You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

3412 lines
133KB

  1. /*
  2. * HEVC video Decoder
  3. *
  4. * Copyright (C) 2012 - 2013 Guillaume Martres
  5. * Copyright (C) 2012 - 2013 Mickael Raulet
  6. * Copyright (C) 2012 - 2013 Gildas Cocherel
  7. * Copyright (C) 2012 - 2013 Wassim Hamidouche
  8. *
  9. * This file is part of FFmpeg.
  10. *
  11. * FFmpeg is free software; you can redistribute it and/or
  12. * modify it under the terms of the GNU Lesser General Public
  13. * License as published by the Free Software Foundation; either
  14. * version 2.1 of the License, or (at your option) any later version.
  15. *
  16. * FFmpeg is distributed in the hope that it will be useful,
  17. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  18. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  19. * Lesser General Public License for more details.
  20. *
  21. * You should have received a copy of the GNU Lesser General Public
  22. * License along with FFmpeg; if not, write to the Free Software
  23. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  24. */
  25. #include "libavutil/attributes.h"
  26. #include "libavutil/common.h"
  27. #include "libavutil/display.h"
  28. #include "libavutil/internal.h"
  29. #include "libavutil/mastering_display_metadata.h"
  30. #include "libavutil/md5.h"
  31. #include "libavutil/opt.h"
  32. #include "libavutil/pixdesc.h"
  33. #include "libavutil/stereo3d.h"
  34. #include "bswapdsp.h"
  35. #include "bytestream.h"
  36. #include "cabac_functions.h"
  37. #include "golomb.h"
  38. #include "hevc.h"
  39. #include "hevc_data.h"
  40. #include "hevc_parse.h"
  41. #include "hevcdec.h"
  42. #include "profiles.h"
  43. const uint8_t ff_hevc_pel_weight[65] = { [2] = 0, [4] = 1, [6] = 2, [8] = 3, [12] = 4, [16] = 5, [24] = 6, [32] = 7, [48] = 8, [64] = 9 };
  44. /**
  45. * NOTE: Each function hls_foo correspond to the function foo in the
  46. * specification (HLS stands for High Level Syntax).
  47. */
  48. /**
  49. * Section 5.7
  50. */
  51. /* free everything allocated by pic_arrays_init() */
  52. static void pic_arrays_free(HEVCContext *s)
  53. {
  54. av_freep(&s->sao);
  55. av_freep(&s->deblock);
  56. av_freep(&s->skip_flag);
  57. av_freep(&s->tab_ct_depth);
  58. av_freep(&s->tab_ipm);
  59. av_freep(&s->cbf_luma);
  60. av_freep(&s->is_pcm);
  61. av_freep(&s->qp_y_tab);
  62. av_freep(&s->tab_slice_address);
  63. av_freep(&s->filter_slice_edges);
  64. av_freep(&s->horizontal_bs);
  65. av_freep(&s->vertical_bs);
  66. av_freep(&s->sh.entry_point_offset);
  67. av_freep(&s->sh.size);
  68. av_freep(&s->sh.offset);
  69. av_buffer_pool_uninit(&s->tab_mvf_pool);
  70. av_buffer_pool_uninit(&s->rpl_tab_pool);
  71. }
  72. /* allocate arrays that depend on frame dimensions */
  73. static int pic_arrays_init(HEVCContext *s, const HEVCSPS *sps)
