstPos)
  311. {
  312. int i;
  313. int filterSize;
  314. int filter2Size;
  315. int minFilterSize;
  316. int64_t *filter = NULL;
  317. int64_t *filter2 = NULL;
  318. const int64_t fone = 1LL << (54 - FFMIN(av_log2(srcW/dstW), 8));
  319. int ret = -1;
  320. emms_c(); // FIXME should not be required but IS (even for non-MMX versions)
  321. // NOTE: the +3 is for the MMX(+1) / SSE(+3) scaler which reads over the end
  322. FF_ALLOC_ARRAY_OR_GOTO(NULL, *filterPos, (dstW + 3), sizeof(**filterPos), fail);
  323. if (FFABS(xInc - 0x10000) < 10 && srcPos == dstPos) { // unscaled
  324. int i;
  325. filterSize = 1;
  326. FF_ALLOCZ_ARRAY_OR_GOTO(NULL, filter,
  327. dstW, sizeof(*filter) * filterSize, fail);
  328. for (i = 0; i < dstW; i++) {
  329. filter[i * filterSize] = fone;
  330. (*filterPos)[i] = i;
  331. }
  332. } else if (flags & SWS_POINT) { // lame looking point sampling mode
  333. int i;
  334. int64_t xDstInSrc;
  335. filterSize = 1;
  336. FF_ALLOC_ARRAY_OR_GOTO(NULL, filter,
  337. dstW, sizeof(*filter) * filterSize, fail);
  338. xDstInSrc = ((dstPos*(int64_t)xInc)>>8) - ((srcPos*0x8000LL)>>7);
  339. for (i = 0; i < dstW; i++) {
  340. int xx = (xDstInSrc - ((filterSize - 1) << 15) + (1 << 15)) >> 16;
  341. (*filterPos)[i] = xx;
  342. filter[i] = fone;
  343. xDstInSrc += xInc;
  344. }
  345. } else if ((xInc <= (1 << 16) && (flags & SWS_AREA)) ||
  346. (flags & SWS_FAST_BILINEAR)) { // bilinear upscale
  347. int i;
  348. int64_t xDstInSrc;
  349. filterSize = 2;
  350. FF_ALLOC_ARRAY_OR_GOTO(NULL, filter,
  351. dstW, sizeof(*filter) * filterSize, fail);
  352. xDstInSrc = ((dstPos*(int64_t)xInc)>>8) - ((srcPos*0x8000LL)>>7);
  353. for (i = 0; i < dstW; i++) {
  354. int xx = (xDstInSrc - ((filterSize - 1) << 15) + (1 << 15)) >> 16;
  355. int j;
  356. (*filterPos)[i] = xx;
  357. // bilinear upscale / linear interpolate / area averaging
  358. for (j = 0; j < filterSize; j++) {
  359. int64_t coeff= fone - FFABS(((int64_t)xx<<16) - xDstInSrc)*(fone>>16);
  360. if (coeff < 0)
  361. coeff = 0;
  362. filter[i * filterSize + j] = coeff;
  363. xx++;
  364. }
  365. xDstInSrc += xInc;
  366. }
  367. } else {
  368. int64_t xDstInSrc;
  369. int sizeFactor = -1;
  370. for (i = 0; i < FF_ARRAY_ELEMS(scale_algorithms); i++) {
  371. if (flags & scale_algorithms[i].flag && scale_algorithms[i].size_factor > 0) {
  372. sizeFactor = scale_algorithms[i].size_factor;
  373. break;
  374. }
  375. }
  376. if (flags & SWS_LANCZOS)
  377. sizeFactor = param[0] != SWS_PARAM_DEFAULT ? ceil(2 * param[0]) : 6;
  378. av_assert0(sizeFactor > 0);
  379. if (xInc <= 1 << 16)
  380. filterSize = 1 + sizeFactor; // upscale
  381. else
  382. filterSize = 1 + (sizeFactor * srcW + dstW - 1) / dstW;
  383. filterSize = FFMIN(filterSize, srcW - 2);
  384. filterSize = FFMAX(filterSize, 1);
  385. FF_ALLOC_ARRAY_OR_GOTO(NULL, filter,
  386. dstW, sizeof(*filter) * filterSize, fail);
  387. xDstInSrc = ((dstPos*(int64_t)xInc)>>7) - ((srcPos*0x10000LL)>>7);
  388. for (i = 0; i < dstW; i++) {
  389. int xx = (xDstInSrc - (filterSize - 2) * (1LL<<16)) / (1 << 17);
  390. int j;
  391. (*filterPos)[i] = xx;
  392. for (j = 0; j < filterSize; j++) {
  393. int64_t d = (FFABS(((int64_t)xx * (1 << 17)) - xDstInSrc)) << 13;
  394. double floatd;
  395. int64_t coeff;
  396. if (xInc > 1 << 16)
  397. d = d * dstW / srcW;
  398. floatd = d * (1.0 / (1 << 30));
  399. if (flags & SWS_BICUBIC) {
  400. int64_t B = (param[0] != SWS_PARAM_DEFAULT ? param[0] : 0) * (1 << 24);
  401. int64_t C = (param[1] != SWS_PARAM_DEFAULT ? param[1] : 0.6) * (1 << 24);
  402. if (d >= 1LL << 31) {
  403. coeff = 0.0;
  404. } else {
  405. int64_t dd = (d * d) >> 30;
  406. int64_t ddd = (dd * d) >> 30;
  407. if (d < 1LL << 30)
  408. coeff = (12 * (1 << 24) - 9 * B - 6 * C) * ddd +
  409. (-18 * (1 << 24) + 12 * B + 6 * C) * dd +
  410. (6 * (1 << 24) - 2 * B) * (1 << 30);
  411. else
  412. coeff = (-B - 6 * C) * ddd +
  413. (6 * B + 30 * C) * dd +
  414. (-12 * B - 48 * C) * d +
  415. (8 * B + 24 * C) * (1 << 30);
  416. }
  417. coeff /= (1LL<<54)/fone;
  418. } else if (flags & SWS_X) {
  419. double A = param[0] != SWS_PARAM_DEFAULT ? param[0] : 1.0;
  420. double c;
  421. if (floatd < 1.0)
  422. c = cos(floatd * M_PI);
  423. else
  424. c = -1.0;
  425. if (c < 0.0)
  426. c = -pow(-c, A);
  427. else
  428. c = pow(c, A);
  429. coeff = (c * 0.5 + 0.5) * fone;
  430. } else if (flags & SWS_AREA) {
  431. int64_t d2 = d - (1 << 29);
  432. if (d2 * xInc < -(1LL << (29 + 16)))
  433. coeff = 1.0 * (1LL << (30 + 16));
  434. else if (d2 * xInc < (1LL << (29 + 16)))
  435. coeff = -d2 * xInc + (1LL << (29 + 16));
  436. else
  437. coeff = 0.0;
  438. coeff *= fone >> (30 + 16);
  439. } else if (flags & SWS_GAUSS) {
  440. double p = param[0] != SWS_PARAM_DEFAULT ? param[0] : 3.0;
  441. coeff = exp2(-p * floatd * floatd) * fone;
  442. } else if (flags & SWS_SINC) {
  443. coeff = (d ? sin(floatd * M_PI) / (floatd * M_PI) : 1.0) * fone;
  444. } else if (flags & SWS_LANCZOS) {
  445. double p = param[0] != SWS_PARAM_DEFAULT ? param[0] : 3.0;
  446. coeff = (d ? sin(floatd * M_PI) * sin(floatd * M_PI / p) /
  447. (floatd * floatd * M_PI * M_PI / p) : 1.0) * fone;
  448. if (floatd > p)
  449. coeff = 0;
  450. } else if (flags & SWS_BILINEAR) {
  451. coeff = (1 << 30) - d;
  452. if (coeff < 0)
  453. coeff = 0;
  454. coeff *= fone >> 30;
  455. } else if (flags & SWS_SPLINE) {
  456. double p = -2.196152422706632;
  457. coeff = getSplineCoeff(1.0, 0.0, p, -p - 1.0, floatd) * fone;
  458. } else {
  459. av_assert0(0);
  460. }
  461. filter[i * filterSize + j] = coeff;
  462. xx++;
  463. }
  464. xDstInSrc += 2 * xInc;
  465. }
  466. }
  467. /* apply src & dst Filter to filter -> filter2
  468. * av_free(filter);
  469. */
  470. av_assert0(filterSize > 0);
  471. filter2Size = filterSize;
  472. if (srcFilter)
  473. filter2Size += srcFilter->length - 1;
  474. if (dstFilter)
  475. filter2Size += dstFilter->length - 1;
  476. av_assert0(filter2Size > 0);
  477. FF_ALLOCZ_ARRAY_OR_GOTO(NULL, filter2, dstW, filter2Size * sizeof(*filter2), fail);
  478. for (i = 0; i < dstW; i++) {
  479. int j, k;
  480. if (srcFilter) {
  481. for (k = 0; k < srcFilter->length; k++) {
  482. for (j = 0; j < filterSize; j++)
  483. filter2[i * filter2Size + k + j] +=
  484. srcFilter->coeff[k] * filter[i * filterSize + j];
  485. }
  486. } else {
  487. for (j = 0; j < filterSize; j++)
  488. filter2[i * filter2Size + j] = filter[i * filterSize + j];
  489. }
  490. // FIXME dstFilter
  491. (*filterPos)[i] += (filterSize - 1) / 2 - (filter2Size - 1) / 2;
  492. }
  493. av_freep(&filter);
  494. /* try to reduce the filter-size (step1 find size and shift left) */
  495. // Assume it is near normalized (*0.5 or *2.0 is OK but * 0.001 is not).
  496. minFilterSize = 0;
  497. for (i = dstW - 1; i >= 0; i--) {
  498. int min = filter2Size;
  499. int j;
  500. int64_t cutOff = 0.0;
  501. /* get rid of near zero elements on the left by shifting left */
  502. for (j = 0; j < filter2Size; j++) {
  503. int k;
  504. cutOff += FFABS(filter2[i * filter2Size]);
  505. if (cutOff > SWS_MAX_REDUCE_CUTOFF * fone)
  506. break;
  507. /* preserve monotonicity because the core can't handle the
  508. * filter otherwise */
  509. if (i < dstW - 1 && (*filterPos)[i] >= (*filterPos)[i + 1])
  510. break;
  511. // move filter coefficients left
  512. for (k = 1; k < filter2Size; k++)
  513. filter2[i * filter2Size + k - 1] = filter2[i * filter2Size + k];
  514. filter2[i * filter2Size + k - 1] = 0;
  515. (*filterPos)[i]++;
  516. }
  517. cutOff = 0;
  518. /* count near zeros on the right */
  519. for (j = filter2Size - 1; j > 0; j--) {
  520. cutOff += FFABS(filter2[i * filter2Size + j]);
  521. if (cutOff > SWS_MAX_REDUCE_CUTOFF * fone)
  522. break;
  523. min--;
  524. }
  525. if (min > minFilterSize)
  526. minFilterSize = min;
  527. }
  528. if (PPC_ALTIVEC(cpu_flags)) {
  529. // we can handle the special case 4, so we don't want to go the full 8
  530. if (minFilterSize < 5)
  531. filterAlign = 4;
  532. /* We really don't want to waste our time doing useless computation, so
  533. * fall back on the scalar C code for very small filters.
