You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

2778 lines
78KB

  1. ;******************************************************************************
  2. ;* VP8 MMXEXT optimizations
  3. ;* Copyright (c) 2010 Ronald S. Bultje <rsbultje@gmail.com>
  4. ;* Copyright (c) 2010 Jason Garrett-Glaser <darkshikari@gmail.com>
  5. ;*
  6. ;* This file is part of FFmpeg.
  7. ;*
  8. ;* FFmpeg is free software; you can redistribute it and/or
  9. ;* modify it under the terms of the GNU Lesser General Public
  10. ;* License as published by the Free Software Foundation; either
  11. ;* version 2.1 of the License, or (at your option) any later version.
  12. ;*
  13. ;* FFmpeg is distributed in the hope that it will be useful,
  14. ;* but WITHOUT ANY WARRANTY; without even the implied warranty of
  15. ;* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  16. ;* Lesser General Public License for more details.
  17. ;*
  18. ;* You should have received a copy of the GNU Lesser General Public
  19. ;* License along with FFmpeg; if not, write to the Free Software
  20. ;* 51, Inc., Foundation Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  21. ;******************************************************************************
  22. %include "x86inc.asm"
  23. %include "x86util.asm"
  24. SECTION_RODATA
  25. fourtap_filter_hw_m: times 4 dw -6, 123
  26. times 4 dw 12, -1
  27. times 4 dw -9, 93
  28. times 4 dw 50, -6
  29. times 4 dw -6, 50
  30. times 4 dw 93, -9
  31. times 4 dw -1, 12
  32. times 4 dw 123, -6
  33. sixtap_filter_hw_m: times 4 dw 2, -11
  34. times 4 dw 108, 36
  35. times 4 dw -8, 1
  36. times 4 dw 3, -16
  37. times 4 dw 77, 77
  38. times 4 dw -16, 3
  39. times 4 dw 1, -8
  40. times 4 dw 36, 108
  41. times 4 dw -11, 2
  42. fourtap_filter_hb_m: times 8 db -6, 123
  43. times 8 db 12, -1
  44. times 8 db -9, 93
  45. times 8 db 50, -6
  46. times 8 db -6, 50
  47. times 8 db 93, -9
  48. times 8 db -1, 12
  49. times 8 db 123, -6
  50. sixtap_filter_hb_m: times 8 db 2, 1
  51. times 8 db -11, 108
  52. times 8 db 36, -8
  53. times 8 db 3, 3
  54. times 8 db -16, 77
  55. times 8 db 77, -16
  56. times 8 db 1, 2
  57. times 8 db -8, 36
  58. times 8 db 108, -11
  59. fourtap_filter_v_m: times 8 dw -6
  60. times 8 dw 123
  61. times 8 dw 12
  62. times 8 dw -1
  63. times 8 dw -9
  64. times 8 dw 93
  65. times 8 dw 50
  66. times 8 dw -6
  67. times 8 dw -6
  68. times 8 dw 50
  69. times 8 dw 93
  70. times 8 dw -9
  71. times 8 dw -1
  72. times 8 dw 12
  73. times 8 dw 123
  74. times 8 dw -6
  75. sixtap_filter_v_m: times 8 dw 2
  76. times 8 dw -11
  77. times 8 dw 108
  78. times 8 dw 36
  79. times 8 dw -8
  80. times 8 dw 1
  81. times 8 dw 3
  82. times 8 dw -16
  83. times 8 dw 77
  84. times 8 dw 77
  85. times 8 dw -16
  86. times 8 dw 3
  87. times 8 dw 1
  88. times 8 dw -8
  89. times 8 dw 36
  90. times 8 dw 108
  91. times 8 dw -11
  92. times 8 dw 2
  93. bilinear_filter_vw_m: times 8 dw 1
  94. times 8 dw 2
  95. times 8 dw 3
  96. times 8 dw 4
  97. times 8 dw 5
  98. times 8 dw 6
  99. times 8 dw 7
  100. bilinear_filter_vb_m: times 8 db 7, 1
  101. times 8 db 6, 2
  102. times 8 db 5, 3
  103. times 8 db 4, 4
  104. times 8 db 3, 5
  105. times 8 db 2, 6
  106. times 8 db 1, 7
  107. %ifdef PIC
  108. %define fourtap_filter_hw r11
  109. %define sixtap_filter_hw r11
  110. %define fourtap_filter_hb r11
  111. %define sixtap_filter_hb r11
  112. %define fourtap_filter_v r11
  113. %define sixtap_filter_v r11
  114. %define bilinear_filter_vw r11
  115. %define bilinear_filter_vb r11
  116. %else
  117. %define fourtap_filter_hw fourtap_filter_hw_m
  118. %define sixtap_filter_hw sixtap_filter_hw_m
  119. %define fourtap_filter_hb fourtap_filter_hb_m
  120. %define sixtap_filter_hb sixtap_filter_hb_m
  121. %define fourtap_filter_v fourtap_filter_v_m
  122. %define sixtap_filter_v sixtap_filter_v_m
  123. %define bilinear_filter_vw bilinear_filter_vw_m
  124. %define bilinear_filter_vb bilinear_filter_vb_m
  125. %endif
  126. filter_h2_shuf: db 0, 1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 6, 6, 7, 7, 8
  127. filter_h4_shuf: db 2, 3, 3, 4, 4, 5, 5, 6, 6, 7, 7, 8, 8, 9, 9, 10
  128. filter_h6_shuf1: db 0, 5, 1, 6, 2, 7, 3, 8, 4, 9, 5, 10, 6, 11, 7, 12
  129. filter_h6_shuf2: db 1, 2, 2, 3, 3, 4, 4, 5, 5, 6, 6, 7, 7, 8, 8, 9
  130. filter_h6_shuf3: db 3, 4, 4, 5, 5, 6, 6, 7, 7, 8, 8, 9, 9, 10, 10, 11
  131. pw_20091: times 4 dw 20091
  132. pw_17734: times 4 dw 17734
  133. cextern pb_1
  134. cextern pw_3
  135. cextern pb_3
  136. cextern pw_4
  137. cextern pb_4
  138. cextern pw_9
  139. cextern pw_18
  140. cextern pw_27
  141. cextern pw_63
  142. cextern pw_64
  143. cextern pb_80
  144. cextern pb_F8
  145. cextern pb_FE
  146. SECTION .text
  147. ;-----------------------------------------------------------------------------
  148. ; subpel MC functions:
  149. ;
  150. ; void put_vp8_epel<size>_h<htap>v<vtap>_<opt>(uint8_t *dst, int deststride,
  151. ; uint8_t *src, int srcstride,
  152. ; int height, int mx, int my);
  153. ;-----------------------------------------------------------------------------
  154. %macro FILTER_SSSE3 3
  155. cglobal put_vp8_epel%1_h6_ssse3, 6, 6, %2
  156. lea r5d, [r5*3]
  157. mova m3, [filter_h6_shuf2]
  158. mova m4, [filter_h6_shuf3]
  159. %ifdef PIC
  160. lea r11, [sixtap_filter_hb_m]
  161. %endif
  162. mova m5, [sixtap_filter_hb+r5*8-48] ; set up 6tap filter in bytes
  163. mova m6, [sixtap_filter_hb+r5*8-32]
  164. mova m7, [sixtap_filter_hb+r5*8-16]
  165. .nextrow
  166. movu m0, [r2-2]
  167. mova m1, m0
  168. mova m2, m0
  169. %ifidn %1, 4
  170. ; For epel4, we need 9 bytes, but only 8 get loaded; to compensate, do the
  171. ; shuffle with a memory operand
  172. punpcklbw m0, [r2+3]
  173. %else
  174. pshufb m0, [filter_h6_shuf1]
  175. %endif
  176. pshufb m1, m3
  177. pshufb m2, m4
  178. pmaddubsw m0, m5
  179. pmaddubsw m1, m6
  180. pmaddubsw m2, m7
  181. paddsw m0, m1
  182. paddsw m0, m2
  183. paddsw m0, [pw_64]
  184. psraw m0, 7
  185. packuswb m0, m0
  186. movh [r0], m0 ; store
  187. ; go to next line
  188. add r0, r1
  189. add r2, r3
  190. dec r4 ; next row
  191. jg .nextrow
  192. REP_RET
  193. cglobal put_vp8_epel%1_h4_ssse3, 6, 6, %3
  194. shl r5d, 4
  195. mova m2, [pw_64]
  196. mova m3, [filter_h2_shuf]
  197. mova m4, [filter_h4_shuf]
  198. %ifdef PIC
  199. lea r11, [fourtap_filter_hb_m]
  200. %endif
  201. mova m5, [fourtap_filter_hb+r5-16] ; set up 4tap filter in bytes
  202. mova m6, [fourtap_filter_hb+r5]
  203. .nextrow
  204. movu m0, [r2-1]
  205. mova m1, m0
  206. pshufb m0, m3
  207. pshufb m1, m4
  208. pmaddubsw m0, m5
  209. pmaddubsw m1, m6
  210. paddsw m0, m2
  211. paddsw m0, m1
  212. psraw m0, 7
  213. packuswb m0, m0
  214. movh [r0], m0 ; store
  215. ; go to next line
  216. add r0, r1
  217. add r2, r3
  218. dec r4 ; next row
  219. jg .nextrow
  220. REP_RET
  221. cglobal put_vp8_epel%1_v4_ssse3, 7, 7, %2
  222. shl r6d, 4
  223. %ifdef PIC
  224. lea r11, [fourtap_filter_hb_m]
  225. %endif
  226. mova m5, [fourtap_filter_hb+r6-16]
  227. mova m6, [fourtap_filter_hb+r6]
  228. mova m7, [pw_64]
  229. ; read 3 lines
  230. sub r2, r3
  231. movh m0, [r2]
  232. movh m1, [r2+ r3]
  233. movh m2, [r2+2*r3]
  234. add r2, r3
  235. .nextrow
  236. movh m3, [r2+2*r3] ; read new row
  237. mova m4, m0
  238. mova m0, m1
  239. punpcklbw m4, m1
  240. mova m1, m2
  241. punpcklbw m2, m3
  242. pmaddubsw m4, m5
  243. pmaddubsw m2, m6
  244. paddsw m4, m2
  245. mova m2, m3
  246. paddsw m4, m7
  247. psraw m4, 7
  248. packuswb m4, m4
  249. movh [r0], m4
  250. ; go to next line
  251. add r0, r1
  252. add r2, r3
  253. dec r4 ; next row
  254. jg .nextrow
  255. REP_RET
  256. cglobal put_vp8_epel%1_v6_ssse3, 7, 7, %2
  257. lea r6d, [r6*3]
  258. %ifdef PIC
  259. lea r11, [sixtap_filter_hb_m]
  260. %endif
  261. lea r6, [sixtap_filter_hb+r6*8]
  262. ; read 5 lines
  263. sub r2, r3
  264. sub r2, r3
  265. movh m0, [r2]
  266. movh m1, [r2+r3]
  267. movh m2, [r2+r3*2]
  268. lea r2, [r2+r3*2]
  269. add r2, r3
  270. movh m3, [r2]
  271. movh m4, [r2+r3]
  272. .nextrow
  273. movh m5, [r2+2*r3] ; read new row
  274. mova m6, m0
  275. punpcklbw m6, m5
  276. mova m0, m1
  277. punpcklbw m1, m2
  278. mova m7, m3
  279. punpcklbw m7, m4
  280. pmaddubsw m6, [r6-48]
  281. pmaddubsw m1, [r6-32]
  282. pmaddubsw m7, [r6-16]
  283. paddsw m6, m1
  284. paddsw m6, m7
  285. mova m1, m2
  286. paddsw m6, [pw_64]
  287. mova m2, m3
  288. psraw m6, 7
  289. mova m3, m4
  290. packuswb m6, m6
  291. mova m4, m5
  292. movh [r0], m6
  293. ; go to next line
  294. add r0, r1
  295. add r2, r3
  296. dec r4 ; next row
  297. jg .nextrow
  298. REP_RET
  299. %endmacro
  300. INIT_MMX
  301. FILTER_SSSE3 4, 0, 0
  302. INIT_XMM
  303. FILTER_SSSE3 8, 8, 7
  304. ; 4x4 block, H-only 4-tap filter
  305. cglobal put_vp8_epel4_h4_mmxext, 6, 6
  306. shl r5d, 4
  307. %ifdef PIC
  308. lea r11, [fourtap_filter_hw_m]
  309. %endif
  310. movq mm4, [fourtap_filter_hw+r5-16] ; set up 4tap filter in words
  311. movq mm5, [fourtap_filter_hw+r5]
  312. movq mm7, [pw_64]
  313. pxor mm6, mm6
  314. .nextrow
  315. movq mm1, [r2-1] ; (ABCDEFGH) load 8 horizontal pixels
  316. ; first set of 2 pixels
  317. movq mm2, mm1 ; byte ABCD..
  318. punpcklbw mm1, mm6 ; byte->word ABCD
  319. pshufw mm0, mm2, 9 ; byte CDEF..
  320. punpcklbw mm0, mm6 ; byte->word CDEF
  321. pshufw mm3, mm1, 0x94 ; word ABBC
  322. pshufw mm1, mm0, 0x94 ; word CDDE
  323. pmaddwd mm3, mm4 ; multiply 2px with F0/F1
  324. movq mm0, mm1 ; backup for second set of pixels
  325. pmaddwd mm1, mm5 ; multiply 2px with F2/F3
  326. paddd mm3, mm1 ; finish 1st 2px
  327. ; second set of 2 pixels, use backup of above
  328. punpckhbw mm2, mm6 ; byte->word EFGH
  329. pmaddwd mm0, mm4 ; multiply backed up 2px with F0/F1
  330. pshufw mm1, mm2, 0x94 ; word EFFG
  331. pmaddwd mm1, mm5 ; multiply 2px with F2/F3
  332. paddd mm0, mm1 ; finish 2nd 2px
  333. ; merge two sets of 2 pixels into one set of 4, round/clip/store
  334. packssdw mm3, mm0 ; merge dword->word (4px)
  335. paddsw mm3, mm7 ; rounding
  336. psraw mm3, 7
  337. packuswb mm3, mm6 ; clip and word->bytes
  338. movd [r0], mm3 ; store
  339. ; go to next line
  340. add r0, r1
  341. add r2, r3
  342. dec r4 ; next row
  343. jg .nextrow
  344. REP_RET
  345. ; 4x4 block, H-only 6-tap filter
  346. cglobal put_vp8_epel4_h6_mmxext, 6, 6
  347. lea r5d, [r5*3]
  348. %ifdef PIC
  349. lea r11, [sixtap_filter_hw_m]
  350. %endif
  351. movq mm4, [sixtap_filter_hw+r5*8-48] ; set up 4tap filter in words
  352. movq mm5, [sixtap_filter_hw+r5*8-32]
  353. movq mm6, [sixtap_filter_hw+r5*8-16]
  354. movq mm7, [pw_64]
  355. pxor mm3, mm3
  356. .nextrow
  357. movq mm1, [r2-2] ; (ABCDEFGH) load 8 horizontal pixels
  358. ; first set of 2 pixels
  359. movq mm2, mm1 ; byte ABCD..