  74. {
  75. int log2_min_cb_size = sps->log2_min_cb_size;
  76. int width = sps->width;
  77. int height = sps->height;
  78. int pic_size_in_ctb = ((width >> log2_min_cb_size) + 1) *
  79. ((height >> log2_min_cb_size) + 1);
  80. int ctb_count = sps->ctb_width * sps->ctb_height;
  81. int min_pu_size = sps->min_pu_width * sps->min_pu_height;
  82. s->bs_width = (width >> 2) + 1;
  83. s->bs_height = (height >> 2) + 1;
  84. s->sao = av_mallocz_array(ctb_count, sizeof(*s->sao));
  85. s->deblock = av_mallocz_array(ctb_count, sizeof(*s->deblock));
  86. if (!s->sao || !s->deblock)
  87. goto fail;
  88. s->skip_flag = av_malloc_array(sps->min_cb_height, sps->min_cb_width);
  89. s->tab_ct_depth = av_malloc_array(sps->min_cb_height, sps->min_cb_width);
  90. if (!s->skip_flag || !s->tab_ct_depth)
  91. goto fail;
  92. s->cbf_luma = av_malloc_array(sps->min_tb_width, sps->min_tb_height);
  93. s->tab_ipm = av_mallocz(min_pu_size);
  94. s->is_pcm = av_malloc_array(sps->min_pu_width + 1, sps->min_pu_height + 1);
  95. if (!s->tab_ipm || !s->cbf_luma || !s->is_pcm)
  96. goto fail;
  97. s->filter_slice_edges = av_mallocz(ctb_count);
  98. s->tab_slice_address = av_malloc_array(pic_size_in_ctb,
  99. sizeof(*s->tab_slice_address));
  100. s->qp_y_tab = av_malloc_array(pic_size_in_ctb,
  101. sizeof(*s->qp_y_tab));
  102. if (!s->qp_y_tab || !s->filter_slice_edges || !s->tab_slice_address)
  103. goto fail;
  104. s->horizontal_bs = av_mallocz_array(s->bs_width, s->bs_height);
  105. s->vertical_bs = av_mallocz_array(s->bs_width, s->bs_height);
  106. if (!s->horizontal_bs || !s->vertical_bs)
  107. goto fail;
  108. s->tab_mvf_pool = av_buffer_pool_init(min_pu_size * sizeof(MvField),
  109. av_buffer_allocz);
  110. s->rpl_tab_pool = av_buffer_pool_init(ctb_count * sizeof(RefPicListTab),
  111. av_buffer_allocz);
  112. if (!s->tab_mvf_pool || !s->rpl_tab_pool)
  113. goto fail;
  114. return 0;
  115. fail:
  116. pic_arrays_free(s);
  117. return AVERROR(ENOMEM);
  118. }
  119. static void pred_weight_table(HEVCContext *s, GetBitContext *gb)
  120. {
  121. int i = 0;
  122. int j = 0;
  123. uint8_t luma_weight_l0_flag[16];
  124. uint8_t chroma_weight_l0_flag[16];
  125. uint8_t luma_weight_l1_flag[16];
  126. uint8_t chroma_weight_l1_flag[16];
  127. int luma_log2_weight_denom;
  128. luma_log2_weight_denom = get_ue_golomb_long(gb);
  129. if (luma_log2_weight_denom < 0 || luma_log2_weight_denom > 7)
  130. av_log(s->avctx, AV_LOG_ERROR, "luma_log2_weight_denom %d is invalid\n", luma_log2_weight_denom);
  131. s->sh.luma_log2_weight_denom = av_clip_uintp2(luma_log2_weight_denom, 3);
  132. if (s->ps.sps->chroma_format_idc != 0) {
  133. int delta = get_se_golomb(gb);
  134. s->sh.chroma_log2_weight_denom = av_clip_uintp2(s->sh.luma_log2_weight_denom + delta, 3);
  135. }
