You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

752 lines
21KB

  1. /*
  2. * Copyright (c) 2017 Paul B Mahol
  3. *
  4. * This file is part of FFmpeg.
  5. *
  6. * FFmpeg is free software; you can redistribute it and/or
  7. * modify it under the terms of the GNU Lesser General Public
  8. * License as published by the Free Software Foundation; either
  9. * version 2.1 of the License, or (at your option) any later version.
  10. *
  11. * FFmpeg is distributed in the hope that it will be useful,
  12. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  13. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  14. * Lesser General Public License for more details.
  15. *
  16. * You should have received a copy of the GNU Lesser General Public
  17. * License along with FFmpeg; if not, write to the Free Software
  18. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  19. */
  20. /**
  21. * @file
  22. * An arbitrary audio FIR filter
  23. */
  24. #include <float.h>
  25. #include "libavutil/audio_fifo.h"
  26. #include "libavutil/common.h"
  27. #include "libavutil/float_dsp.h"
  28. #include "libavutil/intreadwrite.h"
  29. #include "libavutil/opt.h"
  30. #include "libavutil/xga_font_data.h"
  31. #include "libavcodec/avfft.h"
  32. #include "audio.h"
  33. #include "avfilter.h"
  34. #include "filters.h"
  35. #include "formats.h"
  36. #include "internal.h"
  37. #include "af_afir.h"
  38. static void fcmul_add_c(float *sum, const float *t, const float *c, ptrdiff_t len)
  39. {
  40. int n;
  41. for (n = 0; n < len; n++) {
  42. const float cre = c[2 * n ];
  43. const float cim = c[2 * n + 1];
  44. const float tre = t[2 * n ];
  45. const float tim = t[2 * n + 1];
  46. sum[2 * n ] += tre * cre - tim * cim;
  47. sum[2 * n + 1] += tre * cim + tim * cre;
  48. }
  49. sum[2 * n] += t[2 * n] * c[2 * n];
  50. }
  51. static int fir_channel(AVFilterContext *ctx, void *arg, int ch, int nb_jobs)
  52. {
  53. AudioFIRContext *s = ctx->priv;
  54. const float *src = (const float *)s->in[0]->extended_data[ch];
  55. int index1 = (s->index + 1) % 3;
  56. int index2 = (s->index + 2) % 3;
  57. float *sum = s->sum[ch];
  58. AVFrame *out = arg;
  59. float *block;
  60. float *dst;
  61. int n, i, j;
  62. memset(sum, 0, sizeof(*sum) * s->fft_length);
  63. block = s->block[ch] + s->part_index * s->block_size;
  64. memset(block, 0, sizeof(*block) * s->fft_length);
  65. s->fdsp->vector_fmul_scalar(block + s->part_size, src, s->dry_gain, FFALIGN(s->nb_samples, 4));
  66. emms_c();
  67. av_rdft_calc(s->rdft[ch], block);
  68. block[2 * s->part_size] = block[1];
  69. block[1] = 0;
  70. j = s->part_index;
  71. for (i = 0; i < s->nb_partitions; i++) {
  72. const int coffset = i * s->coeff_size;
  73. const FFTComplex *coeff = s->coeff[ch * !s->one2many] + coffset;
  74. block = s->block[ch] + j * s->block_size;
  75. s->fcmul_add(sum, block, (const float *)coeff, s->part_size);
  76. if (j == 0)
  77. j = s->nb_partitions;
  78. j--;
  79. }
  80. sum[1] = sum[2 * s->part_size];
  81. av_rdft_calc(s->irdft[ch], sum);
  82. dst = (float *)s->buffer->extended_data[ch] + index1 * s->part_size;