  534. * Vectorizing is worth it only if you have a decent-sized vector. */
  535. if (minFilterSize < 3)
  536. filterAlign = 1;
  537. }
  538. if (HAVE_MMX && cpu_flags & AV_CPU_FLAG_MMX) {
  539. // special case for unscaled vertical filtering
  540. if (minFilterSize == 1 && filterAlign == 2)
  541. filterAlign = 1;
  542. }
  543. av_assert0(minFilterSize > 0);
  544. filterSize = (minFilterSize + (filterAlign - 1)) & (~(filterAlign - 1));
  545. av_assert0(filterSize > 0);
  546. filter = av_malloc_array(dstW, filterSize * sizeof(*filter));
  547. if (!filter)
  548. goto fail;
  549. if (filterSize >= MAX_FILTER_SIZE * 16 /
  550. ((flags & SWS_ACCURATE_RND) ? APCK_SIZE : 16)) {
  551. ret = RETCODE_USE_CASCADE;
  552. goto fail;
  553. }
  554. *outFilterSize = filterSize;
  555. if (flags & SWS_PRINT_INFO)
  556. av_log(NULL, AV_LOG_VERBOSE,
  557. "SwScaler: reducing / aligning filtersize %d -> %d\n",
  558. filter2Size, filterSize);
  559. /* try to reduce the filter-size (step2 reduce it) */
  560. for (i = 0; i < dstW; i++) {
  561. int j;
  562. for (j = 0; j < filterSize; j++) {
  563. if (j >= filter2Size)
  564. filter[i * filterSize + j] = 0;
  565. else
  566. filter[i * filterSize + j] = filter2[i * filter2Size + j];
  567. if ((flags & SWS_BITEXACT) && j >= minFilterSize)
  568. filter[i * filterSize + j] = 0;
  569. }
  570. }
  571. // FIXME try to align filterPos if possible
  572. // fix borders
  573. for (i = 0; i < dstW; i++) {
  574. int j;
  575. if ((*filterPos)[i] < 0) {
  576. // move filter coefficients left to compensate for filterPos
  577. for (j = 1; j < filterSize; j++) {
  578. int left = FFMAX(j + (*filterPos)[i], 0);
  579. filter[i * filterSize + left] += filter[i * filterSize + j];
  580. filter[i * filterSize + j] = 0;
  581. }
  582. (*filterPos)[i]= 0;
  583. }
  584. if ((*filterPos)[i] + filterSize > srcW) {
  585. int shift = (*filterPos)[i] + FFMIN(filterSize - srcW, 0);
  586. int64_t acc = 0;
  587. for (j = filterSize - 1; j >= 0; j--) {
  588. if ((*filterPos)[i] + j >= srcW) {
  589. acc += filter[i * filterSize + j];
  590. filter[i * filterSize + j] = 0;
  591. }
  592. }
  593. for (j = filterSize - 1; j >= 0; j--) {
  594. if (j < shift) {
  595. filter[i * filterSize + j] = 0;
  596. } else {
  597. filter[i * filterSize + j] = filter[i * filterSize + j - shift];
  598. }
  599. }
  600. (*filterPos)[i]-= shift;
  601. filter[i * filterSize + srcW - 1 - (*filterPos)[i]] += acc;
  602. }
  603. av_assert0((*filterPos)[i] >= 0);
  604. av_assert0((*filterPos)[i] < srcW);
  605. if ((*filterPos)[i] + filterSize > srcW) {
  606. for (j = 0; j < filterSize; j++) {
  607. av_assert0((*filterPos)[i] + j < srcW || !filter[i * filterSize + j]);
  608. }
  609. }
  610. }
  611. // Note the +1 is for the MMX scaler which reads over the end
  612. /* align at 16 for AltiVec (needed by hScale_altivec_real) */
  613. FF_ALLOCZ_ARRAY_OR_GOTO(NULL, *outFilter,
  614. (dstW + 3), *outFilterSize * sizeof(int16_t), fail);
  615. /* normalize & store in outFilter */
  616. for (i = 0; i < dstW; i++) {
  617. int j;
  618. int64_t error = 0;
  619. int64_t sum = 0;
  620. for (j = 0; j < filterSize; j++) {
  621. sum += filter[i * filterSize + j];
  622. }
  623. sum = (sum + one / 2) / one;
  624. if (!sum) {
  625. av_log(NULL, AV_LOG_WARNING, "SwScaler: zero vector in scaling\n");
  626. sum = 1;
  627. }
  628. for (j = 0; j < *outFilterSize; j++) {
  629. int64_t v = filter[i * filterSize + j] + error;
  630. int intV = ROUNDED_DIV(v, sum);
  631. (*outFilter)[i * (*outFilterSize) + j] = intV;
  632. error = v - intV * sum;
  633. }
  634. }
  635. (*filterPos)[dstW + 0] =
  636. (*filterPos)[dstW + 1] =
  637. (*filterPos)[dstW + 2] = (*filterPos)[dstW - 1]; /* the MMX/SSE scaler will
  638. * read over the end */
  639. for (i = 0; i < *outFilterSize; i++) {
  640. int k = (dstW - 1) * (*outFilterSize) + i;
  641. (*outFilter)[k + 1 * (*outFilterSize)] =
  642. (*outFilter)[k + 2 * (*outFilterSize)] =
  643. (*outFilter)[k + 3 * (*outFilterSize)] = (*outFilter)[k];
  644. }
  645. ret = 0;
  646. fail:
  647. if(ret < 0)
  648. av_log(NULL, ret == RETCODE_USE_CASCADE ? AV_LOG_DEBUG : AV_LOG_ERROR, "sws: initFilter failed\n");
  649. av_free(filter);
  650. av_free(filter2);
  651. return ret;
  652. }
  653. static void fill_rgb2yuv_table(SwsContext *c, const int table[4], int dstRange)
  654. {
  655. int64_t W, V, Z, Cy, Cu, Cv;
  656. int64_t vr = table[0];
  657. int64_t ub = table[1];
  658. int64_t ug = -table[2];
  659. int64_t vg = -table[3];
  660. int64_t ONE = 65536;
  661. int64_t cy = ONE;
  662. uint8_t *p = (uint8_t*)c->input_rgb2yuv_table;
  663. int i;
  664. static const int8_t map[] = {
  665. BY_IDX, GY_IDX, -1 , BY_IDX, BY_IDX, GY_IDX, -1 , BY_IDX,
  666. RY_IDX, -1 , GY_IDX, RY_IDX, RY_IDX, -1 , GY_IDX, RY_IDX,
  667. RY_IDX, GY_IDX, -1 , RY_IDX, RY_IDX, GY_IDX, -1 , RY_IDX,
  668. BY_IDX, -1 , GY_IDX, BY_IDX, BY_IDX, -1 , GY_IDX, BY_IDX,
  669. BU_IDX, GU_IDX, -1 , BU_IDX, BU_IDX, GU_IDX, -1 , BU_IDX,
  670. RU_IDX, -1 , GU_IDX, RU_IDX, RU_IDX, -1 , GU_IDX, RU_IDX,
  671. RU_IDX, GU_IDX, -1 , RU_IDX, RU_IDX, GU_IDX, -1 , RU_IDX,
  672. BU_IDX, -1 , GU_IDX, BU_IDX, BU_IDX, -1 , GU_IDX, BU_IDX,
  673. BV_IDX, GV_IDX, -1 , BV_IDX, BV_IDX, GV_IDX, -1 , BV_IDX,
  674. RV_IDX, -1 , GV_IDX, RV_IDX, RV_IDX, -1 , GV_IDX, RV_IDX,
  675. RV_IDX, GV_IDX, -1 , RV_IDX, RV_IDX, GV_IDX, -1 , RV_IDX,
  676. BV_IDX, -1 , GV_IDX, BV_IDX, BV_IDX, -1 , GV_IDX, BV_IDX,
  677. RY_IDX, BY_IDX, RY_IDX, BY_IDX, RY_IDX, BY_IDX, RY_IDX, BY_IDX,
  678. BY_IDX, RY_IDX, BY_IDX, RY_IDX, BY_IDX, RY_IDX, BY_IDX, RY_IDX,
  679. GY_IDX, -1 , GY_IDX, -1 , GY_IDX, -1 , GY_IDX, -1 ,
  680. -1 , GY_IDX, -1 , GY_IDX, -1 , GY_IDX, -1 , GY_IDX,
  681. RU_IDX, BU_IDX, RU_IDX, BU_IDX, RU_IDX, BU_IDX, RU_IDX, BU_IDX,
  682. BU_IDX, RU_IDX, BU_IDX, RU_IDX, BU_IDX, RU_IDX, BU_IDX, RU_IDX,
  683. GU_IDX, -1 , GU_IDX, -1 , GU_IDX, -1 , GU_IDX, -1 ,
  684. -1 , GU_IDX, -1 , GU_IDX, -1 , GU_IDX, -1 , GU_IDX,
  685. RV_IDX, BV_IDX, RV_IDX, BV_IDX, RV_IDX, BV_IDX, RV_IDX, BV_IDX,
  686. BV_IDX, RV_IDX, BV_IDX, RV_IDX, BV_IDX, RV_IDX, BV_IDX, RV_IDX,
  687. GV_IDX, -1 , GV_IDX, -1 , GV_IDX, -1 , GV_IDX, -1 ,
  688. -1 , GV_IDX, -1 , GV_IDX, -1 , GV_IDX, -1 , GV_IDX, //23
  689. -1 , -1 , -1 , -1 , -1 , -1 , -1 , -1 , //24
  690. -1 , -1 , -1 , -1 , -1 , -1 , -1 , -1 , //25
  691. -1 , -1 , -1 , -1 , -1 , -1 , -1 , -1 , //26
  692. -1 , -1 , -1 , -1 , -1 , -1 , -1 , -1 , //27
  693. -1 , -1 , -1 , -1 , -1 , -1 , -1 , -1 , //28
  694. -1 , -1 , -1 , -1 , -1 , -1 , -1 , -1 , //29
  695. -1 , -1 , -1 , -1 , -1 , -1 , -1 , -1 , //30
  696. -1 , -1 , -1 , -1 , -1 , -1 , -1 , -1 , //31
  697. BY_IDX, GY_IDX, RY_IDX, -1 , -1 , -1 , -1 , -1 , //32
  698. BU_IDX, GU_IDX, RU_IDX, -1 , -1 , -1 , -1 , -1 , //33
  699. BV_IDX, GV_IDX, RV_IDX, -1 , -1 , -1 , -1 , -1 , //34
  700. };
  701. dstRange = 0; //FIXME range = 1 is handled elsewhere
  702. if (!dstRange) {
  703. cy = cy * 255 / 219;
  704. } else {
  705. vr = vr * 224 / 255;
  706. ub = ub * 224 / 255;
  707. ug = ug * 224 / 255;
  708. vg = vg * 224 / 255;
  709. }
  710. W = ROUNDED_DIV(ONE*ONE*ug, ub);
  711. V = ROUNDED_DIV(ONE*ONE*vg, vr);
  712. Z = ONE*ONE-W-V;
  713. Cy = ROUNDED_DIV(cy*Z, ONE);
  714. Cu = ROUNDED_DIV(ub*Z, ONE);
  715. Cv = ROUNDED_DIV(vr*Z, ONE);
  716. c->input_rgb2yuv_table[RY_IDX] = -ROUNDED_DIV((1 << RGB2YUV_SHIFT)*V , Cy);
  717. c->input_rgb2yuv_table[GY_IDX] = ROUNDED_DIV((1 << RGB2YUV_SHIFT)*ONE*ONE , Cy);
  718. c->input_rgb2yuv_table[BY_IDX] = -ROUNDED_DIV((1 << RGB2YUV_SHIFT)*W , Cy);
  719. c->input_rgb2yuv_table[RU_IDX] = ROUNDED_DIV((1 << RGB2YUV_SHIFT)*V , Cu);
  720. c->input_rgb2yuv_table[GU_IDX] = -ROUNDED_DIV((1 << RGB2YUV_SHIFT)*ONE*ONE , Cu);
  721. c->input_rgb2yuv_table[BU_IDX] = ROUNDED_DIV((1 << RGB2YUV_SHIFT)*(Z+W) , Cu);
  722. c->input_rgb2yuv_table[RV_IDX] = ROUNDED_DIV((1 << RGB2YUV_SHIFT)*(V+Z) , Cv);
  723. c->input_rgb2yuv_table[GV_IDX] = -ROUNDED_DIV((1 << RGB2YUV_SHIFT)*ONE*ONE , Cv);
  724. c->input_rgb2yuv_table[BV_IDX] = ROUNDED_DIV((1 << RGB2YUV_SHIFT)*W , Cv);
  725. if(/*!dstRange && */!memcmp(table, ff_yuv2rgb_coeffs[SWS_CS_DEFAULT], sizeof(ff_yuv2rgb_coeffs[SWS_CS_DEFAULT]))) {
  726. c->input_rgb2yuv_table[BY_IDX] = ((int)(0.114 * 219 / 255 * (1 << RGB2YUV_SHIFT) + 0.5));
  727. c->input_rgb2yuv_table[BV_IDX] = (-(int)(0.081 * 224 / 255 * (1 << RGB2YUV_SHIFT) + 0.5));
  728. c->input_rgb2yuv_table[BU_IDX] = ((int)(0.500 * 224 / 255 * (1 << RGB2YUV_SHIFT) + 0.5));
  729. c->input_rgb2yuv_table[GY_IDX] = ((int)(0.587 * 219 / 255 * (1 << RGB2YUV_SHIFT) + 0.5));
  730. c->input_rgb2yuv_table[GV_IDX] = (-(int)(0.419 * 224 / 255 * (1 << RGB2YUV_SHIFT) + 0.5));
  731. c->input_rgb2yuv_table[GU_IDX] = (-(int)(0.331 * 224 / 255 * (1 << RGB2YUV_SHIFT) + 0.5));
  732. c->input_rgb2yuv_table[RY_IDX] = ((int)(0.299 * 219 / 255 * (1 << RGB2YUV_SHIFT) + 0.5));
  733. c->input_rgb2yuv_table[RV_IDX] = ((int)(0.500 * 224 / 255 * (1 << RGB2YUV_SHIFT) + 0.5));
  734. c->input_rgb2yuv_table[RU_IDX] = (-(int)(0.169 * 224 / 255 * (1 << RGB2YUV_SHIFT) + 0.5));
  735. }
  736. for(i=0; i<FF_ARRAY_ELEMS(map); i++)
  737. AV_WL16(p + 16*4 + 2*i, map[i] >= 0 ? c->input_rgb2yuv_table[map[i]] : 0);
  738. }
  739. static void fill_xyztables(struct SwsContext *c)
  740. {
  741. int i;
  742. double xyzgamma = XYZ_GAMMA;
  743. double rgbgamma = 1.0 / RGB_GAMMA;
  744. double xyzgammainv = 1.0 / XYZ_GAMMA;
