You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

4560 lines
128KB

  1. @chapter Filtering Introduction
  2. @c man begin FILTERING INTRODUCTION
  3. Filtering in FFmpeg is enabled through the libavfilter library.
  4. Libavfilter is the filtering API of FFmpeg. It is the substitute of
  5. the now deprecated 'vhooks' and started as a Google Summer of Code
  6. project.
  7. Audio filtering integration into the main FFmpeg repository is a work in
  8. progress, so audio API and ABI should not be considered stable yet.
  9. In libavfilter, it is possible for filters to have multiple inputs and
  10. multiple outputs.
  11. To illustrate the sorts of things that are possible, we can
  12. use a complex filter graph. For example, the following one:
  13. @example
  14. input --> split --> fifo -----------------------> overlay --> output
  15. | ^
  16. | |
  17. +------> fifo --> crop --> vflip --------+
  18. @end example
  19. splits the stream in two streams, sends one stream through the crop filter
  20. and the vflip filter before merging it back with the other stream by
  21. overlaying it on top. You can use the following command to achieve this:
  22. @example
  23. ffmpeg -i input -vf "[in] split [T1], fifo, [T2] overlay=0:H/2 [out]; [T1] fifo, crop=iw:ih/2:0:ih/2, vflip [T2]" output
  24. @end example
  25. The result will be that in output the top half of the video is mirrored
  26. onto the bottom half.
  27. Filters are loaded using the @var{-vf} or @var{-af} option passed to
  28. @command{ffmpeg} or to @command{ffplay}. Filters in the same linear
  29. chain are separated by commas. In our example, @var{split, fifo,
  30. overlay} are in one linear chain, and @var{fifo, crop, vflip} are in
  31. another. The points where the linear chains join are labeled by names
  32. enclosed in square brackets. In our example, that is @var{[T1]} and
  33. @var{[T2]}. The special labels @var{[in]} and @var{[out]} are the points
  34. where video is input and output.
  35. Some filters take in input a list of parameters: they are specified
  36. after the filter name and an equal sign, and are separated from each other
  37. by a colon.
  38. There exist so-called @var{source filters} that do not have an
  39. audio/video input, and @var{sink filters} that will not have audio/video
  40. output.
  41. @c man end FILTERING INTRODUCTION
  42. @chapter graph2dot
  43. @c man begin GRAPH2DOT
  44. The @file{graph2dot} program included in the FFmpeg @file{tools}
  45. directory can be used to parse a filter graph description and issue a
  46. corresponding textual representation in the dot language.
  47. Invoke the command:
  48. @example
  49. graph2dot -h
  50. @end example
  51. to see how to use @file{graph2dot}.
  52. You can then pass the dot description to the @file{dot} program (from
  53. the graphviz suite of programs) and obtain a graphical representation
  54. of the filter graph.
  55. For example the sequence of commands:
  56. @example
  57. echo @var{GRAPH_DESCRIPTION} | \
  58. tools/graph2dot -o graph.tmp && \
  59. dot -Tpng graph.tmp -o graph.png && \
  60. display graph.png
  61. @end example
  62. can be used to create and display an image representing the graph
  63. described by the @var{GRAPH_DESCRIPTION} string.
  64. @c man end GRAPH2DOT
  65. @chapter Filtergraph description
  66. @c man begin FILTERGRAPH DESCRIPTION
  67. A filtergraph is a directed graph of connected filters. It can contain
  68. cycles, and there can be multiple links between a pair of
  69. filters. Each link has one input pad on one side connecting it to one
  70. filter from which it takes its input, and one output pad on the other
  71. side connecting it to the one filter accepting its output.
  72. Each filter in a filtergraph is an instance of a filter class
  73. registered in the application, which defines the features and the
  74. number of input and output pads of the filter.
  75. A filter with no input pads is called a "source", a filter with no
  76. output pads is called a "sink".
  77. @anchor{Filtergraph syntax}
  78. @section Filtergraph syntax
  79. A filtergraph can be represented using a textual representation, which is
  80. recognized by the @option{-filter}/@option{-vf} and @option{-filter_complex}
  81. options in @command{ffmpeg} and @option{-vf} in @command{ffplay}, and by the
  82. @code{avfilter_graph_parse()}/@code{avfilter_graph_parse2()} function defined in
  83. @file{libavfilter/avfiltergraph.h}.
  84. A filterchain consists of a sequence of connected filters, each one
  85. connected to the previous one in the sequence. A filterchain is
  86. represented by a list of ","-separated filter descriptions.
  87. A filtergraph consists of a sequence of filterchains. A sequence of
  88. filterchains is represented by a list of ";"-separated filterchain
  89. descriptions.
  90. A filter is represented by a string of the form:
  91. [@var{in_link_1}]...[@var{in_link_N}]@var{filter_name}=@var{arguments}[@var{out_link_1}]...[@var{out_link_M}]
  92. @var{filter_name} is the name of the filter class of which the
  93. described filter is an instance of, and has to be the name of one of
  94. the filter classes registered in the program.
  95. The name of the filter class is optionally followed by a string
  96. "=@var{arguments}".
  97. @var{arguments} is a string which contains the parameters used to
  98. initialize the filter instance, and are described in the filter
  99. descriptions below.
  100. The list of arguments can be quoted using the character "'" as initial
  101. and ending mark, and the character '\' for escaping the characters
  102. within the quoted text; otherwise the argument string is considered
  103. terminated when the next special character (belonging to the set
  104. "[]=;,") is encountered.
  105. The name and arguments of the filter are optionally preceded and
  106. followed by a list of link labels.
  107. A link label allows to name a link and associate it to a filter output
  108. or input pad. The preceding labels @var{in_link_1}
  109. ... @var{in_link_N}, are associated to the filter input pads,
  110. the following labels @var{out_link_1} ... @var{out_link_M}, are
  111. associated to the output pads.
  112. When two link labels with the same name are found in the
  113. filtergraph, a link between the corresponding input and output pad is
  114. created.
  115. If an output pad is not labelled, it is linked by default to the first
  116. unlabelled input pad of the next filter in the filterchain.
  117. For example in the filterchain:
  118. @example
  119. nullsrc, split[L1], [L2]overlay, nullsink
  120. @end example
  121. the split filter instance has two output pads, and the overlay filter
  122. instance two input pads. The first output pad of split is labelled
  123. "L1", the first input pad of overlay is labelled "L2", and the second
  124. output pad of split is linked to the second input pad of overlay,
  125. which are both unlabelled.
  126. In a complete filterchain all the unlabelled filter input and output
  127. pads must be connected. A filtergraph is considered valid if all the
  128. filter input and output pads of all the filterchains are connected.
  129. Libavfilter will automatically insert scale filters where format
  130. conversion is required. It is possible to specify swscale flags
  131. for those automatically inserted scalers by prepending
  132. @code{sws_flags=@var{flags};}
  133. to the filtergraph description.
  134. Follows a BNF description for the filtergraph syntax:
  135. @example
  136. @var{NAME} ::= sequence of alphanumeric characters and '_'
  137. @var{LINKLABEL} ::= "[" @var{NAME} "]"
  138. @var{LINKLABELS} ::= @var{LINKLABEL} [@var{LINKLABELS}]
  139. @var{FILTER_ARGUMENTS} ::= sequence of chars (eventually quoted)
  140. @var{FILTER} ::= [@var{LINKNAMES}] @var{NAME} ["=" @var{ARGUMENTS}] [@var{LINKNAMES}]
  141. @var{FILTERCHAIN} ::= @var{FILTER} [,@var{FILTERCHAIN}]
  142. @var{FILTERGRAPH} ::= [sws_flags=@var{flags};] @var{FILTERCHAIN} [;@var{FILTERGRAPH}]
  143. @end example
  144. @c man end FILTERGRAPH DESCRIPTION
  145. @chapter Audio Filters
  146. @c man begin AUDIO FILTERS
  147. When you configure your FFmpeg build, you can disable any of the
  148. existing filters using @code{--disable-filters}.
  149. The configure output will show the audio filters included in your
  150. build.
  151. Below is a description of the currently available audio filters.
  152. @section aconvert
  153. Convert the input audio format to the specified formats.
  154. The filter accepts a string of the form:
  155. "@var{sample_format}:@var{channel_layout}".
  156. @var{sample_format} specifies the sample format, and can be a string or the
  157. corresponding numeric value defined in @file{libavutil/samplefmt.h}. Use 'p'
  158. suffix for a planar sample format.
  159. @var{channel_layout} specifies the channel layout, and can be a string
  160. or the corresponding number value defined in @file{libavutil/audioconvert.h}.
  161. The special parameter "auto", signifies that the filter will
  162. automatically select the output format depending on the output filter.
  163. Some examples follow.
  164. @itemize
  165. @item
  166. Convert input to float, planar, stereo:
  167. @example
  168. aconvert=fltp:stereo
  169. @end example
  170. @item
  171. Convert input to unsigned 8-bit, automatically select out channel layout:
  172. @example
  173. aconvert=u8:auto
  174. @end example
  175. @end itemize
  176. @section aformat
  177. Convert the input audio to one of the specified formats. The framework will
  178. negotiate the most appropriate format to minimize conversions.
  179. The filter accepts the following named parameters:
  180. @table @option
  181. @item sample_fmts
  182. A comma-separated list of requested sample formats.
  183. @item sample_rates
  184. A comma-separated list of requested sample rates.
  185. @item channel_layouts
  186. A comma-separated list of requested channel layouts.
  187. @end table
  188. If a parameter is omitted, all values are allowed.
  189. For example to force the output to either unsigned 8-bit or signed 16-bit stereo:
  190. @example
  191. aformat=sample_fmts\=u8\,s16:channel_layouts\=stereo
  192. @end example
  193. @section amerge
  194. Merge two or more audio streams into a single multi-channel stream.
  195. The filter accepts the following named options:
  196. @table @option
  197. @item inputs
  198. Set the number of inputs. Default is 2.
  199. @end table
  200. If the channel layouts of the inputs are disjoint, and therefore compatible,
  201. the channel layout of the output will be set accordingly and the channels
  202. will be reordered as necessary. If the channel layouts of the inputs are not
  203. disjoint, the output will have all the channels of the first input then all
  204. the channels of the second input, in that order, and the channel layout of
  205. the output will be the default value corresponding to the total number of
  206. channels.
  207. For example, if the first input is in 2.1 (FL+FR+LF) and the second input
  208. is FC+BL+BR, then the output will be in 5.1, with the channels in the
  209. following order: a1, a2, b1, a3, b2, b3 (a1 is the first channel of the
  210. first input, b1 is the first channel of the second input).
  211. On the other hand, if both input are in stereo, the output channels will be
  212. in the default order: a1, a2, b1, b2, and the channel layout will be
  213. arbitrarily set to 4.0, which may or may not be the expected value.
  214. All inputs must have the same sample rate, and format.
  215. If inputs do not have the same duration, the output will stop with the
  216. shortest.
  217. Example: merge two mono files into a stereo stream:
  218. @example
  219. amovie=left.wav [l] ; amovie=right.mp3 [r] ; [l] [r] amerge
  220. @end example
  221. Example: multiple merges:
  222. @example
  223. ffmpeg -f lavfi -i "
  224. amovie=input.mkv:si=0 [a0];
  225. amovie=input.mkv:si=1 [a1];
  226. amovie=input.mkv:si=2 [a2];
  227. amovie=input.mkv:si=3 [a3];
  228. amovie=input.mkv:si=4 [a4];
  229. amovie=input.mkv:si=5 [a5];
  230. [a0][a1][a2][a3][a4][a5] amerge=inputs=6" -c:a pcm_s16le output.mkv
  231. @end example
  232. @section amix
  233. Mixes multiple audio inputs into a single output.
  234. For example
  235. @example
  236. ffmpeg -i INPUT1 -i INPUT2 -i INPUT3 -filter_complex amix=inputs=3:duration=first:dropout_transition=3 OUTPUT
  237. @end example
  238. will mix 3 input audio streams to a single output with the same duration as the
  239. first input and a dropout transition time of 3 seconds.
  240. The filter accepts the following named parameters:
  241. @table @option
  242. @item inputs
  243. Number of inputs. If unspecified, it defaults to 2.
  244. @item duration
  245. How to determine the end-of-stream.
  246. @table @option
  247. @item longest
  248. Duration of longest input. (default)
  249. @item shortest
  250. Duration of shortest input.
  251. @item first
  252. Duration of first input.
  253. @end table
  254. @item dropout_transition
  255. Transition time, in seconds, for volume renormalization when an input
  256. stream ends. The default value is 2 seconds.
  257. @end table
  258. @section anull
  259. Pass the audio source unchanged to the output.
  260. @section aresample
  261. Resample the input audio to the specified sample rate.
  262. The filter accepts exactly one parameter, the output sample rate. If not
  263. specified then the filter will automatically convert between its input
  264. and output sample rates.
  265. For example, to resample the input audio to 44100Hz:
  266. @example
  267. aresample=44100
  268. @end example
  269. @section asetnsamples
  270. Set the number of samples per each output audio frame.
  271. The last output packet may contain a different number of samples, as
  272. the filter will flush all the remaining samples when the input audio
  273. signal its end.
  274. The filter accepts parameters as a list of @var{key}=@var{value} pairs,
  275. separated by ":".
  276. @table @option
  277. @item nb_out_samples, n
  278. Set the number of frames per each output audio frame. The number is
  279. intended as the number of samples @emph{per each channel}.
  280. Default value is 1024.
  281. @item pad, p
  282. If set to 1, the filter will pad the last audio frame with zeroes, so
  283. that the last frame will contain the same number of samples as the
  284. previous ones. Default value is 1.
  285. @end table
  286. For example, to set the number of per-frame samples to 1234 and
  287. disable padding for the last frame, use:
  288. @example
  289. asetnsamples=n=1234:p=0
  290. @end example
  291. @section ashowinfo
  292. Show a line containing various information for each input audio frame.
  293. The input audio is not modified.
  294. The shown line contains a sequence of key/value pairs of the form
  295. @var{key}:@var{value}.
  296. A description of each shown parameter follows:
  297. @table @option
  298. @item n
  299. sequential number of the input frame, starting from 0
  300. @item pts
  301. presentation TimeStamp of the input frame, expressed as a number of
  302. time base units. The time base unit depends on the filter input pad, and
  303. is usually 1/@var{sample_rate}.
  304. @item pts_time
  305. presentation TimeStamp of the input frame, expressed as a number of
  306. seconds
  307. @item pos
  308. position of the frame in the input stream, -1 if this information in
  309. unavailable and/or meaningless (for example in case of synthetic audio)
  310. @item fmt
  311. sample format name
  312. @item chlayout
  313. channel layout description
  314. @item nb_samples
  315. number of samples (per each channel) contained in the filtered frame
  316. @item rate
  317. sample rate for the audio frame
  318. @item checksum
  319. Adler-32 checksum (printed in hexadecimal) of all the planes of the input frame
  320. @item plane_checksum
  321. Adler-32 checksum (printed in hexadecimal) for each input frame plane,
  322. expressed in the form "[@var{c0} @var{c1} @var{c2} @var{c3} @var{c4} @var{c5}
  323. @var{c6} @var{c7}]"
  324. @end table
  325. @section asplit
  326. Split input audio into several identical outputs.
  327. The filter accepts a single parameter which specifies the number of outputs. If
  328. unspecified, it defaults to 2.
  329. For example:
  330. @example
  331. [in] asplit [out0][out1]
  332. @end example
  333. will create two separate outputs from the same input.
  334. To create 3 or more outputs, you need to specify the number of
  335. outputs, like in:
  336. @example
  337. [in] asplit=3 [out0][out1][out2]
  338. @end example
  339. @example
  340. ffmpeg -i INPUT -filter_complex asplit=5 OUTPUT
  341. @end example
  342. will create 5 copies of the input audio.
  343. @section astreamsync
  344. Forward two audio streams and control the order the buffers are forwarded.
  345. The argument to the filter is an expression deciding which stream should be
  346. forwarded next: if the result is negative, the first stream is forwarded; if
  347. the result is positive or zero, the second stream is forwarded. It can use
  348. the following variables:
  349. @table @var
  350. @item b1 b2
  351. number of buffers forwarded so far on each stream
  352. @item s1 s2
  353. number of samples forwarded so far on each stream
  354. @item t1 t2
  355. current timestamp of each stream
  356. @end table
  357. The default value is @code{t1-t2}, which means to always forward the stream
  358. that has a smaller timestamp.
  359. Example: stress-test @code{amerge} by randomly sending buffers on the wrong
  360. input, while avoiding too much of a desynchronization:
  361. @example
  362. amovie=file.ogg [a] ; amovie=file.mp3 [b] ;
  363. [a] [b] astreamsync=(2*random(1))-1+tanh(5*(t1-t2)) [a2] [b2] ;
  364. [a2] [b2] amerge
  365. @end example
  366. @section atempo
  367. Adjust audio tempo.
  368. The filter accepts exactly one parameter, the audio tempo. If not
  369. specified then the filter will assume nominal 1.0 tempo. Tempo must
  370. be in the [0.5, 2.0] range.
  371. For example, to slow down audio to 80% tempo:
  372. @example
  373. atempo=0.8
  374. @end example
  375. For example, to speed up audio to 125% tempo:
  376. @example
  377. atempo=1.25
  378. @end example
  379. @section earwax
  380. Make audio easier to listen to on headphones.
  381. This filter adds `cues' to 44.1kHz stereo (i.e. audio CD format) audio
  382. so that when listened to on headphones the stereo image is moved from
  383. inside your head (standard for headphones) to outside and in front of
  384. the listener (standard for speakers).
  385. Ported from SoX.
  386. @section pan
  387. Mix channels with specific gain levels. The filter accepts the output
  388. channel layout followed by a set of channels definitions.
  389. This filter is also designed to remap efficiently the channels of an audio
  390. stream.
  391. The filter accepts parameters of the form:
  392. "@var{l}:@var{outdef}:@var{outdef}:..."
  393. @table @option
  394. @item l
  395. output channel layout or number of channels
  396. @item outdef
  397. output channel specification, of the form:
  398. "@var{out_name}=[@var{gain}*]@var{in_name}[+[@var{gain}*]@var{in_name}...]"
  399. @item out_name
  400. output channel to define, either a channel name (FL, FR, etc.) or a channel
  401. number (c0, c1, etc.)
  402. @item gain
  403. multiplicative coefficient for the channel, 1 leaving the volume unchanged
  404. @item in_name
  405. input channel to use, see out_name for details; it is not possible to mix
  406. named and numbered input channels
  407. @end table
  408. If the `=' in a channel specification is replaced by `<', then the gains for
  409. that specification will be renormalized so that the total is 1, thus
  410. avoiding clipping noise.