  83. for (n = 0; n < s->part_size; n++) {
  84. dst[n] += sum[n];
  85. }
  86. dst = (float *)s->buffer->extended_data[ch] + index2 * s->part_size;
  87. memcpy(dst, sum + s->part_size, s->part_size * sizeof(*dst));
  88. dst = (float *)s->buffer->extended_data[ch] + s->index * s->part_size;
  89. if (out) {
  90. float *ptr = (float *)out->extended_data[ch];
  91. s->fdsp->vector_fmul_scalar(ptr, dst, s->wet_gain, FFALIGN(out->nb_samples, 4));
  92. emms_c();
  93. }
  94. return 0;
  95. }
  96. static int fir_frame(AudioFIRContext *s, AVFrame *in, AVFilterLink *outlink)
  97. {
  98. AVFilterContext *ctx = outlink->src;
  99. AVFrame *out = NULL;
  100. int ret;
  101. s->nb_samples = in->nb_samples;
  102. if (!s->want_skip) {
  103. out = ff_get_audio_buffer(outlink, s->nb_samples);
  104. if (!out)
  105. return AVERROR(ENOMEM);
  106. }
  107. if (s->pts == AV_NOPTS_VALUE)
  108. s->pts = in->pts;
  109. s->in[0] = in;
  110. ctx->internal->execute(ctx, fir_channel, out, NULL, outlink->channels);
  111. s->part_index = (s->part_index + 1) % s->nb_partitions;
  112. if (!s->want_skip) {
  113. out->pts = s->pts;
  114. if (s->pts != AV_NOPTS_VALUE)
  115. s->pts += av_rescale_q(out->nb_samples, (AVRational){1, outlink->sample_rate}, outlink->time_base);
  116. }
  117. s->index++;
  118. if (s->index == 3)
  119. s->index = 0;
  120. av_frame_free(&in);
  121. if (s->want_skip == 1) {
  122. s->want_skip = 0;
  123. ret = 0;
  124. } else {
  125. ret = ff_filter_frame(outlink, out);
  126. }
  127. return ret;
  128. }
  129. static void drawtext(AVFrame *pic, int x, int y, const char *txt, uint32_t color)
  130. {
  131. const uint8_t *font;
  132. int font_height;
  133. int i;
  134. font = avpriv_cga_font, font_height = 8;
  135. for (i = 0; txt[i]; i++) {
  136. int char_y, mask;
  137. uint8_t *p = pic->data[0] + y * pic->linesize[0] + (x + i * 8) * 4;
  138. for (char_y = 0; char_y < font_height; char_y++) {
  139. for (mask = 0x80; mask; mask >>= 1) {
  140. if (font[txt[i] * font_height + char_y] & mask)
  141. AV_WL32(p, color);
  142. p += 4;
  143. }
  144. p += pic->linesize[0] - 8 * 4;
  145. }
  146. }
  147. }
  148. static void draw_line(AVFrame *out, int x0, int y0, int x1, int y1, uint32_t color)
  149. {
  150. int dx = FFABS(x1-x0);
  151. int dy = FFABS(y1-y0), sy = y0 < y1 ? 1 : -1;
  152. int err = (dx>dy ? dx : -dy) / 2, e2;
  153. for (;;) {
  154. AV_WL32(out->data[0] + y0 * out->linesize[0] + x0 * 4, color);
  155. if (x0 == x1 && y0 == y1)
  156. break;
  157. e2 = err;
  158. if (e2 >-dx) {
  159. err -= dy;
  160. x0--;
  161. }
  162. if (e2 < dy) {
  163. err += dx;
  164. y0 += sy;
  165. }
  166. }
  167. }
  168. static void draw_response(AVFilterContext *ctx, AVFrame *out)
  169. {
  170. AudioFIRContext *s = ctx->priv;
  171. float *mag, *phase, min = FLT_MAX, max = FLT_MIN;
  172. int prev_ymag = -1, prev_yphase = -1;
  173. char text[32];
  174. int channel, i, x;
  175. memset(out->data[0], 0, s->h * out->linesize[0]);
  176. phase = av_malloc_array(s->w, sizeof(*phase));
  177. mag = av_malloc_array(s->w, sizeof(*mag));
  178. if (!mag || !phase)
  179. goto end;