  360. punpcklbw mm1, mm3 ; byte->word ABCD
  361. pshufw mm0, mm2, 0x9 ; byte CDEF..
  362. punpckhbw mm2, mm3 ; byte->word EFGH
  363. punpcklbw mm0, mm3 ; byte->word CDEF
  364. pshufw mm1, mm1, 0x94 ; word ABBC
  365. pshufw mm2, mm2, 0x94 ; word EFFG
  366. pmaddwd mm1, mm4 ; multiply 2px with F0/F1
  367. pshufw mm3, mm0, 0x94 ; word CDDE
  368. movq mm0, mm3 ; backup for second set of pixels
  369. pmaddwd mm3, mm5 ; multiply 2px with F2/F3
  370. paddd mm1, mm3 ; add to 1st 2px cache
  371. movq mm3, mm2 ; backup for second set of pixels
  372. pmaddwd mm2, mm6 ; multiply 2px with F4/F5
  373. paddd mm1, mm2 ; finish 1st 2px
  374. ; second set of 2 pixels, use backup of above
  375. movd mm2, [r2+3] ; byte FGHI (prevent overreads)
  376. pmaddwd mm0, mm4 ; multiply 1st backed up 2px with F0/F1
  377. pmaddwd mm3, mm5 ; multiply 2nd backed up 2px with F2/F3
  378. paddd mm0, mm3 ; add to 2nd 2px cache
  379. pxor mm3, mm3
  380. punpcklbw mm2, mm3 ; byte->word FGHI
  381. pshufw mm2, mm2, 0xE9 ; word GHHI
  382. pmaddwd mm2, mm6 ; multiply 2px with F4/F5
  383. paddd mm0, mm2 ; finish 2nd 2px
  384. ; merge two sets of 2 pixels into one set of 4, round/clip/store
  385. packssdw mm1, mm0 ; merge dword->word (4px)
  386. paddsw mm1, mm7 ; rounding
  387. psraw mm1, 7
  388. packuswb mm1, mm3 ; clip and word->bytes
  389. movd [r0], mm1 ; store
  390. ; go to next line
  391. add r0, r1
  392. add r2, r3
  393. dec r4 ; next row
  394. jg .nextrow
  395. REP_RET
  396. ; 4x4 block, H-only 4-tap filter
  397. INIT_XMM
  398. cglobal put_vp8_epel8_h4_sse2, 6, 6, 8
  399. shl r5d, 4
  400. %ifdef PIC
  401. lea r11, [fourtap_filter_hw_m]
  402. %endif
  403. mova m5, [fourtap_filter_hw+r5-16] ; set up 4tap filter in words
  404. mova m6, [fourtap_filter_hw+r5]
  405. pxor m7, m7
  406. .nextrow
  407. movh m0, [r2-1]
  408. punpcklbw m0, m7 ; ABCDEFGH
  409. mova m1, m0
  410. mova m2, m0
  411. mova m3, m0
  412. psrldq m1, 2 ; BCDEFGH
  413. psrldq m2, 4 ; CDEFGH
  414. psrldq m3, 6 ; DEFGH
  415. punpcklwd m0, m1 ; ABBCCDDE
  416. punpcklwd m2, m3 ; CDDEEFFG
  417. pmaddwd m0, m5
  418. pmaddwd m2, m6
  419. paddd m0, m2
  420. movh m1, [r2+3]
  421. punpcklbw m1, m7 ; ABCDEFGH
  422. mova m2, m1
  423. mova m3, m1
  424. mova m4, m1
  425. psrldq m2, 2 ; BCDEFGH
  426. psrldq m3, 4 ; CDEFGH
  427. psrldq m4, 6 ; DEFGH
  428. punpcklwd m1, m2 ; ABBCCDDE
  429. punpcklwd m3, m4 ; CDDEEFFG
  430. pmaddwd m1, m5
  431. pmaddwd m3, m6
  432. paddd m1, m3
  433. packssdw m0, m1
  434. paddsw m0, [pw_64]
  435. psraw m0, 7
  436. packuswb m0, m7
  437. movh [r0], m0 ; store
  438. ; go to next line
  439. add r0, r1
  440. add r2, r3
  441. dec r4 ; next row
  442. jg .nextrow
  443. REP_RET
  444. cglobal put_vp8_epel8_h6_sse2, 6, 6, 8
  445. lea r5d, [r5*3]
  446. %ifdef PIC
  447. lea r11, [sixtap_filter_hw_m]
  448. %endif
  449. lea r5, [sixtap_filter_hw+r5*8]
  450. pxor m7, m7
  451. .nextrow
  452. movu m0, [r2-2]
  453. mova m6, m0
  454. mova m4, m0
  455. punpcklbw m0, m7 ; ABCDEFGHI
  456. mova m1, m0
  457. mova m2, m0
  458. mova m3, m0
  459. psrldq m1, 2 ; BCDEFGH
  460. psrldq m2, 4 ; CDEFGH
  461. psrldq m3, 6 ; DEFGH
  462. psrldq m4, 4
  463. punpcklbw m4, m7 ; EFGH
  464. mova m5, m4
  465. psrldq m5, 2 ; FGH
  466. punpcklwd m0, m1 ; ABBCCDDE
  467. punpcklwd m2, m3 ; CDDEEFFG
  468. punpcklwd m4, m5 ; EFFGGHHI
  469. pmaddwd m0, [r5-48]
  470. pmaddwd m2, [r5-32]
  471. pmaddwd m4, [r5-16]
  472. paddd m0, m2
  473. paddd m0, m4
  474. psrldq m6, 4
  475. mova m4, m6
  476. punpcklbw m6, m7 ; ABCDEFGHI
  477. mova m1, m6
  478. mova m2, m6
  479. mova m3, m6
  480. psrldq m1, 2 ; BCDEFGH
  481. psrldq m2, 4 ; CDEFGH
  482. psrldq m3, 6 ; DEFGH
  483. psrldq m4, 4
  484. punpcklbw m4, m7 ; EFGH
  485. mova m5, m4
  486. psrldq m5, 2 ; FGH
  487. punpcklwd m6, m1 ; ABBCCDDE
  488. punpcklwd m2, m3 ; CDDEEFFG
  489. punpcklwd m4, m5 ; EFFGGHHI
  490. pmaddwd m6, [r5-48]
  491. pmaddwd m2, [r5-32]
  492. pmaddwd m4, [r5-16]
  493. paddd m6, m2
  494. paddd m6, m4
  495. packssdw m0, m6
  496. paddsw m0, [pw_64]
  497. psraw m0, 7
  498. packuswb m0, m7
  499. movh [r0], m0 ; store
  500. ; go to next line
  501. add r0, r1
  502. add r2, r3
  503. dec r4 ; next row
  504. jg .nextrow
  505. REP_RET
  506. %macro FILTER_V 3
  507. ; 4x4 block, V-only 4-tap filter
  508. cglobal put_vp8_epel%2_v4_%1, 7, 7, %3
  509. shl r6d, 5
  510. %ifdef PIC
  511. lea r11, [fourtap_filter_v_m]
  512. %endif
  513. lea r6, [fourtap_filter_v+r6-32]
  514. mova m6, [pw_64]
  515. pxor m7, m7
  516. mova m5, [r6+48]
  517. ; read 3 lines
  518. sub r2, r3
  519. movh m0, [r2]
  520. movh m1, [r2+ r3]
  521. movh m2, [r2+2*r3]
  522. add r2, r3
  523. punpcklbw m0, m7
  524. punpcklbw m1, m7
  525. punpcklbw m2, m7
  526. .nextrow
  527. ; first calculate negative taps (to prevent losing positive overflows)
  528. movh m4, [r2+2*r3] ; read new row
  529. punpcklbw m4, m7
  530. mova m3, m4
  531. pmullw m0, [r6+0]
  532. pmullw m4, m5
  533. paddsw m4, m0
  534. ; then calculate positive taps
  535. mova m0, m1
  536. pmullw m1, [r6+16]
  537. paddsw m4, m1
  538. mova m1, m2
  539. pmullw m2, [r6+32]
  540. paddsw m4, m2
  541. mova m2, m3
  542. ; round/clip/store
  543. paddsw m4, m6
  544. psraw m4, 7
  545. packuswb m4, m7
  546. movh [r0], m4
  547. ; go to next line
  548. add r0, r1
  549. add r2, r3
  550. dec r4 ; next row
  551. jg .nextrow
  552. REP_RET
  553. ; 4x4 block, V-only 6-tap filter
  554. cglobal put_vp8_epel%2_v6_%1, 7, 7, %3
  555. shl r6d, 4
  556. lea r6, [r6*3]
  557. %ifdef PIC
  558. lea r11, [sixtap_filter_v_m]
  559. %endif
  560. lea r6, [sixtap_filter_v+r6-96]
  561. pxor m7, m7
  562. ; read 5 lines
  563. sub r2, r3
  564. sub r2, r3
  565. movh m0, [r2]
  566. movh m1, [r2+r3]
  567. movh m2, [r2+r3*2]
  568. lea r2, [r2+r3*2]
  569. add r2, r3
  570. movh m3, [r2]
  571. movh m4, [r2+r3]
  572. punpcklbw m0, m7
  573. punpcklbw m1, m7
  574. punpcklbw m2, m7
  575. punpcklbw m3, m7
  576. punpcklbw m4, m7
  577. .nextrow
  578. ; first calculate negative taps (to prevent losing positive overflows)
  579. mova m5, m1
  580. pmullw m5, [r6+16]
  581. mova m6, m4
  582. pmullw m6, [r6+64]
  583. paddsw m6, m5
  584. ; then calculate positive taps
  585. movh m5, [r2+2*r3] ; read new row
  586. punpcklbw m5, m7
  587. pmullw m0, [r6+0]
  588. paddsw m6, m0
  589. mova m0, m1
  590. mova m1, m2
  591. pmullw m2, [r6+32]
  592. paddsw m6, m2
  593. mova m2, m3
  594. pmullw m3, [r6+48]
  595. paddsw m6, m3
  596. mova m3, m4
  597. mova m4, m5
  598. pmullw m5, [r6+80]
  599. paddsw m6, m5
  600. ; round/clip/store
  601. paddsw m6, [pw_64]
  602. psraw m6, 7
  603. packuswb m6, m7
  604. movh [r0], m6
  605. ; go to next line
  606. add r0, r1
  607. add r2, r3
  608. dec r4 ; next row
  609. jg .nextrow
  610. REP_RET
  611. %endmacro
  612. INIT_MMX
  613. FILTER_V mmxext, 4, 0
  614. INIT_XMM
  615. FILTER_V sse2, 8, 8
  616. %macro FILTER_BILINEAR 3
  617. cglobal put_vp8_bilinear%2_v_%1, 7,7,%3
  618. mov r5d, 8*16
  619. shl r6d, 4
  620. sub r5d, r6d
  621. %ifdef PIC
  622. lea r11, [bilinear_filter_vw_m]
  623. %endif
  624. pxor m6, m6
  625. mova m4, [bilinear_filter_vw+r5-16]
  626. mova m5, [bilinear_filter_vw+r6-16]
  627. .nextrow
  628. movh m0, [r2+r3*0]
  629. movh m1, [r2+r3*1]
  630. movh m3, [r2+r3*2]
  631. punpcklbw m0, m6
  632. punpcklbw m1, m6
  633. punpcklbw m3, m6
  634. mova m2, m1
  635. pmullw m0, m4
  636. pmullw m1, m5
  637. pmullw m2, m4
  638. pmullw m3, m5
  639. paddsw m0, m1
  640. paddsw m2, m3
  641. psraw m0, 2
  642. psraw m2, 2
  643. pavgw m0, m6
  644. pavgw m2, m6
  645. %ifidn %1, mmxext
  646. packuswb m0, m0
  647. packuswb m2, m2
  648. movh [r0+r1*0], m0
  649. movh [r0+r1*1], m2
  650. %else
  651. packuswb m0, m2
  652. movh [r0+r1*0], m0
  653. movhps [r0+r1*1], m0
  654. %endif
  655. lea r0, [r0+r1*2]
  656. lea r2, [r2+r3*2]
  657. sub r4, 2
  658. jg .nextrow
  659. REP_RET
  660. cglobal put_vp8_bilinear%2_h_%1, 7,7,%3
  661. mov r6d, 8*16
  662. shl r5d, 4
  663. sub r6d, r5d
  664. %ifdef PIC
  665. lea r11, [bilinear_filter_vw_m]
  666. %endif
  667. pxor m6, m6
  668. mova m4, [bilinear_filter_vw+r6-16]
  669. mova m5, [bilinear_filter_vw+r5-16]
  670. .nextrow
  671. movh m0, [r2+r3*0+0]
  672. movh m1, [r2+r3*0+1]
  673. movh m2, [r2+r3*1+0]
  674. movh m3, [r2+r3*1+1]
  675. punpcklbw m0, m6
  676. punpcklbw m1, m6
  677. punpcklbw m2, m6
  678. punpcklbw m3, m6
  679. pmullw m0, m4
  680. pmullw m1, m5
  681. pmullw m2, m4
  682. pmullw m3, m5
  683. paddsw m0, m1
  684. paddsw m2, m3
  685. psraw m0, 2
  686. psraw m2, 2
  687. pavgw m0, m6
  688. pavgw m2, m6
  689. %ifidn %1, mmxext
  690. packuswb m0, m0
  691. packuswb m2, m2
  692. movh [r0+r1*0], m0
  693. movh [r0+r1*1], m2
  694. %else
  695. packuswb m0, m2
  696. movh [r0+r1*0], m0
  697. movhps [r0+r1*1], m0
  698. %endif
  699. lea r0, [r0+r1*2]
  700. lea r2, [r2+r3*2]
  701. sub r4, 2
  702. jg .nextrow
  703. REP_RET
  704. %endmacro
  705. INIT_MMX
  706. FILTER_BILINEAR mmxext, 4, 0
  707. INIT_XMM
  708. FILTER_BILINEAR sse2, 8, 7
  709. %macro FILTER_BILINEAR_SSSE3 1
  710. cglobal put_vp8_bilinear%1_v_ssse3, 7,7
  711. shl r6d, 4
  712. %ifdef PIC
  713. lea r11, [bilinear_filter_vb_m]
  714. %endif
  715. pxor m4, m4
  716. mova m3, [bilinear_filter_vb+r6-16]
  717. .nextrow
  718. movh m0, [r2+r3*0]
  719. movh m1, [r2+r3*1]
  720. movh m2, [r2+r3*2]
  721. punpcklbw m0, m1
  722. punpcklbw m1, m2
