You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

948 lines
36KB

  1. /*
  2. * VC-1 and WMV3 decoder
  3. * Copyright (c) 2011 Mashiat Sarker Shakkhar
  4. * Copyright (c) 2006-2007 Konstantin Shishkov
  5. * Partly based on vc9.c (c) 2005 Anonymous, Alex Beregszaszi, Michael Niedermayer
  6. *
  7. * This file is part of Libav.
  8. *
  9. * Libav is free software; you can redistribute it and/or
  10. * modify it under the terms of the GNU Lesser General Public
  11. * License as published by the Free Software Foundation; either
  12. * version 2.1 of the License, or (at your option) any later version.
  13. *
  14. * Libav is distributed in the hope that it will be useful,
  15. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  16. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  17. * Lesser General Public License for more details.
  18. *
  19. * You should have received a copy of the GNU Lesser General Public
  20. * License along with Libav; if not, write to the Free Software
  21. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  22. */
  23. /**
  24. * @file
  25. * VC-1 and WMV3 block decoding routines
  26. */
  27. #include "avcodec.h"
  28. #include "h264chroma.h"
  29. #include "mathops.h"
  30. #include "mpegvideo.h"
  31. #include "vc1.h"
  32. /** Do motion compensation over 1 macroblock
  33. * Mostly adapted hpel_motion and qpel_motion from mpegvideo.c
  34. */
  35. void ff_vc1_mc_1mv(VC1Context *v, int dir)
  36. {
  37. MpegEncContext *s = &v->s;
  38. H264ChromaContext *h264chroma = &v->h264chroma;
  39. uint8_t *srcY, *srcU, *srcV;
  40. int dxy, mx, my, uvmx, uvmy, src_x, src_y, uvsrc_x, uvsrc_y;
  41. int v_edge_pos = s->v_edge_pos >> v->field_mode;
  42. int i;
  43. uint8_t (*luty)[256], (*lutuv)[256];
  44. int use_ic;
  45. if ((!v->field_mode ||
  46. (v->ref_field_type[dir] == 1 && v->cur_field_type == 1)) &&
  47. !v->s.last_picture.f->data[0])
  48. return;
  49. mx = s->mv[dir][0][0];
  50. my = s->mv[dir][0][1];
  51. // store motion vectors for further use in B frames
  52. if (s->pict_type == AV_PICTURE_TYPE_P) {
  53. for (i = 0; i < 4; i++) {
  54. s->current_picture.motion_val[1][s->block_index[i] + v->blocks_off][0] = mx;
  55. s->current_picture.motion_val[1][s->block_index[i] + v->blocks_off][1] = my;
  56. }
  57. }
  58. uvmx = (mx + ((mx & 3) == 3)) >> 1;
  59. uvmy = (my + ((my & 3) == 3)) >> 1;
  60. v->luma_mv[s->mb_x][0] = uvmx;
  61. v->luma_mv[s->mb_x][1] = uvmy;
  62. if (v->field_mode &&
  63. v->cur_field_type != v->ref_field_type[dir]) {
  64. my = my - 2 + 4 * v->cur_field_type;
  65. uvmy = uvmy - 2 + 4 * v->cur_field_type;
  66. }
  67. // fastuvmc shall be ignored for interlaced frame picture
  68. if (v->fastuvmc && (v->fcm != ILACE_FRAME)) {
  69. uvmx = uvmx + ((uvmx < 0) ? (uvmx & 1) : -(uvmx & 1));
  70. uvmy = uvmy + ((uvmy < 0) ? (uvmy & 1) : -(uvmy & 1));
  71. }
  72. if (!dir) {
  73. if (v->field_mode && (v->cur_field_type != v->ref_field_type[dir]) && v->second_field) {
  74. srcY = s->current_picture.f->data[0];
  75. srcU = s->current_picture.f->data[1];
  76. srcV = s->current_picture.f->data[2];
  77. luty = v->curr_luty;
  78. lutuv = v->curr_lutuv;
  79. use_ic = v->curr_use_ic;
  80. } else {
  81. srcY = s->last_picture.f->data[0];
  82. srcU = s->last_picture.f->data[1];
  83. srcV = s->last_picture.f->data[2];
  84. luty = v->last_luty;
  85. lutuv = v->last_lutuv;
  86. use_ic = v->last_use_ic;
  87. }
  88. } else {
  89. srcY = s->next_picture.f->data[0];
  90. srcU = s->next_picture.f->data[1];
  91. srcV = s->next_picture.f->data[2];
  92. luty = v->next_luty;
  93. lutuv = v->next_lutuv;
  94. use_ic = v->next_use_ic;
  95. }
  96. if (!srcY || !srcU) {
  97. av_log(v->s.avctx, AV_LOG_ERROR, "Referenced frame missing.\n");
  98. return;
  99. }
  100. src_x = s->mb_x * 16 + (mx >> 2);
  101. src_y = s->mb_y * 16 + (my >> 2);
  102. uvsrc_x = s->mb_x * 8 + (uvmx >> 2);
  103. uvsrc_y = s->mb_y * 8 + (uvmy >> 2);
  104. if (v->profile != PROFILE_ADVANCED) {
  105. src_x = av_clip( src_x, -16, s->mb_width * 16);
  106. src_y = av_clip( src_y, -16, s->mb_height * 16);
  107. uvsrc_x = av_clip(uvsrc_x, -8, s->mb_width * 8);
  108. uvsrc_y = av_clip(uvsrc_y, -8, s->mb_height * 8);
  109. } else {
  110. src_x = av_clip( src_x, -17, s->avctx->coded_width);