  136. for (i = 0; i < s->sh.nb_refs[L0]; i++) {
  137. luma_weight_l0_flag[i] = get_bits1(gb);
  138. if (!luma_weight_l0_flag[i]) {
  139. s->sh.luma_weight_l0[i] = 1 << s->sh.luma_log2_weight_denom;
  140. s->sh.luma_offset_l0[i] = 0;
  141. }
  142. }
  143. if (s->ps.sps->chroma_format_idc != 0) {
  144. for (i = 0; i < s->sh.nb_refs[L0]; i++)
  145. chroma_weight_l0_flag[i] = get_bits1(gb);
  146. } else {
  147. for (i = 0; i < s->sh.nb_refs[L0]; i++)
  148. chroma_weight_l0_flag[i] = 0;
  149. }
  150. for (i = 0; i < s->sh.nb_refs[L0]; i++) {
  151. if (luma_weight_l0_flag[i]) {
  152. int delta_luma_weight_l0 = get_se_golomb(gb);
  153. s->sh.luma_weight_l0[i] = (1 << s->sh.luma_log2_weight_denom) + delta_luma_weight_l0;
  154. s->sh.luma_offset_l0[i] = get_se_golomb(gb);
  155. }
  156. if (chroma_weight_l0_flag[i]) {
  157. for (j = 0; j < 2; j++) {
  158. int delta_chroma_weight_l0 = get_se_golomb(gb);
  159. int delta_chroma_offset_l0 = get_se_golomb(gb);
  160. s->sh.chroma_weight_l0[i][j] = (1 << s->sh.chroma_log2_weight_denom) + delta_chroma_weight_l0;
  161. s->sh.chroma_offset_l0[i][j] = av_clip((delta_chroma_offset_l0 - ((128 * s->sh.chroma_weight_l0[i][j])
  162. >> s->sh.chroma_log2_weight_denom) + 128), -128, 127);
  163. }
  164. } else {
  165. s->sh.chroma_weight_l0[i][0] = 1 << s->sh.chroma_log2_weight_denom;
  166. s->sh.chroma_offset_l0[i][0] = 0;
  167. s->sh.chroma_weight_l0[i][1] = 1 << s->sh.chroma_log2_weight_denom;
  168. s->sh.chroma_offset_l0[i][1] = 0;
  169. }
  170. }
  171. if (s->sh.slice_type == HEVC_SLICE_B) {
  172. for (i = 0; i < s->sh.nb_refs[L1]; i++) {
  173. luma_weight_l1_flag[i] = get_bits1(gb);
  174. if (!luma_weight_l1_flag[i]) {
  175. s->sh.luma_weight_l1[i] = 1 << s->sh.luma_log2_weight_denom;
  176. s->sh.luma_offset_l1[i] = 0;
  177. }
  178. }
  179. if (s->ps.sps->chroma_format_idc != 0) {
  180. for (i = 0; i < s->sh.nb_refs[L1]; i++)
  181. chroma_weight_l1_flag[i] = get_bits1(gb);
  182. } else {
  183. for (i = 0; i < s->sh.nb_refs[L1]; i++)
  184. chroma_weight_l1_flag[i] = 0;
  185. }
  186. for (i = 0; i < s->sh.nb_refs[L1]; i++) {
  187. if (luma_weight_l1_flag[i]) {
  188. int delta_luma_weight_l1 = get_se_golomb(gb);
  189. s->sh.luma_weight_l1[i] = (1 << s->sh.luma_log2_weight_denom) + delta_luma_weight_l1;
  190. s->sh.luma_offset_l1[i] = get_se_golomb(gb);
  191. }
  192. if (chroma_weight_l1_flag[i]) {
  193. for (j = 0; j < 2; j++) {
  194. int delta_chroma_weight_l1 = get_se_golomb(gb);
  195. int delta_chroma_offset_l1 = get_se_golomb(gb);
  196. s->sh.chroma_weight_l1[i][j] = (1 << s->sh.chroma_log2_weight_denom) + delta_chroma_weight_l1;
  197. s->sh.chroma_offset_l1[i][j] = av_clip((delta_chroma_offset_l1 - ((128 * s->sh.chroma_weight_l1[i][j])
  198. >> s->sh.chroma_log2_weight_denom) + 128), -128, 127);
  199. }
  200. } else {