  411. @subsection Mixing examples
  412. For example, if you want to down-mix from stereo to mono, but with a bigger
  413. factor for the left channel:
  414. @example
  415. pan=1:c0=0.9*c0+0.1*c1
  416. @end example
  417. A customized down-mix to stereo that works automatically for 3-, 4-, 5- and
  418. 7-channels surround:
  419. @example
  420. pan=stereo: FL < FL + 0.5*FC + 0.6*BL + 0.6*SL : FR < FR + 0.5*FC + 0.6*BR + 0.6*SR
  421. @end example
  422. Note that @command{ffmpeg} integrates a default down-mix (and up-mix) system
  423. that should be preferred (see "-ac" option) unless you have very specific
  424. needs.
  425. @subsection Remapping examples
  426. The channel remapping will be effective if, and only if:
  427. @itemize
  428. @item gain coefficients are zeroes or ones,
  429. @item only one input per channel output,
  430. @end itemize
  431. If all these conditions are satisfied, the filter will notify the user ("Pure
  432. channel mapping detected"), and use an optimized and lossless method to do the
  433. remapping.
  434. For example, if you have a 5.1 source and want a stereo audio stream by
  435. dropping the extra channels:
  436. @example
  437. pan="stereo: c0=FL : c1=FR"
  438. @end example
  439. Given the same source, you can also switch front left and front right channels
  440. and keep the input channel layout:
  441. @example
  442. pan="5.1: c0=c1 : c1=c0 : c2=c2 : c3=c3 : c4=c4 : c5=c5"
  443. @end example
  444. If the input is a stereo audio stream, you can mute the front left channel (and
  445. still keep the stereo channel layout) with:
  446. @example
  447. pan="stereo:c1=c1"
  448. @end example
  449. Still with a stereo audio stream input, you can copy the right channel in both
  450. front left and right:
  451. @example
  452. pan="stereo: c0=FR : c1=FR"
  453. @end example
  454. @section silencedetect
  455. Detect silence in an audio stream.
  456. This filter logs a message when it detects that the input audio volume is less
  457. or equal to a noise tolerance value for a duration greater or equal to the
  458. minimum detected noise duration.
  459. The printed times and duration are expressed in seconds.
  460. @table @option
  461. @item duration, d
  462. Set silence duration until notification (default is 2 seconds).
  463. @item noise, n
  464. Set noise tolerance. Can be specified in dB (in case "dB" is appended to the
  465. specified value) or amplitude ratio. Default is -60dB, or 0.001.
  466. @end table
  467. Detect 5 seconds of silence with -50dB noise tolerance:
  468. @example
  469. silencedetect=n=-50dB:d=5
  470. @end example
  471. Complete example with @command{ffmpeg} to detect silence with 0.0001 noise
  472. tolerance in @file{silence.mp3}:
  473. @example
  474. ffmpeg -f lavfi -i amovie=silence.mp3,silencedetect=noise=0.0001 -f null -
  475. @end example
  476. @section volume
  477. Adjust the input audio volume.
  478. The filter accepts exactly one parameter @var{vol}, which expresses
  479. how the audio volume will be increased or decreased.
  480. Output values are clipped to the maximum value.
  481. If @var{vol} is expressed as a decimal number, the output audio
  482. volume is given by the relation:
  483. @example
  484. @var{output_volume} = @var{vol} * @var{input_volume}
  485. @end example
  486. If @var{vol} is expressed as a decimal number followed by the string
  487. "dB", the value represents the requested change in decibels of the
  488. input audio power, and the output audio volume is given by the
  489. relation:
  490. @example
  491. @var{output_volume} = 10^(@var{vol}/20) * @var{input_volume}
  492. @end example
  493. Otherwise @var{vol} is considered an expression and its evaluated
  494. value is used for computing the output audio volume according to the
  495. first relation.
  496. Default value for @var{vol} is 1.0.
  497. @subsection Examples
  498. @itemize
  499. @item
  500. Half the input audio volume:
  501. @example
  502. volume=0.5
  503. @end example
  504. The above example is equivalent to:
  505. @example
  506. volume=1/2
  507. @end example
  508. @item
  509. Decrease input audio power by 12 decibels:
  510. @example
  511. volume=-12dB
  512. @end example
  513. @end itemize
  514. @section volumedetect
  515. Detect the volume of the input video.
  516. The filter has no parameters. The input is not modified. Statistics about
  517. the volume will be printed in the log when the input stream end is reached.
  518. In particular it will show the mean volume (root mean square), maximum
  519. volume (on a per-sample basis), and the beginning of an histogram of the
  520. registered volume values (from the maximum value to a cumulated 1/1000 of
  521. the samples).
  522. All volumes are in decibels relative to the maximum PCM value.
  523. Here is an excerpt of the output:
  524. @example
  525. [Parsed_volumedetect_0 @ 0xa23120] mean_volume: -27 dB
  526. [Parsed_volumedetect_0 @ 0xa23120] max_volume: -4 dB
  527. [Parsed_volumedetect_0 @ 0xa23120] histogram_4db: 6
  528. [Parsed_volumedetect_0 @ 0xa23120] histogram_5db: 62
  529. [Parsed_volumedetect_0 @ 0xa23120] histogram_6db: 286
  530. [Parsed_volumedetect_0 @ 0xa23120] histogram_7db: 1042
  531. [Parsed_volumedetect_0 @ 0xa23120] histogram_8db: 2551
  532. [Parsed_volumedetect_0 @ 0xa23120] histogram_9db: 4609
  533. [Parsed_volumedetect_0 @ 0xa23120] histogram_10db: 8409
  534. @end example
  535. It means that:
  536. @itemize
  537. @item
  538. The mean square energy is approximately -27 dB, or 10^-2.7.
  539. @item
  540. The largest sample is at -4 dB, or more precisely between -4 dB and -5 dB.
  541. @item
  542. There are 6 samples at -4 dB, 62 at -5 dB, 286 at -6 dB, etc.
  543. @end itemize
  544. In other words, raising the volume by +4 dB does not cause any clipping,
  545. raising it by +5 dB causes clipping for 6 samples, etc.
  546. @section asyncts
  547. Synchronize audio data with timestamps by squeezing/stretching it and/or
  548. dropping samples/adding silence when needed.
  549. The filter accepts the following named parameters:
  550. @table @option
  551. @item compensate
  552. Enable stretching/squeezing the data to make it match the timestamps.
  553. @item min_delta
  554. Minimum difference between timestamps and audio data (in seconds) to trigger
  555. adding/dropping samples.
  556. @item max_comp
  557. Maximum compensation in samples per second.
  558. @item first_pts
  559. Assume the first pts should be this value.
  560. This allows for padding/trimming at the start of stream. By default, no
  561. assumption is made about the first frame's expected pts, so no padding or
  562. trimming is done. For example, this could be set to 0 to pad the beginning with
  563. silence if an audio stream starts after the video stream.
  564. @end table
  565. @section channelsplit
  566. Split each channel in input audio stream into a separate output stream.
  567. This filter accepts the following named parameters:
  568. @table @option
  569. @item channel_layout
  570. Channel layout of the input stream. Default is "stereo".
  571. @end table
  572. For example, assuming a stereo input MP3 file
  573. @example
  574. ffmpeg -i in.mp3 -filter_complex channelsplit out.mkv
  575. @end example
  576. will create an output Matroska file with two audio streams, one containing only
  577. the left channel and the other the right channel.
  578. To split a 5.1 WAV file into per-channel files
  579. @example
  580. ffmpeg -i in.wav -filter_complex
  581. 'channelsplit=channel_layout=5.1[FL][FR][FC][LFE][SL][SR]'
  582. -map '[FL]' front_left.wav -map '[FR]' front_right.wav -map '[FC]'
  583. front_center.wav -map '[LFE]' lfe.wav -map '[SL]' side_left.wav -map '[SR]'
  584. side_right.wav
  585. @end example
  586. @section channelmap
  587. Remap input channels to new locations.
  588. This filter accepts the following named parameters:
  589. @table @option
  590. @item channel_layout
  591. Channel layout of the output stream.
  592. @item map
  593. Map channels from input to output. The argument is a comma-separated list of
  594. mappings, each in the @code{@var{in_channel}-@var{out_channel}} or
  595. @var{in_channel} form. @var{in_channel} can be either the name of the input
  596. channel (e.g. FL for front left) or its index in the input channel layout.
  597. @var{out_channel} is the name of the output channel or its index in the output
  598. channel layout. If @var{out_channel} is not given then it is implicitly an
  599. index, starting with zero and increasing by one for each mapping.
  600. @end table
  601. If no mapping is present, the filter will implicitly map input channels to
  602. output channels preserving index.
  603. For example, assuming a 5.1+downmix input MOV file
  604. @example
  605. ffmpeg -i in.mov -filter 'channelmap=map=DL-FL\,DR-FR' out.wav
  606. @end example
  607. will create an output WAV file tagged as stereo from the downmix channels of
  608. the input.
  609. To fix a 5.1 WAV improperly encoded in AAC's native channel order
  610. @example
  611. ffmpeg -i in.wav -filter 'channelmap=1\,2\,0\,5\,3\,4:channel_layout=5.1' out.wav
  612. @end example
  613. @section join
  614. Join multiple input streams into one multi-channel stream.
  615. The filter accepts the following named parameters:
  616. @table @option
  617. @item inputs
  618. Number of input streams. Defaults to 2.
  619. @item channel_layout
  620. Desired output channel layout. Defaults to stereo.
  621. @item map
  622. Map channels from inputs to output. The argument is a comma-separated list of
  623. mappings, each in the @code{@var{input_idx}.@var{in_channel}-@var{out_channel}}
  624. form. @var{input_idx} is the 0-based index of the input stream. @var{in_channel}
  625. can be either the name of the input channel (e.g. FL for front left) or its
  626. index in the specified input stream. @var{out_channel} is the name of the output
  627. channel.
  628. @end table
  629. The filter will attempt to guess the mappings when those are not specified
  630. explicitly. It does so by first trying to find an unused matching input channel
  631. and if that fails it picks the first unused input channel.
  632. E.g. to join 3 inputs (with properly set channel layouts)
  633. @example
  634. ffmpeg -i INPUT1 -i INPUT2 -i INPUT3 -filter_complex join=inputs=3 OUTPUT
  635. @end example
  636. To build a 5.1 output from 6 single-channel streams:
  637. @example
  638. ffmpeg -i fl -i fr -i fc -i sl -i sr -i lfe -filter_complex
  639. 'join=inputs=6:channel_layout=5.1:map=0.0-FL\,1.0-FR\,2.0-FC\,3.0-SL\,4.0-SR\,5.0-LFE'
  640. out
  641. @end example
  642. @section resample
  643. Convert the audio sample format, sample rate and channel layout. This filter is
  644. not meant to be used directly.
  645. @c man end AUDIO FILTERS
  646. @chapter Audio Sources
  647. @c man begin AUDIO SOURCES
  648. Below is a description of the currently available audio sources.
  649. @section abuffer
  650. Buffer audio frames, and make them available to the filter chain.
  651. This source is mainly intended for a programmatic use, in particular
  652. through the interface defined in @file{libavfilter/asrc_abuffer.h}.
  653. It accepts the following mandatory parameters:
  654. @var{sample_rate}:@var{sample_fmt}:@var{channel_layout}
  655. @table @option
  656. @item sample_rate
  657. The sample rate of the incoming audio buffers.
  658. @item sample_fmt
  659. The sample format of the incoming audio buffers.
  660. Either a sample format name or its corresponging integer representation from
  661. the enum AVSampleFormat in @file{libavutil/samplefmt.h}
  662. @item channel_layout
  663. The channel layout of the incoming audio buffers.
  664. Either a channel layout name from channel_layout_map in
  665. @file{libavutil/audioconvert.c} or its corresponding integer representation
  666. from the AV_CH_LAYOUT_* macros in @file{libavutil/audioconvert.h}
  667. @end table
  668. For example:
  669. @example
  670. abuffer=44100:s16p:stereo
  671. @end example
  672. will instruct the source to accept planar 16bit signed stereo at 44100Hz.
  673. Since the sample format with name "s16p" corresponds to the number
  674. 6 and the "stereo" channel layout corresponds to the value 0x3, this is
  675. equivalent to:
  676. @example
  677. abuffer=44100:6:0x3
  678. @end example
  679. @section aevalsrc
  680. Generate an audio signal specified by an expression.
  681. This source accepts in input one or more expressions (one for each
  682. channel), which are evaluated and used to generate a corresponding
  683. audio signal.
  684. It accepts the syntax: @var{exprs}[::@var{options}].
  685. @var{exprs} is a list of expressions separated by ":", one for each
  686. separate channel. In case the @var{channel_layout} is not
  687. specified, the selected channel layout depends on the number of
  688. provided expressions.
  689. @var{options} is an optional sequence of @var{key}=@var{value} pairs,
  690. separated by ":".
  691. The description of the accepted options follows.
  692. @table @option
  693. @item channel_layout, c
  694. Set the channel layout. The number of channels in the specified layout
  695. must be equal to the number of specified expressions.
  696. @item duration, d
  697. Set the minimum duration of the sourced audio. See the function
  698. @code{av_parse_time()} for the accepted format.
  699. Note that the resulting duration may be greater than the specified
  700. duration, as the generated audio is always cut at the end of a
  701. complete frame.
  702. If not specified, or the expressed duration is negative, the audio is
  703. supposed to be generated forever.
  704. @item nb_samples, n
  705. Set the number of samples per channel per each output frame,
  706. default to 1024.
  707. @item sample_rate, s
  708. Specify the sample rate, default to 44100.
  709. @end table
  710. Each expression in @var{exprs} can contain the following constants:
  711. @table @option
  712. @item n
  713. number of the evaluated sample, starting from 0
  714. @item t
  715. time of the evaluated sample expressed in seconds, starting from 0
  716. @item s
  717. sample rate
  718. @end table
  719. @subsection Examples
  720. @itemize
  721. @item
  722. Generate silence:
  723. @example
  724. aevalsrc=0
  725. @end example
  726. @item
  727. Generate a sin signal with frequency of 440 Hz, set sample rate to
  728. 8000 Hz:
  729. @example
  730. aevalsrc="sin(440*2*PI*t)::s=8000"
  731. @end example
  732. @item
  733. Generate a two channels signal, specify the channel layout (Front
  734. Center + Back Center) explicitly:
  735. @example
  736. aevalsrc="sin(420*2*PI*t):cos(430*2*PI*t)::c=FC|BC"
  737. @end example
  738. @item
  739. Generate white noise:
  740. @example
  741. aevalsrc="-2+random(0)"
  742. @end example
  743. @item
  744. Generate an amplitude modulated signal:
  745. @example
  746. aevalsrc="sin(10*2*PI*t)*sin(880*2*PI*t)"
  747. @end example
  748. @item
  749. Generate 2.5 Hz binaural beats on a 360 Hz carrier:
  750. @example
  751. aevalsrc="0.1*sin(2*PI*(360-2.5/2)*t) : 0.1*sin(2*PI*(360+2.5/2)*t)"
  752. @end example
  753. @end itemize
  754. @section anullsrc
  755. Null audio source, return unprocessed audio frames. It is mainly useful
  756. as a template and to be employed in analysis / debugging tools, or as
  757. the source for filters which ignore the input data (for example the sox
  758. synth filter).
  759. It accepts an optional sequence of @var{key}=@var{value} pairs,
  760. separated by ":".
  761. The description of the accepted options follows.
  762. @table @option
  763. @item sample_rate, s
  764. Specify the sample rate, and defaults to 44100.
  765. @item channel_layout, cl
  766. Specify the channel layout, and can be either an integer or a string
  767. representing a channel layout. The default value of @var{channel_layout}
  768. is "stereo".
  769. Check the channel_layout_map definition in
  770. @file{libavcodec/audioconvert.c} for the mapping between strings and
  771. channel layout values.
  772. @item nb_samples, n
  773. Set the number of samples per requested frames.
  774. @end table
  775. Follow some examples:
  776. @example
  777. # set the sample rate to 48000 Hz and the channel layout to AV_CH_LAYOUT_MONO.
  778. anullsrc=r=48000:cl=4
  779. # same as
  780. anullsrc=r=48000:cl=mono
  781. @end example
  782. @section abuffer
  783. Buffer audio frames, and make them available to the filter chain.
  784. This source is not intended to be part of user-supplied graph descriptions but
  785. for insertion by calling programs through the interface defined in
  786. @file{libavfilter/buffersrc.h}.
  787. It accepts the following named parameters:
  788. @table @option
  789. @item time_base
  790. Timebase which will be used for timestamps of submitted frames. It must be
  791. either a floating-point number or in @var{numerator}/@var{denominator} form.
  792. @item sample_rate
  793. Audio sample rate.
  794. @item sample_fmt
  795. Name of the sample format, as returned by @code{av_get_sample_fmt_name()}.
  796. @item channel_layout
  797. Channel layout of the audio data, in the form that can be accepted by
  798. @code{av_get_channel_layout()}.
  799. @end table
  800. All the parameters need to be explicitly defined.
  801. @section flite
  802. Synthesize a voice utterance using the libflite library.
  803. To enable compilation of this filter you need to configure FFmpeg with
  804. @code{--enable-libflite}.
  805. Note that the flite library is not thread-safe.
  806. The source accepts parameters as a list of @var{key}=@var{value} pairs,
  807. separated by ":".
  808. The description of the accepted parameters follows.
  809. @table @option
  810. @item list_voices
  811. If set to 1, list the names of the available voices and exit
  812. immediately. Default value is 0.
  813. @item nb_samples, n
  814. Set the maximum number of samples per frame. Default value is 512.
  815. @item textfile
  816. Set the filename containing the text to speak.
  817. @item text
  818. Set the text to speak.
  819. @item voice, v
  820. Set the voice to use for the speech synthesis. Default value is
  821. @code{kal}. See also the @var{list_voices} option.
  822. @end table
  823. @subsection Examples
  824. @itemize
  825. @item
  826. Read from file @file{speech.txt}, and synthetize the text using the
  827. standard flite voice:
  828. @example
  829. flite=textfile=speech.txt
  830. @end example
  831. @item
  832. Read the specified text selecting the @code{slt} voice:
  833. @example
  834. flite=text='So fare thee well, poor devil of a Sub-Sub, whose commentator I am':voice=slt
  835. @end example
  836. @item
  837. Make @file{ffplay} speech the specified text, using @code{flite} and
  838. the @code{lavfi} device:
  839. @example
  840. ffplay -f lavfi flite='No more be grieved for which that thou hast done.'
  841. @end example
  842. @end itemize
  843. For more information about libflite, check:
  844. @url{http://www.speech.cs.cmu.edu/flite/}
  845. @c man end AUDIO SOURCES
  846. @chapter Audio Sinks
  847. @c man begin AUDIO SINKS
  848. Below is a description of the currently available audio sinks.
  849. @section abuffersink
  850. Buffer audio frames, and make them available to the end of filter chain.
  851. This sink is mainly intended for programmatic use, in particular
  852. through the interface defined in @file{libavfilter/buffersink.h}.