  111. src_y = av_clip( src_y, -18, s->avctx->coded_height + 1);
  112. uvsrc_x = av_clip(uvsrc_x, -8, s->avctx->coded_width >> 1);
  113. uvsrc_y = av_clip(uvsrc_y, -8, s->avctx->coded_height >> 1);
  114. }
  115. srcY += src_y * s->linesize + src_x;
  116. srcU += uvsrc_y * s->uvlinesize + uvsrc_x;
  117. srcV += uvsrc_y * s->uvlinesize + uvsrc_x;
  118. if (v->field_mode && v->ref_field_type[dir]) {
  119. srcY += s->current_picture_ptr->f->linesize[0];
  120. srcU += s->current_picture_ptr->f->linesize[1];
  121. srcV += s->current_picture_ptr->f->linesize[2];
  122. }
  123. /* for grayscale we should not try to read from unknown area */
  124. if (s->flags & CODEC_FLAG_GRAY) {
  125. srcU = s->edge_emu_buffer + 18 * s->linesize;
  126. srcV = s->edge_emu_buffer + 18 * s->linesize;
  127. }
  128. if (v->rangeredfrm || use_ic
  129. || s->h_edge_pos < 22 || v_edge_pos < 22
  130. || (unsigned)(src_x - s->mspel) > s->h_edge_pos - (mx&3) - 16 - s->mspel * 3
  131. || (unsigned)(src_y - 1) > v_edge_pos - (my&3) - 16 - 3) {
  132. uint8_t *uvbuf = s->edge_emu_buffer + 19 * s->linesize;
  133. srcY -= s->mspel * (1 + s->linesize);
  134. s->vdsp.emulated_edge_mc(s->edge_emu_buffer, srcY,
  135. s->linesize, s->linesize,
  136. 17 + s->mspel * 2, 17 + s->mspel * 2,
  137. src_x - s->mspel, src_y - s->mspel,
  138. s->h_edge_pos, v_edge_pos);
  139. srcY = s->edge_emu_buffer;
  140. s->vdsp.emulated_edge_mc(uvbuf, srcU,
  141. s->uvlinesize, s->uvlinesize,
  142. 8 + 1, 8 + 1,
  143. uvsrc_x, uvsrc_y, s->h_edge_pos >> 1, v_edge_pos >> 1);
  144. s->vdsp.emulated_edge_mc(uvbuf + 16, srcV,
  145. s->uvlinesize, s->uvlinesize,
  146. 8 + 1, 8 + 1,
  147. uvsrc_x, uvsrc_y, s->h_edge_pos >> 1, v_edge_pos >> 1);
  148. srcU = uvbuf;
  149. srcV = uvbuf + 16;
  150. /* if we deal with range reduction we need to scale source blocks */
  151. if (v->rangeredfrm) {
  152. int i, j;
  153. uint8_t *src, *src2;
  154. src = srcY;
  155. for (j = 0; j < 17 + s->mspel * 2; j++) {
  156. for (i = 0; i < 17 + s->mspel * 2; i++)
  157. src[i] = ((src[i] - 128) >> 1) + 128;
  158. src += s->linesize;
  159. }
  160. src = srcU;
  161. src2 = srcV;
  162. for (j = 0; j < 9; j++) {
  163. for (i = 0; i < 9; i++) {
  164. src[i] = ((src[i] - 128) >> 1) + 128;
  165. src2[i] = ((src2[i] - 128) >> 1) + 128;
  166. }
  167. src += s->uvlinesize;
  168. src2 += s->uvlinesize;
  169. }
  170. }
  171. /* if we deal with intensity compensation we need to scale source blocks */
  172. if (use_ic) {
  173. int i, j;
  174. uint8_t *src, *src2;
  175. src = srcY;
  176. for (j = 0; j < 17 + s->mspel * 2; j++) {
  177. int f = v->field_mode ? v->ref_field_type[dir] : ((j + src_y - s->mspel) & 1) ;
  178. for (i = 0; i < 17 + s->mspel * 2; i++)
  179. src[i] = luty[f][src[i]];
  180. src += s->linesize;
  181. }
  182. src = srcU;
  183. src2 = srcV;
  184. for (j = 0; j < 9; j++) {
  185. int f = v->field_mode ? v->ref_field_type[dir] : ((j + uvsrc_y) & 1);
  186. for (i = 0; i < 9; i++) {
  187. src[i] = lutuv[f][src[i]];
  188. src2[i] = lutuv[f][src2[i]];
  189. }
  190. src += s->uvlinesize;
  191. src2 += s->uvlinesize;
  192. }
  193. }
  194. srcY += s->mspel * (1 + s->linesize);
  195. }
  196. if (s->mspel) {
  197. dxy = ((my & 3) << 2) | (mx & 3);
  198. v->vc1dsp.put_vc1_mspel_pixels_tab[dxy](s->dest[0] , srcY , s->linesize, v->rnd);
  199. v->vc1dsp.put_vc1_mspel_pixels_tab[dxy](s->dest[0] + 8, srcY + 8, s->linesize, v->rnd);
  200. srcY += s->linesize * 8;
  201. v->vc1dsp.put_vc1_mspel_pixels_tab[dxy](s->dest[0] + 8 * s->linesize , srcY , s->linesize, v->rnd);
  202. v->vc1dsp.put_vc1_mspel_pixels_tab[dxy](s->dest[0] + 8 * s->linesize + 8, srcY + 8, s->linesize, v->rnd);
  203. } else { // hpel mc - always used for luma
  204. dxy = (my & 2) | ((mx & 2) >> 1);
  205. if (!v->rnd)
  206. s->hdsp.put_pixels_tab[0][dxy](s->dest[0], srcY, s->linesize, 16);
  207. else
  208. s->hdsp.put_no_rnd_pixels_tab[0][dxy](s->dest[0], srcY, s->linesize, 16);
  209. }
  210. if (s->flags & CODEC_FLAG_GRAY) return;
  211. /* Chroma MC always uses qpel bilinear */
  212. uvmx = (uvmx & 3) << 1;
  213. uvmy = (uvmy & 3) << 1;
  214. if (!v->rnd) {
  215. h264chroma->put_h264_chroma_pixels_tab[0](s->dest[1], srcU, s->uvlinesize, 8, uvmx, uvmy);
