You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

478 lines
16KB

  1. /*
  2. * WMA compatible codec
  3. * Copyright (c) 2002-2007 The Libav Project
  4. *
  5. * This file is part of Libav.
  6. *
  7. * Libav is free software; you can redistribute it and/or
  8. * modify it under the terms of the GNU Lesser General Public
  9. * License as published by the Free Software Foundation; either
  10. * version 2.1 of the License, or (at your option) any later version.
  11. *
  12. * Libav is distributed in the hope that it will be useful,
  13. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  14. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  15. * Lesser General Public License for more details.
  16. *
  17. * You should have received a copy of the GNU Lesser General Public
  18. * License along with Libav; if not, write to the Free Software
  19. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  20. */
  21. #include "libavutil/attributes.h"
  22. #include "avcodec.h"
  23. #include "sinewin.h"
  24. #include "wma.h"
  25. #include "wma_common.h"
  26. #include "wma_freqs.h"
  27. #include "wmadata.h"
  28. #undef NDEBUG
  29. #include <assert.h>
  30. /* XXX: use same run/length optimization as mpeg decoders */
  31. // FIXME maybe split decode / encode or pass flag
  32. static av_cold void init_coef_vlc(VLC *vlc, uint16_t **prun_table,
  33. float **plevel_table, uint16_t **pint_table,
  34. const CoefVLCTable *vlc_table)
  35. {
  36. int n = vlc_table->n;
  37. const uint8_t *table_bits = vlc_table->huffbits;
  38. const uint32_t *table_codes = vlc_table->huffcodes;
  39. const uint16_t *levels_table = vlc_table->levels;
  40. uint16_t *run_table, *level_table, *int_table;
  41. float *flevel_table;
  42. int i, l, j, k, level;
  43. init_vlc(vlc, VLCBITS, n, table_bits, 1, 1, table_codes, 4, 4, 0);
  44. run_table = av_malloc(n * sizeof(uint16_t));
  45. level_table = av_malloc(n * sizeof(uint16_t));
  46. flevel_table = av_malloc(n * sizeof(*flevel_table));
  47. int_table = av_malloc(n * sizeof(uint16_t));
  48. i = 2;
  49. level = 1;
  50. k = 0;
  51. while (i < n) {
  52. int_table[k] = i;
  53. l = levels_table[k++];
  54. for (j = 0; j < l; j++) {
  55. run_table[i] = j;
  56. level_table[i] = level;
  57. flevel_table[i] = level;
  58. i++;
  59. }
  60. level++;
  61. }
  62. *prun_table = run_table;
  63. *plevel_table = flevel_table;
  64. *pint_table = int_table;
  65. av_free(level_table);
  66. }
  67. av_cold int ff_wma_init(AVCodecContext *avctx, int flags2)
  68. {
  69. WMACodecContext *s = avctx->priv_data;
  70. int i;
  71. float bps1, high_freq;
  72. volatile float bps;
  73. int sample_rate1;
  74. int coef_vlc_table;
  75. if (avctx->sample_rate <= 0 || avctx->sample_rate > 50000 ||
  76. avctx->channels <= 0 || avctx->channels > 2 ||
  77. avctx->bit_rate <= 0)
  78. return -1;
  79. ff_fmt_convert_init(&s->fmt_conv, avctx);
  80. avpriv_float_dsp_init(&s->fdsp, avctx->flags & CODEC_FLAG_BITEXACT);
  81. if (avctx->codec->id == AV_CODEC_ID_WMAV1)
  82. s->version = 1;
  83. else
  84. s->version = 2;
  85. /* compute MDCT block size */
  86. s->frame_len_bits = ff_wma_get_frame_len_bits(avctx->sample_rate,
  87. s->version, 0);
  88. s->next_block_len_bits = s->frame_len_bits;
  89. s->prev_block_len_bits = s->frame_len_bits;
  90. s->block_len_bits = s->frame_len_bits;
  91. s->frame_len = 1 << s->frame_len_bits;
  92. if (s->use_variable_block_len) {
  93. int nb_max, nb;
  94. nb = ((flags2 >> 3) & 3) + 1;
  95. if ((avctx->bit_rate / avctx->channels) >= 32000)
  96. nb += 2;
  97. nb_max = s->frame_len_bits - BLOCK_MIN_BITS;
  98. if (nb > nb_max)
  99. nb = nb_max;
  100. s->nb_block_sizes = nb + 1;
  101. } else
  102. s->nb_block_sizes = 1;
  103. /* init rate dependent parameters */
  104. s->use_noise_coding = 1;
  105. high_freq = avctx->sample_rate * 0.5;
  106. /* if version 2, then the rates are normalized */