  745. double rgbgammainv = RGB_GAMMA;
  746. static const int16_t xyz2rgb_matrix[3][4] = {
  747. {13270, -6295, -2041},
  748. {-3969, 7682, 170},
  749. { 228, -835, 4329} };
  750. static const int16_t rgb2xyz_matrix[3][4] = {
  751. {1689, 1464, 739},
  752. { 871, 2929, 296},
  753. { 79, 488, 3891} };
  754. static int16_t xyzgamma_tab[4096], rgbgamma_tab[4096], xyzgammainv_tab[4096], rgbgammainv_tab[4096];
  755. memcpy(c->xyz2rgb_matrix, xyz2rgb_matrix, sizeof(c->xyz2rgb_matrix));
  756. memcpy(c->rgb2xyz_matrix, rgb2xyz_matrix, sizeof(c->rgb2xyz_matrix));
  757. c->xyzgamma = xyzgamma_tab;
  758. c->rgbgamma = rgbgamma_tab;
  759. c->xyzgammainv = xyzgammainv_tab;
  760. c->rgbgammainv = rgbgammainv_tab;
  761. if (rgbgamma_tab[4095])
  762. return;
  763. /* set gamma vectors */
  764. for (i = 0; i < 4096; i++) {
  765. xyzgamma_tab[i] = lrint(pow(i / 4095.0, xyzgamma) * 4095.0);
  766. rgbgamma_tab[i] = lrint(pow(i / 4095.0, rgbgamma) * 4095.0);
  767. xyzgammainv_tab[i] = lrint(pow(i / 4095.0, xyzgammainv) * 4095.0);
  768. rgbgammainv_tab[i] = lrint(pow(i / 4095.0, rgbgammainv) * 4095.0);
  769. }
  770. }
  771. int sws_setColorspaceDetails(struct SwsContext *c, const int inv_table[4],
  772. int srcRange, const int table[4], int dstRange,
  773. int brightness, int contrast, int saturation)
  774. {
  775. const AVPixFmtDescriptor *desc_dst;
  776. const AVPixFmtDescriptor *desc_src;
  777. int need_reinit = 0;
  778. handle_formats(c);
  779. desc_dst = av_pix_fmt_desc_get(c->dstFormat);
  780. desc_src = av_pix_fmt_desc_get(c->srcFormat);
  781. if(!isYUV(c->dstFormat) && !isGray(c->dstFormat))
  782. dstRange = 0;
  783. if(!isYUV(c->srcFormat) && !isGray(c->srcFormat))
  784. srcRange = 0;
  785. if (c->srcRange != srcRange ||
  786. c->dstRange != dstRange ||
  787. c->brightness != brightness ||
  788. c->contrast != contrast ||
  789. c->saturation != saturation ||
  790. memcmp(c->srcColorspaceTable, inv_table, sizeof(int) * 4) ||
  791. memcmp(c->dstColorspaceTable, table, sizeof(int) * 4)
  792. )
  793. need_reinit = 1;
  794. memmove(c->srcColorspaceTable, inv_table, sizeof(int) * 4);
  795. memmove(c->dstColorspaceTable, table, sizeof(int) * 4);
  796. c->brightness = brightness;
  797. c->contrast = contrast;
  798. c->saturation = saturation;
  799. c->srcRange = srcRange;
  800. c->dstRange = dstRange;
  801. //The srcBpc check is possibly wrong but we seem to lack a definitive reference to test this
  802. //and what we have in ticket 2939 looks better with this check
  803. if (need_reinit && (c->srcBpc == 8 || !isYUV(c->srcFormat)))
  804. ff_sws_init_range_convert(c);
  805. c->dstFormatBpp = av_get_bits_per_pixel(desc_dst);
  806. c->srcFormatBpp = av_get_bits_per_pixel(desc_src);
  807. if (c->cascaded_context[c->cascaded_mainindex])
  808. return sws_setColorspaceDetails(c->cascaded_context[c->cascaded_mainindex],inv_table, srcRange,table, dstRange, brightness, contrast, saturation);
  809. if (!need_reinit)
  810. return 0;
  811. if ((isYUV(c->dstFormat) || isGray(c->dstFormat)) && (isYUV(c->srcFormat) || isGray(c->srcFormat))) {
  812. if (!c->cascaded_context[0] &&
  813. memcmp(c->dstColorspaceTable, c->srcColorspaceTable, sizeof(int) * 4) &&
  814. c->srcW && c->srcH && c->dstW && c->dstH) {
  815. enum AVPixelFormat tmp_format;
  816. int tmp_width, tmp_height;
  817. int srcW = c->srcW;
  818. int srcH = c->srcH;
  819. int dstW = c->dstW;
  820. int dstH = c->dstH;
  821. int ret;
  822. av_log(c, AV_LOG_VERBOSE, "YUV color matrix differs for YUV->YUV, using intermediate RGB to convert\n");
  823. if (isNBPS(c->dstFormat) || is16BPS(c->dstFormat)) {
  824. if (isALPHA(c->srcFormat) && isALPHA(c->dstFormat)) {
  825. tmp_format = AV_PIX_FMT_BGRA64;
  826. } else {
  827. tmp_format = AV_PIX_FMT_BGR48;
  828. }
  829. } else {
  830. if (isALPHA(c->srcFormat) && isALPHA(c->dstFormat)) {
  831. tmp_format = AV_PIX_FMT_BGRA;
  832. } else {
  833. tmp_format = AV_PIX_FMT_BGR24;
  834. }
  835. }
  836. if (srcW*srcH > dstW*dstH) {
  837. tmp_width = dstW;
  838. tmp_height = dstH;
  839. } else {
  840. tmp_width = srcW;
  841. tmp_height = srcH;
  842. }
  843. ret = av_image_alloc(c->cascaded_tmp, c->cascaded_tmpStride,
  844. tmp_width, tmp_height, tmp_format, 64);
  845. if (ret < 0)
  846. return ret;
  847. c->cascaded_context[0] = sws_alloc_set_opts(srcW, srcH, c->srcFormat,
  848. tmp_width, tmp_height, tmp_format,
  849. c->flags, c->param);
  850. if (!c->cascaded_context[0])
  851. return -1;
  852. c->cascaded_context[0]->alphablend = c->alphablend;
  853. ret = sws_init_context(c->cascaded_context[0], NULL , NULL);
  854. if (ret < 0)
  855. return ret;
  856. //we set both src and dst depending on that the RGB side will be ignored
  857. sws_setColorspaceDetails(c->cascaded_context[0], inv_table,
  858. srcRange, table, dstRange,
  859. brightness, contrast, saturation);
  860. c->cascaded_context[1] = sws_getContext(tmp_width, tmp_height, tmp_format,
  861. dstW, dstH, c->dstFormat,
  862. c->flags, NULL, NULL, c->param);
  863. if (!c->cascaded_context[1])
  864. return -1;
  865. sws_setColorspaceDetails(c->cascaded_context[1], inv_table,
  866. srcRange, table, dstRange,
  867. 0, 1 << 16, 1 << 16);
  868. return 0;
  869. }
  870. return -1;
  871. }
  872. if (!isYUV(c->dstFormat) && !isGray(c->dstFormat)) {
  873. ff_yuv2rgb_c_init_tables(c, inv_table, srcRange, brightness,
  874. contrast, saturation);
  875. // FIXME factorize
  876. if (ARCH_PPC)
  877. ff_yuv2rgb_init_tables_ppc(c, inv_table, brightness,
  878. contrast, saturation);
  879. }
  880. fill_rgb2yuv_table(c, table, dstRange);
  881. return 0;
  882. }
  883. int sws_getColorspaceDetails(struct SwsContext *c, int **inv_table,
  884. int *srcRange, int **table, int *dstRange,
  885. int *brightness, int *contrast, int *saturation)
  886. {
  887. if (!c )
  888. return -1;
  889. *inv_table = c->srcColorspaceTable;
  890. *table = c->dstColorspaceTable;
  891. *srcRange = c->srcRange;
  892. *dstRange = c->dstRange;
  893. *brightness = c->brightness;
  894. *contrast = c->contrast;
  895. *saturation = c->saturation;
  896. return 0;
  897. }
  898. static int handle_jpeg(enum AVPixelFormat *format)
  899. {
  900. switch (*format) {
  901. case AV_PIX_FMT_YUVJ420P:
  902. *format = AV_PIX_FMT_YUV420P;
  903. return 1;
  904. case AV_PIX_FMT_YUVJ411P:
  905. *format = AV_PIX_FMT_YUV411P;
  906. return 1;
  907. case AV_PIX_FMT_YUVJ422P:
  908. *format = AV_PIX_FMT_YUV422P;
  909. return 1;
  910. case AV_PIX_FMT_YUVJ444P:
  911. *format = AV_PIX_FMT_YUV444P;
  912. return 1;
  913. case AV_PIX_FMT_YUVJ440P:
  914. *format = AV_PIX_FMT_YUV440P;
  915. return 1;
  916. case AV_PIX_FMT_GRAY8:
  917. case AV_PIX_FMT_YA8:
  918. case AV_PIX_FMT_GRAY9LE:
  919. case AV_PIX_FMT_GRAY9BE:
  920. case AV_PIX_FMT_GRAY10LE:
  921. case AV_PIX_FMT_GRAY10BE:
  922. case AV_PIX_FMT_GRAY12LE:
  923. case AV_PIX_FMT_GRAY12BE:
  924. case AV_PIX_FMT_GRAY14LE:
  925. case AV_PIX_FMT_GRAY14BE:
  926. case AV_PIX_FMT_GRAY16LE:
  927. case AV_PIX_FMT_GRAY16BE:
  928. case AV_PIX_FMT_YA16BE:
  929. case AV_PIX_FMT_YA16LE:
  930. return 1;
  931. default:
  932. return 0;
  933. }
  934. }
  935. static int handle_0alpha(enum AVPixelFormat *format)
  936. {
  937. switch (*format) {
  938. case AV_PIX_FMT_0BGR : *format = AV_PIX_FMT_ABGR ; return 1;
  939. case AV_PIX_FMT_BGR0 : *format = AV_PIX_FMT_BGRA ; return 4;
  940. case AV_PIX_FMT_0RGB : *format = AV_PIX_FMT_ARGB ; return 1;
  941. case AV_PIX_FMT_RGB0 : *format = AV_PIX_FMT_RGBA ; return 4;
  942. default: return 0;
  943. }
  944. }
  945. static int handle_xyz(enum AVPixelFormat *format)
  946. {
  947. switch (*format) {
  948. case AV_PIX_FMT_XYZ12BE : *format = AV_PIX_FMT_RGB48BE; return 1;
  949. case AV_PIX_FMT_XYZ12LE : *format = AV_PIX_FMT_RGB48LE; return 1;
  950. default: return 0;
  951. }
  952. }
  953. static void handle_formats(SwsContext *c)
  954. {
  955. c->src0Alpha |= handle_0alpha(&c->srcFormat);
  956. c->dst0Alpha |= handle_0alpha(&c->dstFormat);
  957. c->srcXYZ |= handle_xyz(&c->srcFormat);
  958. c->dstXYZ |= handle_xyz(&c->dstFormat);
  959. if (c->srcXYZ || c->dstXYZ)
  960. fill_xyztables(c);
  961. }
  962. SwsContext *sws_alloc_context(void)
  963. {
  964. SwsContext *c = av_mallocz(sizeof(SwsContext));
  965. av_assert0(offsetof(SwsContext, redDither) + DITHER32_INT == offsetof(SwsContext, dither32));
  966. if (c) {
  967. c->av_class = &ff_sws_context_class;
  968. av_opt_set_defaults(c);
  969. }
  970. return c;
  971. }
  972. static uint16_t * alloc_gamma_tbl(double e)
  973. {
  974. int i = 0;
  975. uint16_t * tbl;
  976. tbl = (uint16_t*)av_malloc(sizeof(uint16_t) * 1 << 16);
  977. if (!tbl)
  978. return NULL;
  979. for (i = 0; i < 65536; ++i) {
  980. tbl[i] = pow(i / 65535.0, e) * 65535.0;
  981. }
  982. return tbl;
  983. }
  984. static enum AVPixelFormat alphaless_fmt(enum AVPixelFormat fmt)
  985. {
  986. switch(fmt) {
  987. case AV_PIX_FMT_ARGB: return AV_PIX_FMT_RGB24;
  988. case AV_PIX_FMT_RGBA: return AV_PIX_FMT_RGB24;
  989. case AV_PIX_FMT_ABGR: return AV_PIX_FMT_BGR24;
  990. case AV_PIX_FMT_BGRA: return AV_PIX_FMT_BGR24;
  991. case AV_PIX_FMT_YA8: return AV_PIX_FMT_GRAY8;
  992. case AV_PIX_FMT_YUVA420P: return AV_PIX_FMT_YUV420P;
  993. case AV_PIX_FMT_YUVA422P: return AV_PIX_FMT_YUV422P;
  994. case AV_PIX_FMT_YUVA444P: return AV_PIX_FMT_YUV444P;