  216. h264chroma->put_h264_chroma_pixels_tab[0](s->dest[2], srcV, s->uvlinesize, 8, uvmx, uvmy);
  217. } else {
  218. v->vc1dsp.put_no_rnd_vc1_chroma_pixels_tab[0](s->dest[1], srcU, s->uvlinesize, 8, uvmx, uvmy);
  219. v->vc1dsp.put_no_rnd_vc1_chroma_pixels_tab[0](s->dest[2], srcV, s->uvlinesize, 8, uvmx, uvmy);
  220. }
  221. }
  222. static inline int median4(int a, int b, int c, int d)
  223. {
  224. if (a < b) {
  225. if (c < d) return (FFMIN(b, d) + FFMAX(a, c)) / 2;
  226. else return (FFMIN(b, c) + FFMAX(a, d)) / 2;
  227. } else {
  228. if (c < d) return (FFMIN(a, d) + FFMAX(b, c)) / 2;
  229. else return (FFMIN(a, c) + FFMAX(b, d)) / 2;
  230. }
  231. }
  232. /** Do motion compensation for 4-MV macroblock - luminance block
  233. */
  234. void ff_vc1_mc_4mv_luma(VC1Context *v, int n, int dir, int avg)
  235. {
  236. MpegEncContext *s = &v->s;
  237. uint8_t *srcY;
  238. int dxy, mx, my, src_x, src_y;
  239. int off;
  240. int fieldmv = (v->fcm == ILACE_FRAME) ? v->blk_mv_type[s->block_index[n]] : 0;
  241. int v_edge_pos = s->v_edge_pos >> v->field_mode;
  242. uint8_t (*luty)[256];
  243. int use_ic;
  244. if ((!v->field_mode ||
  245. (v->ref_field_type[dir] == 1 && v->cur_field_type == 1)) &&
  246. !v->s.last_picture.f->data[0])
  247. return;
  248. mx = s->mv[dir][n][0];
  249. my = s->mv[dir][n][1];
  250. if (!dir) {
  251. if (v->field_mode && (v->cur_field_type != v->ref_field_type[dir]) && v->second_field) {
  252. srcY = s->current_picture.f->data[0];
  253. luty = v->curr_luty;
  254. use_ic = v->curr_use_ic;
  255. } else {
  256. srcY = s->last_picture.f->data[0];
  257. luty = v->last_luty;
  258. use_ic = v->last_use_ic;
  259. }
  260. } else {
  261. srcY = s->next_picture.f->data[0];
  262. luty = v->next_luty;
  263. use_ic = v->next_use_ic;
  264. }
  265. if (!srcY) {
  266. av_log(v->s.avctx, AV_LOG_ERROR, "Referenced frame missing.\n");
  267. return;
  268. }
  269. if (v->field_mode) {
  270. if (v->cur_field_type != v->ref_field_type[dir])
  271. my = my - 2 + 4 * v->cur_field_type;
  272. }
  273. if (s->pict_type == AV_PICTURE_TYPE_P && n == 3 && v->field_mode) {
  274. int same_count = 0, opp_count = 0, k;
  275. int chosen_mv[2][4][2], f;
  276. int tx = 0, ty = 0;
  277. for (k = 0; k < 4; k++) {
  278. f = v->mv_f[0][s->block_index[k] + v->blocks_off];
  279. chosen_mv[f][f ? opp_count : same_count][0] = s->mv[0][k][0];
  280. chosen_mv[f][f ? opp_count : same_count][1] = s->mv[0][k][1];
  281. opp_count += f;
  282. same_count += 1 - f;
  283. }
  284. f = opp_count > same_count;
  285. switch (f ? opp_count : same_count) {
  286. case 4:
  287. tx = median4(chosen_mv[f][0][0], chosen_mv[f][1][0],
  288. chosen_mv[f][2][0], chosen_mv[f][3][0]);
  289. ty = median4(chosen_mv[f][0][1], chosen_mv[f][1][1],
  290. chosen_mv[f][2][1], chosen_mv[f][3][1]);
  291. break;
  292. case 3:
  293. tx = mid_pred(chosen_mv[f][0][0], chosen_mv[f][1][0], chosen_mv[f][2][0]);
  294. ty = mid_pred(chosen_mv[f][0][1], chosen_mv[f][1][1], chosen_mv[f][2][1]);
  295. break;
  296. case 2:
  297. tx = (chosen_mv[f][0][0] + chosen_mv[f][1][0]) / 2;
  298. ty = (chosen_mv[f][0][1] + chosen_mv[f][1][1]) / 2;
  299. break;
  300. }
  301. s->current_picture.motion_val[1][s->block_index[0] + v->blocks_off][0] = tx;
  302. s->current_picture.motion_val[1][s->block_index[0] + v->blocks_off][1] = ty;
  303. for (k = 0; k < 4; k++)
  304. v->mv_f[1][s->block_index[k] + v->blocks_off] = f;
  305. }
  306. if (v->fcm == ILACE_FRAME) { // not sure if needed for other types of picture
  307. int qx, qy;
  308. int width = s->avctx->coded_width;
  309. int height = s->avctx->coded_height >> 1;
  310. if (s->pict_type == AV_PICTURE_TYPE_P) {
  311. s->current_picture.motion_val[1][s->block_index[n] + v->blocks_off][0] = mx;
  312. s->current_picture.motion_val[1][s->block_index[n] + v->blocks_off][1] = my;
  313. }
  314. qx = (s->mb_x * 16) + (mx >> 2);
  315. qy = (s->mb_y * 8) + (my >> 3);
  316. if (qx < -17)
  317. mx -= 4 * (qx + 17);
  318. else if (qx > width)
  319. mx -= 4 * (qx - width);
  320. if (qy < -18)
  321. my -= 8 * (qy + 18);
  322. else if (qy > height + 1)
  323. my -= 8 * (qy - height - 1);
  324. }
  325. if ((v->fcm == ILACE_FRAME) && fieldmv)
  326. off = ((n > 1) ? s->linesize : 0) + (n & 1) * 8;
  327. else