  107. sample_rate1 = avctx->sample_rate;
  108. if (s->version == 2) {
  109. if (sample_rate1 >= 44100)
  110. sample_rate1 = 44100;
  111. else if (sample_rate1 >= 22050)
  112. sample_rate1 = 22050;
  113. else if (sample_rate1 >= 16000)
  114. sample_rate1 = 16000;
  115. else if (sample_rate1 >= 11025)
  116. sample_rate1 = 11025;
  117. else if (sample_rate1 >= 8000)
  118. sample_rate1 = 8000;
  119. }
  120. bps = (float) avctx->bit_rate /
  121. (float) (avctx->channels * avctx->sample_rate);
  122. s->byte_offset_bits = av_log2((int) (bps * s->frame_len / 8.0 + 0.5)) + 2;
  123. /* compute high frequency value and choose if noise coding should
  124. * be activated */
  125. bps1 = bps;
  126. if (avctx->channels == 2)
  127. bps1 = bps * 1.6;
  128. if (sample_rate1 == 44100) {
  129. if (bps1 >= 0.61)
  130. s->use_noise_coding = 0;
  131. else
  132. high_freq = high_freq * 0.4;
  133. } else if (sample_rate1 == 22050) {
  134. if (bps1 >= 1.16)
  135. s->use_noise_coding = 0;
  136. else if (bps1 >= 0.72)
  137. high_freq = high_freq * 0.7;
  138. else
  139. high_freq = high_freq * 0.6;
  140. } else if (sample_rate1 == 16000) {
  141. if (bps > 0.5)
  142. high_freq = high_freq * 0.5;
  143. else
  144. high_freq = high_freq * 0.3;
  145. } else if (sample_rate1 == 11025)
  146. high_freq = high_freq * 0.7;
  147. else if (sample_rate1 == 8000) {
  148. if (bps <= 0.625)
  149. high_freq = high_freq * 0.5;
  150. else if (bps > 0.75)
  151. s->use_noise_coding = 0;
  152. else
  153. high_freq = high_freq * 0.65;
  154. } else {
  155. if (bps >= 0.8)
  156. high_freq = high_freq * 0.75;
  157. else if (bps >= 0.6)
  158. high_freq = high_freq * 0.6;
  159. else
  160. high_freq = high_freq * 0.5;
  161. }
  162. av_dlog(s->avctx, "flags2=0x%x\n", flags2);
  163. av_dlog(s->avctx, "version=%d channels=%d sample_rate=%d bitrate=%d block_align=%d\n",
  164. s->version, avctx->channels, avctx->sample_rate, avctx->bit_rate,
  165. avctx->block_align);
  166. av_dlog(s->avctx, "bps=%f bps1=%f high_freq=%f bitoffset=%d\n",
  167. bps, bps1, high_freq, s->byte_offset_bits);
  168. av_dlog(s->avctx, "use_noise_coding=%d use_exp_vlc=%d nb_block_sizes=%d\n",
  169. s->use_noise_coding, s->use_exp_vlc, s->nb_block_sizes);
  170. /* compute the scale factor band sizes for each MDCT block size */
  171. {
  172. int a, b, pos, lpos, k, block_len, i, j, n;
  173. const uint8_t *table;
  174. if (s->version == 1)
  175. s->coefs_start = 3;
  176. else
  177. s->coefs_start = 0;
  178. for (k = 0; k < s->nb_block_sizes; k++) {
  179. block_len = s->frame_len >> k;
  180. if (s->version == 1) {
  181. lpos = 0;
  182. for (i = 0; i < 25; i++) {
  183. a = ff_wma_critical_freqs[i];
  184. b = avctx->sample_rate;
  185. pos = ((block_len * 2 * a) + (b >> 1)) / b;
  186. if (pos > block_len)
  187. pos = block_len;
  188. s->exponent_bands[0][i] = pos - lpos;
  189. if (pos >= block_len) {
  190. i++;
  191. break;
  192. }
  193. lpos = pos;
  194. }
  195. s->exponent_sizes[0] = i;
  196. } else {
  197. /* hardcoded tables */
  198. table = NULL;
  199. a = s->frame_len_bits - BLOCK_MIN_BITS - k;
  200. if (a < 3) {
  201. if (avctx->sample_rate >= 44100)
  202. table = exponent_band_44100[a];
  203. else if (avctx->sample_rate >= 32000)
  204. table = exponent_band_32000[a];
  205. else if (avctx->sample_rate >= 22050)
  206. table = exponent_band_22050[a];
  207. }
  208. if (table) {
  209. n = *table++;
  210. for (i = 0; i < n; i++)
  211. s->exponent_bands[k][i] = table[i];
  212. s->exponent_sizes[k] = n;
  213. } else {
  214. j = 0;
  215. lpos = 0;
  216. for (i = 0; i < 25; i++) {
  217. a = ff_wma_critical_freqs[i];
  218. b = avctx->sample_rate;
  219. pos = ((block_len * 2 * a) + (b << 1)) / (4 * b);
  220. pos <<= 2;
  221. if (pos > block_len)
  222. pos = block_len;
  223. if (pos > lpos)
  224. s->exponent_bands[k][j++] = pos - lpos;
  225. if (pos >= block_len)
  226. break;