  995. case AV_PIX_FMT_GBRAP: return AV_PIX_FMT_GBRP;
  996. case AV_PIX_FMT_GBRAP10LE: return AV_PIX_FMT_GBRP10;
  997. case AV_PIX_FMT_GBRAP10BE: return AV_PIX_FMT_GBRP10;
  998. case AV_PIX_FMT_GBRAP12LE: return AV_PIX_FMT_GBRP12;
  999. case AV_PIX_FMT_GBRAP12BE: return AV_PIX_FMT_GBRP12;
  1000. case AV_PIX_FMT_GBRAP16LE: return AV_PIX_FMT_GBRP16;
  1001. case AV_PIX_FMT_GBRAP16BE: return AV_PIX_FMT_GBRP16;
  1002. case AV_PIX_FMT_RGBA64LE: return AV_PIX_FMT_RGB48;
  1003. case AV_PIX_FMT_RGBA64BE: return AV_PIX_FMT_RGB48;
  1004. case AV_PIX_FMT_BGRA64LE: return AV_PIX_FMT_BGR48;
  1005. case AV_PIX_FMT_BGRA64BE: return AV_PIX_FMT_BGR48;
  1006. case AV_PIX_FMT_YA16BE: return AV_PIX_FMT_GRAY16;
  1007. case AV_PIX_FMT_YA16LE: return AV_PIX_FMT_GRAY16;
  1008. case AV_PIX_FMT_YUVA420P9BE: return AV_PIX_FMT_YUV420P9;
  1009. case AV_PIX_FMT_YUVA422P9BE: return AV_PIX_FMT_YUV422P9;
  1010. case AV_PIX_FMT_YUVA444P9BE: return AV_PIX_FMT_YUV444P9;
  1011. case AV_PIX_FMT_YUVA420P9LE: return AV_PIX_FMT_YUV420P9;
  1012. case AV_PIX_FMT_YUVA422P9LE: return AV_PIX_FMT_YUV422P9;
  1013. case AV_PIX_FMT_YUVA444P9LE: return AV_PIX_FMT_YUV444P9;
  1014. case AV_PIX_FMT_YUVA420P10BE: return AV_PIX_FMT_YUV420P10;
  1015. case AV_PIX_FMT_YUVA422P10BE: return AV_PIX_FMT_YUV422P10;
  1016. case AV_PIX_FMT_YUVA444P10BE: return AV_PIX_FMT_YUV444P10;
  1017. case AV_PIX_FMT_YUVA420P10LE: return AV_PIX_FMT_YUV420P10;
  1018. case AV_PIX_FMT_YUVA422P10LE: return AV_PIX_FMT_YUV422P10;
  1019. case AV_PIX_FMT_YUVA444P10LE: return AV_PIX_FMT_YUV444P10;
  1020. case AV_PIX_FMT_YUVA420P16BE: return AV_PIX_FMT_YUV420P16;
  1021. case AV_PIX_FMT_YUVA422P16BE: return AV_PIX_FMT_YUV422P16;
  1022. case AV_PIX_FMT_YUVA444P16BE: return AV_PIX_FMT_YUV444P16;
  1023. case AV_PIX_FMT_YUVA420P16LE: return AV_PIX_FMT_YUV420P16;
  1024. case AV_PIX_FMT_YUVA422P16LE: return AV_PIX_FMT_YUV422P16;
  1025. case AV_PIX_FMT_YUVA444P16LE: return AV_PIX_FMT_YUV444P16;
  1026. // case AV_PIX_FMT_AYUV64LE:
  1027. // case AV_PIX_FMT_AYUV64BE:
  1028. // case AV_PIX_FMT_PAL8:
  1029. default: return AV_PIX_FMT_NONE;
  1030. }
  1031. }
  1032. av_cold int sws_init_context(SwsContext *c, SwsFilter *srcFilter,
  1033. SwsFilter *dstFilter)
  1034. {
  1035. int i;
  1036. int usesVFilter, usesHFilter;
  1037. int unscaled;
  1038. SwsFilter dummyFilter = { NULL, NULL, NULL, NULL };
  1039. int srcW = c->srcW;
  1040. int srcH = c->srcH;
  1041. int dstW = c->dstW;
  1042. int dstH = c->dstH;
  1043. int dst_stride = FFALIGN(dstW * sizeof(int16_t) + 66, 16);
  1044. int flags, cpu_flags;
  1045. enum AVPixelFormat srcFormat = c->srcFormat;
  1046. enum AVPixelFormat dstFormat = c->dstFormat;
  1047. const AVPixFmtDescriptor *desc_src;
  1048. const AVPixFmtDescriptor *desc_dst;
  1049. int ret = 0;
  1050. enum AVPixelFormat tmpFmt;
  1051. static const float float_mult = 1.0f / 255.0f;
  1052. cpu_flags = av_get_cpu_flags();
  1053. flags = c->flags;
  1054. emms_c();
  1055. if (!rgb15to16)
  1056. ff_sws_rgb2rgb_init();
  1057. unscaled = (srcW == dstW && srcH == dstH);
  1058. c->srcRange |= handle_jpeg(&c->srcFormat);
  1059. c->dstRange |= handle_jpeg(&c->dstFormat);
  1060. if(srcFormat!=c->srcFormat || dstFormat!=c->dstFormat)
  1061. av_log(c, AV_LOG_WARNING, "deprecated pixel format used, make sure you did set range correctly\n");
  1062. if (!c->contrast && !c->saturation && !c->dstFormatBpp)
  1063. sws_setColorspaceDetails(c, ff_yuv2rgb_coeffs[SWS_CS_DEFAULT], c->srcRange,
  1064. ff_yuv2rgb_coeffs[SWS_CS_DEFAULT],
  1065. c->dstRange, 0, 1 << 16, 1 << 16);
  1066. handle_formats(c);
  1067. srcFormat = c->srcFormat;
  1068. dstFormat = c->dstFormat;
  1069. desc_src = av_pix_fmt_desc_get(srcFormat);
  1070. desc_dst = av_pix_fmt_desc_get(dstFormat);
  1071. // If the source has no alpha then disable alpha blendaway
  1072. if (c->src0Alpha)
  1073. c->alphablend = SWS_ALPHA_BLEND_NONE;
  1074. if (!(unscaled && sws_isSupportedEndiannessConversion(srcFormat) &&
  1075. av_pix_fmt_swap_endianness(srcFormat) == dstFormat)) {
  1076. if (!sws_isSupportedInput(srcFormat)) {
  1077. av_log(c, AV_LOG_ERROR, "%s is not supported as input pixel format\n",
  1078. av_get_pix_fmt_name(srcFormat));
  1079. return AVERROR(EINVAL);
  1080. }
  1081. if (!sws_isSupportedOutput(dstFormat)) {
  1082. av_log(c, AV_LOG_ERROR, "%s is not supported as output pixel format\n",
  1083. av_get_pix_fmt_name(dstFormat));
  1084. return AVERROR(EINVAL);
  1085. }
  1086. }
  1087. av_assert2(desc_src && desc_dst);
  1088. i = flags & (SWS_POINT |
  1089. SWS_AREA |
  1090. SWS_BILINEAR |
  1091. SWS_FAST_BILINEAR |
  1092. SWS_BICUBIC |
  1093. SWS_X |
  1094. SWS_GAUSS |
  1095. SWS_LANCZOS |
  1096. SWS_SINC |
  1097. SWS_SPLINE |
  1098. SWS_BICUBLIN);
  1099. /* provide a default scaler if not set by caller */
  1100. if (!i) {
  1101. if (dstW < srcW && dstH < srcH)
  1102. flags |= SWS_BICUBIC;
  1103. else if (dstW > srcW && dstH > srcH)
  1104. flags |= SWS_BICUBIC;
  1105. else
  1106. flags |= SWS_BICUBIC;
  1107. c->flags = flags;
  1108. } else if (i & (i - 1)) {
  1109. av_log(c, AV_LOG_ERROR,
  1110. "Exactly one scaler algorithm must be chosen, got %X\n", i);
  1111. return AVERROR(EINVAL);
  1112. }
  1113. /* sanity check */
  1114. if (srcW < 1 || srcH < 1 || dstW < 1 || dstH < 1) {
  1115. /* FIXME check if these are enough and try to lower them after
  1116. * fixing the relevant parts of the code */
  1117. av_log(c, AV_LOG_ERROR, "%dx%d -> %dx%d is invalid scaling dimension\n",
  1118. srcW, srcH, dstW, dstH);
  1119. return AVERROR(EINVAL);
  1120. }
  1121. if (flags & SWS_FAST_BILINEAR) {
  1122. if (srcW < 8 || dstW < 8) {
  1123. flags ^= SWS_FAST_BILINEAR | SWS_BILINEAR;
  1124. c->flags = flags;
  1125. }
  1126. }
  1127. if (!dstFilter)
  1128. dstFilter = &dummyFilter;
  1129. if (!srcFilter)
  1130. srcFilter = &dummyFilter;
  1131. c->lumXInc = (((int64_t)srcW << 16) + (dstW >> 1)) / dstW;
  1132. c->lumYInc = (((int64_t)srcH << 16) + (dstH >> 1)) / dstH;
  1133. c->dstFormatBpp = av_get_bits_per_pixel(desc_dst);
  1134. c->srcFormatBpp = av_get_bits_per_pixel(desc_src);
  1135. c->vRounder = 4 * 0x0001000100010001ULL;
  1136. usesVFilter = (srcFilter->lumV && srcFilter->lumV->length > 1) ||
  1137. (srcFilter->chrV && srcFilter->chrV->length > 1) ||
  1138. (dstFilter->lumV && dstFilter->lumV->length > 1) ||
  1139. (dstFilter->chrV && dstFilter->chrV->length > 1);
  1140. usesHFilter = (srcFilter->lumH && srcFilter->lumH->length > 1) ||
  1141. (srcFilter->chrH && srcFilter->chrH->length > 1) ||
  1142. (dstFilter->lumH && dstFilter->lumH->length > 1) ||
  1143. (dstFilter->chrH && dstFilter->chrH->length > 1);
  1144. av_pix_fmt_get_chroma_sub_sample(srcFormat, &c->chrSrcHSubSample, &c->chrSrcVSubSample);
  1145. av_pix_fmt_get_chroma_sub_sample(dstFormat, &c->chrDstHSubSample, &c->chrDstVSubSample);
  1146. if (isAnyRGB(dstFormat) && !(flags&SWS_FULL_CHR_H_INT)) {
  1147. if (dstW&1) {
  1148. av_log(c, AV_LOG_DEBUG, "Forcing full internal H chroma due to odd output size\n");
  1149. flags |= SWS_FULL_CHR_H_INT;
  1150. c->flags = flags;
  1151. }
  1152. if ( c->chrSrcHSubSample == 0
  1153. && c->chrSrcVSubSample == 0
  1154. && c->dither != SWS_DITHER_BAYER //SWS_FULL_CHR_H_INT is currently not supported with SWS_DITHER_BAYER
  1155. && !(c->flags & SWS_FAST_BILINEAR)
  1156. ) {
  1157. av_log(c, AV_LOG_DEBUG, "Forcing full internal H chroma due to input having non subsampled chroma\n");
  1158. flags |= SWS_FULL_CHR_H_INT;
  1159. c->flags = flags;
  1160. }
  1161. }
  1162. if (c->dither == SWS_DITHER_AUTO) {
  1163. if (flags & SWS_ERROR_DIFFUSION)
  1164. c->dither = SWS_DITHER_ED;
  1165. }
  1166. if(dstFormat == AV_PIX_FMT_BGR4_BYTE ||
  1167. dstFormat == AV_PIX_FMT_RGB4_BYTE ||
  1168. dstFormat == AV_PIX_FMT_BGR8 ||
  1169. dstFormat == AV_PIX_FMT_RGB8) {
  1170. if (c->dither == SWS_DITHER_AUTO)
  1171. c->dither = (flags & SWS_FULL_CHR_H_INT) ? SWS_DITHER_ED : SWS_DITHER_BAYER;
  1172. if (!(flags & SWS_FULL_CHR_H_INT)) {
  1173. if (c->dither == SWS_DITHER_ED || c->dither == SWS_DITHER_A_DITHER || c->dither == SWS_DITHER_X_DITHER) {
  1174. av_log(c, AV_LOG_DEBUG,
  1175. "Desired dithering only supported in full chroma interpolation for destination format '%s'\n",
  1176. av_get_pix_fmt_name(dstFormat));
  1177. flags |= SWS_FULL_CHR_H_INT;
  1178. c->flags = flags;
  1179. }
  1180. }
  1181. if (flags & SWS_FULL_CHR_H_INT) {
  1182. if (c->dither == SWS_DITHER_BAYER) {
  1183. av_log(c, AV_LOG_DEBUG,
  1184. "Ordered dither is not supported in full chroma interpolation for destination format '%s'\n",
  1185. av_get_pix_fmt_name(dstFormat));
  1186. c->dither = SWS_DITHER_ED;
  1187. }
  1188. }
  1189. }
  1190. if (isPlanarRGB(dstFormat)) {
  1191. if (!(flags & SWS_FULL_CHR_H_INT)) {
  1192. av_log(c, AV_LOG_DEBUG,
  1193. "%s output is not supported with half chroma resolution, switching to full\n",
  1194. av_get_pix_fmt_name(dstFormat));
  1195. flags |= SWS_FULL_CHR_H_INT;
  1196. c->flags = flags;
  1197. }
  1198. }
  1199. /* reuse chroma for 2 pixels RGB/BGR unless user wants full
  1200. * chroma interpolation */
  1201. if (flags & SWS_FULL_CHR_H_INT &&
  1202. isAnyRGB(dstFormat) &&
  1203. !isPlanarRGB(dstFormat) &&
  1204. dstFormat != AV_PIX_FMT_RGBA64LE &&
  1205. dstFormat != AV_PIX_FMT_RGBA64BE &&
  1206. dstFormat != AV_PIX_FMT_BGRA64LE &&
  1207. dstFormat != AV_PIX_FMT_BGRA64BE &&