  201. s->sh.chroma_weight_l1[i][0] = 1 << s->sh.chroma_log2_weight_denom;
  202. s->sh.chroma_offset_l1[i][0] = 0;
  203. s->sh.chroma_weight_l1[i][1] = 1 << s->sh.chroma_log2_weight_denom;
  204. s->sh.chroma_offset_l1[i][1] = 0;
  205. }
  206. }
  207. }
  208. }
  209. static int decode_lt_rps(HEVCContext *s, LongTermRPS *rps, GetBitContext *gb)
  210. {
  211. const HEVCSPS *sps = s->ps.sps;
  212. int max_poc_lsb = 1 << sps->log2_max_poc_lsb;
  213. int prev_delta_msb = 0;
  214. unsigned int nb_sps = 0, nb_sh;
  215. int i;
  216. rps->nb_refs = 0;
  217. if (!sps->long_term_ref_pics_present_flag)
  218. return 0;
  219. if (sps->num_long_term_ref_pics_sps > 0)
  220. nb_sps = get_ue_golomb_long(gb);
  221. nb_sh = get_ue_golomb_long(gb);
  222. if (nb_sps > sps->num_long_term_ref_pics_sps)
  223. return AVERROR_INVALIDDATA;
  224. if (nb_sh + (uint64_t)nb_sps > FF_ARRAY_ELEMS(rps->poc))
  225. return AVERROR_INVALIDDATA;
  226. rps->nb_refs = nb_sh + nb_sps;
  227. for (i = 0; i < rps->nb_refs; i++) {
  228. uint8_t delta_poc_msb_present;
  229. if (i < nb_sps) {
  230. uint8_t lt_idx_sps = 0;
  231. if (sps->num_long_term_ref_pics_sps > 1)
  232. lt_idx_sps = get_bits(gb, av_ceil_log2(sps->num_long_term_ref_pics_sps));
  233. rps->poc[i] = sps->lt_ref_pic_poc_lsb_sps[lt_idx_sps];
  234. rps->used[i] = sps->used_by_curr_pic_lt_sps_flag[lt_idx_sps];
  235. } else {
  236. rps->poc[i] = get_bits(gb, sps->log2_max_poc_lsb);
  237. rps->used[i] = get_bits1(gb);
  238. }
  239. delta_poc_msb_present = get_bits1(gb);
  240. if (delta_poc_msb_present) {
  241. int delta = get_ue_golomb_long(gb);
  242. if (i && i != nb_sps)
  243. delta += prev_delta_msb;
  244. rps->poc[i] += s->poc - delta * max_poc_lsb - s->sh.pic_order_cnt_lsb;
  245. prev_delta_msb = delta;
  246. }
  247. }
  248. return 0;
  249. }
  250. static void export_stream_params(AVCodecContext *avctx, const HEVCParamSets *ps,
  251. const HEVCSPS *sps)
  252. {
  253. const HEVCVPS *vps = (const HEVCVPS*)ps->vps_list[sps->vps_id]->data;
  254. const HEVCWindow *ow = &sps->output_window;
  255. unsigned int num = 0, den = 0;
  256. avctx->pix_fmt = sps->pix_fmt;
  257. avctx->coded_width = sps->width;
  258. avctx->coded_height = sps->height;
  259. avctx->width = sps->width - ow->left_offset - ow->right_offset;
  260. avctx->height = sps->height - ow->top_offset - ow->bottom_offset;
  261. avctx->has_b_frames = sps->temporal_layer[sps->max_sub_layers - 1].num_reorder_pics;
  262. avctx->profile = sps->ptl.general_ptl.profile_idc;
  263. avctx->level = sps->ptl.general_ptl.level_idc;
  264. ff_set_sar(avctx, sps->vui.sar);
  265. if (sps->vui.video_signal_type_present_flag)
  266. avctx->color_range = sps->vui.video_full_range_flag ? AVCOL_RANGE_JPEG
  267. : AVCOL_RANGE_MPEG;
  268. else
  269. avctx->color_range = AVCOL_RANGE_MPEG;