  723. pmaddubsw m0, m3
  724. pmaddubsw m1, m3
  725. psraw m0, 2
  726. psraw m1, 2
  727. pavgw m0, m4
  728. pavgw m1, m4
  729. %if mmsize==8
  730. packuswb m0, m0
  731. packuswb m1, m1
  732. movh [r0+r1*0], m0
  733. movh [r0+r1*1], m1
  734. %else
  735. packuswb m0, m1
  736. movh [r0+r1*0], m0
  737. movhps [r0+r1*1], m0
  738. %endif
  739. lea r0, [r0+r1*2]
  740. lea r2, [r2+r3*2]
  741. sub r4, 2
  742. jg .nextrow
  743. REP_RET
  744. cglobal put_vp8_bilinear%1_h_ssse3, 7,7
  745. shl r5d, 4
  746. %ifdef PIC
  747. lea r11, [bilinear_filter_vb_m]
  748. %endif
  749. pxor m4, m4
  750. mova m2, [filter_h2_shuf]
  751. mova m3, [bilinear_filter_vb+r5-16]
  752. .nextrow
  753. movu m0, [r2+r3*0]
  754. movu m1, [r2+r3*1]
  755. pshufb m0, m2
  756. pshufb m1, m2
  757. pmaddubsw m0, m3
  758. pmaddubsw m1, m3
  759. psraw m0, 2
  760. psraw m1, 2
  761. pavgw m0, m4
  762. pavgw m1, m4
  763. %if mmsize==8
  764. packuswb m0, m0
  765. packuswb m1, m1
  766. movh [r0+r1*0], m0
  767. movh [r0+r1*1], m1
  768. %else
  769. packuswb m0, m1
  770. movh [r0+r1*0], m0
  771. movhps [r0+r1*1], m0
  772. %endif
  773. lea r0, [r0+r1*2]
  774. lea r2, [r2+r3*2]
  775. sub r4, 2
  776. jg .nextrow
  777. REP_RET
  778. %endmacro
  779. INIT_MMX
  780. FILTER_BILINEAR_SSSE3 4
  781. INIT_XMM
  782. FILTER_BILINEAR_SSSE3 8
  783. cglobal put_vp8_pixels8_mmx, 5,5
  784. .nextrow:
  785. movq mm0, [r2+r3*0]
  786. movq mm1, [r2+r3*1]
  787. lea r2, [r2+r3*2]
  788. movq [r0+r1*0], mm0
  789. movq [r0+r1*1], mm1
  790. lea r0, [r0+r1*2]
  791. sub r4d, 2
  792. jg .nextrow
  793. REP_RET
  794. cglobal put_vp8_pixels16_mmx, 5,5
  795. .nextrow:
  796. movq mm0, [r2+r3*0+0]
  797. movq mm1, [r2+r3*0+8]
  798. movq mm2, [r2+r3*1+0]
  799. movq mm3, [r2+r3*1+8]
  800. lea r2, [r2+r3*2]
  801. movq [r0+r1*0+0], mm0
  802. movq [r0+r1*0+8], mm1
  803. movq [r0+r1*1+0], mm2
  804. movq [r0+r1*1+8], mm3
  805. lea r0, [r0+r1*2]
  806. sub r4d, 2
  807. jg .nextrow
  808. REP_RET
  809. cglobal put_vp8_pixels16_sse, 5,5,2
  810. .nextrow:
  811. movups xmm0, [r2+r3*0]
  812. movups xmm1, [r2+r3*1]
  813. lea r2, [r2+r3*2]
  814. movaps [r0+r1*0], xmm0
  815. movaps [r0+r1*1], xmm1
  816. lea r0, [r0+r1*2]
  817. sub r4d, 2
  818. jg .nextrow
  819. REP_RET
  820. ;-----------------------------------------------------------------------------
  821. ; void vp8_idct_dc_add_<opt>(uint8_t *dst, DCTELEM block[16], int stride);
  822. ;-----------------------------------------------------------------------------
  823. %macro ADD_DC 4
  824. %4 m2, [r0+%3]
  825. %4 m3, [r0+r2+%3]
  826. %4 m4, [r1+%3]
  827. %4 m5, [r1+r2+%3]
  828. paddusb m2, %1
  829. paddusb m3, %1
  830. paddusb m4, %1
  831. paddusb m5, %1
  832. psubusb m2, %2
  833. psubusb m3, %2
  834. psubusb m4, %2
  835. psubusb m5, %2
  836. %4 [r0+%3], m2
  837. %4 [r0+r2+%3], m3
  838. %4 [r1+%3], m4
  839. %4 [r1+r2+%3], m5
  840. %endmacro
  841. INIT_MMX
  842. cglobal vp8_idct_dc_add_mmx, 3, 3
  843. ; load data
  844. movd m0, [r1]
  845. ; calculate DC
  846. paddw m0, [pw_4]
  847. pxor m1, m1
  848. psraw m0, 3
  849. movd [r1], m1
  850. psubw m1, m0
  851. packuswb m0, m0
  852. packuswb m1, m1
  853. punpcklbw m0, m0
  854. punpcklbw m1, m1
  855. punpcklwd m0, m0
  856. punpcklwd m1, m1
  857. ; add DC
  858. lea r1, [r0+r2*2]
  859. ADD_DC m0, m1, 0, movh
  860. RET
  861. INIT_XMM
  862. cglobal vp8_idct_dc_add_sse4, 3, 3, 6
  863. ; load data
  864. movd m0, [r1]
  865. pxor m1, m1
  866. ; calculate DC
  867. paddw m0, [pw_4]
  868. movd [r1], m1
  869. lea r1, [r0+r2*2]
  870. movd m2, [r0]
  871. movd m3, [r0+r2]
  872. movd m4, [r1]
  873. movd m5, [r1+r2]
  874. psraw m0, 3
  875. pshuflw m0, m0, 0
  876. punpcklqdq m0, m0
  877. punpckldq m2, m3
  878. punpckldq m4, m5
  879. punpcklbw m2, m1
  880. punpcklbw m4, m1
  881. paddw m2, m0
  882. paddw m4, m0
  883. packuswb m2, m4
  884. movd [r0], m2
  885. pextrd [r0+r2], m2, 1
  886. pextrd [r1], m2, 2
  887. pextrd [r1+r2], m2, 3
  888. RET
  889. ;-----------------------------------------------------------------------------
  890. ; void vp8_idct_dc_add4y_<opt>(uint8_t *dst, DCTELEM block[4][16], int stride);
  891. ;-----------------------------------------------------------------------------
  892. INIT_MMX
  893. cglobal vp8_idct_dc_add4y_mmx, 3, 3
  894. ; load data
  895. movd m0, [r1+32*0] ; A
  896. movd m1, [r1+32*2] ; C
  897. punpcklwd m0, [r1+32*1] ; A B
  898. punpcklwd m1, [r1+32*3] ; C D
  899. punpckldq m0, m1 ; A B C D
  900. pxor m6, m6
  901. ; calculate DC
  902. paddw m0, [pw_4]
  903. movd [r1+32*0], m6
  904. movd [r1+32*1], m6
  905. movd [r1+32*2], m6
  906. movd [r1+32*3], m6
  907. psraw m0, 3
  908. psubw m6, m0
  909. packuswb m0, m0
  910. packuswb m6, m6
  911. punpcklbw m0, m0 ; AABBCCDD
  912. punpcklbw m6, m6 ; AABBCCDD
  913. movq m1, m0
  914. movq m7, m6
  915. punpcklbw m0, m0 ; AAAABBBB
  916. punpckhbw m1, m1 ; CCCCDDDD
  917. punpcklbw m6, m6 ; AAAABBBB
  918. punpckhbw m7, m7 ; CCCCDDDD
  919. ; add DC
  920. lea r1, [r0+r2*2]
  921. ADD_DC m0, m6, 0, mova
  922. ADD_DC m1, m7, 8, mova
  923. RET
  924. INIT_XMM
  925. cglobal vp8_idct_dc_add4y_sse2, 3, 3, 6
  926. ; load data
  927. movd m0, [r1+32*0] ; A
  928. movd m1, [r1+32*2] ; C
  929. punpcklwd m0, [r1+32*1] ; A B
  930. punpcklwd m1, [r1+32*3] ; C D
  931. punpckldq m0, m1 ; A B C D
  932. pxor m1, m1
  933. ; calculate DC
  934. paddw m0, [pw_4]
  935. movd [r1+32*0], m1
  936. movd [r1+32*1], m1
  937. movd [r1+32*2], m1
  938. movd [r1+32*3], m1
  939. psraw m0, 3
  940. psubw m1, m0
  941. packuswb m0, m0
  942. packuswb m1, m1
  943. punpcklbw m0, m0
  944. punpcklbw m1, m1
  945. punpcklbw m0, m0
  946. punpcklbw m1, m1
  947. ; add DC
  948. lea r1, [r0+r2*2]
  949. ADD_DC m0, m1, 0, mova
  950. RET
  951. ;-----------------------------------------------------------------------------
  952. ; void vp8_idct_dc_add4uv_<opt>(uint8_t *dst, DCTELEM block[4][16], int stride);
  953. ;-----------------------------------------------------------------------------
  954. INIT_MMX
  955. cglobal vp8_idct_dc_add4uv_mmx, 3, 3
  956. ; load data
  957. movd m0, [r1+32*0] ; A
  958. movd m1, [r1+32*2] ; C
  959. punpcklwd m0, [r1+32*1] ; A B
  960. punpcklwd m1, [r1+32*3] ; C D
  961. punpckldq m0, m1 ; A B C D
  962. pxor m6, m6
  963. ; calculate DC
  964. paddw m0, [pw_4]
  965. movd [r1+32*0], m6
  966. movd [r1+32*1], m6
  967. movd [r1+32*2], m6
  968. movd [r1+32*3], m6
  969. psraw m0, 3
  970. psubw m6, m0
  971. packuswb m0, m0
  972. packuswb m6, m6
  973. punpcklbw m0, m0 ; AABBCCDD
  974. punpcklbw m6, m6 ; AABBCCDD
  975. movq m1, m0
  976. movq m7, m6
  977. punpcklbw m0, m0 ; AAAABBBB
  978. punpckhbw m1, m1 ; CCCCDDDD
  979. punpcklbw m6, m6 ; AAAABBBB
  980. punpckhbw m7, m7 ; CCCCDDDD
  981. ; add DC
  982. lea r1, [r0+r2*2]
  983. ADD_DC m0, m6, 0, mova
  984. lea r0, [r0+r2*4]
  985. lea r1, [r1+r2*4]
  986. ADD_DC m1, m7, 0, mova
  987. RET
  988. ;-----------------------------------------------------------------------------
  989. ; void vp8_idct_add_<opt>(uint8_t *dst, DCTELEM block[16], int stride);
  990. ;-----------------------------------------------------------------------------
  991. ; calculate %1=mul_35468(%1)-mul_20091(%2); %2=mul_20091(%1)+mul_35468(%2)
  992. ; this macro assumes that m6/m7 have words for 20091/17734 loaded
  993. %macro VP8_MULTIPLY_SUMSUB 4
  994. mova %3, %1
  995. mova %4, %2
  996. pmulhw %3, m6 ;20091(1)
  997. pmulhw %4, m6 ;20091(2)
  998. paddw %3, %1
  999. paddw %4, %2
  1000. paddw %1, %1
  1001. paddw %2, %2
  1002. pmulhw %1, m7 ;35468(1)
  1003. pmulhw %2, m7 ;35468(2)
  1004. psubw %1, %4
  1005. paddw %2, %3
  1006. %endmacro
  1007. ; calculate x0=%1+%3; x1=%1-%3
  1008. ; x2=mul_35468(%2)-mul_20091(%4); x3=mul_20091(%2)+mul_35468(%4)
  1009. ; %1=x0+x3 (tmp0); %2=x1+x2 (tmp1); %3=x1-x2 (tmp2); %4=x0-x3 (tmp3)
  1010. ; %5/%6 are temporary registers
  1011. ; we assume m6/m7 have constant words 20091/17734 loaded in them
  1012. %macro VP8_IDCT_TRANSFORM4x4_1D 6
  1013. SUMSUB_BA m%3, m%1, m%5 ;t0, t1
  1014. VP8_MULTIPLY_SUMSUB m%2, m%4, m%5,m%6 ;t2, t3
  1015. SUMSUB_BA m%4, m%3, m%5 ;tmp0, tmp3
  1016. SUMSUB_BA m%2, m%1, m%5 ;tmp1, tmp2
  1017. SWAP %4, %1
  1018. SWAP %4, %3
  1019. %endmacro
  1020. INIT_MMX
  1021. %macro VP8_IDCT_ADD 1
  1022. cglobal vp8_idct_add_%1, 3, 3
  1023. ; load block data
  1024. movq m0, [r1+ 0]
  1025. movq m1, [r1+ 8]
  1026. movq m2, [r1+16]
  1027. movq m3, [r1+24]
  1028. movq m6, [pw_20091]
  1029. movq m7, [pw_17734]
  1030. %ifidn %1, sse
  1031. xorps xmm0, xmm0
  1032. movaps [r1+ 0], xmm0
  1033. movaps [r1+16], xmm0
  1034. %else
  1035. pxor m4, m4
  1036. movq [r1+ 0], m4
  1037. movq [r1+ 8], m4
  1038. movq [r1+16], m4
  1039. movq [r1+24], m4
  1040. %endif
  1041. ; actual IDCT
  1042. VP8_IDCT_TRANSFORM4x4_1D 0, 1, 2, 3, 4, 5
  1043. TRANSPOSE4x4W 0, 1, 2, 3, 4
  1044. paddw m0, [pw_4]
  1045. VP8_IDCT_TRANSFORM4x4_1D 0, 1, 2, 3, 4, 5
  1046. TRANSPOSE4x4W 0, 1, 2, 3, 4
  1047. ; store
  1048. pxor m4, m4
  1049. lea r1, [r0+2*r2]
  1050. STORE_DIFFx2 m0, m1, m6, m7, m4, 3, r0, r2
  1051. STORE_DIFFx2 m2, m3, m6, m7, m4, 3, r1, r2
  1052. RET
  1053. %endmacro
  1054. VP8_IDCT_ADD mmx
  1055. VP8_IDCT_ADD sse
  1056. ;-----------------------------------------------------------------------------
  1057. ; void vp8_luma_dc_wht_mmxext(DCTELEM block[4][4][16], DCTELEM dc[16])
  1058. ;-----------------------------------------------------------------------------