  1208. dstFormat != AV_PIX_FMT_RGB48LE &&
  1209. dstFormat != AV_PIX_FMT_RGB48BE &&
  1210. dstFormat != AV_PIX_FMT_BGR48LE &&
  1211. dstFormat != AV_PIX_FMT_BGR48BE &&
  1212. dstFormat != AV_PIX_FMT_RGBA &&
  1213. dstFormat != AV_PIX_FMT_ARGB &&
  1214. dstFormat != AV_PIX_FMT_BGRA &&
  1215. dstFormat != AV_PIX_FMT_ABGR &&
  1216. dstFormat != AV_PIX_FMT_RGB24 &&
  1217. dstFormat != AV_PIX_FMT_BGR24 &&
  1218. dstFormat != AV_PIX_FMT_BGR4_BYTE &&
  1219. dstFormat != AV_PIX_FMT_RGB4_BYTE &&
  1220. dstFormat != AV_PIX_FMT_BGR8 &&
  1221. dstFormat != AV_PIX_FMT_RGB8
  1222. ) {
  1223. av_log(c, AV_LOG_WARNING,
  1224. "full chroma interpolation for destination format '%s' not yet implemented\n",
  1225. av_get_pix_fmt_name(dstFormat));
  1226. flags &= ~SWS_FULL_CHR_H_INT;
  1227. c->flags = flags;
  1228. }
  1229. if (isAnyRGB(dstFormat) && !(flags & SWS_FULL_CHR_H_INT))
  1230. c->chrDstHSubSample = 1;
  1231. // drop some chroma lines if the user wants it
  1232. c->vChrDrop = (flags & SWS_SRC_V_CHR_DROP_MASK) >>
  1233. SWS_SRC_V_CHR_DROP_SHIFT;
  1234. c->chrSrcVSubSample += c->vChrDrop;
  1235. /* drop every other pixel for chroma calculation unless user
  1236. * wants full chroma */
  1237. if (isAnyRGB(srcFormat) && !(flags & SWS_FULL_CHR_H_INP) &&
  1238. srcFormat != AV_PIX_FMT_RGB8 && srcFormat != AV_PIX_FMT_BGR8 &&
  1239. srcFormat != AV_PIX_FMT_RGB4 && srcFormat != AV_PIX_FMT_BGR4 &&
  1240. srcFormat != AV_PIX_FMT_RGB4_BYTE && srcFormat != AV_PIX_FMT_BGR4_BYTE &&
  1241. srcFormat != AV_PIX_FMT_GBRP9BE && srcFormat != AV_PIX_FMT_GBRP9LE &&
  1242. srcFormat != AV_PIX_FMT_GBRP10BE && srcFormat != AV_PIX_FMT_GBRP10LE &&
  1243. srcFormat != AV_PIX_FMT_GBRAP10BE && srcFormat != AV_PIX_FMT_GBRAP10LE &&
  1244. srcFormat != AV_PIX_FMT_GBRP12BE && srcFormat != AV_PIX_FMT_GBRP12LE &&
  1245. srcFormat != AV_PIX_FMT_GBRAP12BE && srcFormat != AV_PIX_FMT_GBRAP12LE &&
  1246. srcFormat != AV_PIX_FMT_GBRP14BE && srcFormat != AV_PIX_FMT_GBRP14LE &&
  1247. srcFormat != AV_PIX_FMT_GBRP16BE && srcFormat != AV_PIX_FMT_GBRP16LE &&
  1248. srcFormat != AV_PIX_FMT_GBRAP16BE && srcFormat != AV_PIX_FMT_GBRAP16LE &&
  1249. ((dstW >> c->chrDstHSubSample) <= (srcW >> 1) ||
  1250. (flags & SWS_FAST_BILINEAR)))
  1251. c->chrSrcHSubSample = 1;
  1252. // Note the AV_CEIL_RSHIFT is so that we always round toward +inf.
  1253. c->chrSrcW = AV_CEIL_RSHIFT(srcW, c->chrSrcHSubSample);
  1254. c->chrSrcH = AV_CEIL_RSHIFT(srcH, c->chrSrcVSubSample);
  1255. c->chrDstW = AV_CEIL_RSHIFT(dstW, c->chrDstHSubSample);
  1256. c->chrDstH = AV_CEIL_RSHIFT(dstH, c->chrDstVSubSample);
  1257. FF_ALLOCZ_OR_GOTO(c, c->formatConvBuffer, FFALIGN(srcW*2+78, 16) * 2, fail);
  1258. c->srcBpc = desc_src->comp[0].depth;
  1259. if (c->srcBpc < 8)
  1260. c->srcBpc = 8;
  1261. c->dstBpc = desc_dst->comp[0].depth;
  1262. if (c->dstBpc < 8)
  1263. c->dstBpc = 8;
  1264. if (isAnyRGB(srcFormat) || srcFormat == AV_PIX_FMT_PAL8)
  1265. c->srcBpc = 16;
  1266. if (c->dstBpc == 16)
  1267. dst_stride <<= 1;
  1268. if (INLINE_MMXEXT(cpu_flags) && c->srcBpc == 8 && c->dstBpc <= 14) {
  1269. c->canMMXEXTBeUsed = dstW >= srcW && (dstW & 31) == 0 &&
  1270. c->chrDstW >= c->chrSrcW &&
  1271. (srcW & 15) == 0;
  1272. if (!c->canMMXEXTBeUsed && dstW >= srcW && c->chrDstW >= c->chrSrcW && (srcW & 15) == 0
  1273. && (flags & SWS_FAST_BILINEAR)) {
  1274. if (flags & SWS_PRINT_INFO)
  1275. av_log(c, AV_LOG_INFO,
  1276. "output width is not a multiple of 32 -> no MMXEXT scaler\n");
  1277. }
  1278. if (usesHFilter || isNBPS(c->srcFormat) || is16BPS(c->srcFormat) || isAnyRGB(c->srcFormat))
  1279. c->canMMXEXTBeUsed = 0;
  1280. } else
  1281. c->canMMXEXTBeUsed = 0;
  1282. c->chrXInc = (((int64_t)c->chrSrcW << 16) + (c->chrDstW >> 1)) / c->chrDstW;
  1283. c->chrYInc = (((int64_t)c->chrSrcH << 16) + (c->chrDstH >> 1)) / c->chrDstH;
  1284. /* Match pixel 0 of the src to pixel 0 of dst and match pixel n-2 of src
  1285. * to pixel n-2 of dst, but only for the FAST_BILINEAR mode otherwise do
  1286. * correct scaling.
  1287. * n-2 is the last chrominance sample available.
  1288. * This is not perfect, but no one should notice the difference, the more
  1289. * correct variant would be like the vertical one, but that would require
  1290. * some special code for the first and last pixel */
  1291. if (flags & SWS_FAST_BILINEAR) {
  1292. if (c->canMMXEXTBeUsed) {
  1293. c->lumXInc += 20;
  1294. c->chrXInc += 20;
  1295. }
  1296. // we don't use the x86 asm scaler if MMX is available
  1297. else if (INLINE_MMX(cpu_flags) && c->dstBpc <= 14) {
  1298. c->lumXInc = ((int64_t)(srcW - 2) << 16) / (dstW - 2) - 20;
  1299. c->chrXInc = ((int64_t)(c->chrSrcW - 2) << 16) / (c->chrDstW - 2) - 20;
  1300. }
  1301. }
  1302. // hardcoded for now
  1303. c->gamma_value = 2.2;
  1304. tmpFmt = AV_PIX_FMT_RGBA64LE;
  1305. if (!unscaled && c->gamma_flag && (srcFormat != tmpFmt || dstFormat != tmpFmt)) {
  1306. SwsContext *c2;
  1307. c->cascaded_context[0] = NULL;
  1308. ret = av_image_alloc(c->cascaded_tmp, c->cascaded_tmpStride,
  1309. srcW, srcH, tmpFmt, 64);
  1310. if (ret < 0)
  1311. return ret;
  1312. c->cascaded_context[0] = sws_getContext(srcW, srcH, srcFormat,
  1313. srcW, srcH, tmpFmt,
  1314. flags, NULL, NULL, c->param);
  1315. if (!c->cascaded_context[0]) {
  1316. return -1;
  1317. }
  1318. c->cascaded_context[1] = sws_getContext(srcW, srcH, tmpFmt,
  1319. dstW, dstH, tmpFmt,
  1320. flags, srcFilter, dstFilter, c->param);
  1321. if (!c->cascaded_context[1])
  1322. return -1;
  1323. c2 = c->cascaded_context[1];
  1324. c2->is_internal_gamma = 1;
  1325. c2->gamma = alloc_gamma_tbl( c->gamma_value);
  1326. c2->inv_gamma = alloc_gamma_tbl(1.f/c->gamma_value);
  1327. if (!c2->gamma || !c2->inv_gamma)
  1328. return AVERROR(ENOMEM);
  1329. // is_internal_flag is set after creating the context
  1330. // to properly create the gamma convert FilterDescriptor
  1331. // we have to re-initialize it
  1332. ff_free_filters(c2);
  1333. if (ff_init_filters(c2) < 0) {
  1334. sws_freeContext(c2);
  1335. return -1;
  1336. }
  1337. c->cascaded_context[2] = NULL;
  1338. if (dstFormat != tmpFmt) {
  1339. ret = av_image_alloc(c->cascaded1_tmp, c->cascaded1_tmpStride,
  1340. dstW, dstH, tmpFmt, 64);
  1341. if (ret < 0)
  1342. return ret;
  1343. c->cascaded_context[2] = sws_getContext(dstW, dstH, tmpFmt,
  1344. dstW, dstH, dstFormat,
  1345. flags, NULL, NULL, c->param);
  1346. if (!c->cascaded_context[2])
  1347. return -1;
  1348. }
  1349. return 0;
  1350. }
  1351. if (isBayer(srcFormat)) {
  1352. if (!unscaled ||
  1353. (dstFormat != AV_PIX_FMT_RGB24 && dstFormat != AV_PIX_FMT_YUV420P)) {
  1354. enum AVPixelFormat tmpFormat = AV_PIX_FMT_RGB24;
  1355. ret = av_image_alloc(c->cascaded_tmp, c->cascaded_tmpStride,
  1356. srcW, srcH, tmpFormat, 64);
  1357. if (ret < 0)
  1358. return ret;
  1359. c->cascaded_context[0] = sws_getContext(srcW, srcH, srcFormat,
  1360. srcW, srcH, tmpFormat,
  1361. flags, srcFilter, NULL, c->param);
  1362. if (!c->cascaded_context[0])
  1363. return -1;
  1364. c->cascaded_context[1] = sws_getContext(srcW, srcH, tmpFormat,
  1365. dstW, dstH, dstFormat,
  1366. flags, NULL, dstFilter, c->param);
  1367. if (!c->cascaded_context[1])
  1368. return -1;
  1369. return 0;
  1370. }
  1371. }
  1372. if (unscaled && c->srcBpc == 8 && dstFormat == AV_PIX_FMT_GRAYF32){
  1373. for (i = 0; i < 256; ++i){
  1374. c->uint2float_lut[i] = (float)i * float_mult;
  1375. }
  1376. }
  1377. // float will be converted to uint16_t
  1378. if ((srcFormat == AV_PIX_FMT_GRAYF32BE || srcFormat == AV_PIX_FMT_GRAYF32LE) &&
  1379. (!unscaled || unscaled && dstFormat != srcFormat && (srcFormat != AV_PIX_FMT_GRAYF32 ||
  1380. dstFormat != AV_PIX_FMT_GRAY8))){
  1381. c->srcBpc = 16;
  1382. }
  1383. if (CONFIG_SWSCALE_ALPHA && isALPHA(srcFormat) && !isALPHA(dstFormat)) {
  1384. enum AVPixelFormat tmpFormat = alphaless_fmt(srcFormat);
  1385. if (tmpFormat != AV_PIX_FMT_NONE && c->alphablend != SWS_ALPHA_BLEND_NONE)
  1386. if (!unscaled ||
  1387. dstFormat != tmpFormat ||
  1388. usesHFilter || usesVFilter ||
  1389. c->srcRange != c->dstRange
  1390. ) {
  1391. c->cascaded_mainindex = 1;
  1392. ret = av_image_alloc(c->cascaded_tmp, c->cascaded_tmpStride,
  1393. srcW, srcH, tmpFormat, 64);
  1394. if (ret < 0)
  1395. return ret;
  1396. c->cascaded_context[0] = sws_alloc_set_opts(srcW, srcH, srcFormat,
  1397. srcW, srcH, tmpFormat,
  1398. flags, c->param);
  1399. if (!c->cascaded_context[0])
  1400. return -1;
  1401. c->cascaded_context[0]->alphablend = c->alphablend;
  1402. ret = sws_init_context(c->cascaded_context[0], NULL , NULL);
  1403. if (ret < 0)
  1404. return ret;
  1405. c->cascaded_context[1] = sws_alloc_set_opts(srcW, srcH, tmpFormat,
  1406. dstW, dstH, dstFormat,
  1407. flags, c->param);
  1408. if (!c->cascaded_context[1])
  1409. return -1;
  1410. c->cascaded_context[1]->srcRange = c->srcRange;
  1411. c->cascaded_context[1]->dstRange = c->dstRange;
  1412. ret = sws_init_context(c->cascaded_context[1], srcFilter , dstFilter);
  1413. if (ret < 0)
  1414. return ret;
  1415. return 0;
  1416. }
  1417. }
  1418. #if HAVE_MMAP && HAVE_MPROTECT && defined(MAP_ANONYMOUS)
  1419. #define USE_MMAP 1
  1420. #else
  1421. #define USE_MMAP 0
  1422. #endif
  1423. /* precalculate horizontal scaler filter coefficients */
  1424. {
  1425. #if HAVE_MMXEXT_INLINE
  1426. // can't downscale !!!