  328. off = s->linesize * 4 * (n & 2) + (n & 1) * 8;
  329. src_x = s->mb_x * 16 + (n & 1) * 8 + (mx >> 2);
  330. if (!fieldmv)
  331. src_y = s->mb_y * 16 + (n & 2) * 4 + (my >> 2);
  332. else
  333. src_y = s->mb_y * 16 + ((n > 1) ? 1 : 0) + (my >> 2);
  334. if (v->profile != PROFILE_ADVANCED) {
  335. src_x = av_clip(src_x, -16, s->mb_width * 16);
  336. src_y = av_clip(src_y, -16, s->mb_height * 16);
  337. } else {
  338. src_x = av_clip(src_x, -17, s->avctx->coded_width);
  339. if (v->fcm == ILACE_FRAME) {
  340. if (src_y & 1)
  341. src_y = av_clip(src_y, -17, s->avctx->coded_height + 1);
  342. else
  343. src_y = av_clip(src_y, -18, s->avctx->coded_height);
  344. } else {
  345. src_y = av_clip(src_y, -18, s->avctx->coded_height + 1);
  346. }
  347. }
  348. srcY += src_y * s->linesize + src_x;
  349. if (v->field_mode && v->ref_field_type[dir])
  350. srcY += s->current_picture_ptr->f->linesize[0];
  351. if (fieldmv && !(src_y & 1))
  352. v_edge_pos--;
  353. if (fieldmv && (src_y & 1) && src_y < 4)
  354. src_y--;
  355. if (v->rangeredfrm || use_ic
  356. || s->h_edge_pos < 13 || v_edge_pos < 23
  357. || (unsigned)(src_x - s->mspel) > s->h_edge_pos - (mx & 3) - 8 - s->mspel * 2
  358. || (unsigned)(src_y - (s->mspel << fieldmv)) > v_edge_pos - (my & 3) - ((8 + s->mspel * 2) << fieldmv)) {
  359. srcY -= s->mspel * (1 + (s->linesize << fieldmv));
  360. /* check emulate edge stride and offset */
  361. s->vdsp.emulated_edge_mc(s->edge_emu_buffer, srcY,
  362. s->linesize, s->linesize,
  363. 9 + s->mspel * 2, (9 + s->mspel * 2) << fieldmv,
  364. src_x - s->mspel, src_y - (s->mspel << fieldmv),
  365. s->h_edge_pos, v_edge_pos);
  366. srcY = s->edge_emu_buffer;
  367. /* if we deal with range reduction we need to scale source blocks */
  368. if (v->rangeredfrm) {
  369. int i, j;
  370. uint8_t *src;
  371. src = srcY;
  372. for (j = 0; j < 9 + s->mspel * 2; j++) {
  373. for (i = 0; i < 9 + s->mspel * 2; i++)
  374. src[i] = ((src[i] - 128) >> 1) + 128;
  375. src += s->linesize << fieldmv;
  376. }
  377. }
  378. /* if we deal with intensity compensation we need to scale source blocks */
  379. if (use_ic) {
  380. int i, j;
  381. uint8_t *src;
  382. src = srcY;
  383. for (j = 0; j < 9 + s->mspel * 2; j++) {
  384. int f = v->field_mode ? v->ref_field_type[dir] : (((j<<fieldmv)+src_y - (s->mspel << fieldmv)) & 1);
  385. for (i = 0; i < 9 + s->mspel * 2; i++)
  386. src[i] = luty[f][src[i]];
  387. src += s->linesize << fieldmv;
  388. }
  389. }
  390. srcY += s->mspel * (1 + (s->linesize << fieldmv));
  391. }
  392. if (s->mspel) {
  393. dxy = ((my & 3) << 2) | (mx & 3);
  394. if (avg)
  395. v->vc1dsp.avg_vc1_mspel_pixels_tab[dxy](s->dest[0] + off, srcY, s->linesize << fieldmv, v->rnd);
  396. else
  397. v->vc1dsp.put_vc1_mspel_pixels_tab[dxy](s->dest[0] + off, srcY, s->linesize << fieldmv, v->rnd);
  398. } else { // hpel mc - always used for luma
  399. dxy = (my & 2) | ((mx & 2) >> 1);
  400. if (!v->rnd)
  401. s->hdsp.put_pixels_tab[1][dxy](s->dest[0] + off, srcY, s->linesize, 8);
  402. else
  403. s->hdsp.put_no_rnd_pixels_tab[1][dxy](s->dest[0] + off, srcY, s->linesize, 8);
  404. }
  405. }
  406. static av_always_inline int get_chroma_mv(int *mvx, int *mvy, int *a, int flag, int *tx, int *ty)
  407. {
  408. int idx, i;
  409. static const int count[16] = { 0, 1, 1, 2, 1, 2, 2, 3, 1, 2, 2, 3, 2, 3, 3, 4};
  410. idx = ((a[3] != flag) << 3)
  411. | ((a[2] != flag) << 2)
  412. | ((a[1] != flag) << 1)
  413. | (a[0] != flag);
  414. if (!idx) {
  415. *tx = median4(mvx[0], mvx[1], mvx[2], mvx[3]);
  416. *ty = median4(mvy[0], mvy[1], mvy[2], mvy[3]);
  417. return 4;
  418. } else if (count[idx] == 1) {
  419. switch (idx) {
  420. case 0x1:
  421. *tx = mid_pred(mvx[1], mvx[2], mvx[3]);
  422. *ty = mid_pred(mvy[1], mvy[2], mvy[3]);
  423. return 3;
  424. case 0x2:
  425. *tx = mid_pred(mvx[0], mvx[2], mvx[3]);
  426. *ty = mid_pred(mvy[0], mvy[2], mvy[3]);
  427. return 3;
  428. case 0x4:
  429. *tx = mid_pred(mvx[0], mvx[1], mvx[3]);
  430. *ty = mid_pred(mvy[0], mvy[1], mvy[3]);
  431. return 3;
  432. case 0x8:
  433. *tx = mid_pred(mvx[0], mvx[1], mvx[2]);
  434. *ty = mid_pred(mvy[0], mvy[1], mvy[2]);
  435. return 3;
  436. }
  437. } else if (count[idx] == 2) {
  438. int t1 = 0, t2 = 0;
  439. for (i = 0; i < 3; i++)