  270. if (sps->vui.colour_description_present_flag) {
  271. avctx->color_primaries = sps->vui.colour_primaries;
  272. avctx->color_trc = sps->vui.transfer_characteristic;
  273. avctx->colorspace = sps->vui.matrix_coeffs;
  274. } else {
  275. avctx->color_primaries = AVCOL_PRI_UNSPECIFIED;
  276. avctx->color_trc = AVCOL_TRC_UNSPECIFIED;
  277. avctx->colorspace = AVCOL_SPC_UNSPECIFIED;
  278. }
  279. if (vps->vps_timing_info_present_flag) {
  280. num = vps->vps_num_units_in_tick;
  281. den = vps->vps_time_scale;
  282. } else if (sps->vui.vui_timing_info_present_flag) {
  283. num = sps->vui.vui_num_units_in_tick;
  284. den = sps->vui.vui_time_scale;
  285. }
  286. if (num != 0 && den != 0)
  287. av_reduce(&avctx->framerate.den, &avctx->framerate.num,
  288. num, den, 1 << 30);
  289. }
  290. static enum AVPixelFormat get_format(HEVCContext *s, const HEVCSPS *sps)
  291. {
  292. #define HWACCEL_MAX (CONFIG_HEVC_DXVA2_HWACCEL + CONFIG_HEVC_D3D11VA_HWACCEL + CONFIG_HEVC_VAAPI_HWACCEL + CONFIG_HEVC_VDPAU_HWACCEL)
  293. enum AVPixelFormat pix_fmts[HWACCEL_MAX + 2], *fmt = pix_fmts;
  294. switch (sps->pix_fmt) {
  295. case AV_PIX_FMT_YUV420P:
  296. case AV_PIX_FMT_YUVJ420P:
  297. #if CONFIG_HEVC_DXVA2_HWACCEL
  298. *fmt++ = AV_PIX_FMT_DXVA2_VLD;
  299. #endif
  300. #if CONFIG_HEVC_D3D11VA_HWACCEL
  301. *fmt++ = AV_PIX_FMT_D3D11VA_VLD;
  302. #endif
  303. #if CONFIG_HEVC_VAAPI_HWACCEL
  304. *fmt++ = AV_PIX_FMT_VAAPI;
  305. #endif
  306. #if CONFIG_HEVC_VDPAU_HWACCEL
  307. *fmt++ = AV_PIX_FMT_VDPAU;
  308. #endif
  309. break;
  310. case AV_PIX_FMT_YUV420P10:
  311. #if CONFIG_HEVC_DXVA2_HWACCEL
  312. *fmt++ = AV_PIX_FMT_DXVA2_VLD;
  313. #endif
  314. #if CONFIG_HEVC_D3D11VA_HWACCEL
  315. *fmt++ = AV_PIX_FMT_D3D11VA_VLD;
  316. #endif
  317. #if CONFIG_HEVC_VAAPI_HWACCEL
  318. *fmt++ = AV_PIX_FMT_VAAPI;
  319. #endif
  320. break;
  321. }
  322. *fmt++ = sps->pix_fmt;
  323. *fmt = AV_PIX_FMT_NONE;
  324. return ff_thread_get_format(s->avctx, pix_fmts);
  325. }
  326. static int set_sps(HEVCContext *s, const HEVCSPS *sps,
  327. enum AVPixelFormat pix_fmt)
  328. {
  329. int ret, i;
  330. pic_arrays_free(s);
  331. s->ps.sps = NULL;
  332. s->ps.vps = NULL;
  333. if (!sps)
  334. return 0;
  335. ret = pic_arrays_init(s, sps);
  336. if (ret < 0)
  337. goto fail;
  338. export_stream_params(s->avctx, &s->ps, sps);
  339. s->avctx->pix_fmt = pix_fmt;
  340. ff_hevc_pred_init(&s->hpc, sps->bit_depth);
  341. ff_hevc_dsp_init (&s->hevcdsp, sps->bit_depth);
  342. ff_videodsp_init (&s->vdsp, sps->bit_depth);
  343. for (i = 0; i < 3; i++) {
  344. av_freep(&s->sao_pixel_buffer_h[i]);
  345. av_freep(&s->sao_pixel_buffer_v[i]);
  346. }
  347. if (sps->sao_enabled && !s->avctx->hwaccel) {
  348. int c_count = (sps->chroma_format_idc != 0) ? 3 : 1;
  349. int c_idx;