  180. channel = av_clip(s->ir_channel, 0, s->in[1]->channels - 1);
  181. for (i = 0; i < s->w; i++) {
  182. const float *src = (const float *)s->in[1]->extended_data[channel];
  183. double w = i * M_PI / (s->w - 1);
  184. double real = 0.;
  185. double imag = 0.;
  186. for (x = 0; x < s->nb_taps; x++) {
  187. real += cos(-x * w) * src[x];
  188. imag += sin(-x * w) * src[x];
  189. }
  190. mag[i] = hypot(real, imag);
  191. phase[i] = atan2(imag, real);
  192. min = fminf(min, mag[i]);
  193. max = fmaxf(max, mag[i]);
  194. }
  195. for (i = 0; i < s->w; i++) {
  196. int ymag = mag[i] / max * (s->h - 1);
  197. int yphase = (0.5 * (1. + phase[i] / M_PI)) * (s->h - 1);
  198. ymag = s->h - 1 - av_clip(ymag, 0, s->h - 1);
  199. yphase = s->h - 1 - av_clip(yphase, 0, s->h - 1);
  200. if (prev_ymag < 0)
  201. prev_ymag = ymag;
  202. if (prev_yphase < 0)
  203. prev_yphase = yphase;
  204. draw_line(out, i, ymag, FFMAX(i - 1, 0), prev_ymag, 0xFFFF00FF);
  205. draw_line(out, i, yphase, FFMAX(i - 1, 0), prev_yphase, 0xFF00FF00);
  206. prev_ymag = ymag;
  207. prev_yphase = yphase;
  208. }
  209. if (s->w > 400 && s->h > 100) {
  210. drawtext(out, 2, 2, "Max Magnitude:", 0xDDDDDDDD);
  211. snprintf(text, sizeof(text), "%.2f", max);
  212. drawtext(out, 15 * 8 + 2, 2, text, 0xDDDDDDDD);
  213. drawtext(out, 2, 12, "Min Magnitude:", 0xDDDDDDDD);
  214. snprintf(text, sizeof(text), "%.2f", min);
  215. drawtext(out, 15 * 8 + 2, 12, text, 0xDDDDDDDD);
  216. }
  217. end:
  218. av_free(phase);
  219. av_free(mag);
  220. }
  221. static int convert_coeffs(AVFilterContext *ctx)
  222. {
  223. AudioFIRContext *s = ctx->priv;
  224. int i, ch, n, N;
  225. s->nb_taps = av_audio_fifo_size(s->fifo);
  226. if (s->nb_taps <= 0)
  227. return AVERROR(EINVAL);
  228. for (n = 4; (1 << n) < s->nb_taps; n++);
  229. N = FFMIN(n, 16);
  230. s->ir_length = 1 << n;
  231. s->fft_length = (1 << (N + 1)) + 1;
  232. s->part_size = 1 << (N - 1);
  233. s->block_size = FFALIGN(s->fft_length, 32);
  234. s->coeff_size = FFALIGN(s->part_size + 1, 32);
  235. s->nb_partitions = (s->nb_taps + s->part_size - 1) / s->part_size;
  236. s->nb_coeffs = s->ir_length + s->nb_partitions;
  237. for (ch = 0; ch < ctx->inputs[0]->channels; ch++) {
  238. s->sum[ch] = av_calloc(s->fft_length, sizeof(**s->sum));
  239. if (!s->sum[ch])
  240. return AVERROR(ENOMEM);
  241. }
  242. for (ch = 0; ch < ctx->inputs[1]->channels; ch++) {
  243. s->coeff[ch] = av_calloc(s->nb_partitions * s->coeff_size, sizeof(**s->coeff));
  244. if (!s->coeff[ch])
  245. return AVERROR(ENOMEM);
  246. }
  247. for (ch = 0; ch < ctx->inputs[0]->channels; ch++) {
  248. s->block[ch] = av_calloc(s->nb_partitions * s->block_size, sizeof(**s->block));
  249. if (!s->block[ch])
  250. return AVERROR(ENOMEM);
  251. }
  252. for (ch = 0; ch < ctx->inputs[0]->channels; ch++) {
  253. s->rdft[ch] = av_rdft_init(N, DFT_R2C);
  254. s->irdft[ch] = av_rdft_init(N, IDFT_C2R);
  255. if (!s->rdft[ch] || !s->irdft[ch])
  256. return AVERROR(ENOMEM);
  257. }
  258. s->in[1] = ff_get_audio_buffer(ctx->inputs[1], s->nb_taps);
  259. if (!s->in[1])
  260. return AVERROR(ENOMEM);