  1059. %macro SCATTER_WHT 3
  1060. movd r1d, m%1
  1061. movd r2d, m%2
  1062. mov [r0+2*16*(0+%3)], r1w
  1063. mov [r0+2*16*(1+%3)], r2w
  1064. shr r1d, 16
  1065. shr r2d, 16
  1066. psrlq m%1, 32
  1067. psrlq m%2, 32
  1068. mov [r0+2*16*(4+%3)], r1w
  1069. mov [r0+2*16*(5+%3)], r2w
  1070. movd r1d, m%1
  1071. movd r2d, m%2
  1072. mov [r0+2*16*(8+%3)], r1w
  1073. mov [r0+2*16*(9+%3)], r2w
  1074. shr r1d, 16
  1075. shr r2d, 16
  1076. mov [r0+2*16*(12+%3)], r1w
  1077. mov [r0+2*16*(13+%3)], r2w
  1078. %endmacro
  1079. %macro HADAMARD4_1D 4
  1080. SUMSUB_BADC m%2, m%1, m%4, m%3
  1081. SUMSUB_BADC m%4, m%2, m%3, m%1
  1082. SWAP %1, %4, %3
  1083. %endmacro
  1084. INIT_MMX
  1085. cglobal vp8_luma_dc_wht_mmx, 2,3
  1086. movq m0, [r1]
  1087. movq m1, [r1+8]
  1088. movq m2, [r1+16]
  1089. movq m3, [r1+24]
  1090. HADAMARD4_1D 0, 1, 2, 3
  1091. TRANSPOSE4x4W 0, 1, 2, 3, 4
  1092. paddw m0, [pw_3]
  1093. HADAMARD4_1D 0, 1, 2, 3
  1094. psraw m0, 3
  1095. psraw m1, 3
  1096. psraw m2, 3
  1097. psraw m3, 3
  1098. SCATTER_WHT 0, 1, 0
  1099. SCATTER_WHT 2, 3, 2
  1100. RET
  1101. ;-----------------------------------------------------------------------------
  1102. ; void vp8_h/v_loop_filter_simple_<opt>(uint8_t *dst, int stride, int flim);
  1103. ;-----------------------------------------------------------------------------
  1104. ; macro called with 7 mm register indexes as argument, and 4 regular registers
  1105. ;
  1106. ; first 4 mm registers will carry the transposed pixel data
  1107. ; the other three are scratchspace (one would be sufficient, but this allows
  1108. ; for more spreading/pipelining and thus faster execution on OOE CPUs)
  1109. ;
  1110. ; first two regular registers are buf+4*stride and buf+5*stride
  1111. ; third is -stride, fourth is +stride
  1112. %macro READ_8x4_INTERLEAVED 11
  1113. ; interleave 8 (A-H) rows of 4 pixels each
  1114. movd m%1, [%8+%10*4] ; A0-3
  1115. movd m%5, [%9+%10*4] ; B0-3
  1116. movd m%2, [%8+%10*2] ; C0-3
  1117. movd m%6, [%8+%10] ; D0-3
  1118. movd m%3, [%8] ; E0-3
  1119. movd m%7, [%9] ; F0-3
  1120. movd m%4, [%9+%11] ; G0-3
  1121. punpcklbw m%1, m%5 ; A/B interleaved
  1122. movd m%5, [%9+%11*2] ; H0-3
  1123. punpcklbw m%2, m%6 ; C/D interleaved
  1124. punpcklbw m%3, m%7 ; E/F interleaved
  1125. punpcklbw m%4, m%5 ; G/H interleaved
  1126. %endmacro
  1127. ; macro called with 7 mm register indexes as argument, and 5 regular registers
  1128. ; first 11 mean the same as READ_8x4_TRANSPOSED above
  1129. ; fifth regular register is scratchspace to reach the bottom 8 rows, it
  1130. ; will be set to second regular register + 8*stride at the end
  1131. %macro READ_16x4_INTERLEAVED 12
  1132. ; transpose 16 (A-P) rows of 4 pixels each
  1133. lea %12, [r0+8*r2]
  1134. ; read (and interleave) those addressable by %8 (=r0), A/C/D/E/I/K/L/M
  1135. movd m%1, [%8+%10*4] ; A0-3
  1136. movd m%3, [%12+%10*4] ; I0-3
  1137. movd m%2, [%8+%10*2] ; C0-3
  1138. movd m%4, [%12+%10*2] ; K0-3
  1139. movd m%6, [%8+%10] ; D0-3
  1140. movd m%5, [%12+%10] ; L0-3
  1141. movd m%7, [%12] ; M0-3
  1142. add %12, %11
  1143. punpcklbw m%1, m%3 ; A/I
  1144. movd m%3, [%8] ; E0-3
  1145. punpcklbw m%2, m%4 ; C/K
  1146. punpcklbw m%6, m%5 ; D/L
  1147. punpcklbw m%3, m%7 ; E/M
  1148. punpcklbw m%2, m%6 ; C/D/K/L interleaved
  1149. ; read (and interleave) those addressable by %9 (=r4), B/F/G/H/J/N/O/P
  1150. movd m%5, [%9+%10*4] ; B0-3
  1151. movd m%4, [%12+%10*4] ; J0-3
  1152. movd m%7, [%9] ; F0-3
  1153. movd m%6, [%12] ; N0-3
  1154. punpcklbw m%5, m%4 ; B/J
  1155. punpcklbw m%7, m%6 ; F/N
  1156. punpcklbw m%1, m%5 ; A/B/I/J interleaved
  1157. punpcklbw m%3, m%7 ; E/F/M/N interleaved
  1158. movd m%4, [%9+%11] ; G0-3
  1159. movd m%6, [%12+%11] ; O0-3
  1160. movd m%5, [%9+%11*2] ; H0-3
  1161. movd m%7, [%12+%11*2] ; P0-3
  1162. punpcklbw m%4, m%6 ; G/O
  1163. punpcklbw m%5, m%7 ; H/P
  1164. punpcklbw m%4, m%5 ; G/H/O/P interleaved
  1165. %endmacro
  1166. ; write 4 mm registers of 2 dwords each
  1167. ; first four arguments are mm register indexes containing source data
  1168. ; last four are registers containing buf+4*stride, buf+5*stride,
  1169. ; -stride and +stride
  1170. %macro WRITE_4x2D 8
  1171. ; write out (2 dwords per register)
  1172. movd [%5+%7*4], m%1
  1173. movd [%5+%7*2], m%2
  1174. movd [%5], m%3
  1175. movd [%6+%8], m%4
  1176. punpckhdq m%1, m%1
  1177. punpckhdq m%2, m%2
  1178. punpckhdq m%3, m%3
  1179. punpckhdq m%4, m%4
  1180. movd [%6+%7*4], m%1
  1181. movd [%5+%7], m%2
  1182. movd [%6], m%3
  1183. movd [%6+%8*2], m%4
  1184. %endmacro
  1185. ; write 4 xmm registers of 4 dwords each
  1186. ; arguments same as WRITE_2x4D, but with an extra register, so that the 5 regular
  1187. ; registers contain buf+4*stride, buf+5*stride, buf+12*stride, -stride and +stride
  1188. ; we add 1*stride to the third regular registry in the process
  1189. ; the 10th argument is 16 if it's a Y filter (i.e. all regular registers cover the
  1190. ; same memory region), or 8 if they cover two separate buffers (third one points to
  1191. ; a different memory region than the first two), allowing for more optimal code for
  1192. ; the 16-width case
  1193. %macro WRITE_4x4D 10
  1194. ; write out (4 dwords per register), start with dwords zero
  1195. movd [%5+%8*4], m%1
  1196. movd [%5], m%2
  1197. movd [%7+%8*4], m%3
  1198. movd [%7], m%4
  1199. ; store dwords 1
  1200. psrldq m%1, 4
  1201. psrldq m%2, 4
  1202. psrldq m%3, 4
  1203. psrldq m%4, 4
  1204. movd [%6+%8*4], m%1
  1205. movd [%6], m%2
  1206. %if %10 == 16
  1207. movd [%6+%9*4], m%3
  1208. %endif
  1209. movd [%7+%9], m%4
  1210. ; write dwords 2
  1211. psrldq m%1, 4
  1212. psrldq m%2, 4
  1213. %if %10 == 8
  1214. movd [%5+%8*2], m%1
  1215. movd %5, m%3
  1216. %endif
  1217. psrldq m%3, 4
  1218. psrldq m%4, 4
  1219. %if %10 == 16
  1220. movd [%5+%8*2], m%1
  1221. %endif
  1222. movd [%6+%9], m%2
  1223. movd [%7+%8*2], m%3
  1224. movd [%7+%9*2], m%4
  1225. add %7, %9
  1226. ; store dwords 3
  1227. psrldq m%1, 4
  1228. psrldq m%2, 4
  1229. psrldq m%3, 4
  1230. psrldq m%4, 4
  1231. %if %10 == 8
  1232. mov [%7+%8*4], %5d
  1233. movd [%6+%8*2], m%1
  1234. %else
  1235. movd [%5+%8], m%1
  1236. %endif
  1237. movd [%6+%9*2], m%2
  1238. movd [%7+%8*2], m%3
  1239. movd [%7+%9*2], m%4
  1240. %endmacro
  1241. %macro SPLATB_REG_MMX 2-3
  1242. movd %1, %2
  1243. punpcklbw %1, %1
  1244. punpcklwd %1, %1
  1245. punpckldq %1, %1
  1246. %endmacro
  1247. %macro SPLATB_REG_MMXEXT 2-3
  1248. movd %1, %2
  1249. punpcklbw %1, %1
  1250. pshufw %1, %1, 0x0
  1251. %endmacro
  1252. %macro SPLATB_REG_SSE2 2-3
  1253. movd %1, %2
  1254. punpcklbw %1, %1
  1255. pshuflw %1, %1, 0x0
  1256. punpcklqdq %1, %1
  1257. %endmacro
  1258. %macro SPLATB_REG_SSSE3 3
  1259. movd %1, %2
  1260. pshufb %1, %3
  1261. %endmacro
  1262. %macro SIMPLE_LOOPFILTER 3
  1263. cglobal vp8_%2_loop_filter_simple_%1, 3, %3
  1264. %ifidn %2, h
  1265. mov r5, rsp ; backup stack pointer
  1266. and rsp, ~(mmsize-1) ; align stack
  1267. %endif
  1268. %if mmsize == 8 ; mmx/mmxext
  1269. mov r3, 2
  1270. %endif
  1271. %ifnidn %1, sse2
  1272. %if mmsize == 16
  1273. pxor m0, m0
  1274. %endif
  1275. %endif
  1276. SPLATB_REG m7, r2, m0 ; splat "flim" into register
  1277. ; set up indexes to address 4 rows
  1278. mov r2, r1
  1279. neg r1
  1280. %ifidn %2, h
  1281. lea r0, [r0+4*r2-2]
  1282. sub rsp, mmsize*2 ; (aligned) storage space for saving p1/q1
  1283. %endif
  1284. %if mmsize == 8 ; mmx / mmxext
  1285. .next8px
  1286. %endif
  1287. %ifidn %2, v
  1288. ; read 4 half/full rows of pixels
  1289. mova m0, [r0+r1*2] ; p1
  1290. mova m1, [r0+r1] ; p0
  1291. mova m2, [r0] ; q0
  1292. mova m3, [r0+r2] ; q1
  1293. %else ; h
  1294. lea r4, [r0+r2]
  1295. %if mmsize == 8 ; mmx/mmxext
  1296. READ_8x4_INTERLEAVED 0, 1, 2, 3, 4, 5, 6, r0, r4, r1, r2
  1297. %else ; sse2
  1298. READ_16x4_INTERLEAVED 0, 1, 2, 3, 4, 5, 6, r0, r4, r1, r2, r3
  1299. %endif
  1300. TRANSPOSE4x4W 0, 1, 2, 3, 4
  1301. mova [rsp], m0 ; store p1
  1302. mova [rsp+mmsize], m3 ; store q1
  1303. %endif
  1304. ; simple_limit
  1305. mova m5, m2 ; m5=backup of q0
  1306. mova m6, m1 ; m6=backup of p0
  1307. psubusb m1, m2 ; p0-q0
  1308. psubusb m2, m6 ; q0-p0
  1309. por m1, m2 ; FFABS(p0-q0)
  1310. paddusb m1, m1 ; m1=FFABS(p0-q0)*2
  1311. mova m4, m3
  1312. mova m2, m0
  1313. psubusb m3, m0 ; q1-p1
  1314. psubusb m0, m4 ; p1-q1
  1315. por m3, m0 ; FFABS(p1-q1)
  1316. mova m0, [pb_80]
  1317. pxor m2, m0
  1318. pxor m4, m0
  1319. psubsb m2, m4 ; m2=p1-q1 (signed) backup for below
  1320. pand m3, [pb_FE]
  1321. psrlq m3, 1 ; m3=FFABS(p1-q1)/2, this can be used signed
  1322. paddusb m3, m1
  1323. psubusb m3, m7
  1324. pxor m1, m1
  1325. pcmpeqb m3, m1 ; abs(p0-q0)*2+abs(p1-q1)/2<=flim mask(0xff/0x0)
  1326. ; filter_common (use m2/p1-q1, m4=q0, m6=p0, m5/q0-p0 and m3/mask)
  1327. mova m4, m5
  1328. pxor m5, m0
  1329. pxor m0, m6
  1330. psubsb m5, m0 ; q0-p0 (signed)
  1331. paddsb m2, m5
  1332. paddsb m2, m5
  1333. paddsb m2, m5 ; a=(p1-q1) + 3*(q0-p0)
  1334. pand m2, m3 ; apply filter mask (m3)
  1335. mova m3, [pb_F8]
  1336. mova m1, m2
  1337. paddsb m2, [pb_4] ; f1<<3=a+4
  1338. paddsb m1, [pb_3] ; f2<<3=a+3
  1339. pand m2, m3
  1340. pand m1, m3 ; cache f2<<3
  1341. pxor m0, m0
  1342. pxor m3, m3
  1343. pcmpgtb m0, m2 ; which values are <0?