  440. if (!a[i]) {
  441. t1 = i;
  442. break;
  443. }
  444. for (i = t1 + 1; i < 4; i++)
  445. if (!a[i]) {
  446. t2 = i;
  447. break;
  448. }
  449. *tx = (mvx[t1] + mvx[t2]) / 2;
  450. *ty = (mvy[t1] + mvy[t2]) / 2;
  451. return 2;
  452. } else {
  453. return 0;
  454. }
  455. return -1;
  456. }
  457. /** Do motion compensation for 4-MV macroblock - both chroma blocks
  458. */
  459. void ff_vc1_mc_4mv_chroma(VC1Context *v, int dir)
  460. {
  461. MpegEncContext *s = &v->s;
  462. H264ChromaContext *h264chroma = &v->h264chroma;
  463. uint8_t *srcU, *srcV;
  464. int uvmx, uvmy, uvsrc_x, uvsrc_y;
  465. int k, tx = 0, ty = 0;
  466. int mvx[4], mvy[4], intra[4], mv_f[4];
  467. int valid_count;
  468. int chroma_ref_type = v->cur_field_type;
  469. int v_edge_pos = s->v_edge_pos >> v->field_mode;
  470. uint8_t (*lutuv)[256];
  471. int use_ic;
  472. if (!v->field_mode && !v->s.last_picture.f->data[0])
  473. return;
  474. if (s->flags & CODEC_FLAG_GRAY)
  475. return;
  476. for (k = 0; k < 4; k++) {
  477. mvx[k] = s->mv[dir][k][0];
  478. mvy[k] = s->mv[dir][k][1];
  479. intra[k] = v->mb_type[0][s->block_index[k]];
  480. if (v->field_mode)
  481. mv_f[k] = v->mv_f[dir][s->block_index[k] + v->blocks_off];
  482. }
  483. /* calculate chroma MV vector from four luma MVs */
  484. if (!v->field_mode || (v->field_mode && !v->numref)) {
  485. valid_count = get_chroma_mv(mvx, mvy, intra, 0, &tx, &ty);
  486. chroma_ref_type = v->reffield;
  487. if (!valid_count) {
  488. s->current_picture.motion_val[1][s->block_index[0] + v->blocks_off][0] = 0;
  489. s->current_picture.motion_val[1][s->block_index[0] + v->blocks_off][1] = 0;
  490. v->luma_mv[s->mb_x][0] = v->luma_mv[s->mb_x][1] = 0;
  491. return; //no need to do MC for intra blocks
  492. }
  493. } else {
  494. int dominant = 0;
  495. if (mv_f[0] + mv_f[1] + mv_f[2] + mv_f[3] > 2)
  496. dominant = 1;
  497. valid_count = get_chroma_mv(mvx, mvy, mv_f, dominant, &tx, &ty);
  498. if (dominant)
  499. chroma_ref_type = !v->cur_field_type;
  500. }
  501. if (v->field_mode && chroma_ref_type == 1 && v->cur_field_type == 1 && !v->s.last_picture.f->data[0])
  502. return;
  503. s->current_picture.motion_val[1][s->block_index[0] + v->blocks_off][0] = tx;
  504. s->current_picture.motion_val[1][s->block_index[0] + v->blocks_off][1] = ty;
  505. uvmx = (tx + ((tx & 3) == 3)) >> 1;
  506. uvmy = (ty + ((ty & 3) == 3)) >> 1;
  507. v->luma_mv[s->mb_x][0] = uvmx;
  508. v->luma_mv[s->mb_x][1] = uvmy;
  509. if (v->fastuvmc) {
  510. uvmx = uvmx + ((uvmx < 0) ? (uvmx & 1) : -(uvmx & 1));
  511. uvmy = uvmy + ((uvmy < 0) ? (uvmy & 1) : -(uvmy & 1));
  512. }
  513. // Field conversion bias
  514. if (v->cur_field_type != chroma_ref_type)
  515. uvmy += 2 - 4 * chroma_ref_type;
  516. uvsrc_x = s->mb_x * 8 + (uvmx >> 2);
  517. uvsrc_y = s->mb_y * 8 + (uvmy >> 2);
  518. if (v->profile != PROFILE_ADVANCED) {
  519. uvsrc_x = av_clip(uvsrc_x, -8, s->mb_width * 8);
  520. uvsrc_y = av_clip(uvsrc_y, -8, s->mb_height * 8);
  521. } else {
  522. uvsrc_x = av_clip(uvsrc_x, -8, s->avctx->coded_width >> 1);
  523. uvsrc_y = av_clip(uvsrc_y, -8, s->avctx->coded_height >> 1);
  524. }
  525. if (!dir) {
  526. if (v->field_mode && (v->cur_field_type != chroma_ref_type) && v->second_field) {
  527. srcU = s->current_picture.f->data[1];
  528. srcV = s->current_picture.f->data[2];
  529. lutuv = v->curr_lutuv;
  530. use_ic = v->curr_use_ic;
  531. } else {
  532. srcU = s->last_picture.f->data[1];
  533. srcV = s->last_picture.f->data[2];
  534. lutuv = v->last_lutuv;
  535. use_ic = v->last_use_ic;
  536. }
  537. } else {
  538. srcU = s->next_picture.f->data[1];
  539. srcV = s->next_picture.f->data[2];
  540. lutuv = v->next_lutuv;
  541. use_ic = v->next_use_ic;
  542. }
  543. if (!srcU) {
  544. av_log(v->s.avctx, AV_LOG_ERROR, "Referenced frame missing.\n");
  545. return;
  546. }
  547. srcU += uvsrc_y * s->uvlinesize + uvsrc_x;
  548. srcV += uvsrc_y * s->uvlinesize + uvsrc_x;
  549. if (v->field_mode) {
  550. if (chroma_ref_type) {
  551. srcU += s->current_picture_ptr->f->linesize[1];
  552. srcV += s->current_picture_ptr->f->linesize[2];
  553. }
  554. }
  555. if (v->rangeredfrm || use_ic
  556. || s->h_edge_pos < 18 || v_edge_pos < 18
  557. || (unsigned)uvsrc_x > (s->h_edge_pos >> 1) - 9