  1427. if (c->canMMXEXTBeUsed && (flags & SWS_FAST_BILINEAR)) {
  1428. c->lumMmxextFilterCodeSize = ff_init_hscaler_mmxext(dstW, c->lumXInc, NULL,
  1429. NULL, NULL, 8);
  1430. c->chrMmxextFilterCodeSize = ff_init_hscaler_mmxext(c->chrDstW, c->chrXInc,
  1431. NULL, NULL, NULL, 4);
  1432. #if USE_MMAP
  1433. c->lumMmxextFilterCode = mmap(NULL, c->lumMmxextFilterCodeSize,
  1434. PROT_READ | PROT_WRITE,
  1435. MAP_PRIVATE | MAP_ANONYMOUS,
  1436. -1, 0);
  1437. c->chrMmxextFilterCode = mmap(NULL, c->chrMmxextFilterCodeSize,
  1438. PROT_READ | PROT_WRITE,
  1439. MAP_PRIVATE | MAP_ANONYMOUS,
  1440. -1, 0);
  1441. #elif HAVE_VIRTUALALLOC
  1442. c->lumMmxextFilterCode = VirtualAlloc(NULL,
  1443. c->lumMmxextFilterCodeSize,
  1444. MEM_COMMIT,
  1445. PAGE_EXECUTE_READWRITE);
  1446. c->chrMmxextFilterCode = VirtualAlloc(NULL,
  1447. c->chrMmxextFilterCodeSize,
  1448. MEM_COMMIT,
  1449. PAGE_EXECUTE_READWRITE);
  1450. #else
  1451. c->lumMmxextFilterCode = av_malloc(c->lumMmxextFilterCodeSize);
  1452. c->chrMmxextFilterCode = av_malloc(c->chrMmxextFilterCodeSize);
  1453. #endif
  1454. #ifdef MAP_ANONYMOUS
  1455. if (c->lumMmxextFilterCode == MAP_FAILED || c->chrMmxextFilterCode == MAP_FAILED)
  1456. #else
  1457. if (!c->lumMmxextFilterCode || !c->chrMmxextFilterCode)
  1458. #endif
  1459. {
  1460. av_log(c, AV_LOG_ERROR, "Failed to allocate MMX2FilterCode\n");
  1461. return AVERROR(ENOMEM);
  1462. }
  1463. FF_ALLOCZ_OR_GOTO(c, c->hLumFilter, (dstW / 8 + 8) * sizeof(int16_t), fail);
  1464. FF_ALLOCZ_OR_GOTO(c, c->hChrFilter, (c->chrDstW / 4 + 8) * sizeof(int16_t), fail);
  1465. FF_ALLOCZ_OR_GOTO(c, c->hLumFilterPos, (dstW / 2 / 8 + 8) * sizeof(int32_t), fail);
  1466. FF_ALLOCZ_OR_GOTO(c, c->hChrFilterPos, (c->chrDstW / 2 / 4 + 8) * sizeof(int32_t), fail);
  1467. ff_init_hscaler_mmxext( dstW, c->lumXInc, c->lumMmxextFilterCode,
  1468. c->hLumFilter, (uint32_t*)c->hLumFilterPos, 8);
  1469. ff_init_hscaler_mmxext(c->chrDstW, c->chrXInc, c->chrMmxextFilterCode,
  1470. c->hChrFilter, (uint32_t*)c->hChrFilterPos, 4);
  1471. #if USE_MMAP
  1472. if ( mprotect(c->lumMmxextFilterCode, c->lumMmxextFilterCodeSize, PROT_EXEC | PROT_READ) == -1
  1473. || mprotect(c->chrMmxextFilterCode, c->chrMmxextFilterCodeSize, PROT_EXEC | PROT_READ) == -1) {
  1474. av_log(c, AV_LOG_ERROR, "mprotect failed, cannot use fast bilinear scaler\n");
  1475. goto fail;
  1476. }
  1477. #endif
  1478. } else
  1479. #endif /* HAVE_MMXEXT_INLINE */
  1480. {
  1481. const int filterAlign = X86_MMX(cpu_flags) ? 4 :
  1482. PPC_ALTIVEC(cpu_flags) ? 8 :
  1483. have_neon(cpu_flags) ? 8 : 1;
  1484. if ((ret = initFilter(&c->hLumFilter, &c->hLumFilterPos,
  1485. &c->hLumFilterSize, c->lumXInc,
  1486. srcW, dstW, filterAlign, 1 << 14,
  1487. (flags & SWS_BICUBLIN) ? (flags | SWS_BICUBIC) : flags,
  1488. cpu_flags, srcFilter->lumH, dstFilter->lumH,
  1489. c->param,
  1490. get_local_pos(c, 0, 0, 0),
  1491. get_local_pos(c, 0, 0, 0))) < 0)
  1492. goto fail;
  1493. if ((ret = initFilter(&c->hChrFilter, &c->hChrFilterPos,
  1494. &c->hChrFilterSize, c->chrXInc,
  1495. c->chrSrcW, c->chrDstW, filterAlign, 1 << 14,
  1496. (flags & SWS_BICUBLIN) ? (flags | SWS_BILINEAR) : flags,
  1497. cpu_flags, srcFilter->chrH, dstFilter->chrH,
  1498. c->param,
  1499. get_local_pos(c, c->chrSrcHSubSample, c->src_h_chr_pos, 0),
  1500. get_local_pos(c, c->chrDstHSubSample, c->dst_h_chr_pos, 0))) < 0)
  1501. goto fail;
  1502. }
  1503. } // initialize horizontal stuff
  1504. /* precalculate vertical scaler filter coefficients */
  1505. {
  1506. const int filterAlign = X86_MMX(cpu_flags) ? 2 :
  1507. PPC_ALTIVEC(cpu_flags) ? 8 :
  1508. have_neon(cpu_flags) ? 2 : 1;
  1509. if ((ret = initFilter(&c->vLumFilter, &c->vLumFilterPos, &c->vLumFilterSize,
  1510. c->lumYInc, srcH, dstH, filterAlign, (1 << 12),
  1511. (flags & SWS_BICUBLIN) ? (flags | SWS_BICUBIC) : flags,
  1512. cpu_flags, srcFilter->lumV, dstFilter->lumV,
  1513. c->param,
  1514. get_local_pos(c, 0, 0, 1),
  1515. get_local_pos(c, 0, 0, 1))) < 0)
  1516. goto fail;
  1517. if ((ret = initFilter(&c->vChrFilter, &c->vChrFilterPos, &c->vChrFilterSize,
  1518. c->chrYInc, c->chrSrcH, c->chrDstH,
  1519. filterAlign, (1 << 12),
  1520. (flags & SWS_BICUBLIN) ? (flags | SWS_BILINEAR) : flags,
  1521. cpu_flags, srcFilter->chrV, dstFilter->chrV,
  1522. c->param,
  1523. get_local_pos(c, c->chrSrcVSubSample, c->src_v_chr_pos, 1),
  1524. get_local_pos(c, c->chrDstVSubSample, c->dst_v_chr_pos, 1))) < 0)
  1525. goto fail;
  1526. #if HAVE_ALTIVEC
  1527. FF_ALLOC_OR_GOTO(c, c->vYCoeffsBank, sizeof(vector signed short) * c->vLumFilterSize * c->dstH, fail);
  1528. FF_ALLOC_OR_GOTO(c, c->vCCoeffsBank, sizeof(vector signed short) * c->vChrFilterSize * c->chrDstH, fail);
  1529. for (i = 0; i < c->vLumFilterSize * c->dstH; i++) {
  1530. int j;
  1531. short *p = (short *)&c->vYCoeffsBank[i];
  1532. for (j = 0; j < 8; j++)
  1533. p[j] = c->vLumFilter[i];
  1534. }
  1535. for (i = 0; i < c->vChrFilterSize * c->chrDstH; i++) {
  1536. int j;
  1537. short *p = (short *)&c->vCCoeffsBank[i];
  1538. for (j = 0; j < 8; j++)
  1539. p[j] = c->vChrFilter[i];
  1540. }
  1541. #endif
  1542. }
  1543. for (i = 0; i < 4; i++)
  1544. FF_ALLOCZ_OR_GOTO(c, c->dither_error[i], (c->dstW+2) * sizeof(int), fail);
  1545. c->needAlpha = (CONFIG_SWSCALE_ALPHA && isALPHA(c->srcFormat) && isALPHA(c->dstFormat)) ? 1 : 0;
  1546. // 64 / c->scalingBpp is the same as 16 / sizeof(scaling_intermediate)
  1547. c->uv_off = (dst_stride>>1) + 64 / (c->dstBpc &~ 7);
  1548. c->uv_offx2 = dst_stride + 16;
  1549. av_assert0(c->chrDstH <= dstH);
  1550. if (flags & SWS_PRINT_INFO) {
  1551. const char *scaler = NULL, *cpucaps;
  1552. for (i = 0; i < FF_ARRAY_ELEMS(scale_algorithms); i++) {
  1553. if (flags & scale_algorithms[i].flag) {
  1554. scaler = scale_algorithms[i].description;
  1555. break;
  1556. }
  1557. }
  1558. if (!scaler)
  1559. scaler = "ehh flags invalid?!";
  1560. av_log(c, AV_LOG_INFO, "%s scaler, from %s to %s%s ",
  1561. scaler,
  1562. av_get_pix_fmt_name(srcFormat),
  1563. #ifdef DITHER1XBPP
  1564. dstFormat == AV_PIX_FMT_BGR555 || dstFormat == AV_PIX_FMT_BGR565 ||
  1565. dstFormat == AV_PIX_FMT_RGB444BE || dstFormat == AV_PIX_FMT_RGB444LE ||
  1566. dstFormat == AV_PIX_FMT_BGR444BE || dstFormat == AV_PIX_FMT_BGR444LE ?