  1344. psubb m3, m2 ; -f1<<3
  1345. psrlq m2, 3 ; +f1
  1346. psrlq m3, 3 ; -f1
  1347. pand m3, m0
  1348. pandn m0, m2
  1349. psubusb m4, m0
  1350. paddusb m4, m3 ; q0-f1
  1351. pxor m0, m0
  1352. pxor m3, m3
  1353. pcmpgtb m0, m1 ; which values are <0?
  1354. psubb m3, m1 ; -f2<<3
  1355. psrlq m1, 3 ; +f2
  1356. psrlq m3, 3 ; -f2
  1357. pand m3, m0
  1358. pandn m0, m1
  1359. paddusb m6, m0
  1360. psubusb m6, m3 ; p0+f2
  1361. ; store
  1362. %ifidn %2, v
  1363. mova [r0], m4
  1364. mova [r0+r1], m6
  1365. %else ; h
  1366. mova m0, [rsp] ; p1
  1367. SWAP 2, 4 ; p0
  1368. SWAP 1, 6 ; q0
  1369. mova m3, [rsp+mmsize] ; q1
  1370. TRANSPOSE4x4B 0, 1, 2, 3, 4
  1371. %if mmsize == 16 ; sse2
  1372. add r3, r1 ; change from r4*8*stride to r0+8*stride
  1373. WRITE_4x4D 0, 1, 2, 3, r0, r4, r3, r1, r2, 16
  1374. %else ; mmx/mmxext
  1375. WRITE_4x2D 0, 1, 2, 3, r0, r4, r1, r2
  1376. %endif
  1377. %endif
  1378. %if mmsize == 8 ; mmx/mmxext
  1379. ; next 8 pixels
  1380. %ifidn %2, v
  1381. add r0, 8 ; advance 8 cols = pixels
  1382. %else ; h
  1383. lea r0, [r0+r2*8] ; advance 8 rows = lines
  1384. %endif
  1385. dec r3
  1386. jg .next8px
  1387. %ifidn %2, v
  1388. REP_RET
  1389. %else ; h
  1390. mov rsp, r5 ; restore stack pointer
  1391. RET
  1392. %endif
  1393. %else ; sse2
  1394. %ifidn %2, h
  1395. mov rsp, r5 ; restore stack pointer
  1396. %endif
  1397. RET
  1398. %endif
  1399. %endmacro
  1400. INIT_MMX
  1401. %define SPLATB_REG SPLATB_REG_MMX
  1402. SIMPLE_LOOPFILTER mmx, v, 4
  1403. SIMPLE_LOOPFILTER mmx, h, 6
  1404. %define SPLATB_REG SPLATB_REG_MMXEXT
  1405. SIMPLE_LOOPFILTER mmxext, v, 4
  1406. SIMPLE_LOOPFILTER mmxext, h, 6
  1407. INIT_XMM
  1408. %define SPLATB_REG SPLATB_REG_SSE2
  1409. SIMPLE_LOOPFILTER sse2, v, 3
  1410. SIMPLE_LOOPFILTER sse2, h, 6
  1411. %define SPLATB_REG SPLATB_REG_SSSE3
  1412. SIMPLE_LOOPFILTER ssse3, v, 3
  1413. SIMPLE_LOOPFILTER ssse3, h, 6
  1414. ;-----------------------------------------------------------------------------
  1415. ; void vp8_h/v_loop_filter<size>_inner_<opt>(uint8_t *dst, [uint8_t *v,] int stride,
  1416. ; int flimE, int flimI, int hev_thr);
  1417. ;-----------------------------------------------------------------------------
  1418. %macro INNER_LOOPFILTER 5
  1419. %if %4 == 8 ; chroma
  1420. cglobal vp8_%2_loop_filter8uv_inner_%1, 6, %3, %5
  1421. %define dst8_reg r1
  1422. %define mstride_reg r2
  1423. %define E_reg r3
  1424. %define I_reg r4
  1425. %define hev_thr_reg r5
  1426. %else ; luma
  1427. cglobal vp8_%2_loop_filter16y_inner_%1, 5, %3, %5
  1428. %define mstride_reg r1
  1429. %define E_reg r2
  1430. %define I_reg r3
  1431. %define hev_thr_reg r4
  1432. %ifdef m8 ; x86-64, sse2
  1433. %define dst8_reg r4
  1434. %elif mmsize == 16 ; x86-32, sse2
  1435. %define dst8_reg r5
  1436. %else ; x86-32, mmx/mmxext
  1437. %define cnt_reg r5
  1438. %endif
  1439. %endif
  1440. %define dst_reg r0
  1441. %define stride_reg E_reg
  1442. %define dst2_reg I_reg
  1443. %ifndef m8
  1444. %define stack_reg hev_thr_reg
  1445. %endif
  1446. %ifnidn %1, sse2
  1447. %if mmsize == 16
  1448. pxor m7, m7
  1449. %endif
  1450. %endif
  1451. %ifndef m8 ; mmx/mmxext or sse2 on x86-32
  1452. ; splat function arguments
  1453. SPLATB_REG m0, E_reg, m7 ; E
  1454. SPLATB_REG m1, I_reg, m7 ; I
  1455. SPLATB_REG m2, hev_thr_reg, m7 ; hev_thresh
  1456. ; align stack
  1457. mov stack_reg, rsp ; backup stack pointer
  1458. and rsp, ~(mmsize-1) ; align stack
  1459. %ifidn %2, v
  1460. sub rsp, mmsize * 4 ; stack layout: [0]=E, [1]=I, [2]=hev_thr
  1461. ; [3]=hev() result
  1462. %else ; h
  1463. sub rsp, mmsize * 5 ; extra storage space for transposes
  1464. %endif
  1465. %define flim_E [rsp]
  1466. %define flim_I [rsp+mmsize]
  1467. %define hev_thr [rsp+mmsize*2]
  1468. %define mask_res [rsp+mmsize*3]
  1469. %define p0backup [rsp+mmsize*3]
  1470. %define q0backup [rsp+mmsize*4]
  1471. mova flim_E, m0
  1472. mova flim_I, m1
  1473. mova hev_thr, m2
  1474. %else ; sse2 on x86-64
  1475. %define flim_E m9
  1476. %define flim_I m10
  1477. %define hev_thr m11
  1478. %define mask_res m12
  1479. %define p0backup m12
  1480. %define q0backup m8
  1481. ; splat function arguments
  1482. SPLATB_REG flim_E, E_reg, m7 ; E
  1483. SPLATB_REG flim_I, I_reg, m7 ; I
  1484. SPLATB_REG hev_thr, hev_thr_reg, m7 ; hev_thresh
  1485. %endif
  1486. %if mmsize == 8 && %4 == 16 ; mmx/mmxext
  1487. mov cnt_reg, 2
  1488. %endif
  1489. mov stride_reg, mstride_reg
  1490. neg mstride_reg
  1491. %ifidn %2, h
  1492. lea dst_reg, [dst_reg + stride_reg*4-4]
  1493. %if %4 == 8
  1494. lea dst8_reg, [dst8_reg+ stride_reg*4-4]
  1495. %endif
  1496. %endif
  1497. %if mmsize == 8
  1498. .next8px
  1499. %endif
  1500. ; read
  1501. lea dst2_reg, [dst_reg + stride_reg]
  1502. %ifidn %2, v
  1503. %if %4 == 8 && mmsize == 16
  1504. %define movrow movh
  1505. %else
  1506. %define movrow mova
  1507. %endif
  1508. movrow m0, [dst_reg +mstride_reg*4] ; p3
  1509. movrow m1, [dst2_reg+mstride_reg*4] ; p2
  1510. movrow m2, [dst_reg +mstride_reg*2] ; p1
  1511. movrow m5, [dst2_reg] ; q1
  1512. movrow m6, [dst2_reg+ stride_reg] ; q2
  1513. movrow m7, [dst2_reg+ stride_reg*2] ; q3
  1514. %if mmsize == 16 && %4 == 8
  1515. movhps m0, [dst8_reg+mstride_reg*4]
  1516. movhps m2, [dst8_reg+mstride_reg*2]
  1517. add dst8_reg, stride_reg
  1518. movhps m1, [dst8_reg+mstride_reg*4]
  1519. movhps m5, [dst8_reg]
  1520. movhps m6, [dst8_reg+ stride_reg]
  1521. movhps m7, [dst8_reg+ stride_reg*2]
  1522. add dst8_reg, mstride_reg
  1523. %endif
  1524. %elif mmsize == 8 ; mmx/mmxext (h)
  1525. ; read 8 rows of 8px each
  1526. movu m0, [dst_reg +mstride_reg*4]
  1527. movu m1, [dst2_reg+mstride_reg*4]
  1528. movu m2, [dst_reg +mstride_reg*2]
  1529. movu m3, [dst_reg +mstride_reg]
  1530. movu m4, [dst_reg]
  1531. movu m5, [dst2_reg]
  1532. movu m6, [dst2_reg+ stride_reg]
  1533. ; 8x8 transpose
  1534. TRANSPOSE4x4B 0, 1, 2, 3, 7
  1535. mova q0backup, m1
  1536. movu m7, [dst2_reg+ stride_reg*2]
  1537. TRANSPOSE4x4B 4, 5, 6, 7, 1
  1538. SBUTTERFLY dq, 0, 4, 1 ; p3/p2
  1539. SBUTTERFLY dq, 2, 6, 1 ; q0/q1
  1540. SBUTTERFLY dq, 3, 7, 1 ; q2/q3
  1541. mova m1, q0backup
  1542. mova q0backup, m2 ; store q0
  1543. SBUTTERFLY dq, 1, 5, 2 ; p1/p0
  1544. mova p0backup, m5 ; store p0
  1545. SWAP 1, 4
  1546. SWAP 2, 4
  1547. SWAP 6, 3
  1548. SWAP 5, 3
  1549. %else ; sse2 (h)
  1550. %if %4 == 16
  1551. lea dst8_reg, [dst_reg + stride_reg*8]
  1552. %endif
  1553. ; read 16 rows of 8px each, interleave
  1554. movh m0, [dst_reg +mstride_reg*4]
  1555. movh m1, [dst8_reg+mstride_reg*4]
  1556. movh m2, [dst_reg +mstride_reg*2]
  1557. movh m5, [dst8_reg+mstride_reg*2]
  1558. movh m3, [dst_reg +mstride_reg]
  1559. movh m6, [dst8_reg+mstride_reg]
  1560. movh m4, [dst_reg]
  1561. movh m7, [dst8_reg]
  1562. punpcklbw m0, m1 ; A/I
  1563. punpcklbw m2, m5 ; C/K
  1564. punpcklbw m3, m6 ; D/L
  1565. punpcklbw m4, m7 ; E/M
  1566. add dst8_reg, stride_reg
  1567. movh m1, [dst2_reg+mstride_reg*4]
  1568. movh m6, [dst8_reg+mstride_reg*4]
  1569. movh m5, [dst2_reg]
  1570. movh m7, [dst8_reg]
  1571. punpcklbw m1, m6 ; B/J
  1572. punpcklbw m5, m7 ; F/N
  1573. movh m6, [dst2_reg+ stride_reg]
  1574. movh m7, [dst8_reg+ stride_reg]
  1575. punpcklbw m6, m7 ; G/O
  1576. ; 8x16 transpose
  1577. TRANSPOSE4x4B 0, 1, 2, 3, 7
  1578. %ifdef m8
  1579. SWAP 1, 8
  1580. %else
  1581. mova q0backup, m1
  1582. %endif
  1583. movh m7, [dst2_reg+ stride_reg*2]
  1584. movh m1, [dst8_reg+ stride_reg*2]
  1585. punpcklbw m7, m1 ; H/P
  1586. TRANSPOSE4x4B 4, 5, 6, 7, 1
  1587. SBUTTERFLY dq, 0, 4, 1 ; p3/p2
  1588. SBUTTERFLY dq, 2, 6, 1 ; q0/q1
  1589. SBUTTERFLY dq, 3, 7, 1 ; q2/q3
  1590. %ifdef m8
  1591. SWAP 1, 8
  1592. SWAP 2, 8
  1593. %else
  1594. mova m1, q0backup
  1595. mova q0backup, m2 ; store q0
  1596. %endif
  1597. SBUTTERFLY dq, 1, 5, 2 ; p1/p0
  1598. %ifdef m12
  1599. SWAP 5, 12
  1600. %else
  1601. mova p0backup, m5 ; store p0
  1602. %endif
  1603. SWAP 1, 4
  1604. SWAP 2, 4
  1605. SWAP 6, 3
  1606. SWAP 5, 3
  1607. %endif
  1608. ; normal_limit for p3-p2, p2-p1, q3-q2 and q2-q1
  1609. mova m4, m1
  1610. SWAP 4, 1
  1611. psubusb m4, m0 ; p2-p3
  1612. psubusb m0, m1 ; p3-p2
  1613. por m0, m4 ; abs(p3-p2)
  1614. mova m4, m2
  1615. SWAP 4, 2
  1616. psubusb m4, m1 ; p1-p2
  1617. psubusb m1, m2 ; p2-p1
  1618. por m1, m4 ; abs(p2-p1)
  1619. mova m4, m6
  1620. SWAP 4, 6
  1621. psubusb m4, m7 ; q2-q3
  1622. psubusb m7, m6 ; q3-q2
  1623. por m7, m4 ; abs(q3-q2)
  1624. mova m4, m5
  1625. SWAP 4, 5
  1626. psubusb m4, m6 ; q1-q2
  1627. psubusb m6, m5 ; q2-q1
  1628. por m6, m4 ; abs(q2-q1)
  1629. %ifidn %1, mmx
  1630. mova m4, flim_I