  853. It requires a pointer to an AVABufferSinkContext structure, which
  854. defines the incoming buffers' formats, to be passed as the opaque
  855. parameter to @code{avfilter_init_filter} for initialization.
  856. @section anullsink
  857. Null audio sink, do absolutely nothing with the input audio. It is
  858. mainly useful as a template and to be employed in analysis / debugging
  859. tools.
  860. @section abuffersink
  861. This sink is intended for programmatic use. Frames that arrive on this sink can
  862. be retrieved by the calling program using the interface defined in
  863. @file{libavfilter/buffersink.h}.
  864. This filter accepts no parameters.
  865. @c man end AUDIO SINKS
  866. @chapter Video Filters
  867. @c man begin VIDEO FILTERS
  868. When you configure your FFmpeg build, you can disable any of the
  869. existing filters using @code{--disable-filters}.
  870. The configure output will show the video filters included in your
  871. build.
  872. Below is a description of the currently available video filters.
  873. @section alphaextract
  874. Extract the alpha component from the input as a grayscale video. This
  875. is especially useful with the @var{alphamerge} filter.
  876. @section alphamerge
  877. Add or replace the alpha component of the primary input with the
  878. grayscale value of a second input. This is intended for use with
  879. @var{alphaextract} to allow the transmission or storage of frame
  880. sequences that have alpha in a format that doesn't support an alpha
  881. channel.
  882. For example, to reconstruct full frames from a normal YUV-encoded video
  883. and a separate video created with @var{alphaextract}, you might use:
  884. @example
  885. movie=in_alpha.mkv [alpha]; [in][alpha] alphamerge [out]
  886. @end example
  887. Since this filter is designed for reconstruction, it operates on frame
  888. sequences without considering timestamps, and terminates when either
  889. input reaches end of stream. This will cause problems if your encoding
  890. pipeline drops frames. If you're trying to apply an image as an
  891. overlay to a video stream, consider the @var{overlay} filter instead.
  892. @section ass
  893. Draw ASS (Advanced Substation Alpha) subtitles on top of input video
  894. using the libass library.
  895. To enable compilation of this filter you need to configure FFmpeg with
  896. @code{--enable-libass}.
  897. This filter accepts the syntax: @var{ass_filename}[:@var{options}],
  898. where @var{ass_filename} is the filename of the ASS file to read, and
  899. @var{options} is an optional sequence of @var{key}=@var{value} pairs,
  900. separated by ":".
  901. A description of the accepted options follows.
  902. @table @option
  903. @item original_size
  904. Specifies the size of the original video, the video for which the ASS file
  905. was composed. Due to a misdesign in ASS aspect ratio arithmetic, this is
  906. necessary to correctly scale the fonts if the aspect ratio has been changed.
  907. @end table
  908. For example, to render the file @file{sub.ass} on top of the input
  909. video, use the command:
  910. @example
  911. ass=sub.ass
  912. @end example
  913. @section bbox
  914. Compute the bounding box for the non-black pixels in the input frame
  915. luminance plane.
  916. This filter computes the bounding box containing all the pixels with a
  917. luminance value greater than the minimum allowed value.
  918. The parameters describing the bounding box are printed on the filter
  919. log.
  920. @section blackdetect
  921. Detect video intervals that are (almost) completely black. Can be
  922. useful to detect chapter transitions, commercials, or invalid
  923. recordings. Output lines contains the time for the start, end and
  924. duration of the detected black interval expressed in seconds.
  925. In order to display the output lines, you need to set the loglevel at
  926. least to the AV_LOG_INFO value.
  927. This filter accepts a list of options in the form of
  928. @var{key}=@var{value} pairs separated by ":". A description of the
  929. accepted options follows.
  930. @table @option
  931. @item black_min_duration, d
  932. Set the minimum detected black duration expressed in seconds. It must
  933. be a non-negative floating point number.
  934. Default value is 2.0.
  935. @item picture_black_ratio_th, pic_th
  936. Set the threshold for considering a picture "black".
  937. Express the minimum value for the ratio:
  938. @example
  939. @var{nb_black_pixels} / @var{nb_pixels}
  940. @end example
  941. for which a picture is considered black.
  942. Default value is 0.98.
  943. @item pixel_black_th, pix_th
  944. Set the threshold for considering a pixel "black".
  945. The threshold expresses the maximum pixel luminance value for which a
  946. pixel is considered "black". The provided value is scaled according to
  947. the following equation:
  948. @example
  949. @var{absolute_threshold} = @var{luminance_minimum_value} + @var{pixel_black_th} * @var{luminance_range_size}
  950. @end example
  951. @var{luminance_range_size} and @var{luminance_minimum_value} depend on
  952. the input video format, the range is [0-255] for YUV full-range
  953. formats and [16-235] for YUV non full-range formats.
  954. Default value is 0.10.
  955. @end table
  956. The following example sets the maximum pixel threshold to the minimum
  957. value, and detects only black intervals of 2 or more seconds:
  958. @example
  959. blackdetect=d=2:pix_th=0.00
  960. @end example
  961. @section blackframe
  962. Detect frames that are (almost) completely black. Can be useful to
  963. detect chapter transitions or commercials. Output lines consist of
  964. the frame number of the detected frame, the percentage of blackness,
  965. the position in the file if known or -1 and the timestamp in seconds.
  966. In order to display the output lines, you need to set the loglevel at
  967. least to the AV_LOG_INFO value.
  968. The filter accepts the syntax:
  969. @example
  970. blackframe[=@var{amount}:[@var{threshold}]]
  971. @end example
  972. @var{amount} is the percentage of the pixels that have to be below the
  973. threshold, and defaults to 98.
  974. @var{threshold} is the threshold below which a pixel value is
  975. considered black, and defaults to 32.
  976. @section boxblur
  977. Apply boxblur algorithm to the input video.
  978. This filter accepts the parameters:
  979. @var{luma_radius}:@var{luma_power}:@var{chroma_radius}:@var{chroma_power}:@var{alpha_radius}:@var{alpha_power}
  980. Chroma and alpha parameters are optional, if not specified they default
  981. to the corresponding values set for @var{luma_radius} and
  982. @var{luma_power}.
  983. @var{luma_radius}, @var{chroma_radius}, and @var{alpha_radius} represent
  984. the radius in pixels of the box used for blurring the corresponding
  985. input plane. They are expressions, and can contain the following
  986. constants:
  987. @table @option
  988. @item w, h
  989. the input width and height in pixels
  990. @item cw, ch
  991. the input chroma image width and height in pixels
  992. @item hsub, vsub
  993. horizontal and vertical chroma subsample values. For example for the
  994. pixel format "yuv422p" @var{hsub} is 2 and @var{vsub} is 1.
  995. @end table
  996. The radius must be a non-negative number, and must not be greater than
  997. the value of the expression @code{min(w,h)/2} for the luma and alpha planes,
  998. and of @code{min(cw,ch)/2} for the chroma planes.
  999. @var{luma_power}, @var{chroma_power}, and @var{alpha_power} represent
  1000. how many times the boxblur filter is applied to the corresponding
  1001. plane.
  1002. Some examples follow:
  1003. @itemize
  1004. @item
  1005. Apply a boxblur filter with luma, chroma, and alpha radius
  1006. set to 2:
  1007. @example
  1008. boxblur=2:1
  1009. @end example
  1010. @item
  1011. Set luma radius to 2, alpha and chroma radius to 0
  1012. @example
  1013. boxblur=2:1:0:0:0:0
  1014. @end example
  1015. @item
  1016. Set luma and chroma radius to a fraction of the video dimension
  1017. @example
  1018. boxblur=min(h\,w)/10:1:min(cw\,ch)/10:1
  1019. @end example
  1020. @end itemize
  1021. @section colormatrix
  1022. The colormatrix filter allows conversion between any of the following color
  1023. space: BT.709 (@var{bt709}), BT.601 (@var{bt601}), SMPTE-240M (@var{smpte240m})
  1024. and FCC (@var{fcc}).
  1025. The syntax of the parameters is @var{source}:@var{destination}:
  1026. @example
  1027. colormatrix=bt601:smpte240m
  1028. @end example
  1029. @section copy
  1030. Copy the input source unchanged to the output. Mainly useful for
  1031. testing purposes.
  1032. @section crop
  1033. Crop the input video to @var{out_w}:@var{out_h}:@var{x}:@var{y}:@var{keep_aspect}
  1034. The @var{keep_aspect} parameter is optional, if specified and set to a
  1035. non-zero value will force the output display aspect ratio to be the
  1036. same of the input, by changing the output sample aspect ratio.
  1037. The @var{out_w}, @var{out_h}, @var{x}, @var{y} parameters are
  1038. expressions containing the following constants:
  1039. @table @option
  1040. @item x, y
  1041. the computed values for @var{x} and @var{y}. They are evaluated for
  1042. each new frame.
  1043. @item in_w, in_h
  1044. the input width and height
  1045. @item iw, ih
  1046. same as @var{in_w} and @var{in_h}
  1047. @item out_w, out_h
  1048. the output (cropped) width and height
  1049. @item ow, oh
  1050. same as @var{out_w} and @var{out_h}
  1051. @item a
  1052. same as @var{iw} / @var{ih}
  1053. @item sar
  1054. input sample aspect ratio
  1055. @item dar
  1056. input display aspect ratio, it is the same as (@var{iw} / @var{ih}) * @var{sar}
  1057. @item hsub, vsub
  1058. horizontal and vertical chroma subsample values. For example for the
  1059. pixel format "yuv422p" @var{hsub} is 2 and @var{vsub} is 1.
  1060. @item n
  1061. the number of input frame, starting from 0
  1062. @item pos
  1063. the position in the file of the input frame, NAN if unknown
  1064. @item t
  1065. timestamp expressed in seconds, NAN if the input timestamp is unknown
  1066. @end table
  1067. The @var{out_w} and @var{out_h} parameters specify the expressions for
  1068. the width and height of the output (cropped) video. They are
  1069. evaluated just at the configuration of the filter.
  1070. The default value of @var{out_w} is "in_w", and the default value of
  1071. @var{out_h} is "in_h".
  1072. The expression for @var{out_w} may depend on the value of @var{out_h},
  1073. and the expression for @var{out_h} may depend on @var{out_w}, but they
  1074. cannot depend on @var{x} and @var{y}, as @var{x} and @var{y} are
  1075. evaluated after @var{out_w} and @var{out_h}.
  1076. The @var{x} and @var{y} parameters specify the expressions for the
  1077. position of the top-left corner of the output (non-cropped) area. They
  1078. are evaluated for each frame. If the evaluated value is not valid, it
  1079. is approximated to the nearest valid value.
  1080. The default value of @var{x} is "(in_w-out_w)/2", and the default
  1081. value for @var{y} is "(in_h-out_h)/2", which set the cropped area at
  1082. the center of the input image.
  1083. The expression for @var{x} may depend on @var{y}, and the expression
  1084. for @var{y} may depend on @var{x}.
  1085. Follow some examples:
  1086. @example
  1087. # crop the central input area with size 100x100
  1088. crop=100:100
  1089. # crop the central input area with size 2/3 of the input video
  1090. "crop=2/3*in_w:2/3*in_h"
  1091. # crop the input video central square
  1092. crop=in_h
  1093. # delimit the rectangle with the top-left corner placed at position
  1094. # 100:100 and the right-bottom corner corresponding to the right-bottom
  1095. # corner of the input image.
  1096. crop=in_w-100:in_h-100:100:100
  1097. # crop 10 pixels from the left and right borders, and 20 pixels from
  1098. # the top and bottom borders
  1099. "crop=in_w-2*10:in_h-2*20"
  1100. # keep only the bottom right quarter of the input image
  1101. "crop=in_w/2:in_h/2:in_w/2:in_h/2"
  1102. # crop height for getting Greek harmony
  1103. "crop=in_w:1/PHI*in_w"
  1104. # trembling effect
  1105. "crop=in_w/2:in_h/2:(in_w-out_w)/2+((in_w-out_w)/2)*sin(n/10):(in_h-out_h)/2 +((in_h-out_h)/2)*sin(n/7)"
  1106. # erratic camera effect depending on timestamp
  1107. "crop=in_w/2:in_h/2:(in_w-out_w)/2+((in_w-out_w)/2)*sin(t*10):(in_h-out_h)/2 +((in_h-out_h)/2)*sin(t*13)"
  1108. # set x depending on the value of y
  1109. "crop=in_w/2:in_h/2:y:10+10*sin(n/10)"
  1110. @end example
  1111. @section cropdetect
  1112. Auto-detect crop size.
  1113. Calculate necessary cropping parameters and prints the recommended
  1114. parameters through the logging system. The detected dimensions
  1115. correspond to the non-black area of the input video.
  1116. It accepts the syntax:
  1117. @example
  1118. cropdetect[=@var{limit}[:@var{round}[:@var{reset}]]]
  1119. @end example
  1120. @table @option
  1121. @item limit
  1122. Threshold, which can be optionally specified from nothing (0) to
  1123. everything (255), defaults to 24.
  1124. @item round
  1125. Value which the width/height should be divisible by, defaults to
  1126. 16. The offset is automatically adjusted to center the video. Use 2 to
  1127. get only even dimensions (needed for 4:2:2 video). 16 is best when
  1128. encoding to most video codecs.
  1129. @item reset
  1130. Counter that determines after how many frames cropdetect will reset
  1131. the previously detected largest video area and start over to detect
  1132. the current optimal crop area. Defaults to 0.
  1133. This can be useful when channel logos distort the video area. 0
  1134. indicates never reset and return the largest area encountered during
  1135. playback.
  1136. @end table
  1137. @section decimate
  1138. This filter drops frames that do not differ greatly from the previous
  1139. frame in order to reduce framerate. The main use of this filter is
  1140. for very-low-bitrate encoding (e.g. streaming over dialup modem), but
  1141. it could in theory be used for fixing movies that were
  1142. inverse-telecined incorrectly.
  1143. It accepts the following parameters:
  1144. @var{max}:@var{hi}:@var{lo}:@var{frac}.
  1145. @table @option
  1146. @item max
  1147. Set the maximum number of consecutive frames which can be dropped (if
  1148. positive), or the minimum interval between dropped frames (if
  1149. negative). If the value is 0, the frame is dropped unregarding the
  1150. number of previous sequentially dropped frames.
  1151. Default value is 0.
  1152. @item hi, lo, frac
  1153. Set the dropping threshold values.
  1154. Values for @var{hi} and @var{lo} are for 8x8 pixel blocks and
  1155. represent actual pixel value differences, so a threshold of 64
  1156. corresponds to 1 unit of difference for each pixel, or the same spread
  1157. out differently over the block.
  1158. A frame is a candidate for dropping if no 8x8 blocks differ by more
  1159. than a threshold of @var{hi}, and if no more than @var{frac} blocks (1
  1160. meaning the whole image) differ by more than a threshold of @var{lo}.
  1161. Default value for @var{hi} is 64*12, default value for @var{lo} is
  1162. 64*5, and default value for @var{frac} is 0.33.
  1163. @end table
  1164. @section delogo
  1165. Suppress a TV station logo by a simple interpolation of the surrounding
  1166. pixels. Just set a rectangle covering the logo and watch it disappear
  1167. (and sometimes something even uglier appear - your mileage may vary).
  1168. The filter accepts parameters as a string of the form
  1169. "@var{x}:@var{y}:@var{w}:@var{h}:@var{band}", or as a list of
  1170. @var{key}=@var{value} pairs, separated by ":".
  1171. The description of the accepted parameters follows.
  1172. @table @option
  1173. @item x, y
  1174. Specify the top left corner coordinates of the logo. They must be
  1175. specified.
  1176. @item w, h
  1177. Specify the width and height of the logo to clear. They must be
  1178. specified.
  1179. @item band, t
  1180. Specify the thickness of the fuzzy edge of the rectangle (added to
  1181. @var{w} and @var{h}). The default value is 4.
  1182. @item show
  1183. When set to 1, a green rectangle is drawn on the screen to simplify
  1184. finding the right @var{x}, @var{y}, @var{w}, @var{h} parameters, and
  1185. @var{band} is set to 4. The default value is 0.
  1186. @end table
  1187. Some examples follow.
  1188. @itemize
  1189. @item
  1190. Set a rectangle covering the area with top left corner coordinates 0,0
  1191. and size 100x77, setting a band of size 10:
  1192. @example
  1193. delogo=0:0:100:77:10
  1194. @end example
  1195. @item
  1196. As the previous example, but use named options:
  1197. @example
  1198. delogo=x=0:y=0:w=100:h=77:band=10
  1199. @end example
  1200. @end itemize
  1201. @section deshake
  1202. Attempt to fix small changes in horizontal and/or vertical shift. This
  1203. filter helps remove camera shake from hand-holding a camera, bumping a
  1204. tripod, moving on a vehicle, etc.
  1205. The filter accepts parameters as a string of the form
  1206. "@var{x}:@var{y}:@var{w}:@var{h}:@var{rx}:@var{ry}:@var{edge}:@var{blocksize}:@var{contrast}:@var{search}:@var{filename}"
  1207. A description of the accepted parameters follows.
  1208. @table @option
  1209. @item x, y, w, h
  1210. Specify a rectangular area where to limit the search for motion
  1211. vectors.
  1212. If desired the search for motion vectors can be limited to a
  1213. rectangular area of the frame defined by its top left corner, width
  1214. and height. These parameters have the same meaning as the drawbox
  1215. filter which can be used to visualise the position of the bounding
  1216. box.
  1217. This is useful when simultaneous movement of subjects within the frame
  1218. might be confused for camera motion by the motion vector search.
  1219. If any or all of @var{x}, @var{y}, @var{w} and @var{h} are set to -1
  1220. then the full frame is used. This allows later options to be set
  1221. without specifying the bounding box for the motion vector search.
  1222. Default - search the whole frame.
  1223. @item rx, ry
  1224. Specify the maximum extent of movement in x and y directions in the
  1225. range 0-64 pixels. Default 16.
  1226. @item edge
  1227. Specify how to generate pixels to fill blanks at the edge of the
  1228. frame. An integer from 0 to 3 as follows:
  1229. @table @option
  1230. @item 0
  1231. Fill zeroes at blank locations
  1232. @item 1
  1233. Original image at blank locations
  1234. @item 2
  1235. Extruded edge value at blank locations
  1236. @item 3
  1237. Mirrored edge at blank locations
  1238. @end table
  1239. The default setting is mirror edge at blank locations.
  1240. @item blocksize
  1241. Specify the blocksize to use for motion search. Range 4-128 pixels,
  1242. default 8.
  1243. @item contrast
  1244. Specify the contrast threshold for blocks. Only blocks with more than
  1245. the specified contrast (difference between darkest and lightest
  1246. pixels) will be considered. Range 1-255, default 125.