  261. s->buffer = ff_get_audio_buffer(ctx->inputs[0], s->part_size * 3);
  262. if (!s->buffer)
  263. return AVERROR(ENOMEM);
  264. av_audio_fifo_read(s->fifo, (void **)s->in[1]->extended_data, s->nb_taps);
  265. if (s->response)
  266. draw_response(ctx, s->video);
  267. if (s->again) {
  268. float power = 0;
  269. for (ch = 0; ch < ctx->inputs[1]->channels; ch++) {
  270. float *time = (float *)s->in[1]->extended_data[!s->one2many * ch];
  271. for (i = 0; i < s->nb_taps; i++)
  272. power += FFABS(time[i]);
  273. }
  274. s->gain = sqrtf(1.f / (ctx->inputs[1]->channels * power)) / (sqrtf(ctx->inputs[1]->channels));
  275. for (ch = 0; ch < ctx->inputs[1]->channels; ch++) {
  276. float *time = (float *)s->in[1]->extended_data[!s->one2many * ch];
  277. s->fdsp->vector_fmul_scalar(time, time, s->gain, FFALIGN(s->nb_taps, 4));
  278. }
  279. }
  280. for (ch = 0; ch < ctx->inputs[1]->channels; ch++) {
  281. float *time = (float *)s->in[1]->extended_data[!s->one2many * ch];
  282. float *block = s->block[ch];
  283. FFTComplex *coeff = s->coeff[ch];
  284. for (i = FFMAX(1, s->length * s->nb_taps); i < s->nb_taps; i++)
  285. time[i] = 0;
  286. for (i = 0; i < s->nb_partitions; i++) {
  287. const float scale = 1.f / s->part_size;
  288. const int toffset = i * s->part_size;
  289. const int coffset = i * s->coeff_size;
  290. const int boffset = s->part_size;
  291. const int remaining = s->nb_taps - (i * s->part_size);
  292. const int size = remaining >= s->part_size ? s->part_size : remaining;
  293. memset(block, 0, sizeof(*block) * s->fft_length);
  294. memcpy(block + boffset, time + toffset, size * sizeof(*block));
  295. av_rdft_calc(s->rdft[0], block);
  296. coeff[coffset].re = block[0] * scale;
  297. coeff[coffset].im = 0;
  298. for (n = 1; n < s->part_size; n++) {
  299. coeff[coffset + n].re = block[2 * n] * scale;
  300. coeff[coffset + n].im = block[2 * n + 1] * scale;
  301. }
  302. coeff[coffset + s->part_size].re = block[1] * scale;
  303. coeff[coffset + s->part_size].im = 0;
  304. }
  305. }
  306. av_frame_free(&s->in[1]);
  307. av_log(ctx, AV_LOG_DEBUG, "nb_taps: %d\n", s->nb_taps);
  308. av_log(ctx, AV_LOG_DEBUG, "nb_partitions: %d\n", s->nb_partitions);
  309. av_log(ctx, AV_LOG_DEBUG, "partition size: %d\n", s->part_size);
  310. av_log(ctx, AV_LOG_DEBUG, "ir_length: %d\n", s->ir_length);
  311. s->have_coeffs = 1;
  312. return 0;
  313. }
  314. static int read_ir(AVFilterLink *link, AVFrame *frame)
  315. {
  316. AVFilterContext *ctx = link->dst;
  317. AudioFIRContext *s = ctx->priv;
  318. int nb_taps, max_nb_taps, ret;
  319. ret = av_audio_fifo_write(s->fifo, (void **)frame->extended_data,
  320. frame->nb_samples);
  321. av_frame_free(&frame);
  322. if (ret < 0)
  323. return ret;
  324. nb_taps = av_audio_fifo_size(s->fifo);
  325. max_nb_taps = s->max_ir_len * ctx->outputs[0]->sample_rate;
  326. if (nb_taps > max_nb_taps) {
  327. av_log(ctx, AV_LOG_ERROR, "Too big number of coefficients: %d > %d.\n", nb_taps, max_nb_taps);
  328. return AVERROR(EINVAL);
  329. }
  330. return 0;
  331. }
  332. static int activate(AVFilterContext *ctx)
  333. {
  334. AudioFIRContext *s = ctx->priv;