  1631. pxor m3, m3
  1632. psubusb m0, m4
  1633. psubusb m1, m4
  1634. psubusb m7, m4
  1635. psubusb m6, m4
  1636. pcmpeqb m0, m3 ; abs(p3-p2) <= I
  1637. pcmpeqb m1, m3 ; abs(p2-p1) <= I
  1638. pcmpeqb m7, m3 ; abs(q3-q2) <= I
  1639. pcmpeqb m6, m3 ; abs(q2-q1) <= I
  1640. pand m0, m1
  1641. pand m7, m6
  1642. pand m0, m7
  1643. %else ; mmxext/sse2
  1644. pmaxub m0, m1
  1645. pmaxub m6, m7
  1646. pmaxub m0, m6
  1647. %endif
  1648. ; normal_limit and high_edge_variance for p1-p0, q1-q0
  1649. SWAP 7, 3 ; now m7 is zero
  1650. %ifidn %2, v
  1651. movrow m3, [dst_reg +mstride_reg] ; p0
  1652. %if mmsize == 16 && %4 == 8
  1653. movhps m3, [dst8_reg+mstride_reg]
  1654. %endif
  1655. %elifdef m12
  1656. SWAP 3, 12
  1657. %else
  1658. mova m3, p0backup
  1659. %endif
  1660. mova m1, m2
  1661. SWAP 1, 2
  1662. mova m6, m3
  1663. SWAP 3, 6
  1664. psubusb m1, m3 ; p1-p0
  1665. psubusb m6, m2 ; p0-p1
  1666. por m1, m6 ; abs(p1-p0)
  1667. %ifidn %1, mmx
  1668. mova m6, m1
  1669. psubusb m1, m4
  1670. psubusb m6, hev_thr
  1671. pcmpeqb m1, m7 ; abs(p1-p0) <= I
  1672. pcmpeqb m6, m7 ; abs(p1-p0) <= hev_thresh
  1673. pand m0, m1
  1674. mova mask_res, m6
  1675. %else ; mmxext/sse2
  1676. pmaxub m0, m1 ; max_I
  1677. SWAP 1, 4 ; max_hev_thresh
  1678. %endif
  1679. SWAP 6, 4 ; now m6 is I
  1680. %ifidn %2, v
  1681. movrow m4, [dst_reg] ; q0
  1682. %if mmsize == 16 && %4 == 8
  1683. movhps m4, [dst8_reg]
  1684. %endif
  1685. %elifdef m8
  1686. SWAP 4, 8
  1687. %else
  1688. mova m4, q0backup
  1689. %endif
  1690. mova m1, m4
  1691. SWAP 1, 4
  1692. mova m7, m5
  1693. SWAP 7, 5
  1694. psubusb m1, m5 ; q0-q1
  1695. psubusb m7, m4 ; q1-q0
  1696. por m1, m7 ; abs(q1-q0)
  1697. %ifidn %1, mmx
  1698. mova m7, m1
  1699. psubusb m1, m6
  1700. psubusb m7, hev_thr
  1701. pxor m6, m6
  1702. pcmpeqb m1, m6 ; abs(q1-q0) <= I
  1703. pcmpeqb m7, m6 ; abs(q1-q0) <= hev_thresh
  1704. mova m6, mask_res
  1705. pand m0, m1 ; abs([pq][321]-[pq][210]) <= I
  1706. pand m6, m7
  1707. %else ; mmxext/sse2
  1708. pxor m7, m7
  1709. pmaxub m0, m1
  1710. pmaxub m6, m1
  1711. psubusb m0, flim_I
  1712. psubusb m6, hev_thr
  1713. pcmpeqb m0, m7 ; max(abs(..)) <= I
  1714. pcmpeqb m6, m7 ; !(max(abs..) > thresh)
  1715. %endif
  1716. %ifdef m12
  1717. SWAP 6, 12
  1718. %else
  1719. mova mask_res, m6 ; !(abs(p1-p0) > hev_t || abs(q1-q0) > hev_t)
  1720. %endif
  1721. ; simple_limit
  1722. mova m1, m3
  1723. SWAP 1, 3
  1724. mova m6, m4 ; keep copies of p0/q0 around for later use
  1725. SWAP 6, 4
  1726. psubusb m1, m4 ; p0-q0
  1727. psubusb m6, m3 ; q0-p0
  1728. por m1, m6 ; abs(q0-p0)
  1729. paddusb m1, m1 ; m1=2*abs(q0-p0)
  1730. mova m7, m2
  1731. SWAP 7, 2
  1732. mova m6, m5
  1733. SWAP 6, 5
  1734. psubusb m7, m5 ; p1-q1
  1735. psubusb m6, m2 ; q1-p1
  1736. por m7, m6 ; abs(q1-p1)
  1737. pxor m6, m6
  1738. pand m7, [pb_FE]
  1739. psrlq m7, 1 ; abs(q1-p1)/2
  1740. paddusb m7, m1 ; abs(q0-p0)*2+abs(q1-p1)/2
  1741. psubusb m7, flim_E
  1742. pcmpeqb m7, m6 ; abs(q0-p0)*2+abs(q1-p1)/2 <= E
  1743. pand m0, m7 ; normal_limit result
  1744. ; filter_common; at this point, m2-m5=p1-q1 and m0 is filter_mask
  1745. %ifdef m8 ; x86-64 && sse2
  1746. mova m8, [pb_80]
  1747. %define pb_80_var m8
  1748. %else ; x86-32 or mmx/mmxext
  1749. %define pb_80_var [pb_80]
  1750. %endif
  1751. mova m1, m4
  1752. mova m7, m3
  1753. pxor m1, pb_80_var
  1754. pxor m7, pb_80_var
  1755. psubsb m1, m7 ; (signed) q0-p0
  1756. mova m6, m2
  1757. mova m7, m5
  1758. pxor m6, pb_80_var
  1759. pxor m7, pb_80_var
  1760. psubsb m6, m7 ; (signed) p1-q1
  1761. mova m7, mask_res
  1762. pandn m7, m6
  1763. paddsb m7, m1
  1764. paddsb m7, m1
  1765. paddsb m7, m1 ; 3*(q0-p0)+is4tap?(p1-q1)
  1766. pand m7, m0
  1767. mova m1, [pb_F8]
  1768. mova m6, m7
  1769. paddsb m7, [pb_3]
  1770. paddsb m6, [pb_4]
  1771. pand m7, m1
  1772. pand m6, m1
  1773. pxor m1, m1
  1774. pxor m0, m0
  1775. pcmpgtb m1, m7
  1776. psubb m0, m7
  1777. psrlq m7, 3 ; +f2
  1778. psrlq m0, 3 ; -f2
  1779. pand m0, m1
  1780. pandn m1, m7
  1781. psubusb m3, m0
  1782. paddusb m3, m1 ; p0+f2
  1783. pxor m1, m1
  1784. pxor m0, m0
  1785. pcmpgtb m0, m6
  1786. psubb m1, m6
  1787. psrlq m6, 3 ; +f1
  1788. psrlq m1, 3 ; -f1
  1789. pand m1, m0
  1790. pandn m0, m6
  1791. psubusb m4, m0
  1792. paddusb m4, m1 ; q0-f1
  1793. %ifdef m12
  1794. SWAP 6, 12
  1795. %else
  1796. mova m6, mask_res
  1797. %endif
  1798. %ifidn %1, mmx
  1799. mova m7, [pb_1]
  1800. %else ; mmxext/sse2
  1801. pxor m7, m7
  1802. %endif
  1803. pand m0, m6
  1804. pand m1, m6
  1805. %ifidn %1, mmx
  1806. paddusb m0, m7
  1807. pand m1, [pb_FE]
  1808. pandn m7, m0
  1809. psrlq m1, 1
  1810. psrlq m7, 1
  1811. SWAP 0, 7
  1812. %else ; mmxext/sse2
  1813. psubusb m1, [pb_1]
  1814. pavgb m0, m7 ; a
  1815. pavgb m1, m7 ; -a
  1816. %endif
  1817. psubusb m5, m0
  1818. psubusb m2, m1
  1819. paddusb m5, m1 ; q1-a
  1820. paddusb m2, m0 ; p1+a
  1821. ; store
  1822. %ifidn %2, v
  1823. movrow [dst_reg +mstride_reg*2], m2
  1824. movrow [dst_reg +mstride_reg ], m3
  1825. movrow [dst_reg], m4
  1826. movrow [dst_reg + stride_reg ], m5
  1827. %if mmsize == 16 && %4 == 8
  1828. movhps [dst8_reg+mstride_reg*2], m2
  1829. movhps [dst8_reg+mstride_reg ], m3
  1830. movhps [dst8_reg], m4
  1831. movhps [dst8_reg+ stride_reg ], m5
  1832. %endif
  1833. %else ; h
  1834. add dst_reg, 2
  1835. add dst2_reg, 2
  1836. ; 4x8/16 transpose
  1837. TRANSPOSE4x4B 2, 3, 4, 5, 6
  1838. %if mmsize == 8 ; mmx/mmxext (h)
  1839. WRITE_4x2D 2, 3, 4, 5, dst_reg, dst2_reg, mstride_reg, stride_reg
  1840. %else ; sse2 (h)
  1841. lea dst8_reg, [dst8_reg+mstride_reg+2]
  1842. WRITE_4x4D 2, 3, 4, 5, dst_reg, dst2_reg, dst8_reg, mstride_reg, stride_reg, %4
  1843. %endif
  1844. %endif
  1845. %if mmsize == 8
  1846. %if %4 == 8 ; chroma
  1847. %ifidn %2, h
  1848. sub dst_reg, 2
  1849. %endif
  1850. cmp dst_reg, dst8_reg
  1851. mov dst_reg, dst8_reg
  1852. jnz .next8px
  1853. %else
  1854. %ifidn %2, h
  1855. lea dst_reg, [dst_reg + stride_reg*8-2]
  1856. %else ; v
  1857. add dst_reg, 8
  1858. %endif
  1859. dec cnt_reg
  1860. jg .next8px
  1861. %endif
  1862. %endif
  1863. %ifndef m8 ; sse2 on x86-32 or mmx/mmxext
  1864. mov rsp, stack_reg ; restore stack pointer
  1865. %endif
  1866. RET
  1867. %endmacro
  1868. INIT_MMX
  1869. %define SPLATB_REG SPLATB_REG_MMX
  1870. INNER_LOOPFILTER mmx, v, 6, 16, 0
  1871. INNER_LOOPFILTER mmx, h, 6, 16, 0
  1872. INNER_LOOPFILTER mmx, v, 6, 8, 0
  1873. INNER_LOOPFILTER mmx, h, 6, 8, 0
  1874. %define SPLATB_REG SPLATB_REG_MMXEXT
  1875. INNER_LOOPFILTER mmxext, v, 6, 16, 0
  1876. INNER_LOOPFILTER mmxext, h, 6, 16, 0
  1877. INNER_LOOPFILTER mmxext, v, 6, 8, 0
  1878. INNER_LOOPFILTER mmxext, h, 6, 8, 0
  1879. INIT_XMM
  1880. %define SPLATB_REG SPLATB_REG_SSE2
  1881. INNER_LOOPFILTER sse2, v, 5, 16, 13
  1882. %ifdef m8
  1883. INNER_LOOPFILTER sse2, h, 5, 16, 13
  1884. %else
  1885. INNER_LOOPFILTER sse2, h, 6, 16, 13
  1886. %endif
  1887. INNER_LOOPFILTER sse2, v, 6, 8, 13
  1888. INNER_LOOPFILTER sse2, h, 6, 8, 13
  1889. %define SPLATB_REG SPLATB_REG_SSSE3
  1890. INNER_LOOPFILTER ssse3, v, 5, 16, 13
  1891. %ifdef m8
  1892. INNER_LOOPFILTER ssse3, h, 5, 16, 13
  1893. %else
  1894. INNER_LOOPFILTER ssse3, h, 6, 16, 13
  1895. %endif
  1896. INNER_LOOPFILTER ssse3, v, 6, 8, 13
  1897. INNER_LOOPFILTER ssse3, h, 6, 8, 13
  1898. ;-----------------------------------------------------------------------------
  1899. ; void vp8_h/v_loop_filter<size>_mbedge_<opt>(uint8_t *dst, [uint8_t *v,] int stride,
  1900. ; int flimE, int flimI, int hev_thr);
  1901. ;-----------------------------------------------------------------------------
  1902. ; write 4 or 8 words in the mmx/xmm registers as 8 lines
  1903. ; 1 and 2 are the registers to write, this can be the same (for SSE2)
  1904. ; for pre-SSE4:
  1905. ; 3 is a general-purpose register that we will clobber
  1906. ; for SSE4:
  1907. ; 3 is a pointer to the destination's 5th line
  1908. ; 4 is a pointer to the destination's 4th line
  1909. ; 5/6 is -stride and +stride
  1910. %macro WRITE_2x4W 6
  1911. movd %3, %1
  1912. punpckhdq %1, %1
  1913. mov [%4+%5*4], %3w
  1914. shr %3, 16
  1915. add %4, %6
  1916. mov [%4+%5*4], %3w
  1917. movd %3, %1
  1918. add %4, %5
  1919. mov [%4+%5*2], %3w
  1920. shr %3, 16
  1921. mov [%4+%5 ], %3w
  1922. movd %3, %2
  1923. punpckhdq %2, %2
  1924. mov [%4 ], %3w
  1925. shr %3, 16
  1926. mov [%4+%6 ], %3w
  1927. movd %3, %2
  1928. add %4, %6
  1929. mov [%4+%6 ], %3w
  1930. shr %3, 16
  1931. mov [%4+%6*2], %3w
  1932. add %4, %5
  1933. %endmacro
  1934. %macro WRITE_8W_SSE2 5
  1935. movd %2, %1
  1936. psrldq %1, 4
  1937. mov [%3+%4*4], %2w