  227. lpos = pos;
  228. }
  229. s->exponent_sizes[k] = j;
  230. }
  231. }
  232. /* max number of coefs */
  233. s->coefs_end[k] = (s->frame_len - ((s->frame_len * 9) / 100)) >> k;
  234. /* high freq computation */
  235. s->high_band_start[k] = (int) ((block_len * 2 * high_freq) /
  236. avctx->sample_rate + 0.5);
  237. n = s->exponent_sizes[k];
  238. j = 0;
  239. pos = 0;
  240. for (i = 0; i < n; i++) {
  241. int start, end;
  242. start = pos;
  243. pos += s->exponent_bands[k][i];
  244. end = pos;
  245. if (start < s->high_band_start[k])
  246. start = s->high_band_start[k];
  247. if (end > s->coefs_end[k])
  248. end = s->coefs_end[k];
  249. if (end > start)
  250. s->exponent_high_bands[k][j++] = end - start;
  251. }
  252. s->exponent_high_sizes[k] = j;
  253. #if 0
  254. tprintf(s->avctx, "%5d: coefs_end=%d high_band_start=%d nb_high_bands=%d: ",
  255. s->frame_len >> k,
  256. s->coefs_end[k],
  257. s->high_band_start[k],
  258. s->exponent_high_sizes[k]);
  259. for (j = 0; j < s->exponent_high_sizes[k]; j++)
  260. tprintf(s->avctx, " %d", s->exponent_high_bands[k][j]);
  261. tprintf(s->avctx, "\n");
  262. #endif /* 0 */
  263. }
  264. }
  265. #ifdef TRACE
  266. {
  267. int i, j;
  268. for (i = 0; i < s->nb_block_sizes; i++) {
  269. tprintf(s->avctx, "%5d: n=%2d:",
  270. s->frame_len >> i,
  271. s->exponent_sizes[i]);
  272. for (j = 0; j < s->exponent_sizes[i]; j++)
  273. tprintf(s->avctx, " %d", s->exponent_bands[i][j]);
  274. tprintf(s->avctx, "\n");
  275. }
  276. }
  277. #endif /* TRACE */
  278. /* init MDCT windows : simple sine window */
  279. for (i = 0; i < s->nb_block_sizes; i++) {
  280. ff_init_ff_sine_windows(s->frame_len_bits - i);
  281. s->windows[i] = ff_sine_windows[s->frame_len_bits - i];
  282. }
  283. s->reset_block_lengths = 1;
  284. if (s->use_noise_coding) {
  285. /* init the noise generator */
  286. if (s->use_exp_vlc)
  287. s->noise_mult = 0.02;
  288. else
  289. s->noise_mult = 0.04;
  290. #ifdef TRACE
  291. for (i = 0; i < NOISE_TAB_SIZE; i++)
  292. s->noise_table[i] = 1.0 * s->noise_mult;
  293. #else
  294. {
  295. unsigned int seed;
  296. float norm;
  297. seed = 1;
  298. norm = (1.0 / (float) (1LL << 31)) * sqrt(3) * s->noise_mult;
  299. for (i = 0; i < NOISE_TAB_SIZE; i++) {
  300. seed = seed * 314159 + 1;
  301. s->noise_table[i] = (float) ((int) seed) * norm;
  302. }
  303. }
  304. #endif /* TRACE */
  305. }
  306. /* choose the VLC tables for the coefficients */
  307. coef_vlc_table = 2;
  308. if (avctx->sample_rate >= 32000) {
  309. if (bps1 < 0.72)
  310. coef_vlc_table = 0;
  311. else if (bps1 < 1.16)
  312. coef_vlc_table = 1;
  313. }
  314. s->coef_vlcs[0] = &coef_vlcs[coef_vlc_table * 2];
  315. s->coef_vlcs[1] = &coef_vlcs[coef_vlc_table * 2 + 1];
  316. init_coef_vlc(&s->coef_vlc[0], &s->run_table[0], &s->level_table[0],
  317. &s->int_table[0], s->coef_vlcs[0]);
  318. init_coef_vlc(&s->coef_vlc[1], &s->run_table[1], &s->level_table[1],
  319. &s->int_table[1], s->coef_vlcs[1]);
  320. return 0;
  321. }
  322. int ff_wma_total_gain_to_bits(int total_gain)
  323. {
  324. if (total_gain < 15)
  325. return 13;
  326. else if (total_gain < 32)
  327. return 12;
  328. else if (total_gain < 40)
  329. return 11;
  330. else if (total_gain < 45)
  331. return 10;
  332. else
  333. return 9;
  334. }
  335. int ff_wma_end(AVCodecContext *avctx)
  336. {
  337. WMACodecContext *s = avctx->priv_data;
  338. int i;
  339. for (i = 0; i < s->nb_block_sizes; i++)
  340. ff_mdct_end(&s->mdct_ctx[i]);
  341. if (s->use_exp_vlc)
  342. ff_free_vlc(&s->exp_vlc);
  343. if (s->use_noise_coding)
  344. ff_free_vlc(&s->hgain_vlc);
  345. for (i = 0; i < 2; i++) {
  346. ff_free_vlc(&s->coef_vlc[i]);
  347. av_free(s->run_table[i]);
  348. av_free(s->level_table[i]);
  349. av_free(s->int_table[i]);
  350. }
  351. return 0;
  352. }
  353. /**
  354. * Decode an uncompressed coefficient.