  335. AVFilterLink *outlink = ctx->outputs[0];
  336. AVFrame *in = NULL;
  337. int ret, status;
  338. int64_t pts;
  339. FF_FILTER_FORWARD_STATUS_BACK_ALL(ctx->outputs[0], ctx);
  340. if (s->response)
  341. FF_FILTER_FORWARD_STATUS_BACK_ALL(ctx->outputs[1], ctx);
  342. if (!s->eof_coeffs) {
  343. AVFrame *ir = NULL;
  344. if ((ret = ff_inlink_consume_frame(ctx->inputs[1], &ir)) > 0) {
  345. ret = read_ir(ctx->inputs[1], ir);
  346. if (ret < 0)
  347. return ret;
  348. }
  349. if (ret < 0)
  350. return ret;
  351. if (ff_inlink_acknowledge_status(ctx->inputs[1], &status, &pts)) {
  352. if (status == AVERROR_EOF) {
  353. s->eof_coeffs = 1;
  354. }
  355. }
  356. if (!s->eof_coeffs) {
  357. if (ff_outlink_frame_wanted(ctx->outputs[0]))
  358. ff_inlink_request_frame(ctx->inputs[1]);
  359. return 0;
  360. }
  361. }
  362. if (!s->have_coeffs && s->eof_coeffs) {
  363. ret = convert_coeffs(ctx);
  364. if (ret < 0)
  365. return ret;
  366. }
  367. if (s->need_padding) {
  368. in = ff_get_audio_buffer(outlink, s->part_size);
  369. if (!in)
  370. return AVERROR(ENOMEM);
  371. s->need_padding = 0;
  372. ret = 1;
  373. } else {
  374. ret = ff_inlink_consume_samples(ctx->inputs[0], s->part_size, s->part_size, &in);
  375. }
  376. if (ret > 0) {
  377. ret = fir_frame(s, in, outlink);
  378. if (ret < 0)
  379. return ret;
  380. }
  381. if (ret < 0)
  382. return ret;
  383. if (s->response && s->have_coeffs) {
  384. if (ff_outlink_frame_wanted(ctx->outputs[1])) {
  385. s->video->pts = s->pts;
  386. ret = ff_filter_frame(ctx->outputs[1], av_frame_clone(s->video));
  387. if (ret < 0)
  388. return ret;
  389. }
  390. }
  391. if (ff_inlink_acknowledge_status(ctx->inputs[0], &status, &pts)) {
  392. if (status == AVERROR_EOF) {
  393. ff_outlink_set_status(ctx->outputs[0], status, pts);
  394. if (s->response)
  395. ff_outlink_set_status(ctx->outputs[1], status, pts);
  396. return 0;
  397. }
  398. }
  399. if (ff_outlink_frame_wanted(ctx->outputs[0])) {
  400. ff_inlink_request_frame(ctx->inputs[0]);
  401. return 0;
  402. }
  403. if (s->response && ff_outlink_frame_wanted(ctx->outputs[1])) {
  404. ff_inlink_request_frame(ctx->inputs[0]);
  405. return 0;
  406. }
  407. return 0;
  408. }
  409. static int query_formats(AVFilterContext *ctx)
  410. {
  411. AudioFIRContext *s = ctx->priv;
  412. AVFilterFormats *formats;
  413. AVFilterChannelLayouts *layouts;
  414. static const enum AVSampleFormat sample_fmts[] = {
  415. AV_SAMPLE_FMT_FLTP,
  416. AV_SAMPLE_FMT_NONE
  417. };
  418. static const enum AVPixelFormat pix_fmts[] = {
  419. AV_PIX_FMT_RGB0,
  420. AV_PIX_FMT_NONE
  421. };
  422. int ret, i;
  423. if (s->response) {
  424. AVFilterLink *videolink = ctx->outputs[1];
  425. formats = ff_make_format_list(pix_fmts);
  426. if ((ret = ff_formats_ref(formats, &videolink->in_formats)) < 0)
  427. return ret;
  428. }
  429. layouts = ff_all_channel_counts();
  430. if ((ret = ff_channel_layouts_ref(layouts, &ctx->outputs[0]->in_channel_layouts)) < 0)
  431. return ret;
  432. for (i = 0; i < 2; i++) {
  433. layouts = ff_all_channel_counts();