  1247. @item search
  1248. Specify the search strategy 0 = exhaustive search, 1 = less exhaustive
  1249. search. Default - exhaustive search.
  1250. @item filename
  1251. If set then a detailed log of the motion search is written to the
  1252. specified file.
  1253. @end table
  1254. @section drawbox
  1255. Draw a colored box on the input image.
  1256. It accepts the syntax:
  1257. @example
  1258. drawbox=@var{x}:@var{y}:@var{width}:@var{height}:@var{color}
  1259. @end example
  1260. @table @option
  1261. @item x, y
  1262. Specify the top left corner coordinates of the box. Default to 0.
  1263. @item width, height
  1264. Specify the width and height of the box, if 0 they are interpreted as
  1265. the input width and height. Default to 0.
  1266. @item color
  1267. Specify the color of the box to write, it can be the name of a color
  1268. (case insensitive match) or a 0xRRGGBB[AA] sequence.
  1269. @end table
  1270. Follow some examples:
  1271. @example
  1272. # draw a black box around the edge of the input image
  1273. drawbox
  1274. # draw a box with color red and an opacity of 50%
  1275. drawbox=10:20:200:60:red@@0.5"
  1276. @end example
  1277. @section drawtext
  1278. Draw text string or text from specified file on top of video using the
  1279. libfreetype library.
  1280. To enable compilation of this filter you need to configure FFmpeg with
  1281. @code{--enable-libfreetype}.
  1282. The filter also recognizes strftime() sequences in the provided text
  1283. and expands them accordingly. Check the documentation of strftime().
  1284. The filter accepts parameters as a list of @var{key}=@var{value} pairs,
  1285. separated by ":".
  1286. The description of the accepted parameters follows.
  1287. @table @option
  1288. @item box
  1289. Used to draw a box around text using background color.
  1290. Value should be either 1 (enable) or 0 (disable).
  1291. The default value of @var{box} is 0.
  1292. @item boxcolor
  1293. The color to be used for drawing box around text.
  1294. Either a string (e.g. "yellow") or in 0xRRGGBB[AA] format
  1295. (e.g. "0xff00ff"), possibly followed by an alpha specifier.
  1296. The default value of @var{boxcolor} is "white".
  1297. @item draw
  1298. Set an expression which specifies if the text should be drawn. If the
  1299. expression evaluates to 0, the text is not drawn. This is useful for
  1300. specifying that the text should be drawn only when specific conditions
  1301. are met.
  1302. Default value is "1".
  1303. See below for the list of accepted constants and functions.
  1304. @item fix_bounds
  1305. If true, check and fix text coords to avoid clipping.
  1306. @item fontcolor
  1307. The color to be used for drawing fonts.
  1308. Either a string (e.g. "red") or in 0xRRGGBB[AA] format
  1309. (e.g. "0xff000033"), possibly followed by an alpha specifier.
  1310. The default value of @var{fontcolor} is "black".
  1311. @item fontfile
  1312. The font file to be used for drawing text. Path must be included.
  1313. This parameter is mandatory.
  1314. @item fontsize
  1315. The font size to be used for drawing text.
  1316. The default value of @var{fontsize} is 16.
  1317. @item ft_load_flags
  1318. Flags to be used for loading the fonts.
  1319. The flags map the corresponding flags supported by libfreetype, and are
  1320. a combination of the following values:
  1321. @table @var
  1322. @item default
  1323. @item no_scale
  1324. @item no_hinting
  1325. @item render
  1326. @item no_bitmap
  1327. @item vertical_layout
  1328. @item force_autohint
  1329. @item crop_bitmap
  1330. @item pedantic
  1331. @item ignore_global_advance_width
  1332. @item no_recurse
  1333. @item ignore_transform
  1334. @item monochrome
  1335. @item linear_design
  1336. @item no_autohint
  1337. @item end table
  1338. @end table
  1339. Default value is "render".
  1340. For more information consult the documentation for the FT_LOAD_*
  1341. libfreetype flags.
  1342. @item shadowcolor
  1343. The color to be used for drawing a shadow behind the drawn text. It
  1344. can be a color name (e.g. "yellow") or a string in the 0xRRGGBB[AA]
  1345. form (e.g. "0xff00ff"), possibly followed by an alpha specifier.
  1346. The default value of @var{shadowcolor} is "black".
  1347. @item shadowx, shadowy
  1348. The x and y offsets for the text shadow position with respect to the
  1349. position of the text. They can be either positive or negative
  1350. values. Default value for both is "0".
  1351. @item tabsize
  1352. The size in number of spaces to use for rendering the tab.
  1353. Default value is 4.
  1354. @item timecode
  1355. Set the initial timecode representation in "hh:mm:ss[:;.]ff"
  1356. format. It can be used with or without text parameter. @var{timecode_rate}
  1357. option must be specified.
  1358. @item timecode_rate, rate, r
  1359. Set the timecode frame rate (timecode only).
  1360. @item text
  1361. The text string to be drawn. The text must be a sequence of UTF-8
  1362. encoded characters.
  1363. This parameter is mandatory if no file is specified with the parameter
  1364. @var{textfile}.
  1365. @item textfile
  1366. A text file containing text to be drawn. The text must be a sequence
  1367. of UTF-8 encoded characters.
  1368. This parameter is mandatory if no text string is specified with the
  1369. parameter @var{text}.
  1370. If both @var{text} and @var{textfile} are specified, an error is thrown.
  1371. @item x, y
  1372. The expressions which specify the offsets where text will be drawn
  1373. within the video frame. They are relative to the top/left border of the
  1374. output image.
  1375. The default value of @var{x} and @var{y} is "0".
  1376. See below for the list of accepted constants and functions.
  1377. @end table
  1378. The parameters for @var{x} and @var{y} are expressions containing the
  1379. following constants and functions:
  1380. @table @option
  1381. @item dar
  1382. input display aspect ratio, it is the same as (@var{w} / @var{h}) * @var{sar}
  1383. @item hsub, vsub
  1384. horizontal and vertical chroma subsample values. For example for the
  1385. pixel format "yuv422p" @var{hsub} is 2 and @var{vsub} is 1.
  1386. @item line_h, lh
  1387. the height of each text line
  1388. @item main_h, h, H
  1389. the input height
  1390. @item main_w, w, W
  1391. the input width
  1392. @item max_glyph_a, ascent
  1393. the maximum distance from the baseline to the highest/upper grid
  1394. coordinate used to place a glyph outline point, for all the rendered
  1395. glyphs.
  1396. It is a positive value, due to the grid's orientation with the Y axis
  1397. upwards.
  1398. @item max_glyph_d, descent
  1399. the maximum distance from the baseline to the lowest grid coordinate
  1400. used to place a glyph outline point, for all the rendered glyphs.
  1401. This is a negative value, due to the grid's orientation, with the Y axis
  1402. upwards.
  1403. @item max_glyph_h
  1404. maximum glyph height, that is the maximum height for all the glyphs
  1405. contained in the rendered text, it is equivalent to @var{ascent} -
  1406. @var{descent}.
  1407. @item max_glyph_w
  1408. maximum glyph width, that is the maximum width for all the glyphs
  1409. contained in the rendered text
  1410. @item n
  1411. the number of input frame, starting from 0
  1412. @item rand(min, max)
  1413. return a random number included between @var{min} and @var{max}
  1414. @item sar
  1415. input sample aspect ratio
  1416. @item t
  1417. timestamp expressed in seconds, NAN if the input timestamp is unknown
  1418. @item text_h, th
  1419. the height of the rendered text
  1420. @item text_w, tw
  1421. the width of the rendered text
  1422. @item x, y
  1423. the x and y offset coordinates where the text is drawn.
  1424. These parameters allow the @var{x} and @var{y} expressions to refer
  1425. each other, so you can for example specify @code{y=x/dar}.
  1426. @end table
  1427. If libavfilter was built with @code{--enable-fontconfig}, then
  1428. @option{fontfile} can be a fontconfig pattern or omitted.
  1429. Some examples follow.
  1430. @itemize
  1431. @item
  1432. Draw "Test Text" with font FreeSerif, using the default values for the
  1433. optional parameters.
  1434. @example
  1435. drawtext="fontfile=/usr/share/fonts/truetype/freefont/FreeSerif.ttf: text='Test Text'"
  1436. @end example
  1437. @item
  1438. Draw 'Test Text' with font FreeSerif of size 24 at position x=100
  1439. and y=50 (counting from the top-left corner of the screen), text is
  1440. yellow with a red box around it. Both the text and the box have an
  1441. opacity of 20%.
  1442. @example
  1443. drawtext="fontfile=/usr/share/fonts/truetype/freefont/FreeSerif.ttf: text='Test Text':\
  1444. x=100: y=50: fontsize=24: fontcolor=yellow@@0.2: box=1: boxcolor=red@@0.2"
  1445. @end example
  1446. Note that the double quotes are not necessary if spaces are not used
  1447. within the parameter list.
  1448. @item
  1449. Show the text at the center of the video frame:
  1450. @example
  1451. drawtext="fontsize=30:fontfile=FreeSerif.ttf:text='hello world':x=(w-text_w)/2:y=(h-text_h-line_h)/2"
  1452. @end example
  1453. @item
  1454. Show a text line sliding from right to left in the last row of the video
  1455. frame. The file @file{LONG_LINE} is assumed to contain a single line
  1456. with no newlines.
  1457. @example
  1458. drawtext="fontsize=15:fontfile=FreeSerif.ttf:text=LONG_LINE:y=h-line_h:x=-50*t"
  1459. @end example
  1460. @item
  1461. Show the content of file @file{CREDITS} off the bottom of the frame and scroll up.
  1462. @example
  1463. drawtext="fontsize=20:fontfile=FreeSerif.ttf:textfile=CREDITS:y=h-20*t"
  1464. @end example
  1465. @item
  1466. Draw a single green letter "g", at the center of the input video.
  1467. The glyph baseline is placed at half screen height.
  1468. @example
  1469. drawtext="fontsize=60:fontfile=FreeSerif.ttf:fontcolor=green:text=g:x=(w-max_glyph_w)/2:y=h/2-ascent"
  1470. @end example
  1471. @item
  1472. Show text for 1 second every 3 seconds:
  1473. @example
  1474. drawtext="fontfile=FreeSerif.ttf:fontcolor=white:x=100:y=x/dar:draw=lt(mod(t\\,3)\\,1):text='blink'"
  1475. @end example
  1476. @item
  1477. Use fontconfig to set the font. Note that the colons need to be escaped.
  1478. @example
  1479. drawtext='fontfile=Linux Libertine O-40\\:style=Semibold:text=FFmpeg'
  1480. @end example
  1481. @end itemize
  1482. For more information about libfreetype, check:
  1483. @url{http://www.freetype.org/}.
  1484. For more information about fontconfig, check:
  1485. @url{http://freedesktop.org/software/fontconfig/fontconfig-user.html}.
  1486. @section edgedetect
  1487. Detect and draw edges. The filter uses the Canny Edge Detection algorithm.
  1488. This filter accepts the following optional named parameters:
  1489. @table @option
  1490. @item low, high
  1491. Set low and high threshold values used by the Canny thresholding
  1492. algorithm.
  1493. The high threshold selects the "strong" edge pixels, which are then
  1494. connected through 8-connectivity with the "weak" edge pixels selected
  1495. by the low threshold.
  1496. @var{low} and @var{high} threshold values must be choosen in the range
  1497. [0,1], and @var{low} should be lesser or equal to @var{high}.
  1498. Default value for @var{low} is @code{20/255}, and default value for @var{high}
  1499. is @code{50/255}.
  1500. @end table
  1501. Example:
  1502. @example
  1503. edgedetect=low=0.1:high=0.4
  1504. @end example
  1505. @section fade
  1506. Apply fade-in/out effect to input video.
  1507. It accepts the parameters:
  1508. @var{type}:@var{start_frame}:@var{nb_frames}[:@var{options}]
  1509. @var{type} specifies if the effect type, can be either "in" for
  1510. fade-in, or "out" for a fade-out effect.
  1511. @var{start_frame} specifies the number of the start frame for starting
  1512. to apply the fade effect.
  1513. @var{nb_frames} specifies the number of frames for which the fade
  1514. effect has to last. At the end of the fade-in effect the output video
  1515. will have the same intensity as the input video, at the end of the
  1516. fade-out transition the output video will be completely black.
  1517. @var{options} is an optional sequence of @var{key}=@var{value} pairs,
  1518. separated by ":". The description of the accepted options follows.
  1519. @table @option
  1520. @item type, t
  1521. See @var{type}.
  1522. @item start_frame, s
  1523. See @var{start_frame}.
  1524. @item nb_frames, n
  1525. See @var{nb_frames}.
  1526. @item alpha
  1527. If set to 1, fade only alpha channel, if one exists on the input.
  1528. Default value is 0.
  1529. @end table
  1530. A few usage examples follow, usable too as test scenarios.
  1531. @example
  1532. # fade in first 30 frames of video
  1533. fade=in:0:30
  1534. # fade out last 45 frames of a 200-frame video
  1535. fade=out:155:45
  1536. # fade in first 25 frames and fade out last 25 frames of a 1000-frame video
  1537. fade=in:0:25, fade=out:975:25
  1538. # make first 5 frames black, then fade in from frame 5-24
  1539. fade=in:5:20
  1540. # fade in alpha over first 25 frames of video
  1541. fade=in:0:25:alpha=1
  1542. @end example
  1543. @section fieldorder
  1544. Transform the field order of the input video.
  1545. It accepts one parameter which specifies the required field order that
  1546. the input interlaced video will be transformed to. The parameter can
  1547. assume one of the following values:
  1548. @table @option
  1549. @item 0 or bff
  1550. output bottom field first
  1551. @item 1 or tff
  1552. output top field first
  1553. @end table
  1554. Default value is "tff".
  1555. Transformation is achieved by shifting the picture content up or down
  1556. by one line, and filling the remaining line with appropriate picture content.
  1557. This method is consistent with most broadcast field order converters.
  1558. If the input video is not flagged as being interlaced, or it is already
  1559. flagged as being of the required output field order then this filter does
  1560. not alter the incoming video.
  1561. This filter is very useful when converting to or from PAL DV material,
  1562. which is bottom field first.
  1563. For example:
  1564. @example
  1565. ffmpeg -i in.vob -vf "fieldorder=bff" out.dv
  1566. @end example
  1567. @section fifo
  1568. Buffer input images and send them when they are requested.
  1569. This filter is mainly useful when auto-inserted by the libavfilter
  1570. framework.
  1571. The filter does not take parameters.
  1572. @section format
  1573. Convert the input video to one of the specified pixel formats.
  1574. Libavfilter will try to pick one that is supported for the input to
  1575. the next filter.
  1576. The filter accepts a list of pixel format names, separated by ":",
  1577. for example "yuv420p:monow:rgb24".
  1578. Some examples follow:
  1579. @example
  1580. # convert the input video to the format "yuv420p"
  1581. format=yuv420p
  1582. # convert the input video to any of the formats in the list
  1583. format=yuv420p:yuv444p:yuv410p
  1584. @end example
  1585. @section fps
  1586. Convert the video to specified constant framerate by duplicating or dropping
  1587. frames as necessary.
  1588. This filter accepts the following named parameters:
  1589. @table @option
  1590. @item fps
  1591. Desired output framerate.
  1592. @end table
  1593. @section framestep
  1594. Select one frame every N.
  1595. This filter accepts in input a string representing a positive
  1596. integer. Default argument is @code{1}.
  1597. @anchor{frei0r}
  1598. @section frei0r
  1599. Apply a frei0r effect to the input video.
  1600. To enable compilation of this filter you need to install the frei0r
  1601. header and configure FFmpeg with @code{--enable-frei0r}.
  1602. The filter supports the syntax:
  1603. @example
  1604. @var{filter_name}[@{:|=@}@var{param1}:@var{param2}:...:@var{paramN}]
  1605. @end example
  1606. @var{filter_name} is the name to the frei0r effect to load. If the
  1607. environment variable @env{FREI0R_PATH} is defined, the frei0r effect
  1608. is searched in each one of the directories specified by the colon
  1609. separated list in @env{FREIOR_PATH}, otherwise in the standard frei0r
  1610. paths, which are in this order: @file{HOME/.frei0r-1/lib/},
  1611. @file{/usr/local/lib/frei0r-1/}, @file{/usr/lib/frei0r-1/}.
  1612. @var{param1}, @var{param2}, ... , @var{paramN} specify the parameters
  1613. for the frei0r effect.
  1614. A frei0r effect parameter can be a boolean (whose values are specified
  1615. with "y" and "n"), a double, a color (specified by the syntax
  1616. @var{R}/@var{G}/@var{B}, @var{R}, @var{G}, and @var{B} being float
  1617. numbers from 0.0 to 1.0) or by an @code{av_parse_color()} color
  1618. description), a position (specified by the syntax @var{X}/@var{Y},
  1619. @var{X} and @var{Y} being float numbers) and a string.
  1620. The number and kind of parameters depend on the loaded effect. If an
  1621. effect parameter is not specified the default value is set.
  1622. Some examples follow:
  1623. @itemize
  1624. @item
  1625. Apply the distort0r effect, set the first two double parameters:
  1626. @example
  1627. frei0r=distort0r:0.5:0.01
  1628. @end example
  1629. @item
  1630. Apply the colordistance effect, takes a color as first parameter:
  1631. @example
  1632. frei0r=colordistance:0.2/0.3/0.4
  1633. frei0r=colordistance:violet
  1634. frei0r=colordistance:0x112233
  1635. @end example
  1636. @item
  1637. Apply the perspective effect, specify the top left and top right image
  1638. positions:
  1639. @example
  1640. frei0r=perspective:0.2/0.2:0.8/0.2
  1641. @end example
  1642. @end itemize
  1643. For more information see:
  1644. @url{http://frei0r.dyne.org}
  1645. @section gradfun
  1646. Fix the banding artifacts that are sometimes introduced into nearly flat
  1647. regions by truncation to 8bit color depth.
  1648. Interpolate the gradients that should go where the bands are, and
  1649. dither them.
  1650. This filter is designed for playback only. Do not use it prior to
  1651. lossy compression, because compression tends to lose the dither and
  1652. bring back the bands.
  1653. The filter takes two optional parameters, separated by ':':
  1654. @var{strength}:@var{radius}
  1655. @var{strength} is the maximum amount by which the filter will change
  1656. any one pixel. Also the threshold for detecting nearly flat
  1657. regions. Acceptable values range from .51 to 255, default value is
  1658. 1.2, out-of-range values will be clipped to the valid range.
  1659. @var{radius} is the neighborhood to fit the gradient to. A larger
  1660. radius makes for smoother gradients, but also prevents the filter from
  1661. modifying the pixels near detailed regions. Acceptable values are
  1662. 8-32, default value is 16, out-of-range values will be clipped to the
  1663. valid range.