  355. * @param gb GetBitContext
  356. * @return the decoded coefficient
  357. */
  358. unsigned int ff_wma_get_large_val(GetBitContext *gb)
  359. {
  360. /** consumes up to 34 bits */
  361. int n_bits = 8;
  362. /** decode length */
  363. if (get_bits1(gb)) {
  364. n_bits += 8;
  365. if (get_bits1(gb)) {
  366. n_bits += 8;
  367. if (get_bits1(gb))
  368. n_bits += 7;
  369. }
  370. }
  371. return get_bits_long(gb, n_bits);
  372. }
  373. /**
  374. * Decode run level compressed coefficients.
  375. * @param avctx codec context
  376. * @param gb bitstream reader context
  377. * @param vlc vlc table for get_vlc2
  378. * @param level_table level codes
  379. * @param run_table run codes
  380. * @param version 0 for wma1,2 1 for wmapro
  381. * @param ptr output buffer
  382. * @param offset offset in the output buffer
  383. * @param num_coefs number of input coefficents
  384. * @param block_len input buffer length (2^n)
  385. * @param frame_len_bits number of bits for escaped run codes
  386. * @param coef_nb_bits number of bits for escaped level codes
  387. * @return 0 on success, -1 otherwise
  388. */
  389. int ff_wma_run_level_decode(AVCodecContext *avctx, GetBitContext *gb,
  390. VLC *vlc, const float *level_table,
  391. const uint16_t *run_table, int version,
  392. WMACoef *ptr, int offset, int num_coefs,
  393. int block_len, int frame_len_bits,
  394. int coef_nb_bits)
  395. {
  396. int code, level, sign;
  397. const uint32_t *ilvl = (const uint32_t *) level_table;
  398. uint32_t *iptr = (uint32_t *) ptr;
  399. const unsigned int coef_mask = block_len - 1;
  400. for (; offset < num_coefs; offset++) {
  401. code = get_vlc2(gb, vlc->table, VLCBITS, VLCMAX);
  402. if (code > 1) {
  403. /** normal code */
  404. offset += run_table[code];
  405. sign = get_bits1(gb) - 1;
  406. iptr[offset & coef_mask] = ilvl[code] ^ sign << 31;
  407. } else if (code == 1) {
  408. /** EOB */
  409. break;
  410. } else {
  411. /** escape */
  412. if (!version) {
  413. level = get_bits(gb, coef_nb_bits);
  414. /** NOTE: this is rather suboptimal. reading
  415. * block_len_bits would be better */
  416. offset += get_bits(gb, frame_len_bits);
  417. } else {
  418. level = ff_wma_get_large_val(gb);
  419. /** escape decode */
  420. if (get_bits1(gb)) {
  421. if (get_bits1(gb)) {
  422. if (get_bits1(gb)) {
  423. av_log(avctx, AV_LOG_ERROR,
  424. "broken escape sequence\n");
  425. return -1;
  426. } else
  427. offset += get_bits(gb, frame_len_bits) + 4;
  428. } else
  429. offset += get_bits(gb, 2) + 1;
  430. }
  431. }
  432. sign = get_bits1(gb) - 1;
  433. ptr[offset & coef_mask] = (level ^ sign) - sign;
  434. }
  435. }
  436. /** NOTE: EOB can be omitted */
  437. if (offset > num_coefs) {
  438. av_log(avctx, AV_LOG_ERROR, "overflow in spectral RLE, ignoring\n");
  439. return -1;
  440. }
  441. return 0;
  442. }