  558. || (unsigned)uvsrc_y > (v_edge_pos >> 1) - 9) {
  559. s->vdsp.emulated_edge_mc(s->edge_emu_buffer, srcU,
  560. s->uvlinesize, s->uvlinesize,
  561. 8 + 1, 8 + 1, uvsrc_x, uvsrc_y,
  562. s->h_edge_pos >> 1, v_edge_pos >> 1);
  563. s->vdsp.emulated_edge_mc(s->edge_emu_buffer + 16, srcV,
  564. s->uvlinesize, s->uvlinesize,
  565. 8 + 1, 8 + 1, uvsrc_x, uvsrc_y,
  566. s->h_edge_pos >> 1, v_edge_pos >> 1);
  567. srcU = s->edge_emu_buffer;
  568. srcV = s->edge_emu_buffer + 16;
  569. /* if we deal with range reduction we need to scale source blocks */
  570. if (v->rangeredfrm) {
  571. int i, j;
  572. uint8_t *src, *src2;
  573. src = srcU;
  574. src2 = srcV;
  575. for (j = 0; j < 9; j++) {
  576. for (i = 0; i < 9; i++) {
  577. src[i] = ((src[i] - 128) >> 1) + 128;
  578. src2[i] = ((src2[i] - 128) >> 1) + 128;
  579. }
  580. src += s->uvlinesize;
  581. src2 += s->uvlinesize;
  582. }
  583. }
  584. /* if we deal with intensity compensation we need to scale source blocks */
  585. if (use_ic) {
  586. int i, j;
  587. uint8_t *src, *src2;
  588. src = srcU;
  589. src2 = srcV;
  590. for (j = 0; j < 9; j++) {
  591. int f = v->field_mode ? chroma_ref_type : ((j + uvsrc_y) & 1);
  592. for (i = 0; i < 9; i++) {
  593. src[i] = lutuv[f][src[i]];
  594. src2[i] = lutuv[f][src2[i]];
  595. }
  596. src += s->uvlinesize;
  597. src2 += s->uvlinesize;
  598. }
  599. }
  600. }
  601. /* Chroma MC always uses qpel bilinear */
  602. uvmx = (uvmx & 3) << 1;
  603. uvmy = (uvmy & 3) << 1;
  604. if (!v->rnd) {
  605. h264chroma->put_h264_chroma_pixels_tab[0](s->dest[1], srcU, s->uvlinesize, 8, uvmx, uvmy);
  606. h264chroma->put_h264_chroma_pixels_tab[0](s->dest[2], srcV, s->uvlinesize, 8, uvmx, uvmy);
  607. } else {
  608. v->vc1dsp.put_no_rnd_vc1_chroma_pixels_tab[0](s->dest[1], srcU, s->uvlinesize, 8, uvmx, uvmy);
  609. v->vc1dsp.put_no_rnd_vc1_chroma_pixels_tab[0](s->dest[2], srcV, s->uvlinesize, 8, uvmx, uvmy);
  610. }
  611. }
  612. /** Do motion compensation for 4-MV interlaced frame chroma macroblock (both U and V)
  613. */
  614. void ff_vc1_mc_4mv_chroma4(VC1Context *v, int dir, int dir2, int avg)
  615. {
  616. MpegEncContext *s = &v->s;
  617. H264ChromaContext *h264chroma = &v->h264chroma;
  618. uint8_t *srcU, *srcV;
  619. int uvsrc_x, uvsrc_y;
  620. int uvmx_field[4], uvmy_field[4];
  621. int i, off, tx, ty;
  622. int fieldmv = v->blk_mv_type[s->block_index[0]];
  623. static const int s_rndtblfield[16] = { 0, 0, 1, 2, 4, 4, 5, 6, 2, 2, 3, 8, 6, 6, 7, 12 };
  624. int v_dist = fieldmv ? 1 : 4; // vertical offset for lower sub-blocks
  625. int v_edge_pos = s->v_edge_pos >> 1;
  626. int use_ic;
  627. uint8_t (*lutuv)[256];
  628. if (s->flags & CODEC_FLAG_GRAY)
  629. return;
  630. for (i = 0; i < 4; i++) {
  631. int d = i < 2 ? dir: dir2;
  632. tx = s->mv[d][i][0];
  633. uvmx_field[i] = (tx + ((tx & 3) == 3)) >> 1;
  634. ty = s->mv[d][i][1];
  635. if (fieldmv)
  636. uvmy_field[i] = (ty >> 4) * 8 + s_rndtblfield[ty & 0xF];
  637. else
  638. uvmy_field[i] = (ty + ((ty & 3) == 3)) >> 1;
  639. }
  640. for (i = 0; i < 4; i++) {
  641. off = (i & 1) * 4 + ((i & 2) ? v_dist * s->uvlinesize : 0);
  642. uvsrc_x = s->mb_x * 8 + (i & 1) * 4 + (uvmx_field[i] >> 2);
  643. uvsrc_y = s->mb_y * 8 + ((i & 2) ? v_dist : 0) + (uvmy_field[i] >> 2);
  644. // FIXME: implement proper pull-back (see vc1cropmv.c, vc1CROPMV_ChromaPullBack())
  645. uvsrc_x = av_clip(uvsrc_x, -8, s->avctx->coded_width >> 1);
  646. uvsrc_y = av_clip(uvsrc_y, -8, s->avctx->coded_height >> 1);
  647. if (i < 2 ? dir : dir2) {
  648. srcU = s->next_picture.f->data[1] + uvsrc_y * s->uvlinesize + uvsrc_x;
  649. srcV = s->next_picture.f->data[2] + uvsrc_y * s->uvlinesize + uvsrc_x;
  650. lutuv = v->next_lutuv;
  651. use_ic = v->next_use_ic;
  652. } else {
  653. srcU = s->last_picture.f->data[1] + uvsrc_y * s->uvlinesize + uvsrc_x;
  654. srcV = s->last_picture.f->data[2] + uvsrc_y * s->uvlinesize + uvsrc_x;
  655. lutuv = v->last_lutuv;
  656. use_ic = v->last_use_ic;
  657. }
  658. uvmx_field[i] = (uvmx_field[i] & 3) << 1;
  659. uvmy_field[i] = (uvmy_field[i] & 3) << 1;
  660. if (fieldmv && !(uvsrc_y & 1))
  661. v_edge_pos--;
  662. if (fieldmv && (uvsrc_y & 1) && uvsrc_y < 2)
  663. uvsrc_y--;
  664. if (use_ic