  1664. @example
  1665. # default parameters
  1666. gradfun=1.2:16
  1667. # omitting radius
  1668. gradfun=1.2
  1669. @end example
  1670. @section hflip
  1671. Flip the input video horizontally.
  1672. For example to horizontally flip the input video with @command{ffmpeg}:
  1673. @example
  1674. ffmpeg -i in.avi -vf "hflip" out.avi
  1675. @end example
  1676. @section hqdn3d
  1677. High precision/quality 3d denoise filter. This filter aims to reduce
  1678. image noise producing smooth images and making still images really
  1679. still. It should enhance compressibility.
  1680. It accepts the following optional parameters:
  1681. @var{luma_spatial}:@var{chroma_spatial}:@var{luma_tmp}:@var{chroma_tmp}
  1682. @table @option
  1683. @item luma_spatial
  1684. a non-negative float number which specifies spatial luma strength,
  1685. defaults to 4.0
  1686. @item chroma_spatial
  1687. a non-negative float number which specifies spatial chroma strength,
  1688. defaults to 3.0*@var{luma_spatial}/4.0
  1689. @item luma_tmp
  1690. a float number which specifies luma temporal strength, defaults to
  1691. 6.0*@var{luma_spatial}/4.0
  1692. @item chroma_tmp
  1693. a float number which specifies chroma temporal strength, defaults to
  1694. @var{luma_tmp}*@var{chroma_spatial}/@var{luma_spatial}
  1695. @end table
  1696. @section hue
  1697. Modify the hue and/or the saturation of the input.
  1698. This filter accepts the following optional named options:
  1699. @table @option
  1700. @item h
  1701. Specify the hue angle as a number of degrees. It accepts a float
  1702. number or an expression, and defaults to 0.0.
  1703. @item H
  1704. Specify the hue angle as a number of degrees. It accepts a float
  1705. number or an expression, and defaults to 0.0.
  1706. @item s
  1707. Specify the saturation in the [-10,10] range. It accepts a float number and
  1708. defaults to 1.0.
  1709. @end table
  1710. The options can also be set using the syntax: @var{hue}:@var{saturation}
  1711. In this case @var{hue} is expressed in degrees.
  1712. Some examples follow:
  1713. @itemize
  1714. @item
  1715. Set the hue to 90 degrees and the saturation to 1.0:
  1716. @example
  1717. hue=h=90:s=1
  1718. @end example
  1719. @item
  1720. Same command but expressing the hue in radians:
  1721. @example
  1722. hue=H=PI/2:s=1
  1723. @end example
  1724. @item
  1725. Same command without named options, hue must be expressed in degrees:
  1726. @example
  1727. hue=90:1
  1728. @end example
  1729. @item
  1730. Note that "h:s" syntax does not support expressions for the values of
  1731. h and s, so the following example will issue an error:
  1732. @example
  1733. hue=PI/2:1
  1734. @end example
  1735. @end itemize
  1736. @subsection Commands
  1737. This filter supports the following command:
  1738. @table @option
  1739. @item reinit
  1740. Modify the hue and/or the saturation of the input video.
  1741. The command accepts the same named options and syntax than when calling the
  1742. filter from the command-line.
  1743. If a parameter is omitted, it is kept at its current value.
  1744. @end table
  1745. @section idet
  1746. Interlaceing detect filter. This filter tries to detect if the input is
  1747. interlaced or progressive. Top or bottom field first.
  1748. @section lut, lutrgb, lutyuv
  1749. Compute a look-up table for binding each pixel component input value
  1750. to an output value, and apply it to input video.
  1751. @var{lutyuv} applies a lookup table to a YUV input video, @var{lutrgb}
  1752. to an RGB input video.
  1753. These filters accept in input a ":"-separated list of options, which
  1754. specify the expressions used for computing the lookup table for the
  1755. corresponding pixel component values.
  1756. The @var{lut} filter requires either YUV or RGB pixel formats in
  1757. input, and accepts the options:
  1758. @table @option
  1759. @item c0
  1760. first pixel component
  1761. @item c1
  1762. second pixel component
  1763. @item c2
  1764. third pixel component
  1765. @item c3
  1766. fourth pixel component, corresponds to the alpha component
  1767. @end table
  1768. The exact component associated to each option depends on the format in
  1769. input.
  1770. The @var{lutrgb} filter requires RGB pixel formats in input, and
  1771. accepts the options:
  1772. @table @option
  1773. @item r
  1774. red component
  1775. @item g
  1776. green component
  1777. @item b
  1778. blue component
  1779. @item a
  1780. alpha component
  1781. @end table
  1782. The @var{lutyuv} filter requires YUV pixel formats in input, and
  1783. accepts the options:
  1784. @table @option
  1785. @item y
  1786. Y/luminance component
  1787. @item u
  1788. U/Cb component
  1789. @item v
  1790. V/Cr component
  1791. @item a
  1792. alpha component
  1793. @end table
  1794. The expressions can contain the following constants and functions:
  1795. @table @option
  1796. @item w, h
  1797. the input width and height
  1798. @item val
  1799. input value for the pixel component
  1800. @item clipval
  1801. the input value clipped in the @var{minval}-@var{maxval} range
  1802. @item maxval
  1803. maximum value for the pixel component
  1804. @item minval
  1805. minimum value for the pixel component
  1806. @item negval
  1807. the negated value for the pixel component value clipped in the
  1808. @var{minval}-@var{maxval} range , it corresponds to the expression
  1809. "maxval-clipval+minval"
  1810. @item clip(val)
  1811. the computed value in @var{val} clipped in the
  1812. @var{minval}-@var{maxval} range
  1813. @item gammaval(gamma)
  1814. the computed gamma correction value of the pixel component value
  1815. clipped in the @var{minval}-@var{maxval} range, corresponds to the
  1816. expression
  1817. "pow((clipval-minval)/(maxval-minval)\,@var{gamma})*(maxval-minval)+minval"
  1818. @end table
  1819. All expressions default to "val".
  1820. Some examples follow:
  1821. @example
  1822. # negate input video
  1823. lutrgb="r=maxval+minval-val:g=maxval+minval-val:b=maxval+minval-val"
  1824. lutyuv="y=maxval+minval-val:u=maxval+minval-val:v=maxval+minval-val"
  1825. # the above is the same as
  1826. lutrgb="r=negval:g=negval:b=negval"
  1827. lutyuv="y=negval:u=negval:v=negval"
  1828. # negate luminance
  1829. lutyuv=y=negval
  1830. # remove chroma components, turns the video into a graytone image
  1831. lutyuv="u=128:v=128"
  1832. # apply a luma burning effect
  1833. lutyuv="y=2*val"
  1834. # remove green and blue components
  1835. lutrgb="g=0:b=0"
  1836. # set a constant alpha channel value on input
  1837. format=rgba,lutrgb=a="maxval-minval/2"
  1838. # correct luminance gamma by a 0.5 factor
  1839. lutyuv=y=gammaval(0.5)
  1840. @end example
  1841. @section mp
  1842. Apply an MPlayer filter to the input video.
  1843. This filter provides a wrapper around most of the filters of
  1844. MPlayer/MEncoder.
  1845. This wrapper is considered experimental. Some of the wrapped filters
  1846. may not work properly and we may drop support for them, as they will
  1847. be implemented natively into FFmpeg. Thus you should avoid
  1848. depending on them when writing portable scripts.
  1849. The filters accepts the parameters:
  1850. @var{filter_name}[:=]@var{filter_params}
  1851. @var{filter_name} is the name of a supported MPlayer filter,
  1852. @var{filter_params} is a string containing the parameters accepted by
  1853. the named filter.
  1854. The list of the currently supported filters follows:
  1855. @table @var
  1856. @item denoise3d
  1857. @item detc
  1858. @item dint
  1859. @item divtc
  1860. @item down3dright
  1861. @item dsize
  1862. @item eq2
  1863. @item eq
  1864. @item field
  1865. @item fil
  1866. @item fixpts
  1867. @item fspp
  1868. @item geq
  1869. @item harddup
  1870. @item hqdn3d
  1871. @item il
  1872. @item ilpack
  1873. @item ivtc
  1874. @item kerndeint
  1875. @item mcdeint
  1876. @item noise
  1877. @item ow
  1878. @item palette
  1879. @item perspective
  1880. @item phase
  1881. @item pp7
  1882. @item pullup
  1883. @item qp
  1884. @item rectangle
  1885. @item sab
  1886. @item softpulldown
  1887. @item softskip
  1888. @item spp
  1889. @item telecine
  1890. @item tile
  1891. @item tinterlace
  1892. @item unsharp
  1893. @item uspp
  1894. @item yuvcsp
  1895. @item yvu9
  1896. @end table
  1897. The parameter syntax and behavior for the listed filters are the same
  1898. of the corresponding MPlayer filters. For detailed instructions check
  1899. the "VIDEO FILTERS" section in the MPlayer manual.
  1900. Some examples follow:
  1901. @itemize
  1902. @item
  1903. Adjust gamma, brightness, contrast:
  1904. @example
  1905. mp=eq2=1.0:2:0.5
  1906. @end example
  1907. @item
  1908. Add temporal noise to input video:
  1909. @example
  1910. mp=noise=20t
  1911. @end example
  1912. @end itemize
  1913. See also mplayer(1), @url{http://www.mplayerhq.hu/}.
  1914. @section negate
  1915. Negate input video.
  1916. This filter accepts an integer in input, if non-zero it negates the
  1917. alpha component (if available). The default value in input is 0.
  1918. @section noformat
  1919. Force libavfilter not to use any of the specified pixel formats for the
  1920. input to the next filter.
  1921. The filter accepts a list of pixel format names, separated by ":",
  1922. for example "yuv420p:monow:rgb24".
  1923. Some examples follow:
  1924. @example
  1925. # force libavfilter to use a format different from "yuv420p" for the
  1926. # input to the vflip filter
  1927. noformat=yuv420p,vflip
  1928. # convert the input video to any of the formats not contained in the list
  1929. noformat=yuv420p:yuv444p:yuv410p
  1930. @end example
  1931. @section null
  1932. Pass the video source unchanged to the output.
  1933. @section ocv
  1934. Apply video transform using libopencv.
  1935. To enable this filter install libopencv library and headers and
  1936. configure FFmpeg with @code{--enable-libopencv}.
  1937. The filter takes the parameters: @var{filter_name}@{:=@}@var{filter_params}.
  1938. @var{filter_name} is the name of the libopencv filter to apply.
  1939. @var{filter_params} specifies the parameters to pass to the libopencv
  1940. filter. If not specified the default values are assumed.
  1941. Refer to the official libopencv documentation for more precise
  1942. information:
  1943. @url{http://opencv.willowgarage.com/documentation/c/image_filtering.html}
  1944. Follows the list of supported libopencv filters.
  1945. @anchor{dilate}
  1946. @subsection dilate
  1947. Dilate an image by using a specific structuring element.
  1948. This filter corresponds to the libopencv function @code{cvDilate}.
  1949. It accepts the parameters: @var{struct_el}:@var{nb_iterations}.
  1950. @var{struct_el} represents a structuring element, and has the syntax:
  1951. @var{cols}x@var{rows}+@var{anchor_x}x@var{anchor_y}/@var{shape}
  1952. @var{cols} and @var{rows} represent the number of columns and rows of
  1953. the structuring element, @var{anchor_x} and @var{anchor_y} the anchor
  1954. point, and @var{shape} the shape for the structuring element, and
  1955. can be one of the values "rect", "cross", "ellipse", "custom".
  1956. If the value for @var{shape} is "custom", it must be followed by a
  1957. string of the form "=@var{filename}". The file with name
  1958. @var{filename} is assumed to represent a binary image, with each
  1959. printable character corresponding to a bright pixel. When a custom
  1960. @var{shape} is used, @var{cols} and @var{rows} are ignored, the number
  1961. or columns and rows of the read file are assumed instead.
  1962. The default value for @var{struct_el} is "3x3+0x0/rect".
  1963. @var{nb_iterations} specifies the number of times the transform is
  1964. applied to the image, and defaults to 1.
  1965. Follow some example:
  1966. @example
  1967. # use the default values
  1968. ocv=dilate
  1969. # dilate using a structuring element with a 5x5 cross, iterate two times
  1970. ocv=dilate=5x5+2x2/cross:2
  1971. # read the shape from the file diamond.shape, iterate two times
  1972. # the file diamond.shape may contain a pattern of characters like this:
  1973. # *
  1974. # ***
  1975. # *****
  1976. # ***
  1977. # *
  1978. # the specified cols and rows are ignored (but not the anchor point coordinates)
  1979. ocv=0x0+2x2/custom=diamond.shape:2
  1980. @end example
  1981. @subsection erode
  1982. Erode an image by using a specific structuring element.
  1983. This filter corresponds to the libopencv function @code{cvErode}.
  1984. The filter accepts the parameters: @var{struct_el}:@var{nb_iterations},
  1985. with the same syntax and semantics as the @ref{dilate} filter.
  1986. @subsection smooth
  1987. Smooth the input video.
  1988. The filter takes the following parameters:
  1989. @var{type}:@var{param1}:@var{param2}:@var{param3}:@var{param4}.
  1990. @var{type} is the type of smooth filter to apply, and can be one of
  1991. the following values: "blur", "blur_no_scale", "median", "gaussian",
  1992. "bilateral". The default value is "gaussian".
  1993. @var{param1}, @var{param2}, @var{param3}, and @var{param4} are
  1994. parameters whose meanings depend on smooth type. @var{param1} and
  1995. @var{param2} accept integer positive values or 0, @var{param3} and
  1996. @var{param4} accept float values.
  1997. The default value for @var{param1} is 3, the default value for the
  1998. other parameters is 0.
  1999. These parameters correspond to the parameters assigned to the
  2000. libopencv function @code{cvSmooth}.
  2001. @anchor{overlay}
  2002. @section overlay
  2003. Overlay one video on top of another.
  2004. It takes two inputs and one output, the first input is the "main"
  2005. video on which the second input is overlayed.
  2006. It accepts the parameters: @var{x}:@var{y}[:@var{options}].
  2007. @var{x} is the x coordinate of the overlayed video on the main video,
  2008. @var{y} is the y coordinate. @var{x} and @var{y} are expressions containing
  2009. the following parameters:
  2010. @table @option
  2011. @item main_w, main_h
  2012. main input width and height
  2013. @item W, H
  2014. same as @var{main_w} and @var{main_h}
  2015. @item overlay_w, overlay_h
  2016. overlay input width and height
  2017. @item w, h
  2018. same as @var{overlay_w} and @var{overlay_h}
  2019. @end table
  2020. @var{options} is an optional list of @var{key}=@var{value} pairs,
  2021. separated by ":".
  2022. The description of the accepted options follows.
  2023. @table @option
  2024. @item rgb
  2025. If set to 1, force the filter to accept inputs in the RGB
  2026. color space. Default value is 0.
  2027. @end table
  2028. Be aware that frames are taken from each input video in timestamp
  2029. order, hence, if their initial timestamps differ, it is a a good idea
  2030. to pass the two inputs through a @var{setpts=PTS-STARTPTS} filter to
  2031. have them begin in the same zero timestamp, as it does the example for
  2032. the @var{movie} filter.
  2033. Follow some examples:
  2034. @example
  2035. # draw the overlay at 10 pixels from the bottom right
  2036. # corner of the main video.
  2037. overlay=main_w-overlay_w-10:main_h-overlay_h-10
  2038. # insert a transparent PNG logo in the bottom left corner of the input
  2039. ffmpeg -i input -i logo -filter_complex 'overlay=10:main_h-overlay_h-10' output
  2040. # insert 2 different transparent PNG logos (second logo on bottom
  2041. # right corner):
  2042. ffmpeg -i input -i logo1 -i logo2 -filter_complex
  2043. 'overlay=10:H-h-10,overlay=W-w-10:H-h-10' output
  2044. # add a transparent color layer on top of the main video,
  2045. # WxH specifies the size of the main input to the overlay filter
  2046. color=red@.3:WxH [over]; [in][over] overlay [out]
  2047. # play an original video and a filtered version (here with the deshake filter)
  2048. # side by side
  2049. ffplay input.avi -vf 'split[a][b]; [a]pad=iw*2:ih[src]; [b]deshake[filt]; [src][filt]overlay=w'
  2050. # the previous example is the same as:
  2051. ffplay input.avi -vf 'split[b], pad=iw*2[src], [b]deshake, [src]overlay=w'
  2052. @end example
  2053. You can chain together more overlays but the efficiency of such
  2054. approach is yet to be tested.
  2055. @section pad
  2056. Add paddings to the input image, and places the original input at the
  2057. given coordinates @var{x}, @var{y}.
  2058. It accepts the following parameters:
  2059. @var{width}:@var{height}:@var{x}:@var{y}:@var{color}.
  2060. The parameters @var{width}, @var{height}, @var{x}, and @var{y} are
  2061. expressions containing the following constants:
  2062. @table @option
  2063. @item in_w, in_h
  2064. the input video width and height
  2065. @item iw, ih
  2066. same as @var{in_w} and @var{in_h}
  2067. @item out_w, out_h
  2068. the output width and height, that is the size of the padded area as
  2069. specified by the @var{width} and @var{height} expressions
  2070. @item ow, oh
  2071. same as @var{out_w} and @var{out_h}
  2072. @item x, y
  2073. x and y offsets as specified by the @var{x} and @var{y}
  2074. expressions, or NAN if not yet specified
  2075. @item a
  2076. same as @var{iw} / @var{ih}
  2077. @item sar
  2078. input sample aspect ratio
  2079. @item dar
  2080. input display aspect ratio, it is the same as (@var{iw} / @var{ih}) * @var{sar}
  2081. @item hsub, vsub
  2082. horizontal and vertical chroma subsample values. For example for the
  2083. pixel format "yuv422p" @var{hsub} is 2 and @var{vsub} is 1.
  2084. @end table
  2085. Follows the description of the accepted parameters.
  2086. @table @option
  2087. @item width, height
  2088. Specify the size of the output image with the paddings added. If the
  2089. value for @var{width} or @var{height} is 0, the corresponding input size
  2090. is used for the output.
  2091. The @var{width} expression can reference the value set by the
  2092. @var{height} expression, and vice versa.
  2093. The default value of @var{width} and @var{height} is 0.
  2094. @item x, y
  2095. Specify the offsets where to place the input image in the padded area
  2096. with respect to the top/left border of the output image.
  2097. The @var{x} expression can reference the value set by the @var{y}
  2098. expression, and vice versa.
  2099. The default value of @var{x} and @var{y} is 0.
  2100. @item color
  2101. Specify the color of the padded area, it can be the name of a color
  2102. (case insensitive match) or a 0xRRGGBB[AA] sequence.