  1938. shr %2, 16
  1939. add %3, %5
  1940. mov [%3+%4*4], %2w
  1941. movd %2, %1
  1942. psrldq %1, 4
  1943. add %3, %4
  1944. mov [%3+%4*2], %2w
  1945. shr %2, 16
  1946. mov [%3+%4 ], %2w
  1947. movd %2, %1
  1948. psrldq %1, 4
  1949. mov [%3 ], %2w
  1950. shr %2, 16
  1951. mov [%3+%5 ], %2w
  1952. movd %2, %1
  1953. add %3, %5
  1954. mov [%3+%5 ], %2w
  1955. shr %2, 16
  1956. mov [%3+%5*2], %2w
  1957. %endmacro
  1958. %macro WRITE_8W_SSE4 5
  1959. pextrw [%3+%4*4], %1, 0
  1960. pextrw [%2+%4*4], %1, 1
  1961. pextrw [%3+%4*2], %1, 2
  1962. pextrw [%3+%4 ], %1, 3
  1963. pextrw [%3 ], %1, 4
  1964. pextrw [%2 ], %1, 5
  1965. pextrw [%2+%5 ], %1, 6
  1966. pextrw [%2+%5*2], %1, 7
  1967. %endmacro
  1968. %macro MBEDGE_LOOPFILTER 5
  1969. %if %4 == 8 ; chroma
  1970. cglobal vp8_%2_loop_filter8uv_mbedge_%1, 6, %3, %5
  1971. %define dst8_reg r1
  1972. %define mstride_reg r2
  1973. %define E_reg r3
  1974. %define I_reg r4
  1975. %define hev_thr_reg r5
  1976. %else ; luma
  1977. cglobal vp8_%2_loop_filter16y_mbedge_%1, 5, %3, %5
  1978. %define mstride_reg r1
  1979. %define E_reg r2
  1980. %define I_reg r3
  1981. %define hev_thr_reg r4
  1982. %ifdef m8 ; x86-64, sse2
  1983. %define dst8_reg r4
  1984. %elif mmsize == 16 ; x86-32, sse2
  1985. %define dst8_reg r5
  1986. %else ; x86-32, mmx/mmxext
  1987. %define cnt_reg r5
  1988. %endif
  1989. %endif
  1990. %define dst_reg r0
  1991. %define stride_reg E_reg
  1992. %define dst2_reg I_reg
  1993. %ifndef m8
  1994. %define stack_reg hev_thr_reg
  1995. %endif
  1996. %ifnidn %1, sse2
  1997. %if mmsize == 16
  1998. pxor m7, m7
  1999. %endif
  2000. %endif
  2001. %ifndef m8 ; mmx/mmxext or sse2 on x86-32
  2002. ; splat function arguments
  2003. SPLATB_REG m0, E_reg, m7 ; E
  2004. SPLATB_REG m1, I_reg, m7 ; I
  2005. SPLATB_REG m2, hev_thr_reg, m7 ; hev_thresh
  2006. ; align stack
  2007. mov stack_reg, rsp ; backup stack pointer
  2008. and rsp, ~(mmsize-1) ; align stack
  2009. sub rsp, mmsize * 8 ; stack layout: [0]=E, [1]=I, [2]=hev_thr
  2010. ; [3]=hev() result
  2011. ; [4]=filter tmp result
  2012. ; [5]/[6] = p2/q2 backup
  2013. ; [7]=lim_res sign result
  2014. %define flim_E [rsp]
  2015. %define flim_I [rsp+mmsize]
  2016. %define hev_thr [rsp+mmsize*2]
  2017. %define mask_res [rsp+mmsize*3]
  2018. %define lim_res [rsp+mmsize*4]
  2019. %define p0backup [rsp+mmsize*3]
  2020. %define q0backup [rsp+mmsize*4]
  2021. %define p2backup [rsp+mmsize*5]
  2022. %define q2backup [rsp+mmsize*6]
  2023. %define lim_sign [rsp+mmsize*7]
  2024. mova flim_E, m0
  2025. mova flim_I, m1
  2026. mova hev_thr, m2
  2027. %else ; sse2 on x86-64
  2028. %define flim_E m9
  2029. %define flim_I m10
  2030. %define hev_thr m11
  2031. %define mask_res m12
  2032. %define lim_res m8
  2033. %define p0backup m12
  2034. %define q0backup m8
  2035. %define p2backup m13
  2036. %define q2backup m14
  2037. %define lim_sign m15
  2038. ; splat function arguments
  2039. SPLATB_REG flim_E, E_reg, m7 ; E
  2040. SPLATB_REG flim_I, I_reg, m7 ; I
  2041. SPLATB_REG hev_thr, hev_thr_reg, m7 ; hev_thresh
  2042. %endif
  2043. %if mmsize == 8 && %4 == 16 ; mmx/mmxext
  2044. mov cnt_reg, 2
  2045. %endif
  2046. mov stride_reg, mstride_reg
  2047. neg mstride_reg
  2048. %ifidn %2, h
  2049. lea dst_reg, [dst_reg + stride_reg*4-4]
  2050. %if %4 == 8
  2051. lea dst8_reg, [dst8_reg+ stride_reg*4-4]
  2052. %endif
  2053. %endif
  2054. %if mmsize == 8
  2055. .next8px
  2056. %endif
  2057. ; read
  2058. lea dst2_reg, [dst_reg + stride_reg]
  2059. %ifidn %2, v
  2060. %if %4 == 8 && mmsize == 16
  2061. %define movrow movh
  2062. %else
  2063. %define movrow mova
  2064. %endif
  2065. movrow m0, [dst_reg +mstride_reg*4] ; p3
  2066. movrow m1, [dst2_reg+mstride_reg*4] ; p2
  2067. movrow m2, [dst_reg +mstride_reg*2] ; p1
  2068. movrow m5, [dst2_reg] ; q1
  2069. movrow m6, [dst2_reg+ stride_reg] ; q2
  2070. movrow m7, [dst2_reg+ stride_reg*2] ; q3
  2071. %if mmsize == 16 && %4 == 8
  2072. movhps m0, [dst8_reg+mstride_reg*4]
  2073. movhps m2, [dst8_reg+mstride_reg*2]
  2074. add dst8_reg, stride_reg
  2075. movhps m1, [dst8_reg+mstride_reg*4]
  2076. movhps m5, [dst8_reg]
  2077. movhps m6, [dst8_reg+ stride_reg]
  2078. movhps m7, [dst8_reg+ stride_reg*2]
  2079. add dst8_reg, mstride_reg
  2080. %endif
  2081. %elif mmsize == 8 ; mmx/mmxext (h)
  2082. ; read 8 rows of 8px each
  2083. movu m0, [dst_reg +mstride_reg*4]
  2084. movu m1, [dst2_reg+mstride_reg*4]
  2085. movu m2, [dst_reg +mstride_reg*2]
  2086. movu m3, [dst_reg +mstride_reg]
  2087. movu m4, [dst_reg]
  2088. movu m5, [dst2_reg]
  2089. movu m6, [dst2_reg+ stride_reg]
  2090. ; 8x8 transpose
  2091. TRANSPOSE4x4B 0, 1, 2, 3, 7
  2092. mova q0backup, m1
  2093. movu m7, [dst2_reg+ stride_reg*2]
  2094. TRANSPOSE4x4B 4, 5, 6, 7, 1
  2095. SBUTTERFLY dq, 0, 4, 1 ; p3/p2
  2096. SBUTTERFLY dq, 2, 6, 1 ; q0/q1
  2097. SBUTTERFLY dq, 3, 7, 1 ; q2/q3
  2098. mova m1, q0backup
  2099. mova q0backup, m2 ; store q0
  2100. SBUTTERFLY dq, 1, 5, 2 ; p1/p0
  2101. mova p0backup, m5 ; store p0
  2102. SWAP 1, 4
  2103. SWAP 2, 4
  2104. SWAP 6, 3
  2105. SWAP 5, 3
  2106. %else ; sse2 (h)
  2107. %if %4 == 16
  2108. lea dst8_reg, [dst_reg + stride_reg*8]
  2109. %endif
  2110. ; read 16 rows of 8px each, interleave
  2111. movh m0, [dst_reg +mstride_reg*4]
  2112. movh m1, [dst8_reg+mstride_reg*4]
  2113. movh m2, [dst_reg +mstride_reg*2]
  2114. movh m5, [dst8_reg+mstride_reg*2]
  2115. movh m3, [dst_reg +mstride_reg]
  2116. movh m6, [dst8_reg+mstride_reg]
  2117. movh m4, [dst_reg]
  2118. movh m7, [dst8_reg]
  2119. punpcklbw m0, m1 ; A/I
  2120. punpcklbw m2, m5 ; C/K
  2121. punpcklbw m3, m6 ; D/L
  2122. punpcklbw m4, m7 ; E/M
  2123. add dst8_reg, stride_reg
  2124. movh m1, [dst2_reg+mstride_reg*4]
  2125. movh m6, [dst8_reg+mstride_reg*4]
  2126. movh m5, [dst2_reg]
  2127. movh m7, [dst8_reg]
  2128. punpcklbw m1, m6 ; B/J
  2129. punpcklbw m5, m7 ; F/N
  2130. movh m6, [dst2_reg+ stride_reg]
  2131. movh m7, [dst8_reg+ stride_reg]
  2132. punpcklbw m6, m7 ; G/O
  2133. ; 8x16 transpose
  2134. TRANSPOSE4x4B 0, 1, 2, 3, 7
  2135. %ifdef m8
  2136. SWAP 1, 8
  2137. %else
  2138. mova q0backup, m1
  2139. %endif
  2140. movh m7, [dst2_reg+ stride_reg*2]
  2141. movh m1, [dst8_reg+ stride_reg*2]
  2142. punpcklbw m7, m1 ; H/P
  2143. TRANSPOSE4x4B 4, 5, 6, 7, 1
  2144. SBUTTERFLY dq, 0, 4, 1 ; p3/p2
  2145. SBUTTERFLY dq, 2, 6, 1 ; q0/q1
  2146. SBUTTERFLY dq, 3, 7, 1 ; q2/q3
  2147. %ifdef m8
  2148. SWAP 1, 8
  2149. SWAP 2, 8
  2150. %else
  2151. mova m1, q0backup
  2152. mova q0backup, m2 ; store q0
  2153. %endif
  2154. SBUTTERFLY dq, 1, 5, 2 ; p1/p0
  2155. %ifdef m12
  2156. SWAP 5, 12
  2157. %else
  2158. mova p0backup, m5 ; store p0
  2159. %endif
  2160. SWAP 1, 4
  2161. SWAP 2, 4
  2162. SWAP 6, 3
  2163. SWAP 5, 3
  2164. %endif
  2165. ; normal_limit for p3-p2, p2-p1, q3-q2 and q2-q1
  2166. mova m4, m1
  2167. SWAP 4, 1
  2168. psubusb m4, m0 ; p2-p3
  2169. psubusb m0, m1 ; p3-p2
  2170. por m0, m4 ; abs(p3-p2)
  2171. mova m4, m2
  2172. SWAP 4, 2
  2173. psubusb m4, m1 ; p1-p2
  2174. mova p2backup, m1
  2175. psubusb m1, m2 ; p2-p1
  2176. por m1, m4 ; abs(p2-p1)
  2177. mova m4, m6
  2178. SWAP 4, 6
  2179. psubusb m4, m7 ; q2-q3
  2180. psubusb m7, m6 ; q3-q2
  2181. por m7, m4 ; abs(q3-q2)
  2182. mova m4, m5
  2183. SWAP 4, 5
  2184. psubusb m4, m6 ; q1-q2
  2185. mova q2backup, m6
  2186. psubusb m6, m5 ; q2-q1
  2187. por m6, m4 ; abs(q2-q1)
  2188. %ifidn %1, mmx
  2189. mova m4, flim_I
  2190. pxor m3, m3
  2191. psubusb m0, m4
  2192. psubusb m1, m4
  2193. psubusb m7, m4
  2194. psubusb m6, m4
  2195. pcmpeqb m0, m3 ; abs(p3-p2) <= I
  2196. pcmpeqb m1, m3 ; abs(p2-p1) <= I
  2197. pcmpeqb m7, m3 ; abs(q3-q2) <= I
  2198. pcmpeqb m6, m3 ; abs(q2-q1) <= I
  2199. pand m0, m1
  2200. pand m7, m6
  2201. pand m0, m7
  2202. %else ; mmxext/sse2
  2203. pmaxub m0, m1
  2204. pmaxub m6, m7
  2205. pmaxub m0, m6
  2206. %endif
  2207. ; normal_limit and high_edge_variance for p1-p0, q1-q0
  2208. SWAP 7, 3 ; now m7 is zero
  2209. %ifidn %2, v
  2210. movrow m3, [dst_reg +mstride_reg] ; p0
  2211. %if mmsize == 16 && %4 == 8
  2212. movhps m3, [dst8_reg+mstride_reg]
  2213. %endif
  2214. %elifdef m12
  2215. SWAP 3, 12
  2216. %else
  2217. mova m3, p0backup
  2218. %endif
  2219. mova m1, m2
  2220. SWAP 1, 2
  2221. mova m6, m3
  2222. SWAP 3, 6
  2223. psubusb m1, m3 ; p1-p0
  2224. psubusb m6, m2 ; p0-p1
  2225. por m1, m6 ; abs(p1-p0)
  2226. %ifidn %1, mmx
  2227. mova m6, m1
  2228. psubusb m1, m4
  2229. psubusb m6, hev_thr
  2230. pcmpeqb m1, m7 ; abs(p1-p0) <= I
  2231. pcmpeqb m6, m7 ; abs(p1-p0) <= hev_thresh
  2232. pand m0, m1
  2233. mova mask_res, m6
  2234. %else ; mmxext/sse2