  1567. "dithered " : "",
  1568. #else
  1569. "",
  1570. #endif
  1571. av_get_pix_fmt_name(dstFormat));
  1572. if (INLINE_MMXEXT(cpu_flags))
  1573. cpucaps = "MMXEXT";
  1574. else if (INLINE_AMD3DNOW(cpu_flags))
  1575. cpucaps = "3DNOW";
  1576. else if (INLINE_MMX(cpu_flags))
  1577. cpucaps = "MMX";
  1578. else if (PPC_ALTIVEC(cpu_flags))
  1579. cpucaps = "AltiVec";
  1580. else
  1581. cpucaps = "C";
  1582. av_log(c, AV_LOG_INFO, "using %s\n", cpucaps);
  1583. av_log(c, AV_LOG_VERBOSE, "%dx%d -> %dx%d\n", srcW, srcH, dstW, dstH);
  1584. av_log(c, AV_LOG_DEBUG,
  1585. "lum srcW=%d srcH=%d dstW=%d dstH=%d xInc=%d yInc=%d\n",
  1586. c->srcW, c->srcH, c->dstW, c->dstH, c->lumXInc, c->lumYInc);
  1587. av_log(c, AV_LOG_DEBUG,
  1588. "chr srcW=%d srcH=%d dstW=%d dstH=%d xInc=%d yInc=%d\n",
  1589. c->chrSrcW, c->chrSrcH, c->chrDstW, c->chrDstH,
  1590. c->chrXInc, c->chrYInc);
  1591. }
  1592. /* alpha blend special case, note this has been split via cascaded contexts if its scaled */
  1593. if (unscaled && !usesHFilter && !usesVFilter &&
  1594. c->alphablend != SWS_ALPHA_BLEND_NONE &&
  1595. isALPHA(srcFormat) &&
  1596. (c->srcRange == c->dstRange || isAnyRGB(dstFormat)) &&
  1597. alphaless_fmt(srcFormat) == dstFormat
  1598. ) {
  1599. c->swscale = ff_sws_alphablendaway;
  1600. if (flags & SWS_PRINT_INFO)
  1601. av_log(c, AV_LOG_INFO,
  1602. "using alpha blendaway %s -> %s special converter\n",
  1603. av_get_pix_fmt_name(srcFormat), av_get_pix_fmt_name(dstFormat));
  1604. return 0;
  1605. }
  1606. /* unscaled special cases */
  1607. if (unscaled && !usesHFilter && !usesVFilter &&
  1608. (c->srcRange == c->dstRange || isAnyRGB(dstFormat) ||
  1609. srcFormat == AV_PIX_FMT_GRAYF32 && dstFormat == AV_PIX_FMT_GRAY8 ||
  1610. srcFormat == AV_PIX_FMT_GRAY8 && dstFormat == AV_PIX_FMT_GRAYF32)) {
  1611. ff_get_unscaled_swscale(c);
  1612. if (c->swscale) {
  1613. if (flags & SWS_PRINT_INFO)
  1614. av_log(c, AV_LOG_INFO,
  1615. "using unscaled %s -> %s special converter\n",
  1616. av_get_pix_fmt_name(srcFormat), av_get_pix_fmt_name(dstFormat));
  1617. return 0;
  1618. }
  1619. }
  1620. c->swscale = ff_getSwsFunc(c);
  1621. return ff_init_filters(c);
  1622. fail: // FIXME replace things by appropriate error codes
  1623. if (ret == RETCODE_USE_CASCADE) {
  1624. int tmpW = sqrt(srcW * (int64_t)dstW);
  1625. int tmpH = sqrt(srcH * (int64_t)dstH);
  1626. enum AVPixelFormat tmpFormat = AV_PIX_FMT_YUV420P;
  1627. if (isALPHA(srcFormat))
  1628. tmpFormat = AV_PIX_FMT_YUVA420P;
  1629. if (srcW*(int64_t)srcH <= 4LL*dstW*dstH)
  1630. return AVERROR(EINVAL);
  1631. ret = av_image_alloc(c->cascaded_tmp, c->cascaded_tmpStride,
  1632. tmpW, tmpH, tmpFormat, 64);
  1633. if (ret < 0)
  1634. return ret;
  1635. c->cascaded_context[0] = sws_getContext(srcW, srcH, srcFormat,
  1636. tmpW, tmpH, tmpFormat,
  1637. flags, srcFilter, NULL, c->param);
  1638. if (!c->cascaded_context[0])
  1639. return -1;
  1640. c->cascaded_context[1] = sws_getContext(tmpW, tmpH, tmpFormat,
  1641. dstW, dstH, dstFormat,
  1642. flags, NULL, dstFilter, c->param);
  1643. if (!c->cascaded_context[1])
  1644. return -1;
  1645. return 0;
  1646. }
  1647. return -1;
  1648. }
  1649. SwsContext *sws_alloc_set_opts(int srcW, int srcH, enum AVPixelFormat srcFormat,
  1650. int dstW, int dstH, enum AVPixelFormat dstFormat,
  1651. int flags, const double *param)
  1652. {
  1653. SwsContext *c;
  1654. if (!(c = sws_alloc_context()))
  1655. return NULL;
  1656. c->flags = flags;
  1657. c->srcW = srcW;
  1658. c->srcH = srcH;
  1659. c->dstW = dstW;
  1660. c->dstH = dstH;
  1661. c->srcFormat = srcFormat;
  1662. c->dstFormat = dstFormat;
  1663. if (param) {
  1664. c->param[0] = param[0];
  1665. c->param[1] = param[1];
  1666. }
  1667. return c;
  1668. }
  1669. SwsContext *sws_getContext(int srcW, int srcH, enum AVPixelFormat srcFormat,
  1670. int dstW, int dstH, enum AVPixelFormat dstFormat,
  1671. int flags, SwsFilter *srcFilter,
  1672. SwsFilter *dstFilter, const double *param)
  1673. {
  1674. SwsContext *c;
  1675. c = sws_alloc_set_opts(srcW, srcH, srcFormat,
  1676. dstW, dstH, dstFormat,
  1677. flags, param);
  1678. if (!c)
  1679. return NULL;
  1680. if (sws_init_context(c, srcFilter, dstFilter) < 0) {
  1681. sws_freeContext(c);
  1682. return NULL;
  1683. }
  1684. return c;
  1685. }
  1686. static int isnan_vec(SwsVector *a)
  1687. {
  1688. int i;
  1689. for (i=0; i<a->length; i++)
  1690. if (isnan(a->coeff[i]))
  1691. return 1;
  1692. return 0;
  1693. }
  1694. static void makenan_vec(SwsVector *a)
  1695. {
  1696. int i;
  1697. for (i=0; i<a->length; i++)
  1698. a->coeff[i] = NAN;
  1699. }
  1700. SwsFilter *sws_getDefaultFilter(float lumaGBlur, float chromaGBlur,
  1701. float lumaSharpen, float chromaSharpen,
  1702. float chromaHShift, float chromaVShift,
  1703. int verbose)
  1704. {
  1705. SwsFilter *filter = av_malloc(sizeof(SwsFilter));
  1706. if (!filter)
  1707. return NULL;
  1708. if (lumaGBlur != 0.0) {
  1709. filter->lumH = sws_getGaussianVec(lumaGBlur, 3.0);
  1710. filter->lumV = sws_getGaussianVec(lumaGBlur, 3.0);
  1711. } else {
  1712. filter->lumH = sws_getIdentityVec();
  1713. filter->lumV = sws_getIdentityVec();
  1714. }
  1715. if (chromaGBlur != 0.0) {
  1716. filter->chrH = sws_getGaussianVec(chromaGBlur, 3.0);
  1717. filter->chrV = sws_getGaussianVec(chromaGBlur, 3.0);
  1718. } else {
  1719. filter->chrH = sws_getIdentityVec();
  1720. filter->chrV = sws_getIdentityVec();
  1721. }
  1722. if (!filter->lumH || !filter->lumV || !filter->chrH || !filter->chrV)
  1723. goto fail;
  1724. if (chromaSharpen != 0.0) {
  1725. SwsVector *id = sws_getIdentityVec();
  1726. if (!id)
  1727. goto fail;
  1728. sws_scaleVec(filter->chrH, -chromaSharpen);
  1729. sws_scaleVec(filter->chrV, -chromaSharpen);
  1730. sws_addVec(filter->chrH, id);
  1731. sws_addVec(filter->chrV, id);
  1732. sws_freeVec(id);
  1733. }
  1734. if (lumaSharpen != 0.0) {
  1735. SwsVector *id = sws_getIdentityVec();
  1736. if (!id)
  1737. goto fail;
  1738. sws_scaleVec(filter->lumH, -lumaSharpen);
  1739. sws_scaleVec(filter->lumV, -lumaSharpen);
  1740. sws_addVec(filter->lumH, id);
  1741. sws_addVec(filter->lumV, id);
  1742. sws_freeVec(id);
  1743. }
  1744. if (chromaHShift != 0.0)
  1745. sws_shiftVec(filter->chrH, (int)(chromaHShift + 0.5));
  1746. if (chromaVShift != 0.0)
  1747. sws_shiftVec(filter->chrV, (int)(chromaVShift + 0.5));
  1748. sws_normalizeVec(filter->chrH, 1.0);
  1749. sws_normalizeVec(filter->chrV, 1.0);
  1750. sws_normalizeVec(filter->lumH, 1.0);
  1751. sws_normalizeVec(filter->lumV, 1.0);
  1752. if (isnan_vec(filter->chrH) ||
  1753. isnan_vec(filter->chrV) ||
  1754. isnan_vec(filter->lumH) ||
  1755. isnan_vec(filter->lumV))
  1756. goto fail;
  1757. if (verbose)
  1758. sws_printVec2(filter->chrH, NULL, AV_LOG_DEBUG);
  1759. if (verbose)
  1760. sws_printVec2(filter->lumH, NULL, AV_LOG_DEBUG);
  1761. return filter;
  1762. fail:
  1763. sws_freeVec(filter->lumH);
  1764. sws_freeVec(filter->lumV);
  1765. sws_freeVec(filter->chrH);
  1766. sws_freeVec(filter->chrV);
  1767. av_freep(&filter);
  1768. return NULL;
  1769. }
  1770. SwsVector *sws_allocVec(int length)
  1771. {
  1772. SwsVector *vec;
  1773. if(length <= 0 || length > INT_MAX/ sizeof(double))
  1774. return NULL;
  1775. vec = av_malloc(sizeof(SwsVector));
  1776. if (!vec)
  1777. return NULL;
  1778. vec->length = length;
  1779. vec->coeff = av_malloc(sizeof(double) * length);
  1780. if (!vec->coeff)
  1781. av_freep(&vec);
  1782. return vec;
  1783. }
  1784. SwsVector *sws_getGaussianVec(double variance, double quality)
  1785. {
  1786. const int length = (int)(variance * quality + 0.5) | 1;
  1787. int i;
  1788. double middle = (length - 1) * 0.5;
  1789. SwsVector *vec;
  1790. if(variance < 0 || quality < 0)
  1791. return NULL;
  1792. vec = sws_allocVec(length);
  1793. if (!vec)
  1794. return NULL;
  1795. for (i = 0; i < length; i++) {
  1796. double dist = i - middle;
  1797. vec->coeff[i] = exp(-dist * dist / (2 * variance * variance)) /
  1798. sqrt(2 * variance * M_PI);
  1799. }
  1800. sws_normalizeVec(vec, 1.0);
  1801. return vec;
  1802. }
  1803. /**
  1804. * Allocate and return a vector with length coefficients, all
  1805. * with the same value c.
  1806. */
  1807. #if !FF_API_SWS_VECTOR
  1808. static
  1809. #endif
  1810. SwsVector *sws_getConstVec(double c, int length)
  1811. {
  1812. int i;
  1813. SwsVector *vec = sws_allocVec(length);
  1814. if (!vec)
  1815. return NULL;
  1816. for (i = 0; i < length; i++)
  1817. vec->coeff[i] = c;
  1818. return vec;
  1819. }
  1820. /**
  1821. * Allocate and return a vector with just one coefficient, with
  1822. * value 1.0.