  2103. The default value of @var{color} is "black".
  2104. @end table
  2105. @section Examples
  2106. @itemize
  2107. @item
  2108. Add paddings with color "violet" to the input video. Output video
  2109. size is 640x480, the top-left corner of the input video is placed at
  2110. column 0, row 40:
  2111. @example
  2112. pad=640:480:0:40:violet
  2113. @end example
  2114. @item
  2115. Pad the input to get an output with dimensions increased by 3/2,
  2116. and put the input video at the center of the padded area:
  2117. @example
  2118. pad="3/2*iw:3/2*ih:(ow-iw)/2:(oh-ih)/2"
  2119. @end example
  2120. @item
  2121. Pad the input to get a squared output with size equal to the maximum
  2122. value between the input width and height, and put the input video at
  2123. the center of the padded area:
  2124. @example
  2125. pad="max(iw\,ih):ow:(ow-iw)/2:(oh-ih)/2"
  2126. @end example
  2127. @item
  2128. Pad the input to get a final w/h ratio of 16:9:
  2129. @example
  2130. pad="ih*16/9:ih:(ow-iw)/2:(oh-ih)/2"
  2131. @end example
  2132. @item
  2133. In case of anamorphic video, in order to set the output display aspect
  2134. correctly, it is necessary to use @var{sar} in the expression,
  2135. according to the relation:
  2136. @example
  2137. (ih * X / ih) * sar = output_dar
  2138. X = output_dar / sar
  2139. @end example
  2140. Thus the previous example needs to be modified to:
  2141. @example
  2142. pad="ih*16/9/sar:ih:(ow-iw)/2:(oh-ih)/2"
  2143. @end example
  2144. @item
  2145. Double output size and put the input video in the bottom-right
  2146. corner of the output padded area:
  2147. @example
  2148. pad="2*iw:2*ih:ow-iw:oh-ih"
  2149. @end example
  2150. @end itemize
  2151. @section pixdesctest
  2152. Pixel format descriptor test filter, mainly useful for internal
  2153. testing. The output video should be equal to the input video.
  2154. For example:
  2155. @example
  2156. format=monow, pixdesctest
  2157. @end example
  2158. can be used to test the monowhite pixel format descriptor definition.
  2159. @section removelogo
  2160. Suppress a TV station logo, using an image file to determine which
  2161. pixels comprise the logo. It works by filling in the pixels that
  2162. comprise the logo with neighboring pixels.
  2163. This filter requires one argument which specifies the filter bitmap
  2164. file, which can be any image format supported by libavformat. The
  2165. width and height of the image file must match those of the video
  2166. stream being processed.
  2167. Pixels in the provided bitmap image with a value of zero are not
  2168. considered part of the logo, non-zero pixels are considered part of
  2169. the logo. If you use white (255) for the logo and black (0) for the
  2170. rest, you will be safe. For making the filter bitmap, it is
  2171. recommended to take a screen capture of a black frame with the logo
  2172. visible, and then using a threshold filter followed by the erode
  2173. filter once or twice.
  2174. If needed, little splotches can be fixed manually. Remember that if
  2175. logo pixels are not covered, the filter quality will be much
  2176. reduced. Marking too many pixels as part of the logo does not hurt as
  2177. much, but it will increase the amount of blurring needed to cover over
  2178. the image and will destroy more information than necessary, and extra
  2179. pixels will slow things down on a large logo.
  2180. @section scale
  2181. Scale the input video to @var{width}:@var{height}[:@var{interl}=@{1|-1@}] and/or convert the image format.
  2182. The scale filter forces the output display aspect ratio to be the same
  2183. of the input, by changing the output sample aspect ratio.
  2184. The parameters @var{width} and @var{height} are expressions containing
  2185. the following constants:
  2186. @table @option
  2187. @item in_w, in_h
  2188. the input width and height
  2189. @item iw, ih
  2190. same as @var{in_w} and @var{in_h}
  2191. @item out_w, out_h
  2192. the output (cropped) width and height
  2193. @item ow, oh
  2194. same as @var{out_w} and @var{out_h}
  2195. @item a
  2196. same as @var{iw} / @var{ih}
  2197. @item sar
  2198. input sample aspect ratio
  2199. @item dar
  2200. input display aspect ratio, it is the same as (@var{iw} / @var{ih}) * @var{sar}
  2201. @item hsub, vsub
  2202. horizontal and vertical chroma subsample values. For example for the
  2203. pixel format "yuv422p" @var{hsub} is 2 and @var{vsub} is 1.
  2204. @end table
  2205. If the input image format is different from the format requested by
  2206. the next filter, the scale filter will convert the input to the
  2207. requested format.
  2208. If the value for @var{width} or @var{height} is 0, the respective input
  2209. size is used for the output.
  2210. If the value for @var{width} or @var{height} is -1, the scale filter will
  2211. use, for the respective output size, a value that maintains the aspect
  2212. ratio of the input image.
  2213. The default value of @var{width} and @var{height} is 0.
  2214. Valid values for the optional parameter @var{interl} are:
  2215. @table @option
  2216. @item 1
  2217. force interlaced aware scaling
  2218. @item -1
  2219. select interlaced aware scaling depending on whether the source frames
  2220. are flagged as interlaced or not
  2221. @end table
  2222. Unless @var{interl} is set to one of the above options, interlaced scaling will not be used.
  2223. Some examples follow:
  2224. @example
  2225. # scale the input video to a size of 200x100.
  2226. scale=200:100
  2227. # scale the input to 2x
  2228. scale=2*iw:2*ih
  2229. # the above is the same as
  2230. scale=2*in_w:2*in_h
  2231. # scale the input to 2x with forced interlaced scaling
  2232. scale=2*iw:2*ih:interl=1
  2233. # scale the input to half size
  2234. scale=iw/2:ih/2
  2235. # increase the width, and set the height to the same size
  2236. scale=3/2*iw:ow
  2237. # seek for Greek harmony
  2238. scale=iw:1/PHI*iw
  2239. scale=ih*PHI:ih
  2240. # increase the height, and set the width to 3/2 of the height
  2241. scale=3/2*oh:3/5*ih
  2242. # increase the size, but make the size a multiple of the chroma
  2243. scale="trunc(3/2*iw/hsub)*hsub:trunc(3/2*ih/vsub)*vsub"
  2244. # increase the width to a maximum of 500 pixels, keep the same input aspect ratio
  2245. scale='min(500\, iw*3/2):-1'
  2246. @end example
  2247. @section select
  2248. Select frames to pass in output.
  2249. It accepts in input an expression, which is evaluated for each input
  2250. frame. If the expression is evaluated to a non-zero value, the frame
  2251. is selected and passed to the output, otherwise it is discarded.
  2252. The expression can contain the following constants:
  2253. @table @option
  2254. @item n
  2255. the sequential number of the filtered frame, starting from 0
  2256. @item selected_n
  2257. the sequential number of the selected frame, starting from 0
  2258. @item prev_selected_n
  2259. the sequential number of the last selected frame, NAN if undefined
  2260. @item TB
  2261. timebase of the input timestamps
  2262. @item pts
  2263. the PTS (Presentation TimeStamp) of the filtered video frame,
  2264. expressed in @var{TB} units, NAN if undefined
  2265. @item t
  2266. the PTS (Presentation TimeStamp) of the filtered video frame,
  2267. expressed in seconds, NAN if undefined
  2268. @item prev_pts
  2269. the PTS of the previously filtered video frame, NAN if undefined
  2270. @item prev_selected_pts
  2271. the PTS of the last previously filtered video frame, NAN if undefined
  2272. @item prev_selected_t
  2273. the PTS of the last previously selected video frame, NAN if undefined
  2274. @item start_pts
  2275. the PTS of the first video frame in the video, NAN if undefined
  2276. @item start_t
  2277. the time of the first video frame in the video, NAN if undefined
  2278. @item pict_type
  2279. the type of the filtered frame, can assume one of the following
  2280. values:
  2281. @table @option
  2282. @item I
  2283. @item P
  2284. @item B
  2285. @item S
  2286. @item SI
  2287. @item SP
  2288. @item BI
  2289. @end table
  2290. @item interlace_type
  2291. the frame interlace type, can assume one of the following values:
  2292. @table @option
  2293. @item PROGRESSIVE
  2294. the frame is progressive (not interlaced)
  2295. @item TOPFIRST
  2296. the frame is top-field-first
  2297. @item BOTTOMFIRST
  2298. the frame is bottom-field-first
  2299. @end table
  2300. @item key
  2301. 1 if the filtered frame is a key-frame, 0 otherwise
  2302. @item pos
  2303. the position in the file of the filtered frame, -1 if the information
  2304. is not available (e.g. for synthetic video)
  2305. @item scene
  2306. value between 0 and 1 to indicate a new scene; a low value reflects a low
  2307. probability for the current frame to introduce a new scene, while a higher
  2308. value means the current frame is more likely to be one (see the example below)
  2309. @end table
  2310. The default value of the select expression is "1".
  2311. Some examples follow:
  2312. @example
  2313. # select all frames in input
  2314. select
  2315. # the above is the same as:
  2316. select=1
  2317. # skip all frames:
  2318. select=0
  2319. # select only I-frames
  2320. select='eq(pict_type\,I)'
  2321. # select one frame every 100
  2322. select='not(mod(n\,100))'
  2323. # select only frames contained in the 10-20 time interval
  2324. select='gte(t\,10)*lte(t\,20)'
  2325. # select only I frames contained in the 10-20 time interval
  2326. select='gte(t\,10)*lte(t\,20)*eq(pict_type\,I)'
  2327. # select frames with a minimum distance of 10 seconds
  2328. select='isnan(prev_selected_t)+gte(t-prev_selected_t\,10)'
  2329. @end example
  2330. Complete example to create a mosaic of the first scenes:
  2331. @example
  2332. ffmpeg -i video.avi -vf select='gt(scene\,0.4)',scale=160:120,tile -frames:v 1 preview.png
  2333. @end example
  2334. Comparing @var{scene} against a value between 0.3 and 0.5 is generally a sane
  2335. choice.
  2336. @section setdar, setsar
  2337. The @code{setdar} filter sets the Display Aspect Ratio for the filter
  2338. output video.
  2339. This is done by changing the specified Sample (aka Pixel) Aspect
  2340. Ratio, according to the following equation:
  2341. @example
  2342. @var{DAR} = @var{HORIZONTAL_RESOLUTION} / @var{VERTICAL_RESOLUTION} * @var{SAR}
  2343. @end example
  2344. Keep in mind that the @code{setdar} filter does not modify the pixel
  2345. dimensions of the video frame. Also the display aspect ratio set by
  2346. this filter may be changed by later filters in the filterchain,
  2347. e.g. in case of scaling or if another "setdar" or a "setsar" filter is
  2348. applied.
  2349. The @code{setsar} filter sets the Sample (aka Pixel) Aspect Ratio for
  2350. the filter output video.
  2351. Note that as a consequence of the application of this filter, the
  2352. output display aspect ratio will change according to the equation
  2353. above.
  2354. Keep in mind that the sample aspect ratio set by the @code{setsar}
  2355. filter may be changed by later filters in the filterchain, e.g. if
  2356. another "setsar" or a "setdar" filter is applied.
  2357. The @code{setdar} and @code{setsar} filters accept a parameter string
  2358. which represents the wanted aspect ratio. The parameter can
  2359. be a floating point number string, an expression, or a string of the form
  2360. @var{num}:@var{den}, where @var{num} and @var{den} are the numerator
  2361. and denominator of the aspect ratio. If the parameter is not
  2362. specified, it is assumed the value "0:1".
  2363. For example to change the display aspect ratio to 16:9, specify:
  2364. @example
  2365. setdar=16:9
  2366. @end example
  2367. The example above is equivalent to:
  2368. @example
  2369. setdar=1.77777
  2370. @end example
  2371. To change the sample aspect ratio to 10:11, specify:
  2372. @example
  2373. setsar=10:11
  2374. @end example
  2375. @section setfield
  2376. Force field for the output video frame.
  2377. The @code{setfield} filter marks the interlace type field for the
  2378. output frames. It does not change the input frame, but only sets the
  2379. corresponding property, which affects how the frame is treated by
  2380. following filters (e.g. @code{fieldorder} or @code{yadif}).
  2381. It accepts a string parameter, which can assume the following values:
  2382. @table @samp
  2383. @item auto
  2384. Keep the same field property.
  2385. @item bff
  2386. Mark the frame as bottom-field-first.
  2387. @item tff
  2388. Mark the frame as top-field-first.
  2389. @item prog
  2390. Mark the frame as progressive.
  2391. @end table
  2392. @section showinfo
  2393. Show a line containing various information for each input video frame.
  2394. The input video is not modified.
  2395. The shown line contains a sequence of key/value pairs of the form
  2396. @var{key}:@var{value}.
  2397. A description of each shown parameter follows:
  2398. @table @option
  2399. @item n
  2400. sequential number of the input frame, starting from 0
  2401. @item pts
  2402. Presentation TimeStamp of the input frame, expressed as a number of
  2403. time base units. The time base unit depends on the filter input pad.
  2404. @item pts_time
  2405. Presentation TimeStamp of the input frame, expressed as a number of
  2406. seconds
  2407. @item pos
  2408. position of the frame in the input stream, -1 if this information in
  2409. unavailable and/or meaningless (for example in case of synthetic video)
  2410. @item fmt
  2411. pixel format name
  2412. @item sar
  2413. sample aspect ratio of the input frame, expressed in the form
  2414. @var{num}/@var{den}
  2415. @item s
  2416. size of the input frame, expressed in the form
  2417. @var{width}x@var{height}
  2418. @item i
  2419. interlaced mode ("P" for "progressive", "T" for top field first, "B"
  2420. for bottom field first)
  2421. @item iskey
  2422. 1 if the frame is a key frame, 0 otherwise
  2423. @item type
  2424. picture type of the input frame ("I" for an I-frame, "P" for a
  2425. P-frame, "B" for a B-frame, "?" for unknown type).
  2426. Check also the documentation of the @code{AVPictureType} enum and of
  2427. the @code{av_get_picture_type_char} function defined in
  2428. @file{libavutil/avutil.h}.
  2429. @item checksum
  2430. Adler-32 checksum (printed in hexadecimal) of all the planes of the input frame
  2431. @item plane_checksum
  2432. Adler-32 checksum (printed in hexadecimal) of each plane of the input frame,
  2433. expressed in the form "[@var{c0} @var{c1} @var{c2} @var{c3}]"
  2434. @end table
  2435. @section slicify
  2436. Pass the images of input video on to next video filter as multiple
  2437. slices.
  2438. @example
  2439. ffmpeg -i in.avi -vf "slicify=32" out.avi
  2440. @end example
  2441. The filter accepts the slice height as parameter. If the parameter is
  2442. not specified it will use the default value of 16.
  2443. Adding this in the beginning of filter chains should make filtering
  2444. faster due to better use of the memory cache.
  2445. @section smartblur
  2446. Blur the input video without impacting the outlines.
  2447. The filter accepts the following parameters:
  2448. @var{luma_radius}:@var{luma_strength}:@var{luma_threshold}[:@var{chroma_radius}:@var{chroma_strength}:@var{chroma_threshold}]
  2449. Parameters prefixed by @var{luma} indicate that they work on the
  2450. luminance of the pixels whereas parameters prefixed by @var{chroma}
  2451. refer to the chrominance of the pixels.
  2452. If the chroma parameters are not set, the luma parameters are used for
  2453. either the luminance and the chrominance of the pixels.
  2454. @var{luma_radius} or @var{chroma_radius} must be a float number in the
  2455. range [0.1,5.0] that specifies the variance of the gaussian filter
  2456. used to blur the image (slower if larger).
  2457. @var{luma_strength} or @var{chroma_strength} must be a float number in
  2458. the range [-1.0,1.0] that configures the blurring. A value included in
  2459. [0.0,1.0] will blur the image whereas a value included in [-1.0,0.0]
  2460. will sharpen the image.
  2461. @var{luma_threshold} or @var{chroma_threshold} must be an integer in
  2462. the range [-30,30] that is used as a coefficient to determine whether
  2463. a pixel should be blurred or not. A value of 0 will filter all the
  2464. image, a value included in [0,30] will filter flat areas and a value
  2465. included in [-30,0] will filter edges.
  2466. @section split
  2467. Split input video into several identical outputs.
  2468. The filter accepts a single parameter which specifies the number of outputs. If
  2469. unspecified, it defaults to 2.
  2470. For example
  2471. @example
  2472. ffmpeg -i INPUT -filter_complex split=5 OUTPUT
  2473. @end example
  2474. will create 5 copies of the input video.
  2475. For example:
  2476. @example
  2477. [in] split [splitout1][splitout2];
  2478. [splitout1] crop=100:100:0:0 [cropout];
  2479. [splitout2] pad=200:200:100:100 [padout];
  2480. @end example
  2481. will create two separate outputs from the same input, one cropped and
  2482. one padded.
  2483. @section super2xsai
  2484. Scale the input by 2x and smooth using the Super2xSaI (Scale and
  2485. Interpolate) pixel art scaling algorithm.
  2486. Useful for enlarging pixel art images without reducing sharpness.
  2487. @section swapuv
  2488. Swap U & V plane.
  2489. @section thumbnail
  2490. Select the most representative frame in a given sequence of consecutive frames.
  2491. It accepts as argument the frames batch size to analyze (default @var{N}=100);
  2492. in a set of @var{N} frames, the filter will pick one of them, and then handle
  2493. the next batch of @var{N} frames until the end.
  2494. Since the filter keeps track of the whole frames sequence, a bigger @var{N}
  2495. value will result in a higher memory usage, so a high value is not recommended.
  2496. The following example extract one picture each 50 frames:
  2497. @example
  2498. thumbnail=50
  2499. @end example
  2500. Complete example of a thumbnail creation with @command{ffmpeg}:
  2501. @example
  2502. ffmpeg -i in.avi -vf thumbnail,scale=300:200 -frames:v 1 out.png
  2503. @end example
  2504. @section tile
  2505. Tile several successive frames together.
  2506. It accepts as argument the tile size (i.e. the number of lines and columns)
  2507. in the form "@var{w}x@var{h}".
  2508. For example, produce 8×8 PNG tiles of all keyframes (@option{-skip_frame
  2509. nokey}) in a movie:
  2510. @example
  2511. ffmpeg -skip_frame nokey -i file.avi -vf 'scale=128:72,tile=8x8' -an -vsync 0 keyframes%03d.png
  2512. @end example
  2513. The @option{-vsync 0} is necessary to prevent @command{ffmpeg} from
  2514. duplicating each output frame to accomodate the originally detected frame
  2515. rate.
  2516. @section tinterlace
  2517. Perform various types of temporal field interlacing.
  2518. Frames are counted starting from 1, so the first input frame is
  2519. considered odd.
  2520. This filter accepts a single parameter specifying the mode. Available
  2521. modes are:
  2522. @table @samp
  2523. @item merge, 0
  2524. Move odd frames into the upper field, even into the lower field,
  2525. generating a double height frame at half framerate.