  434. if ((ret = ff_channel_layouts_ref(layouts, &ctx->inputs[i]->out_channel_layouts)) < 0)
  435. return ret;
  436. }
  437. formats = ff_make_format_list(sample_fmts);
  438. if ((ret = ff_set_common_formats(ctx, formats)) < 0)
  439. return ret;
  440. formats = ff_all_samplerates();
  441. return ff_set_common_samplerates(ctx, formats);
  442. }
  443. static int config_output(AVFilterLink *outlink)
  444. {
  445. AVFilterContext *ctx = outlink->src;
  446. AudioFIRContext *s = ctx->priv;
  447. if (ctx->inputs[0]->channels != ctx->inputs[1]->channels &&
  448. ctx->inputs[1]->channels != 1) {
  449. av_log(ctx, AV_LOG_ERROR,
  450. "Second input must have same number of channels as first input or "
  451. "exactly 1 channel.\n");
  452. return AVERROR(EINVAL);
  453. }
  454. s->one2many = ctx->inputs[1]->channels == 1;
  455. outlink->sample_rate = ctx->inputs[0]->sample_rate;
  456. outlink->time_base = ctx->inputs[0]->time_base;
  457. outlink->channel_layout = ctx->inputs[0]->channel_layout;
  458. outlink->channels = ctx->inputs[0]->channels;
  459. s->fifo = av_audio_fifo_alloc(ctx->inputs[1]->format, ctx->inputs[1]->channels, 1024);
  460. if (!s->fifo)
  461. return AVERROR(ENOMEM);
  462. s->sum = av_calloc(outlink->channels, sizeof(*s->sum));
  463. s->coeff = av_calloc(ctx->inputs[1]->channels, sizeof(*s->coeff));
  464. s->block = av_calloc(ctx->inputs[0]->channels, sizeof(*s->block));
  465. s->rdft = av_calloc(outlink->channels, sizeof(*s->rdft));
  466. s->irdft = av_calloc(outlink->channels, sizeof(*s->irdft));
  467. if (!s->sum || !s->coeff || !s->block || !s->rdft || !s->irdft)
  468. return AVERROR(ENOMEM);
  469. s->nb_channels = outlink->channels;
  470. s->nb_coef_channels = ctx->inputs[1]->channels;
  471. s->want_skip = 1;
  472. s->need_padding = 1;
  473. s->pts = AV_NOPTS_VALUE;
  474. return 0;
  475. }
  476. static av_cold void uninit(AVFilterContext *ctx)
  477. {
  478. AudioFIRContext *s = ctx->priv;
  479. int ch;
  480. if (s->sum) {
  481. for (ch = 0; ch < s->nb_channels; ch++) {
  482. av_freep(&s->sum[ch]);
  483. }
  484. }
  485. av_freep(&s->sum);
  486. if (s->coeff) {
  487. for (ch = 0; ch < s->nb_coef_channels; ch++) {
  488. av_freep(&s->coeff[ch]);
  489. }
  490. }
  491. av_freep(&s->coeff);
  492. if (s->block) {
  493. for (ch = 0; ch < s->nb_channels; ch++) {
  494. av_freep(&s->block[ch]);
  495. }
  496. }
  497. av_freep(&s->block);
  498. if (s->rdft) {
  499. for (ch = 0; ch < s->nb_channels; ch++) {
  500. av_rdft_end(s->rdft[ch]);
  501. }
  502. }
  503. av_freep(&s->rdft);
  504. if (s->irdft) {
  505. for (ch = 0; ch < s->nb_channels; ch++) {
  506. av_rdft_end(s->irdft[ch]);
  507. }
  508. }
  509. av_freep(&s->irdft);
  510. av_frame_free(&s->in[1]);
  511. av_frame_free(&s->buffer);
  512. av_audio_fifo_free(s->fifo);
  513. av_freep(&s->fdsp);
  514. for (int i = 0; i < ctx->nb_outputs; i++)
  515. av_freep(&ctx->output_pads[i].name);
  516. av_frame_free(&s->video);
  517. }
  518. static int config_video(AVFilterLink *outlink)
  519. {
  520. AVFilterContext *ctx = outlink->src;
  521. AudioFIRContext *s = ctx->priv;
  522. outlink->sample_aspect_ratio = (AVRational){1,1};