  665. || s->h_edge_pos < 10 || v_edge_pos < (5 << fieldmv)
  666. || (unsigned)uvsrc_x > (s->h_edge_pos >> 1) - 5
  667. || (unsigned)uvsrc_y > v_edge_pos - (5 << fieldmv)) {
  668. s->vdsp.emulated_edge_mc(s->edge_emu_buffer, srcU,
  669. s->uvlinesize, s->uvlinesize,
  670. 5, (5 << fieldmv), uvsrc_x, uvsrc_y,
  671. s->h_edge_pos >> 1, v_edge_pos);
  672. s->vdsp.emulated_edge_mc(s->edge_emu_buffer + 16, srcV,
  673. s->uvlinesize, s->uvlinesize,
  674. 5, (5 << fieldmv), uvsrc_x, uvsrc_y,
  675. s->h_edge_pos >> 1, v_edge_pos);
  676. srcU = s->edge_emu_buffer;
  677. srcV = s->edge_emu_buffer + 16;
  678. /* if we deal with intensity compensation we need to scale source blocks */
  679. if (use_ic) {
  680. int i, j;
  681. uint8_t *src, *src2;
  682. src = srcU;
  683. src2 = srcV;
  684. for (j = 0; j < 5; j++) {
  685. int f = (uvsrc_y + (j << fieldmv)) & 1;
  686. for (i = 0; i < 5; i++) {
  687. src[i] = lutuv[f][src[i]];
  688. src2[i] = lutuv[f][src2[i]];
  689. }
  690. src += s->uvlinesize << fieldmv;
  691. src2 += s->uvlinesize << fieldmv;
  692. }
  693. }
  694. }
  695. if (avg) {
  696. if (!v->rnd) {
  697. h264chroma->avg_h264_chroma_pixels_tab[1](s->dest[1] + off, srcU, s->uvlinesize << fieldmv, 4, uvmx_field[i], uvmy_field[i]);
  698. h264chroma->avg_h264_chroma_pixels_tab[1](s->dest[2] + off, srcV, s->uvlinesize << fieldmv, 4, uvmx_field[i], uvmy_field[i]);
  699. } else {
  700. v->vc1dsp.avg_no_rnd_vc1_chroma_pixels_tab[1](s->dest[1] + off, srcU, s->uvlinesize << fieldmv, 4, uvmx_field[i], uvmy_field[i]);
  701. v->vc1dsp.avg_no_rnd_vc1_chroma_pixels_tab[1](s->dest[2] + off, srcV, s->uvlinesize << fieldmv, 4, uvmx_field[i], uvmy_field[i]);
  702. }
  703. } else {
  704. if (!v->rnd) {
  705. h264chroma->put_h264_chroma_pixels_tab[1](s->dest[1] + off, srcU, s->uvlinesize << fieldmv, 4, uvmx_field[i], uvmy_field[i]);
  706. h264chroma->put_h264_chroma_pixels_tab[1](s->dest[2] + off, srcV, s->uvlinesize << fieldmv, 4, uvmx_field[i], uvmy_field[i]);
  707. } else {
  708. v->vc1dsp.put_no_rnd_vc1_chroma_pixels_tab[1](s->dest[1] + off, srcU, s->uvlinesize << fieldmv, 4, uvmx_field[i], uvmy_field[i]);
  709. v->vc1dsp.put_no_rnd_vc1_chroma_pixels_tab[1](s->dest[2] + off, srcV, s->uvlinesize << fieldmv, 4, uvmx_field[i], uvmy_field[i]);
  710. }
  711. }
  712. }
  713. }
  714. /** Motion compensation for direct or interpolated blocks in B-frames
  715. */
  716. void ff_vc1_interp_mc(VC1Context *v)
  717. {
  718. MpegEncContext *s = &v->s;
  719. H264ChromaContext *h264chroma = &v->h264chroma;
  720. uint8_t *srcY, *srcU, *srcV;
  721. int dxy, mx, my, uvmx, uvmy, src_x, src_y, uvsrc_x, uvsrc_y;
  722. int off, off_uv;
  723. int v_edge_pos = s->v_edge_pos >> v->field_mode;
  724. int use_ic = v->next_use_ic;
  725. if (!v->field_mode && !v->s.next_picture.f->data[0])
  726. return;
  727. mx = s->mv[1][0][0];
  728. my = s->mv[1][0][1];
  729. uvmx = (mx + ((mx & 3) == 3)) >> 1;
  730. uvmy = (my + ((my & 3) == 3)) >> 1;
  731. if (v->field_mode && v->cur_field_type != v->ref_field_type[1]) {
  732. my = my - 2 + 4 * v->cur_field_type;
  733. uvmy = uvmy - 2 + 4 * v->cur_field_type;
  734. }
  735. if (v->fastuvmc) {
  736. uvmx = uvmx + ((uvmx < 0) ? -(uvmx & 1) : (uvmx & 1));
  737. uvmy = uvmy + ((uvmy < 0) ? -(uvmy & 1) : (uvmy & 1));
  738. }
  739. srcY = s->next_picture.f->data[0];
  740. srcU = s->next_picture.f->data[1];
  741. srcV = s->next_picture.f->data[2];
  742. src_x = s->mb_x * 16 + (mx >> 2);
  743. src_y = s->mb_y * 16 + (my >> 2);
  744. uvsrc_x = s->mb_x * 8 + (uvmx >> 2);
  745. uvsrc_y = s->mb_y * 8 + (uvmy >> 2);
  746. if (v->profile != PROFILE_ADVANCED) {
  747. src_x = av_clip( src_x, -16, s->mb_width * 16);
  748. src_y = av_clip( src_y, -16, s->mb_height * 16);
  749. uvsrc_x = av_clip(uvsrc_x, -8, s->mb_width * 8);
  750. uvsrc_y = av_clip(uvsrc_y, -8, s->mb_height * 8);
  751. } else {
  752. src_x = av_clip( src_x, -17, s->avctx->coded_width);
  753. src_y = av_clip( src_y, -18, s->avctx->coded_height + 1);
  754. uvsrc_x = av_clip(uvsrc_x, -8, s->avctx->coded_width >> 1);
  755. uvsrc_y = av_clip(uvsrc_y, -8, s->avctx->coded_height >> 1);
  756. }
  757. srcY += src_y * s->linesize + src_x;
  758. srcU += uvsrc_y * s->uvlinesize + uvsrc_x;
  759. srcV += uvsrc_y * s->uvlinesize + uvsrc_x;