  2526. @item drop_odd, 1
  2527. Only output even frames, odd frames are dropped, generating a frame with
  2528. unchanged height at half framerate.
  2529. @item drop_even, 2
  2530. Only output odd frames, even frames are dropped, generating a frame with
  2531. unchanged height at half framerate.
  2532. @item pad, 3
  2533. Expand each frame to full height, but pad alternate lines with black,
  2534. generating a frame with double height at the same input framerate.
  2535. @item interleave_top, 4
  2536. Interleave the upper field from odd frames with the lower field from
  2537. even frames, generating a frame with unchanged height at half framerate.
  2538. @item interleave_bottom, 5
  2539. Interleave the lower field from odd frames with the upper field from
  2540. even frames, generating a frame with unchanged height at half framerate.
  2541. @item interlacex2, 6
  2542. Double frame rate with unchanged height. Frames are inserted each
  2543. containing the second temporal field from the previous input frame and
  2544. the first temporal field from the next input frame. This mode relies on
  2545. the top_field_first flag. Useful for interlaced video displays with no
  2546. field synchronisation.
  2547. @end table
  2548. Numeric values are deprecated but are accepted for backward
  2549. compatibility reasons.
  2550. Default mode is @code{merge}.
  2551. @section transpose
  2552. Transpose rows with columns in the input video and optionally flip it.
  2553. It accepts a parameter representing an integer, which can assume the
  2554. values:
  2555. @table @samp
  2556. @item 0, 4
  2557. Rotate by 90 degrees counterclockwise and vertically flip (default), that is:
  2558. @example
  2559. L.R L.l
  2560. . . -> . .
  2561. l.r R.r
  2562. @end example
  2563. @item 1, 5
  2564. Rotate by 90 degrees clockwise, that is:
  2565. @example
  2566. L.R l.L
  2567. . . -> . .
  2568. l.r r.R
  2569. @end example
  2570. @item 2, 6
  2571. Rotate by 90 degrees counterclockwise, that is:
  2572. @example
  2573. L.R R.r
  2574. . . -> . .
  2575. l.r L.l
  2576. @end example
  2577. @item 3, 7
  2578. Rotate by 90 degrees clockwise and vertically flip, that is:
  2579. @example
  2580. L.R r.R
  2581. . . -> . .
  2582. l.r l.L
  2583. @end example
  2584. @end table
  2585. For values between 4-7 transposition is only done if the input video
  2586. geometry is portrait and not landscape.
  2587. @section unsharp
  2588. Sharpen or blur the input video.
  2589. It accepts the following parameters:
  2590. @var{luma_msize_x}:@var{luma_msize_y}:@var{luma_amount}:@var{chroma_msize_x}:@var{chroma_msize_y}:@var{chroma_amount}
  2591. Negative values for the amount will blur the input video, while positive
  2592. values will sharpen. All parameters are optional and default to the
  2593. equivalent of the string '5:5:1.0:5:5:0.0'.
  2594. @table @option
  2595. @item luma_msize_x
  2596. Set the luma matrix horizontal size. It can be an integer between 3
  2597. and 13, default value is 5.
  2598. @item luma_msize_y
  2599. Set the luma matrix vertical size. It can be an integer between 3
  2600. and 13, default value is 5.
  2601. @item luma_amount
  2602. Set the luma effect strength. It can be a float number between -2.0
  2603. and 5.0, default value is 1.0.
  2604. @item chroma_msize_x
  2605. Set the chroma matrix horizontal size. It can be an integer between 3
  2606. and 13, default value is 5.
  2607. @item chroma_msize_y
  2608. Set the chroma matrix vertical size. It can be an integer between 3
  2609. and 13, default value is 5.
  2610. @item chroma_amount
  2611. Set the chroma effect strength. It can be a float number between -2.0
  2612. and 5.0, default value is 0.0.
  2613. @end table
  2614. @example
  2615. # Strong luma sharpen effect parameters
  2616. unsharp=7:7:2.5
  2617. # Strong blur of both luma and chroma parameters
  2618. unsharp=7:7:-2:7:7:-2
  2619. # Use the default values with @command{ffmpeg}
  2620. ffmpeg -i in.avi -vf "unsharp" out.mp4
  2621. @end example
  2622. @section vflip
  2623. Flip the input video vertically.
  2624. @example
  2625. ffmpeg -i in.avi -vf "vflip" out.avi
  2626. @end example
  2627. @section yadif
  2628. Deinterlace the input video ("yadif" means "yet another deinterlacing
  2629. filter").
  2630. It accepts the optional parameters: @var{mode}:@var{parity}:@var{auto}.
  2631. @var{mode} specifies the interlacing mode to adopt, accepts one of the
  2632. following values:
  2633. @table @option
  2634. @item 0
  2635. output 1 frame for each frame
  2636. @item 1
  2637. output 1 frame for each field
  2638. @item 2
  2639. like 0 but skips spatial interlacing check
  2640. @item 3
  2641. like 1 but skips spatial interlacing check
  2642. @end table
  2643. Default value is 0.
  2644. @var{parity} specifies the picture field parity assumed for the input
  2645. interlaced video, accepts one of the following values:
  2646. @table @option
  2647. @item 0
  2648. assume top field first
  2649. @item 1
  2650. assume bottom field first
  2651. @item -1
  2652. enable automatic detection
  2653. @end table
  2654. Default value is -1.
  2655. If interlacing is unknown or decoder does not export this information,
  2656. top field first will be assumed.
  2657. @var{auto} specifies if deinterlacer should trust the interlaced flag
  2658. and only deinterlace frames marked as interlaced
  2659. @table @option
  2660. @item 0
  2661. deinterlace all frames
  2662. @item 1
  2663. only deinterlace frames marked as interlaced
  2664. @end table
  2665. Default value is 0.
  2666. @c man end VIDEO FILTERS
  2667. @chapter Video Sources
  2668. @c man begin VIDEO SOURCES
  2669. Below is a description of the currently available video sources.
  2670. @section buffer
  2671. Buffer video frames, and make them available to the filter chain.
  2672. This source is mainly intended for a programmatic use, in particular
  2673. through the interface defined in @file{libavfilter/vsrc_buffer.h}.
  2674. It accepts a list of options in the form of @var{key}=@var{value} pairs
  2675. separated by ":". A descroption of the accepted options follows.
  2676. @table @option
  2677. @item video_size
  2678. Specify the size (width and height) of the buffered video frames.
  2679. @item pix_fmt
  2680. A string representing the pixel format of the buffered video frames.
  2681. It may be a number corresponding to a pixel format, or a pixel format
  2682. name.
  2683. @item time_base
  2684. Specify the timebase assumed by the timestamps of the buffered frames.
  2685. @item time_base
  2686. Specify the frame rate expected for the video stream.
  2687. @item pixel_aspect
  2688. Specify the sample aspect ratio assumed by the video frames.
  2689. @item sws_param
  2690. Specify the optional parameters to be used for the scale filter which
  2691. is automatically inserted when an input change is detected in the
  2692. input size or format.
  2693. @end table
  2694. For example:
  2695. @example
  2696. buffer=size=320x240:pix_fmt=yuv410p:time_base=1/24:pixel_aspect=1/1
  2697. @end example
  2698. will instruct the source to accept video frames with size 320x240 and
  2699. with format "yuv410p", assuming 1/24 as the timestamps timebase and
  2700. square pixels (1:1 sample aspect ratio).
  2701. Since the pixel format with name "yuv410p" corresponds to the number 6
  2702. (check the enum PixelFormat definition in @file{libavutil/pixfmt.h}),
  2703. this example corresponds to:
  2704. @example
  2705. buffer=size=320x240:pixfmt=6:time_base=1/24:pixel_aspect=1/1
  2706. @end example
  2707. Alternatively, the options can be specified as a flat string, but this
  2708. syntax is deprecated:
  2709. @var{width}:@var{height}:@var{pix_fmt}:@var{time_base.num}:@var{time_base.den}:@var{pixel_aspect.num}:@var{pixel_aspect.den}[:@var{sws_param}]
  2710. @section cellauto
  2711. Create a pattern generated by an elementary cellular automaton.
  2712. The initial state of the cellular automaton can be defined through the
  2713. @option{filename}, and @option{pattern} options. If such options are
  2714. not specified an initial state is created randomly.
  2715. At each new frame a new row in the video is filled with the result of
  2716. the cellular automaton next generation. The behavior when the whole
  2717. frame is filled is defined by the @option{scroll} option.
  2718. This source accepts a list of options in the form of
  2719. @var{key}=@var{value} pairs separated by ":". A description of the
  2720. accepted options follows.
  2721. @table @option
  2722. @item filename, f
  2723. Read the initial cellular automaton state, i.e. the starting row, from
  2724. the specified file.
  2725. In the file, each non-whitespace character is considered an alive
  2726. cell, a newline will terminate the row, and further characters in the
  2727. file will be ignored.
  2728. @item pattern, p
  2729. Read the initial cellular automaton state, i.e. the starting row, from
  2730. the specified string.
  2731. Each non-whitespace character in the string is considered an alive
  2732. cell, a newline will terminate the row, and further characters in the
  2733. string will be ignored.
  2734. @item rate, r
  2735. Set the video rate, that is the number of frames generated per second.
  2736. Default is 25.
  2737. @item random_fill_ratio, ratio
  2738. Set the random fill ratio for the initial cellular automaton row. It
  2739. is a floating point number value ranging from 0 to 1, defaults to
  2740. 1/PHI.
  2741. This option is ignored when a file or a pattern is specified.
  2742. @item random_seed, seed
  2743. Set the seed for filling randomly the initial row, must be an integer
  2744. included between 0 and UINT32_MAX. If not specified, or if explicitly
  2745. set to -1, the filter will try to use a good random seed on a best
  2746. effort basis.
  2747. @item rule
  2748. Set the cellular automaton rule, it is a number ranging from 0 to 255.
  2749. Default value is 110.
  2750. @item size, s
  2751. Set the size of the output video.
  2752. If @option{filename} or @option{pattern} is specified, the size is set
  2753. by default to the width of the specified initial state row, and the
  2754. height is set to @var{width} * PHI.
  2755. If @option{size} is set, it must contain the width of the specified
  2756. pattern string, and the specified pattern will be centered in the
  2757. larger row.
  2758. If a filename or a pattern string is not specified, the size value
  2759. defaults to "320x518" (used for a randomly generated initial state).
  2760. @item scroll
  2761. If set to 1, scroll the output upward when all the rows in the output
  2762. have been already filled. If set to 0, the new generated row will be
  2763. written over the top row just after the bottom row is filled.
  2764. Defaults to 1.
  2765. @item start_full, full
  2766. If set to 1, completely fill the output with generated rows before
  2767. outputting the first frame.
  2768. This is the default behavior, for disabling set the value to 0.
  2769. @item stitch
  2770. If set to 1, stitch the left and right row edges together.
  2771. This is the default behavior, for disabling set the value to 0.
  2772. @end table
  2773. @subsection Examples
  2774. @itemize
  2775. @item
  2776. Read the initial state from @file{pattern}, and specify an output of
  2777. size 200x400.
  2778. @example
  2779. cellauto=f=pattern:s=200x400
  2780. @end example
  2781. @item
  2782. Generate a random initial row with a width of 200 cells, with a fill
  2783. ratio of 2/3:
  2784. @example
  2785. cellauto=ratio=2/3:s=200x200
  2786. @end example
  2787. @item
  2788. Create a pattern generated by rule 18 starting by a single alive cell
  2789. centered on an initial row with width 100:
  2790. @example
  2791. cellauto=p=@@:s=100x400:full=0:rule=18
  2792. @end example
  2793. @item
  2794. Specify a more elaborated initial pattern:
  2795. @example
  2796. cellauto=p='@@@@ @@ @@@@':s=100x400:full=0:rule=18
  2797. @end example
  2798. @end itemize
  2799. @section mandelbrot
  2800. Generate a Mandelbrot set fractal, and progressively zoom towards the
  2801. point specified with @var{start_x} and @var{start_y}.
  2802. This source accepts a list of options in the form of
  2803. @var{key}=@var{value} pairs separated by ":". A description of the
  2804. accepted options follows.
  2805. @table @option
  2806. @item end_pts
  2807. Set the terminal pts value. Default value is 400.
  2808. @item end_scale
  2809. Set the terminal scale value.
  2810. Must be a floating point value. Default value is 0.3.
  2811. @item inner
  2812. Set the inner coloring mode, that is the algorithm used to draw the
  2813. Mandelbrot fractal internal region.
  2814. It shall assume one of the following values:
  2815. @table @option
  2816. @item black
  2817. Set black mode.
  2818. @item convergence
  2819. Show time until convergence.
  2820. @item mincol
  2821. Set color based on point closest to the origin of the iterations.
  2822. @item period
  2823. Set period mode.
  2824. @end table
  2825. Default value is @var{mincol}.
  2826. @item bailout
  2827. Set the bailout value. Default value is 10.0.
  2828. @item maxiter
  2829. Set the maximum of iterations performed by the rendering
  2830. algorithm. Default value is 7189.
  2831. @item outer
  2832. Set outer coloring mode.
  2833. It shall assume one of following values:
  2834. @table @option
  2835. @item iteration_count
  2836. Set iteration cound mode.
  2837. @item normalized_iteration_count
  2838. set normalized iteration count mode.
  2839. @end table
  2840. Default value is @var{normalized_iteration_count}.
  2841. @item rate, r
  2842. Set frame rate, expressed as number of frames per second. Default
  2843. value is "25".
  2844. @item size, s
  2845. Set frame size. Default value is "640x480".
  2846. @item start_scale
  2847. Set the initial scale value. Default value is 3.0.
  2848. @item start_x
  2849. Set the initial x position. Must be a floating point value between
  2850. -100 and 100. Default value is -0.743643887037158704752191506114774.
  2851. @item start_y
  2852. Set the initial y position. Must be a floating point value between
  2853. -100 and 100. Default value is -0.131825904205311970493132056385139.
  2854. @end table
  2855. @section mptestsrc
  2856. Generate various test patterns, as generated by the MPlayer test filter.
  2857. The size of the generated video is fixed, and is 256x256.
  2858. This source is useful in particular for testing encoding features.
  2859. This source accepts an optional sequence of @var{key}=@var{value} pairs,
  2860. separated by ":". The description of the accepted options follows.
  2861. @table @option
  2862. @item rate, r
  2863. Specify the frame rate of the sourced video, as the number of frames
  2864. generated per second. It has to be a string in the format
  2865. @var{frame_rate_num}/@var{frame_rate_den}, an integer number, a float
  2866. number or a valid video frame rate abbreviation. The default value is
  2867. "25".
  2868. @item duration, d
  2869. Set the video duration of the sourced video. The accepted syntax is:
  2870. @example
  2871. [-]HH:MM:SS[.m...]
  2872. [-]S+[.m...]
  2873. @end example
  2874. See also the function @code{av_parse_time()}.
  2875. If not specified, or the expressed duration is negative, the video is
  2876. supposed to be generated forever.
  2877. @item test, t
  2878. Set the number or the name of the test to perform. Supported tests are:
  2879. @table @option
  2880. @item dc_luma
  2881. @item dc_chroma
  2882. @item freq_luma
  2883. @item freq_chroma
  2884. @item amp_luma
  2885. @item amp_chroma
  2886. @item cbp
  2887. @item mv
  2888. @item ring1
  2889. @item ring2
  2890. @item all
  2891. @end table
  2892. Default value is "all", which will cycle through the list of all tests.
  2893. @end table
  2894. For example the following:
  2895. @example
  2896. testsrc=t=dc_luma
  2897. @end example
  2898. will generate a "dc_luma" test pattern.
  2899. @section frei0r_src
  2900. Provide a frei0r source.
  2901. To enable compilation of this filter you need to install the frei0r
  2902. header and configure FFmpeg with @code{--enable-frei0r}.
  2903. The source supports the syntax:
  2904. @example
  2905. @var{size}:@var{rate}:@var{src_name}[@{=|:@}@var{param1}:@var{param2}:...:@var{paramN}]
  2906. @end example
  2907. @var{size} is the size of the video to generate, may be a string of the
  2908. form @var{width}x@var{height} or a frame size abbreviation.
  2909. @var{rate} is the rate of the video to generate, may be a string of
  2910. the form @var{num}/@var{den} or a frame rate abbreviation.
  2911. @var{src_name} is the name to the frei0r source to load. For more
  2912. information regarding frei0r and how to set the parameters read the
  2913. section @ref{frei0r} in the description of the video filters.
  2914. For example, to generate a frei0r partik0l source with size 200x200
  2915. and frame rate 10 which is overlayed on the overlay filter main input:
  2916. @example
  2917. frei0r_src=200x200:10:partik0l=1234 [overlay]; [in][overlay] overlay
  2918. @end example
  2919. @section life
  2920. Generate a life pattern.
  2921. This source is based on a generalization of John Conway's life game.
  2922. The sourced input represents a life grid, each pixel represents a cell
  2923. which can be in one of two possible states, alive or dead. Every cell
  2924. interacts with its eight neighbours, which are the cells that are
  2925. horizontally, vertically, or diagonally adjacent.
  2926. At each interaction the grid evolves according to the adopted rule,
  2927. which specifies the number of neighbor alive cells which will make a
  2928. cell stay alive or born. The @option{rule} option allows to specify
  2929. the rule to adopt.
  2930. This source accepts a list of options in the form of
  2931. @var{key}=@var{value} pairs separated by ":". A description of the
  2932. accepted options follows.
  2933. @table @option
  2934. @item filename, f
  2935. Set the file from which to read the initial grid state. In the file,
  2936. each non-whitespace character is considered an alive cell, and newline
  2937. is used to delimit the end of each row.
  2938. If this option is not specified, the initial grid is generated
  2939. randomly.
  2940. @item rate, r
  2941. Set the video rate, that is the number of frames generated per second.
  2942. Default is 25.
  2943. @item random_fill_ratio, ratio
  2944. Set the random fill ratio for the initial random grid. It is a
  2945. floating point number value ranging from 0 to 1, defaults to 1/PHI.
  2946. It is ignored when a file is specified.
  2947. @item random_seed, seed
  2948. Set the seed for filling the initial random grid, must be an integer
  2949. included between 0 and UINT32_MAX. If not specified, or if explicitly
  2950. set to -1, the filter will try to use a good random seed on a best
  2951. effort basis.
  2952. @item rule
  2953. Set the life rule.
  2954. A rule can be specified with a code of the kind "S@var{NS}/B@var{NB}",
  2955. where @var{NS} and @var{NB} are sequences of numbers in the range 0-8,
  2956. @var{NS} specifies the number of alive neighbor cells which make a
  2957. live cell stay alive, and @var{NB} the number of alive neighbor cells
  2958. which make a dead cell to become alive (i.e. to "born").