  523. outlink->w = s->w;
  524. outlink->h = s->h;
  525. av_frame_free(&s->video);
  526. s->video = ff_get_video_buffer(outlink, outlink->w, outlink->h);
  527. if (!s->video)
  528. return AVERROR(ENOMEM);
  529. return 0;
  530. }
  531. static av_cold int init(AVFilterContext *ctx)
  532. {
  533. AudioFIRContext *s = ctx->priv;
  534. AVFilterPad pad, vpad;
  535. int ret;
  536. pad = (AVFilterPad){
  537. .name = av_strdup("default"),
  538. .type = AVMEDIA_TYPE_AUDIO,
  539. .config_props = config_output,
  540. };
  541. if (!pad.name)
  542. return AVERROR(ENOMEM);
  543. if (s->response) {
  544. vpad = (AVFilterPad){
  545. .name = av_strdup("filter_response"),
  546. .type = AVMEDIA_TYPE_VIDEO,
  547. .config_props = config_video,
  548. };
  549. if (!vpad.name)
  550. return AVERROR(ENOMEM);
  551. }
  552. ret = ff_insert_outpad(ctx, 0, &pad);
  553. if (ret < 0) {
  554. av_freep(&pad.name);
  555. return ret;
  556. }
  557. if (s->response) {
  558. ret = ff_insert_outpad(ctx, 1, &vpad);
  559. if (ret < 0) {
  560. av_freep(&vpad.name);
  561. return ret;
  562. }
  563. }
  564. s->fcmul_add = fcmul_add_c;
  565. s->fdsp = avpriv_float_dsp_alloc(0);
  566. if (!s->fdsp)
  567. return AVERROR(ENOMEM);
  568. if (ARCH_X86)
  569. ff_afir_init_x86(s);
  570. return 0;
  571. }
  572. static const AVFilterPad afir_inputs[] = {
  573. {
  574. .name = "main",
  575. .type = AVMEDIA_TYPE_AUDIO,
  576. },{
  577. .name = "ir",
  578. .type = AVMEDIA_TYPE_AUDIO,
  579. },
  580. { NULL }
  581. };
  582. #define AF AV_OPT_FLAG_AUDIO_PARAM|AV_OPT_FLAG_FILTERING_PARAM
  583. #define VF AV_OPT_FLAG_VIDEO_PARAM|AV_OPT_FLAG_FILTERING_PARAM
  584. #define OFFSET(x) offsetof(AudioFIRContext, x)
  585. static const AVOption afir_options[] = {
  586. { "dry", "set dry gain", OFFSET(dry_gain), AV_OPT_TYPE_FLOAT, {.dbl=1}, 0, 10, AF },
  587. { "wet", "set wet gain", OFFSET(wet_gain), AV_OPT_TYPE_FLOAT, {.dbl=1}, 0, 10, AF },
  588. { "length", "set IR length", OFFSET(length), AV_OPT_TYPE_FLOAT, {.dbl=1}, 0, 1, AF },
  589. { "again", "enable auto gain", OFFSET(again), AV_OPT_TYPE_BOOL, {.i64=1}, 0, 1, AF },
  590. { "maxir", "set max IR length", OFFSET(max_ir_len), AV_OPT_TYPE_FLOAT, {.dbl=30}, 0.1, 60, AF },
  591. { "response", "show IR frequency response", OFFSET(response), AV_OPT_TYPE_BOOL, {.i64=0}, 0, 1, VF },
  592. { "channel", "set IR channel to display frequency response", OFFSET(ir_channel), AV_OPT_TYPE_INT, {.i64=0}, 0, 1024, VF },
  593. { "size", "set video size", OFFSET(w), AV_OPT_TYPE_IMAGE_SIZE, {.str = "hd720"}, 0, 0, VF },
  594. { NULL }
  595. };
  596. AVFILTER_DEFINE_CLASS(afir);
  597. AVFilter ff_af_afir = {
  598. .name = "afir",
  599. .description = NULL_IF_CONFIG_SMALL("Apply Finite Impulse Response filter with supplied coefficients in 2nd stream."),
  600. .priv_size = sizeof(AudioFIRContext),
  601. .priv_class = &afir_class,
  602. .query_formats = query_formats,
  603. .init = init,
  604. .activate = activate,
  605. .uninit = uninit,
  606. .inputs = afir_inputs,
  607. .flags = AVFILTER_FLAG_DYNAMIC_OUTPUTS |
  608. AVFILTER_FLAG_SLICE_THREADS,
  609. };