  760. if (v->field_mode && v->ref_field_type[1]) {
  761. srcY += s->current_picture_ptr->f->linesize[0];
  762. srcU += s->current_picture_ptr->f->linesize[1];
  763. srcV += s->current_picture_ptr->f->linesize[2];
  764. }
  765. /* for grayscale we should not try to read from unknown area */
  766. if (s->flags & CODEC_FLAG_GRAY) {
  767. srcU = s->edge_emu_buffer + 18 * s->linesize;
  768. srcV = s->edge_emu_buffer + 18 * s->linesize;
  769. }
  770. if (v->rangeredfrm || s->h_edge_pos < 22 || v_edge_pos < 22 || use_ic
  771. || (unsigned)(src_x - 1) > s->h_edge_pos - (mx & 3) - 16 - 3
  772. || (unsigned)(src_y - 1) > v_edge_pos - (my & 3) - 16 - 3) {
  773. uint8_t *uvbuf = s->edge_emu_buffer + 19 * s->linesize;
  774. srcY -= s->mspel * (1 + s->linesize);
  775. s->vdsp.emulated_edge_mc(s->edge_emu_buffer, srcY,
  776. s->linesize, s->linesize,
  777. 17 + s->mspel * 2, 17 + s->mspel * 2,
  778. src_x - s->mspel, src_y - s->mspel,
  779. s->h_edge_pos, v_edge_pos);
  780. srcY = s->edge_emu_buffer;
  781. s->vdsp.emulated_edge_mc(uvbuf, srcU,
  782. s->uvlinesize, s->uvlinesize,
  783. 8 + 1, 8 + 1,
  784. uvsrc_x, uvsrc_y, s->h_edge_pos >> 1, v_edge_pos >> 1);
  785. s->vdsp.emulated_edge_mc(uvbuf + 16, srcV,
  786. s->uvlinesize, s->uvlinesize,
  787. 8 + 1, 8 + 1,
  788. uvsrc_x, uvsrc_y, s->h_edge_pos >> 1, v_edge_pos >> 1);
  789. srcU = uvbuf;
  790. srcV = uvbuf + 16;
  791. /* if we deal with range reduction we need to scale source blocks */
  792. if (v->rangeredfrm) {
  793. int i, j;
  794. uint8_t *src, *src2;
  795. src = srcY;
  796. for (j = 0; j < 17 + s->mspel * 2; j++) {
  797. for (i = 0; i < 17 + s->mspel * 2; i++)
  798. src[i] = ((src[i] - 128) >> 1) + 128;
  799. src += s->linesize;
  800. }
  801. src = srcU;
  802. src2 = srcV;
  803. for (j = 0; j < 9; j++) {
  804. for (i = 0; i < 9; i++) {
  805. src[i] = ((src[i] - 128) >> 1) + 128;
  806. src2[i] = ((src2[i] - 128) >> 1) + 128;
  807. }
  808. src += s->uvlinesize;
  809. src2 += s->uvlinesize;
  810. }
  811. }
  812. if (use_ic) {
  813. uint8_t (*luty )[256] = v->next_luty;
  814. uint8_t (*lutuv)[256] = v->next_lutuv;
  815. int i, j;
  816. uint8_t *src, *src2;
  817. src = srcY;
  818. for (j = 0; j < 17 + s->mspel * 2; j++) {
  819. int f = v->field_mode ? v->ref_field_type[1] : ((j+src_y - s->mspel) & 1);
  820. for (i = 0; i < 17 + s->mspel * 2; i++)
  821. src[i] = luty[f][src[i]];
  822. src += s->linesize;
  823. }
  824. src = srcU;
  825. src2 = srcV;
  826. for (j = 0; j < 9; j++) {
  827. int f = v->field_mode ? v->ref_field_type[1] : ((j+uvsrc_y) & 1);
  828. for (i = 0; i < 9; i++) {
  829. src[i] = lutuv[f][src[i]];
  830. src2[i] = lutuv[f][src2[i]];
  831. }
  832. src += s->uvlinesize;
  833. src2 += s->uvlinesize;
  834. }
  835. }
  836. srcY += s->mspel * (1 + s->linesize);
  837. }
  838. off = 0;
  839. off_uv = 0;
  840. if (s->mspel) {
  841. dxy = ((my & 3) << 2) | (mx & 3);
  842. v->vc1dsp.avg_vc1_mspel_pixels_tab[dxy](s->dest[0] + off , srcY , s->linesize, v->rnd);
  843. v->vc1dsp.avg_vc1_mspel_pixels_tab[dxy](s->dest[0] + off + 8, srcY + 8, s->linesize, v->rnd);
  844. srcY += s->linesize * 8;
  845. v->vc1dsp.avg_vc1_mspel_pixels_tab[dxy](s->dest[0] + off + 8 * s->linesize , srcY , s->linesize, v->rnd);
  846. v->vc1dsp.avg_vc1_mspel_pixels_tab[dxy](s->dest[0] + off + 8 * s->linesize + 8, srcY + 8, s->linesize, v->rnd);
  847. } else { // hpel mc
  848. dxy = (my & 2) | ((mx & 2) >> 1);
  849. if (!v->rnd)
  850. s->hdsp.avg_pixels_tab[0][dxy](s->dest[0] + off, srcY, s->linesize, 16);
  851. else
  852. s->hdsp.avg_no_rnd_pixels_tab[dxy](s->dest[0] + off, srcY, s->linesize, 16);
  853. }
  854. if (s->flags & CODEC_FLAG_GRAY) return;
  855. /* Chroma MC always uses qpel blilinear */
  856. uvmx = (uvmx & 3) << 1;
  857. uvmy = (uvmy & 3) << 1;
  858. if (!v->rnd) {
  859. h264chroma->avg_h264_chroma_pixels_tab[0](s->dest[1] + off_uv, srcU, s->uvlinesize, 8, uvmx, uvmy);
  860. h264chroma->avg_h264_chroma_pixels_tab[0](s->dest[2] + off_uv, srcV, s->uvlinesize, 8, uvmx, uvmy);
  861. } else {
  862. v->vc1dsp.avg_no_rnd_vc1_chroma_pixels_tab[0](s->dest[1] + off_uv, srcU, s->uvlinesize, 8, uvmx, uvmy);
  863. v->vc1dsp.avg_no_rnd_vc1_chroma_pixels_tab[0](s->dest[2] + off_uv, srcV, s->uvlinesize, 8, uvmx, uvmy);
  864. }
  865. }