  2959. "s" and "b" can be used in place of "S" and "B", respectively.
  2960. Alternatively a rule can be specified by an 18-bits integer. The 9
  2961. high order bits are used to encode the next cell state if it is alive
  2962. for each number of neighbor alive cells, the low order bits specify
  2963. the rule for "borning" new cells. Higher order bits encode for an
  2964. higher number of neighbor cells.
  2965. For example the number 6153 = @code{(12<<9)+9} specifies a stay alive
  2966. rule of 12 and a born rule of 9, which corresponds to "S23/B03".
  2967. Default value is "S23/B3", which is the original Conway's game of life
  2968. rule, and will keep a cell alive if it has 2 or 3 neighbor alive
  2969. cells, and will born a new cell if there are three alive cells around
  2970. a dead cell.
  2971. @item size, s
  2972. Set the size of the output video.
  2973. If @option{filename} is specified, the size is set by default to the
  2974. same size of the input file. If @option{size} is set, it must contain
  2975. the size specified in the input file, and the initial grid defined in
  2976. that file is centered in the larger resulting area.
  2977. If a filename is not specified, the size value defaults to "320x240"
  2978. (used for a randomly generated initial grid).
  2979. @item stitch
  2980. If set to 1, stitch the left and right grid edges together, and the
  2981. top and bottom edges also. Defaults to 1.
  2982. @item mold
  2983. Set cell mold speed. If set, a dead cell will go from @option{death_color} to
  2984. @option{mold_color} with a step of @option{mold}. @option{mold} can have a
  2985. value from 0 to 255.
  2986. @item life_color
  2987. Set the color of living (or new born) cells.
  2988. @item death_color
  2989. Set the color of dead cells. If @option{mold} is set, this is the first color
  2990. used to represent a dead cell.
  2991. @item mold_color
  2992. Set mold color, for definitely dead and moldy cells.
  2993. @end table
  2994. @subsection Examples
  2995. @itemize
  2996. @item
  2997. Read a grid from @file{pattern}, and center it on a grid of size
  2998. 300x300 pixels:
  2999. @example
  3000. life=f=pattern:s=300x300
  3001. @end example
  3002. @item
  3003. Generate a random grid of size 200x200, with a fill ratio of 2/3:
  3004. @example
  3005. life=ratio=2/3:s=200x200
  3006. @end example
  3007. @item
  3008. Specify a custom rule for evolving a randomly generated grid:
  3009. @example
  3010. life=rule=S14/B34
  3011. @end example
  3012. @item
  3013. Full example with slow death effect (mold) using @command{ffplay}:
  3014. @example
  3015. ffplay -f lavfi life=s=300x200:mold=10:r=60:ratio=0.1:death_color=#C83232:life_color=#00ff00,scale=1200:800:flags=16
  3016. @end example
  3017. @end itemize
  3018. @section color, nullsrc, rgbtestsrc, smptebars, testsrc
  3019. The @code{color} source provides an uniformly colored input.
  3020. The @code{nullsrc} source returns unprocessed video frames. It is
  3021. mainly useful to be employed in analysis / debugging tools, or as the
  3022. source for filters which ignore the input data.
  3023. The @code{rgbtestsrc} source generates an RGB test pattern useful for
  3024. detecting RGB vs BGR issues. You should see a red, green and blue
  3025. stripe from top to bottom.
  3026. The @code{smptebars} source generates a color bars pattern, based on
  3027. the SMPTE Engineering Guideline EG 1-1990.
  3028. The @code{testsrc} source generates a test video pattern, showing a
  3029. color pattern, a scrolling gradient and a timestamp. This is mainly
  3030. intended for testing purposes.
  3031. These sources accept an optional sequence of @var{key}=@var{value} pairs,
  3032. separated by ":". The description of the accepted options follows.
  3033. @table @option
  3034. @item color, c
  3035. Specify the color of the source, only used in the @code{color}
  3036. source. It can be the name of a color (case insensitive match) or a
  3037. 0xRRGGBB[AA] sequence, possibly followed by an alpha specifier. The
  3038. default value is "black".
  3039. @item size, s
  3040. Specify the size of the sourced video, it may be a string of the form
  3041. @var{width}x@var{height}, or the name of a size abbreviation. The
  3042. default value is "320x240".
  3043. @item rate, r
  3044. Specify the frame rate of the sourced video, as the number of frames
  3045. generated per second. It has to be a string in the format
  3046. @var{frame_rate_num}/@var{frame_rate_den}, an integer number, a float
  3047. number or a valid video frame rate abbreviation. The default value is
  3048. "25".
  3049. @item sar
  3050. Set the sample aspect ratio of the sourced video.
  3051. @item duration, d
  3052. Set the video duration of the sourced video. The accepted syntax is:
  3053. @example
  3054. [-]HH[:MM[:SS[.m...]]]
  3055. [-]S+[.m...]
  3056. @end example
  3057. See also the function @code{av_parse_time()}.
  3058. If not specified, or the expressed duration is negative, the video is
  3059. supposed to be generated forever.
  3060. @item decimals, n
  3061. Set the number of decimals to show in the timestamp, only used in the
  3062. @code{testsrc} source.
  3063. The displayed timestamp value will correspond to the original
  3064. timestamp value multiplied by the power of 10 of the specified
  3065. value. Default value is 0.
  3066. @end table
  3067. For example the following:
  3068. @example
  3069. testsrc=duration=5.3:size=qcif:rate=10
  3070. @end example
  3071. will generate a video with a duration of 5.3 seconds, with size
  3072. 176x144 and a frame rate of 10 frames per second.
  3073. The following graph description will generate a red source
  3074. with an opacity of 0.2, with size "qcif" and a frame rate of 10
  3075. frames per second.
  3076. @example
  3077. color=c=red@@0.2:s=qcif:r=10
  3078. @end example
  3079. If the input content is to be ignored, @code{nullsrc} can be used. The
  3080. following command generates noise in the luminance plane by employing
  3081. the @code{mp=geq} filter:
  3082. @example
  3083. nullsrc=s=256x256, mp=geq=random(1)*255:128:128
  3084. @end example
  3085. @c man end VIDEO SOURCES
  3086. @chapter Video Sinks
  3087. @c man begin VIDEO SINKS
  3088. Below is a description of the currently available video sinks.
  3089. @section buffersink
  3090. Buffer video frames, and make them available to the end of the filter
  3091. graph.
  3092. This sink is mainly intended for a programmatic use, in particular
  3093. through the interface defined in @file{libavfilter/buffersink.h}.
  3094. It does not require a string parameter in input, but you need to
  3095. specify a pointer to a list of supported pixel formats terminated by
  3096. -1 in the opaque parameter provided to @code{avfilter_init_filter}
  3097. when initializing this sink.
  3098. @section nullsink
  3099. Null video sink, do absolutely nothing with the input video. It is
  3100. mainly useful as a template and to be employed in analysis / debugging
  3101. tools.
  3102. @c man end VIDEO SINKS
  3103. @chapter Multimedia Filters
  3104. @c man begin MULTIMEDIA FILTERS
  3105. Below is a description of the currently available multimedia filters.
  3106. @section asetpts, setpts
  3107. Change the PTS (presentation timestamp) of the input frames.
  3108. @code{asetpts} works on audio frames, @code{setpts} on video frames.
  3109. Accept in input an expression evaluated through the eval API, which
  3110. can contain the following constants:
  3111. @table @option
  3112. @item FRAME_RATE
  3113. frame rate, only defined for constant frame-rate video
  3114. @item PTS
  3115. the presentation timestamp in input
  3116. @item N
  3117. the count of the input frame, starting from 0.
  3118. @item NB_CONSUMED_SAMPLES
  3119. the number of consumed samples, not including the current frame (only
  3120. audio)
  3121. @item NB_SAMPLES
  3122. the number of samples in the current frame (only audio)
  3123. @item SAMPLE_RATE
  3124. audio sample rate
  3125. @item STARTPTS
  3126. the PTS of the first frame
  3127. @item STARTT
  3128. the time in seconds of the first frame
  3129. @item INTERLACED
  3130. tell if the current frame is interlaced
  3131. @item T
  3132. the time in seconds of the current frame
  3133. @item TB
  3134. the time base
  3135. @item POS
  3136. original position in the file of the frame, or undefined if undefined
  3137. for the current frame
  3138. @item PREV_INPTS
  3139. previous input PTS
  3140. @item PREV_INT
  3141. previous input time in seconds
  3142. @item PREV_OUTPTS
  3143. previous output PTS
  3144. @item PREV_OUTT
  3145. previous output time in seconds
  3146. @end table
  3147. @subsection Examples
  3148. @itemize
  3149. @item
  3150. Start counting PTS from zero
  3151. @example
  3152. setpts=PTS-STARTPTS
  3153. @end example
  3154. @item
  3155. Apply fast motion effect:
  3156. @example
  3157. setpts=0.5*PTS
  3158. @end example
  3159. @item
  3160. Apply slow motion effect:
  3161. @example
  3162. setpts=2.0*PTS
  3163. @end example
  3164. @item
  3165. Set fixed rate of 25 frames per second:
  3166. @example
  3167. setpts=N/(25*TB)
  3168. @end example
  3169. @item
  3170. Set fixed rate 25 fps with some jitter:
  3171. @example
  3172. setpts='1/(25*TB) * (N + 0.05 * sin(N*2*PI/25))'
  3173. @end example
  3174. @item
  3175. Apply an offset of 10 seconds to the input PTS:
  3176. @example
  3177. setpts=PTS+10/TB
  3178. @end example
  3179. @end itemize
  3180. @section settb, asettb
  3181. Set the timebase to use for the output frames timestamps.
  3182. It is mainly useful for testing timebase configuration.
  3183. It accepts in input an arithmetic expression representing a rational.
  3184. The expression can contain the constants "AVTB" (the
  3185. default timebase), "intb" (the input timebase) and "sr" (the sample rate,
  3186. audio only).
  3187. The default value for the input is "intb".
  3188. @subsection Examples
  3189. @itemize
  3190. @item
  3191. Set the timebase to 1/25:
  3192. @example
  3193. settb=1/25
  3194. @end example
  3195. @item
  3196. Set the timebase to 1/10:
  3197. @example
  3198. settb=0.1
  3199. @end example
  3200. @item
  3201. Set the timebase to 1001/1000:
  3202. @example
  3203. settb=1+0.001
  3204. @end example
  3205. @item
  3206. Set the timebase to 2*intb:
  3207. @example
  3208. settb=2*intb
  3209. @end example
  3210. @item
  3211. Set the default timebase value:
  3212. @example
  3213. settb=AVTB
  3214. @end example
  3215. @end itemize
  3216. @section concat
  3217. Concatenate audio and video streams, joining them together one after the
  3218. other.
  3219. The filter works on segments of synchronized video and audio streams. All
  3220. segments must have the same number of streams of each type, and that will
  3221. also be the number of streams at output.
  3222. The filter accepts the following named parameters:
  3223. @table @option
  3224. @item n
  3225. Set the number of segments. Default is 2.
  3226. @item v
  3227. Set the number of output video streams, that is also the number of video
  3228. streams in each segment. Default is 1.
  3229. @item a
  3230. Set the number of output audio streams, that is also the number of video
  3231. streams in each segment. Default is 0.
  3232. @end table
  3233. The filter has @var{v}+@var{a} outputs: first @var{v} video outputs, then
  3234. @var{a} audio outputs.
  3235. There are @var{n}×(@var{v}+@var{a}) inputs: first the inputs for the first
  3236. segment, in the same order as the outputs, then the inputs for the second
  3237. segment, etc.
  3238. Related streams do not always have exactly the same duration, for various
  3239. reasons including codec frame size or sloppy authoring. For that reason,
  3240. related synchronized streams (e.g. a video and its audio track) should be
  3241. concatenated at once. The concat filter will use the duration of the longest
  3242. stream in each segment (except the last one), and if necessary pad shorter
  3243. audio streams with silence.
  3244. For this filter to work correctly, all segments must start at timestamp 0.
  3245. All corresponding streams must have the same parameters in all segments; the
  3246. filtering system will automatically select a common pixel format for video
  3247. streams, and a common sample format, sample rate and channel layout for
  3248. audio streams, but other settings, such as resolution, must be converted
  3249. explicitly by the user.
  3250. Different frame rates are acceptable but will result in variable frame rate
  3251. at output; be sure to configure the output file to handle it.
  3252. Examples:
  3253. @itemize
  3254. @item
  3255. Concatenate an opening, an episode and an ending, all in bilingual version
  3256. (video in stream 0, audio in streams 1 and 2):
  3257. @example
  3258. ffmpeg -i opening.mkv -i episode.mkv -i ending.mkv -filter_complex \
  3259. '[0:0] [0:1] [0:2] [1:0] [1:1] [1:2] [2:0] [2:1] [2:2]
  3260. concat=n=3:v=1:a=2 [v] [a1] [a2]' \
  3261. -map '[v]' -map '[a1]' -map '[a2]' output.mkv
  3262. @end example
  3263. @item
  3264. Concatenate two parts, handling audio and video separately, using the
  3265. (a)movie sources, and adjusting the resolution:
  3266. @example
  3267. movie=part1.mp4, scale=512:288 [v1] ; amovie=part1.mp4 [a1] ;
  3268. movie=part2.mp4, scale=512:288 [v2] ; amovie=part2.mp4 [a2] ;
  3269. [v1] [v2] concat [outv] ; [a1] [a2] concat=v=0:a=1 [outa]
  3270. @end example
  3271. Note that a desync will happen at the stitch if the audio and video streams
  3272. do not have exactly the same duration in the first file.
  3273. @end itemize
  3274. @section showspectrum
  3275. Convert input audio to a video output, representing the audio frequency
  3276. spectrum.
  3277. The filter accepts the following named parameters:
  3278. @table @option
  3279. @item size, s
  3280. Specify the video size for the output. Default value is @code{640x480}.
  3281. @end table
  3282. The usage is very similar to the showwaves filter; see the examples in that
  3283. section.
  3284. @section showwaves
  3285. Convert input audio to a video output, representing the samples waves.
  3286. The filter accepts the following named parameters:
  3287. @table @option
  3288. @item n
  3289. Set the number of samples which are printed on the same column. A
  3290. larger value will decrease the frame rate. Must be a positive
  3291. integer. This option can be set only if the value for @var{rate}
  3292. is not explicitly specified.
  3293. @item rate, r
  3294. Set the (approximate) output frame rate. This is done by setting the
  3295. option @var{n}. Default value is "25".
  3296. @item size, s
  3297. Specify the video size for the output. Default value is "600x240".
  3298. @end table
  3299. Some examples follow.
  3300. @itemize
  3301. @item
  3302. Output the input file audio and the corresponding video representation
  3303. at the same time:
  3304. @example
  3305. amovie=a.mp3,asplit[out0],showwaves[out1]
  3306. @end example
  3307. @item
  3308. Create a synthetic signal and show it with showwaves, forcing a
  3309. framerate of 30 frames per second:
  3310. @example
  3311. aevalsrc=sin(1*2*PI*t)*sin(880*2*PI*t):cos(2*PI*200*t),asplit[out0],showwaves=r=30[out1]
  3312. @end example
  3313. @end itemize
  3314. @c man end MULTIMEDIA FILTERS
  3315. @chapter Multimedia Sources
  3316. @c man begin MULTIMEDIA SOURCES
  3317. Below is a description of the currently available multimedia sources.
  3318. @section amovie
  3319. This is the same as @ref{src_movie} source, except it selects an audio
  3320. stream by default.
  3321. @anchor{src_movie}
  3322. @section movie
  3323. Read audio and/or video stream(s) from a movie container.
  3324. It accepts the syntax: @var{movie_name}[:@var{options}] where
  3325. @var{movie_name} is the name of the resource to read (not necessarily
  3326. a file but also a device or a stream accessed through some protocol),
  3327. and @var{options} is an optional sequence of @var{key}=@var{value}
  3328. pairs, separated by ":".
  3329. The description of the accepted options follows.
  3330. @table @option
  3331. @item format_name, f
  3332. Specifies the format assumed for the movie to read, and can be either
  3333. the name of a container or an input device. If not specified the
  3334. format is guessed from @var{movie_name} or by probing.
  3335. @item seek_point, sp
  3336. Specifies the seek point in seconds, the frames will be output
  3337. starting from this seek point, the parameter is evaluated with
  3338. @code{av_strtod} so the numerical value may be suffixed by an IS
  3339. postfix. Default value is "0".
  3340. @item streams, s
  3341. Specifies the streams to read. Several streams can be specified, separated
  3342. by "+". The source will then have as many outputs, in the same order. The
  3343. syntax is explained in the @ref{Stream specifiers} chapter. Two special
  3344. names, "dv" and "da" specify respectively the default (best suited) video
  3345. and audio stream. Default is "dv", or "da" if the filter is called as
  3346. "amovie".
  3347. @item stream_index, si
  3348. Specifies the index of the video stream to read. If the value is -1,
  3349. the best suited video stream will be automatically selected. Default
  3350. value is "-1". Deprecated. If the filter is called "amovie", it will select
  3351. audio instead of video.
  3352. @item loop
  3353. Specifies how many times to read the stream in sequence.
  3354. If the value is less than 1, the stream will be read again and again.
  3355. Default value is "1".
  3356. Note that when the movie is looped the source timestamps are not
  3357. changed, so it will generate non monotonically increasing timestamps.
  3358. @end table
  3359. This filter allows to overlay a second video on top of main input of
  3360. a filtergraph as shown in this graph:
  3361. @example
  3362. input -----------> deltapts0 --> overlay --> output
  3363. ^
  3364. |
  3365. movie --> scale--> deltapts1 -------+
  3366. @end example
  3367. Some examples follow.
  3368. @itemize
  3369. @item
  3370. Skip 3.2 seconds from the start of the avi file in.avi, and overlay it
  3371. on top of the input labelled as "in":
  3372. @example
  3373. movie=in.avi:seek_point=3.2, scale=180:-1, setpts=PTS-STARTPTS [movie];
  3374. [in] setpts=PTS-STARTPTS, [movie] overlay=16:16 [out]
  3375. @end example
  3376. @item
  3377. Read from a video4linux2 device, and overlay it on top of the input
  3378. labelled as "in":
  3379. @example
  3380. movie=/dev/video0:f=video4linux2, scale=180:-1, setpts=PTS-STARTPTS [movie];
  3381. [in] setpts=PTS-STARTPTS, [movie] overlay=16:16 [out]
  3382. @end example
  3383. @item
  3384. Read the first video stream and the audio stream with id 0x81 from
  3385. dvd.vob; the video is connected to the pad named "video" and the audio is
  3386. connected to the pad named "audio":
  3387. @example
  3388. movie=dvd.vob:s=v:0+#0x81 [video] [audio]
  3389. @end example
  3390. @end itemize
  3391. @c man end MULTIMEDIA SOURCES