  1823. */
  1824. #if !FF_API_SWS_VECTOR
  1825. static
  1826. #endif
  1827. SwsVector *sws_getIdentityVec(void)
  1828. {
  1829. return sws_getConstVec(1.0, 1);
  1830. }
  1831. static double sws_dcVec(SwsVector *a)
  1832. {
  1833. int i;
  1834. double sum = 0;
  1835. for (i = 0; i < a->length; i++)
  1836. sum += a->coeff[i];
  1837. return sum;
  1838. }
  1839. void sws_scaleVec(SwsVector *a, double scalar)
  1840. {
  1841. int i;
  1842. for (i = 0; i < a->length; i++)
  1843. a->coeff[i] *= scalar;
  1844. }
  1845. void sws_normalizeVec(SwsVector *a, double height)
  1846. {
  1847. sws_scaleVec(a, height / sws_dcVec(a));
  1848. }
  1849. #if FF_API_SWS_VECTOR
  1850. static SwsVector *sws_getConvVec(SwsVector *a, SwsVector *b)
  1851. {
  1852. int length = a->length + b->length - 1;
  1853. int i, j;
  1854. SwsVector *vec = sws_getConstVec(0.0, length);
  1855. if (!vec)
  1856. return NULL;
  1857. for (i = 0; i < a->length; i++) {
  1858. for (j = 0; j < b->length; j++) {
  1859. vec->coeff[i + j] += a->coeff[i] * b->coeff[j];
  1860. }
  1861. }
  1862. return vec;
  1863. }
  1864. #endif
  1865. static SwsVector *sws_sumVec(SwsVector *a, SwsVector *b)
  1866. {
  1867. int length = FFMAX(a->length, b->length);
  1868. int i;
  1869. SwsVector *vec = sws_getConstVec(0.0, length);
  1870. if (!vec)
  1871. return NULL;
  1872. for (i = 0; i < a->length; i++)
  1873. vec->coeff[i + (length - 1) / 2 - (a->length - 1) / 2] += a->coeff[i];
  1874. for (i = 0; i < b->length; i++)
  1875. vec->coeff[i + (length - 1) / 2 - (b->length - 1) / 2] += b->coeff[i];
  1876. return vec;
  1877. }
  1878. #if FF_API_SWS_VECTOR
  1879. static SwsVector *sws_diffVec(SwsVector *a, SwsVector *b)
  1880. {
  1881. int length = FFMAX(a->length, b->length);
  1882. int i;
  1883. SwsVector *vec = sws_getConstVec(0.0, length);
  1884. if (!vec)
  1885. return NULL;
  1886. for (i = 0; i < a->length; i++)
  1887. vec->coeff[i + (length - 1) / 2 - (a->length - 1) / 2] += a->coeff[i];
  1888. for (i = 0; i < b->length; i++)
  1889. vec->coeff[i + (length - 1) / 2 - (b->length - 1) / 2] -= b->coeff[i];
  1890. return vec;
  1891. }
  1892. #endif
  1893. /* shift left / or right if "shift" is negative */
  1894. static SwsVector *sws_getShiftedVec(SwsVector *a, int shift)
  1895. {
  1896. int length = a->length + FFABS(shift) * 2;
  1897. int i;
  1898. SwsVector *vec = sws_getConstVec(0.0, length);
  1899. if (!vec)
  1900. return NULL;
  1901. for (i = 0; i < a->length; i++) {
  1902. vec->coeff[i + (length - 1) / 2 -
  1903. (a->length - 1) / 2 - shift] = a->coeff[i];
  1904. }
  1905. return vec;
  1906. }
  1907. #if !FF_API_SWS_VECTOR
  1908. static
  1909. #endif
  1910. void sws_shiftVec(SwsVector *a, int shift)
  1911. {
  1912. SwsVector *shifted = sws_getShiftedVec(a, shift);
  1913. if (!shifted) {
  1914. makenan_vec(a);
  1915. return;
  1916. }
  1917. av_free(a->coeff);
  1918. a->coeff = shifted->coeff;
  1919. a->length = shifted->length;
  1920. av_free(shifted);
  1921. }
  1922. #if !FF_API_SWS_VECTOR
  1923. static
  1924. #endif
  1925. void sws_addVec(SwsVector *a, SwsVector *b)
  1926. {
  1927. SwsVector *sum = sws_sumVec(a, b);
  1928. if (!sum) {
  1929. makenan_vec(a);
  1930. return;
  1931. }
  1932. av_free(a->coeff);
  1933. a->coeff = sum->coeff;
  1934. a->length = sum->length;
  1935. av_free(sum);
  1936. }
  1937. #if FF_API_SWS_VECTOR
  1938. void sws_subVec(SwsVector *a, SwsVector *b)
  1939. {
  1940. SwsVector *diff = sws_diffVec(a, b);
  1941. if (!diff) {
  1942. makenan_vec(a);
  1943. return;
  1944. }
  1945. av_free(a->coeff);
  1946. a->coeff = diff->coeff;
  1947. a->length = diff->length;
  1948. av_free(diff);
  1949. }
  1950. void sws_convVec(SwsVector *a, SwsVector *b)
  1951. {
  1952. SwsVector *conv = sws_getConvVec(a, b);
  1953. if (!conv) {
  1954. makenan_vec(a);
  1955. return;
  1956. }
  1957. av_free(a->coeff);
  1958. a->coeff = conv->coeff;
  1959. a->length = conv->length;
  1960. av_free(conv);
  1961. }
  1962. SwsVector *sws_cloneVec(SwsVector *a)
  1963. {
  1964. SwsVector *vec = sws_allocVec(a->length);
  1965. if (!vec)
  1966. return NULL;
  1967. memcpy(vec->coeff, a->coeff, a->length * sizeof(*a->coeff));
  1968. return vec;
  1969. }
  1970. #endif
  1971. /**
  1972. * Print with av_log() a textual representation of the vector a
  1973. * if log_level <= av_log_level.
  1974. */
  1975. #if !FF_API_SWS_VECTOR
  1976. static
  1977. #endif
  1978. void sws_printVec2(SwsVector *a, AVClass *log_ctx, int log_level)
  1979. {
  1980. int i;
  1981. double max = 0;
  1982. double min = 0;
  1983. double range;
  1984. for (i = 0; i < a->length; i++)
  1985. if (a->coeff[i] > max)
  1986. max = a->coeff[i];
  1987. for (i = 0; i < a->length; i++)
  1988. if (a->coeff[i] < min)
  1989. min = a->coeff[i];
  1990. range = max - min;
  1991. for (i = 0; i < a->length; i++) {
  1992. int x = (int)((a->coeff[i] - min) * 60.0 / range + 0.5);
  1993. av_log(log_ctx, log_level, "%1.3f ", a->coeff[i]);
  1994. for (; x > 0; x--)
  1995. av_log(log_ctx, log_level, " ");
  1996. av_log(log_ctx, log_level, "|\n");
  1997. }
  1998. }
  1999. void sws_freeVec(SwsVector *a)
  2000. {
  2001. if (!a)
  2002. return;
  2003. av_freep(&a->coeff);
  2004. a->length = 0;
  2005. av_free(a);
  2006. }
  2007. void sws_freeFilter(SwsFilter *filter)
  2008. {
  2009. if (!filter)
  2010. return;
  2011. sws_freeVec(filter->lumH);
  2012. sws_freeVec(filter->lumV);
  2013. sws_freeVec(filter->chrH);
  2014. sws_freeVec(filter->chrV);
  2015. av_free(filter);
  2016. }
  2017. void sws_freeContext(SwsContext *c)
  2018. {
  2019. int i;
  2020. if (!c)
  2021. return;
  2022. for (i = 0; i < 4; i++)
  2023. av_freep(&c->dither_error[i]);
  2024. av_freep(&c->vLumFilter);
  2025. av_freep(&c->vChrFilter);
  2026. av_freep(&c->hLumFilter);
  2027. av_freep(&c->hChrFilter);
  2028. #if HAVE_ALTIVEC
  2029. av_freep(&c->vYCoeffsBank);
  2030. av_freep(&c->vCCoeffsBank);
  2031. #endif
  2032. av_freep(&c->vLumFilterPos);
  2033. av_freep(&c->vChrFilterPos);
  2034. av_freep(&c->hLumFilterPos);
  2035. av_freep(&c->hChrFilterPos);
  2036. #if HAVE_MMX_INLINE
  2037. #if USE_MMAP
  2038. if (c->lumMmxextFilterCode)
  2039. munmap(c->lumMmxextFilterCode, c->lumMmxextFilterCodeSize);
  2040. if (c->chrMmxextFilterCode)
  2041. munmap(c->chrMmxextFilterCode, c->chrMmxextFilterCodeSize);
  2042. #elif HAVE_VIRTUALALLOC
  2043. if (c->lumMmxextFilterCode)
  2044. VirtualFree(c->lumMmxextFilterCode, 0, MEM_RELEASE);
  2045. if (c->chrMmxextFilterCode)
  2046. VirtualFree(c->chrMmxextFilterCode, 0, MEM_RELEASE);
  2047. #else
  2048. av_free(c->lumMmxextFilterCode);
  2049. av_free(c->chrMmxextFilterCode);
  2050. #endif
  2051. c->lumMmxextFilterCode = NULL;
  2052. c->chrMmxextFilterCode = NULL;
  2053. #endif /* HAVE_MMX_INLINE */
  2054. av_freep(&c->yuvTable);
  2055. av_freep(&c->formatConvBuffer);
  2056. sws_freeContext(c->cascaded_context[0]);
  2057. sws_freeContext(c->cascaded_context[1]);
  2058. sws_freeContext(c->cascaded_context[2]);
  2059. memset(c->cascaded_context, 0, sizeof(c->cascaded_context));
  2060. av_freep(&c->cascaded_tmp[0]);
  2061. av_freep(&c->cascaded1_tmp[0]);
  2062. av_freep(&c->gamma);
  2063. av_freep(&c->inv_gamma);
  2064. ff_free_filters(c);
  2065. av_free(c);
  2066. }
  2067. struct SwsContext *sws_getCachedContext(struct SwsContext *context, int srcW,
  2068. int srcH, enum AVPixelFormat srcFormat,
  2069. int dstW, int dstH,
  2070. enum AVPixelFormat dstFormat, int flags,
  2071. SwsFilter *srcFilter,
  2072. SwsFilter *dstFilter,
  2073. const double *param)
  2074. {
  2075. static const double default_param[2] = { SWS_PARAM_DEFAULT,
  2076. SWS_PARAM_DEFAULT };
  2077. int64_t src_h_chr_pos = -513, dst_h_chr_pos = -513,
  2078. src_v_chr_pos = -513, dst_v_chr_pos = -513;
  2079. if (!param)
  2080. param = default_param;
  2081. if (context &&
  2082. (context->srcW != srcW ||
  2083. context->srcH != srcH ||
  2084. context->srcFormat != srcFormat ||
  2085. context->dstW != dstW ||
  2086. context->dstH != dstH ||
  2087. context->dstFormat != dstFormat ||
  2088. context->flags != flags ||
  2089. context->param[0] != param[0] ||
  2090. context->param[1] != param[1])) {
  2091. av_opt_get_int(context, "src_h_chr_pos", 0, &src_h_chr_pos);
  2092. av_opt_get_int(context, "src_v_chr_pos", 0, &src_v_chr_pos);
  2093. av_opt_get_int(context, "dst_h_chr_pos", 0, &dst_h_chr_pos);
  2094. av_opt_get_int(context, "dst_v_chr_pos", 0, &dst_v_chr_pos);
  2095. sws_freeContext(context);
  2096. context = NULL;
  2097. }
  2098. if (!context) {
  2099. if (!(context = sws_alloc_context()))
  2100. return NULL;
  2101. context->srcW = srcW;
  2102. context->srcH = srcH;
  2103. context->srcFormat = srcFormat;
  2104. context->dstW = dstW;
  2105. context->dstH = dstH;
  2106. context->dstFormat = dstFormat;
  2107. context->flags = flags;
  2108. context->param[0] = param[0];
  2109. context->param[1] = param[1];
  2110. av_opt_set_int(context, "src_h_chr_pos", src_h_chr_pos, 0);
  2111. av_opt_set_int(context, "src_v_chr_pos", src_v_chr_pos, 0);
  2112. av_opt_set_int(context, "dst_h_chr_pos", dst_h_chr_pos, 0);
  2113. av_opt_set_int(context, "dst_v_chr_pos", dst_v_chr_pos, 0);
  2114. if (sws_init_context(context, srcFilter, dstFilter) < 0) {
  2115. sws_freeContext(context);
  2116. return NULL;
  2117. }
  2118. }
  2119. return context;
  2120. }