  2235. pmaxub m0, m1 ; max_I
  2236. SWAP 1, 4 ; max_hev_thresh
  2237. %endif
  2238. SWAP 6, 4 ; now m6 is I
  2239. %ifidn %2, v
  2240. movrow m4, [dst_reg] ; q0
  2241. %if mmsize == 16 && %4 == 8
  2242. movhps m4, [dst8_reg]
  2243. %endif
  2244. %elifdef m8
  2245. SWAP 4, 8
  2246. %else
  2247. mova m4, q0backup
  2248. %endif
  2249. mova m1, m4
  2250. SWAP 1, 4
  2251. mova m7, m5
  2252. SWAP 7, 5
  2253. psubusb m1, m5 ; q0-q1
  2254. psubusb m7, m4 ; q1-q0
  2255. por m1, m7 ; abs(q1-q0)
  2256. %ifidn %1, mmx
  2257. mova m7, m1
  2258. psubusb m1, m6
  2259. psubusb m7, hev_thr
  2260. pxor m6, m6
  2261. pcmpeqb m1, m6 ; abs(q1-q0) <= I
  2262. pcmpeqb m7, m6 ; abs(q1-q0) <= hev_thresh
  2263. mova m6, mask_res
  2264. pand m0, m1 ; abs([pq][321]-[pq][210]) <= I
  2265. pand m6, m7
  2266. %else ; mmxext/sse2
  2267. pxor m7, m7
  2268. pmaxub m0, m1
  2269. pmaxub m6, m1
  2270. psubusb m0, flim_I
  2271. psubusb m6, hev_thr
  2272. pcmpeqb m0, m7 ; max(abs(..)) <= I
  2273. pcmpeqb m6, m7 ; !(max(abs..) > thresh)
  2274. %endif
  2275. %ifdef m12
  2276. SWAP 6, 12
  2277. %else
  2278. mova mask_res, m6 ; !(abs(p1-p0) > hev_t || abs(q1-q0) > hev_t)
  2279. %endif
  2280. ; simple_limit
  2281. mova m1, m3
  2282. SWAP 1, 3
  2283. mova m6, m4 ; keep copies of p0/q0 around for later use
  2284. SWAP 6, 4
  2285. psubusb m1, m4 ; p0-q0
  2286. psubusb m6, m3 ; q0-p0
  2287. por m1, m6 ; abs(q0-p0)
  2288. paddusb m1, m1 ; m1=2*abs(q0-p0)
  2289. mova m7, m2
  2290. SWAP 7, 2
  2291. mova m6, m5
  2292. SWAP 6, 5
  2293. psubusb m7, m5 ; p1-q1
  2294. psubusb m6, m2 ; q1-p1
  2295. por m7, m6 ; abs(q1-p1)
  2296. pxor m6, m6
  2297. pand m7, [pb_FE]
  2298. psrlq m7, 1 ; abs(q1-p1)/2
  2299. paddusb m7, m1 ; abs(q0-p0)*2+abs(q1-p1)/2
  2300. psubusb m7, flim_E
  2301. pcmpeqb m7, m6 ; abs(q0-p0)*2+abs(q1-p1)/2 <= E
  2302. pand m0, m7 ; normal_limit result
  2303. ; filter_common; at this point, m2-m5=p1-q1 and m0 is filter_mask
  2304. %ifdef m8 ; x86-64 && sse2
  2305. mova m8, [pb_80]
  2306. %define pb_80_var m8
  2307. %else ; x86-32 or mmx/mmxext
  2308. %define pb_80_var [pb_80]
  2309. %endif
  2310. mova m1, m4
  2311. mova m7, m3
  2312. pxor m1, pb_80_var
  2313. pxor m7, pb_80_var
  2314. psubsb m1, m7 ; (signed) q0-p0
  2315. mova m6, m2
  2316. mova m7, m5
  2317. pxor m6, pb_80_var
  2318. pxor m7, pb_80_var
  2319. psubsb m6, m7 ; (signed) p1-q1
  2320. mova m7, mask_res
  2321. paddsb m6, m1
  2322. paddsb m6, m1
  2323. paddsb m6, m1
  2324. pand m6, m0
  2325. %ifdef m8
  2326. mova lim_res, m6 ; 3*(qp-p0)+(p1-q1) masked for filter_mbedge
  2327. pand lim_res, m7
  2328. %else
  2329. mova m0, m6
  2330. pand m0, m7
  2331. mova lim_res, m0
  2332. %endif
  2333. pandn m7, m6 ; 3*(q0-p0)+(p1-q1) masked for filter_common
  2334. mova m1, [pb_F8]
  2335. mova m6, m7
  2336. paddsb m7, [pb_3]
  2337. paddsb m6, [pb_4]
  2338. pand m7, m1
  2339. pand m6, m1
  2340. pxor m1, m1
  2341. pxor m0, m0
  2342. pcmpgtb m1, m7
  2343. psubb m0, m7
  2344. psrlq m7, 3 ; +f2
  2345. psrlq m0, 3 ; -f2
  2346. pand m0, m1
  2347. pandn m1, m7
  2348. psubusb m3, m0
  2349. paddusb m3, m1 ; p0+f2
  2350. pxor m1, m1
  2351. pxor m0, m0
  2352. pcmpgtb m0, m6
  2353. psubb m1, m6
  2354. psrlq m6, 3 ; +f1
  2355. psrlq m1, 3 ; -f1
  2356. pand m1, m0
  2357. pandn m0, m6
  2358. psubusb m4, m0
  2359. paddusb m4, m1 ; q0-f1
  2360. ; filter_mbedge (m2-m5 = p1-q1; lim_res carries w)
  2361. mova m7, [pw_63]
  2362. %ifdef m8
  2363. SWAP 1, 8
  2364. %else
  2365. mova m1, lim_res
  2366. %endif
  2367. pxor m0, m0
  2368. mova m6, m1
  2369. pcmpgtb m0, m1 ; which are negative
  2370. punpcklbw m6, m0 ; signed byte->word
  2371. punpckhbw m1, m0
  2372. mova lim_sign, m0
  2373. mova mask_res, m6 ; backup for later in filter
  2374. mova lim_res, m1
  2375. pmullw m6, [pw_27]
  2376. pmullw m1, [pw_27]
  2377. paddw m6, m7
  2378. paddw m1, m7
  2379. psraw m6, 7
  2380. psraw m1, 7
  2381. packsswb m6, m1 ; a0
  2382. pxor m1, m1
  2383. psubb m1, m6
  2384. pand m1, m0 ; -a0
  2385. pandn m0, m6 ; +a0
  2386. psubusb m3, m1
  2387. paddusb m4, m1
  2388. paddusb m3, m0 ; p0+a0
  2389. psubusb m4, m0 ; q0-a0
  2390. mova m6, mask_res
  2391. mova m1, lim_res
  2392. mova m0, lim_sign
  2393. pmullw m6, [pw_18]
  2394. pmullw m1, [pw_18]
  2395. paddw m6, m7
  2396. paddw m1, m7
  2397. psraw m6, 7
  2398. psraw m1, 7
  2399. packsswb m6, m1 ; a1
  2400. pxor m1, m1
  2401. psubb m1, m6
  2402. pand m1, m0 ; -a1
  2403. pandn m0, m6 ; +a1
  2404. psubusb m2, m1
  2405. paddusb m5, m1
  2406. paddusb m2, m0 ; p1+a1
  2407. psubusb m5, m0 ; q1-a1
  2408. %ifdef m8
  2409. SWAP 6, 12
  2410. SWAP 1, 8
  2411. %else
  2412. mova m6, mask_res
  2413. mova m1, lim_res
  2414. %endif
  2415. pmullw m6, [pw_9]
  2416. pmullw m1, [pw_9]
  2417. paddw m6, m7
  2418. paddw m1, m7
  2419. %ifdef m15
  2420. SWAP 7, 15
  2421. %else
  2422. mova m7, lim_sign
  2423. %endif
  2424. psraw m6, 7
  2425. psraw m1, 7
  2426. packsswb m6, m1 ; a1
  2427. pxor m0, m0
  2428. psubb m0, m6
  2429. pand m0, m7 ; -a1
  2430. pandn m7, m6 ; +a1
  2431. %ifdef m8
  2432. SWAP 1, 13
  2433. SWAP 6, 14
  2434. %else
  2435. mova m1, p2backup
  2436. mova m6, q2backup
  2437. %endif
  2438. psubusb m1, m0
  2439. paddusb m6, m0
  2440. paddusb m1, m7 ; p1+a1
  2441. psubusb m6, m7 ; q1-a1
  2442. ; store
  2443. %ifidn %2, v
  2444. movrow [dst2_reg+mstride_reg*4], m1
  2445. movrow [dst_reg +mstride_reg*2], m2
  2446. movrow [dst_reg +mstride_reg ], m3
  2447. movrow [dst_reg], m4
  2448. movrow [dst2_reg], m5
  2449. movrow [dst2_reg+ stride_reg ], m6
  2450. %if mmsize == 16 && %4 == 8
  2451. add dst8_reg, mstride_reg
  2452. movhps [dst8_reg+mstride_reg*2], m1
  2453. movhps [dst8_reg+mstride_reg ], m2
  2454. movhps [dst8_reg], m3
  2455. add dst8_reg, stride_reg
  2456. movhps [dst8_reg], m4
  2457. movhps [dst8_reg+ stride_reg ], m5
  2458. movhps [dst8_reg+ stride_reg*2], m6
  2459. %endif
  2460. %else ; h
  2461. inc dst_reg
  2462. inc dst2_reg
  2463. ; 4x8/16 transpose
  2464. TRANSPOSE4x4B 1, 2, 3, 4, 0
  2465. SBUTTERFLY bw, 5, 6, 0
  2466. %if mmsize == 8 ; mmx/mmxext (h)
  2467. WRITE_4x2D 1, 2, 3, 4, dst_reg, dst2_reg, mstride_reg, stride_reg
  2468. add dst_reg, 4
  2469. WRITE_2x4W m5, m6, dst2_reg, dst_reg, mstride_reg, stride_reg
  2470. %else ; sse2 (h)
  2471. lea dst8_reg, [dst8_reg+mstride_reg+1]
  2472. WRITE_4x4D 1, 2, 3, 4, dst_reg, dst2_reg, dst8_reg, mstride_reg, stride_reg, %4
  2473. lea dst_reg, [dst2_reg+mstride_reg+4]
  2474. lea dst8_reg, [dst8_reg+mstride_reg+4]
  2475. %ifidn %1, sse4
  2476. add dst2_reg, 4
  2477. %endif
  2478. WRITE_8W m5, dst2_reg, dst_reg, mstride_reg, stride_reg
  2479. %ifidn %1, sse4
  2480. lea dst2_reg, [dst8_reg+ stride_reg]
  2481. %endif
  2482. WRITE_8W m6, dst2_reg, dst8_reg, mstride_reg, stride_reg
  2483. %endif
  2484. %endif
  2485. %if mmsize == 8
  2486. %if %4 == 8 ; chroma
  2487. %ifidn %2, h
  2488. sub dst_reg, 5
  2489. %endif
  2490. cmp dst_reg, dst8_reg
  2491. mov dst_reg, dst8_reg
  2492. jnz .next8px
  2493. %else
  2494. %ifidn %2, h
  2495. lea dst_reg, [dst_reg + stride_reg*8-5]
  2496. %else ; v
  2497. add dst_reg, 8
  2498. %endif
  2499. dec cnt_reg
  2500. jg .next8px
  2501. %endif
  2502. %endif
  2503. %ifndef m8 ; sse2 on x86-32 or mmx/mmxext
  2504. mov rsp, stack_reg ; restore stack pointer
  2505. %endif
  2506. RET
  2507. %endmacro
  2508. INIT_MMX
  2509. %define SPLATB_REG SPLATB_REG_MMX
  2510. MBEDGE_LOOPFILTER mmx, v, 6, 16, 0
  2511. MBEDGE_LOOPFILTER mmx, h, 6, 16, 0
  2512. MBEDGE_LOOPFILTER mmx, v, 6, 8, 0
  2513. MBEDGE_LOOPFILTER mmx, h, 6, 8, 0
  2514. %define SPLATB_REG SPLATB_REG_MMXEXT
  2515. MBEDGE_LOOPFILTER mmxext, v, 6, 16, 0
  2516. MBEDGE_LOOPFILTER mmxext, h, 6, 16, 0
  2517. MBEDGE_LOOPFILTER mmxext, v, 6, 8, 0
  2518. MBEDGE_LOOPFILTER mmxext, h, 6, 8, 0
  2519. INIT_XMM
  2520. %define SPLATB_REG SPLATB_REG_SSE2
  2521. %define WRITE_8W WRITE_8W_SSE2
  2522. MBEDGE_LOOPFILTER sse2, v, 5, 16, 16
  2523. %ifdef m8
  2524. MBEDGE_LOOPFILTER sse2, h, 5, 16, 16
  2525. %else
  2526. MBEDGE_LOOPFILTER sse2, h, 6, 16, 16
  2527. %endif
  2528. MBEDGE_LOOPFILTER sse2, v, 6, 8, 16
  2529. MBEDGE_LOOPFILTER sse2, h, 6, 8, 16
  2530. %define SPLATB_REG SPLATB_REG_SSSE3
  2531. MBEDGE_LOOPFILTER ssse3, v, 5, 16, 16
  2532. %ifdef m8
  2533. MBEDGE_LOOPFILTER ssse3, h, 5, 16, 16
  2534. %else
  2535. MBEDGE_LOOPFILTER ssse3, h, 6, 16, 16
  2536. %endif
  2537. MBEDGE_LOOPFILTER ssse3, v, 6, 8, 16
  2538. MBEDGE_LOOPFILTER ssse3, h, 6, 8, 16
  2539. %define WRITE_8W WRITE_8W_SSE4
  2540. %ifdef m8
  2541. MBEDGE_LOOPFILTER sse4, h, 5, 16, 16
  2542. %else
  2543. MBEDGE_LOOPFILTER sse4, h, 6, 16, 16
  2544. %endif
  2545. MBEDGE_LOOPFILTER sse4, h, 6, 8, 16