  350. for(c_idx = 0; c_idx < c_count; c_idx++) {
  351. int w = sps->width >> sps->hshift[c_idx];
  352. int h = sps->height >> sps->vshift[c_idx];
  353. s->sao_pixel_buffer_h[c_idx] =
  354. av_malloc((w * 2 * sps->ctb_height) <<
  355. sps->pixel_shift);
  356. s->sao_pixel_buffer_v[c_idx] =
  357. av_malloc((h * 2 * sps->ctb_width) <<
  358. sps->pixel_shift);
  359. }
  360. }
  361. s->ps.sps = sps;
  362. s->ps.vps = (HEVCVPS*) s->ps.vps_list[s->ps.sps->vps_id]->data;
  363. return 0;
  364. fail:
  365. pic_arrays_free(s);
  366. s->ps.sps = NULL;
  367. return ret;
  368. }
  369. static int hls_slice_header(HEVCContext *s)
  370. {
  371. GetBitContext *gb = &s->HEVClc->gb;
  372. SliceHeader *sh = &s->sh;
  373. int i, ret;
  374. // Coded parameters
  375. sh->first_slice_in_pic_flag = get_bits1(gb);
  376. if ((IS_IDR(s) || IS_BLA(s)) && sh->first_slice_in_pic_flag) {
  377. s->seq_decode = (s->seq_decode + 1) & 0xff;
  378. s->max_ra = INT_MAX;
  379. if (IS_IDR(s))
  380. ff_hevc_clear_refs(s);
  381. }
  382. sh->no_output_of_prior_pics_flag = 0;
  383. if (IS_IRAP(s))
  384. sh->no_output_of_prior_pics_flag = get_bits1(gb);
  385. sh->pps_id = get_ue_golomb_long(gb);
  386. if (sh->pps_id >= HEVC_MAX_PPS_COUNT || !s->ps.pps_list[sh->pps_id]) {
  387. av_log(s->avctx, AV_LOG_ERROR, "PPS id out of range: %d\n", sh->pps_id);
  388. return AVERROR_INVALIDDATA;
  389. }
  390. if (!sh->first_slice_in_pic_flag &&
  391. s->ps.pps != (HEVCPPS*)s->ps.pps_list[sh->pps_id]->data) {
  392. av_log(s->avctx, AV_LOG_ERROR, "PPS changed between slices.\n");
  393. return AVERROR_INVALIDDATA;
  394. }
  395. s->ps.pps = (HEVCPPS*)s->ps.pps_list[sh->pps_id]->data;
  396. if (s->nal_unit_type == HEVC_NAL_CRA_NUT && s->last_eos == 1)
  397. sh->no_output_of_prior_pics_flag = 1;
  398. if (s->ps.sps != (HEVCSPS*)s->ps.sps_list[s->ps.pps->sps_id]->data) {
  399. const HEVCSPS *sps = (HEVCSPS*)s->ps.sps_list[s->ps.pps->sps_id]->data;
  400. const HEVCSPS *last_sps = s->ps.sps;
  401. enum AVPixelFormat pix_fmt;
  402. if (last_sps && IS_IRAP(s) && s->nal_unit_type != HEVC_NAL_CRA_NUT) {
  403. if (sps->width != last_sps->width || sps->height != last_sps->height ||
  404. sps->temporal_layer[sps->max_sub_layers - 1].max_dec_pic_buffering !=
  405. last_sps->temporal_layer[last_sps->max_sub_layers - 1].max_dec_pic_buffering)
  406. sh->no_output_of_prior_pics_flag = 0;
  407. }
  408. ff_hevc_clear_refs(s);
  409. pix_fmt = get_format(s, sps);
  410. if (pix_fmt < 0)
  411. return pix_fmt;
  412. ret = set_sps(s, sps, pix_fmt);
  413. if (ret < 0)
  414. return ret;
  415. s->seq_decode = (s->seq_decode + 1) & 0xff;
  416. s->max_ra = INT_MAX;
  417. }
  418. sh->dependent_slice_segment_flag = 0;
  419. if (!sh->first_slice_in_pic_flag) {
  420. int slice_address_length;
  421. if (s->ps.pps->dependent_slice_segments_enabled_flag)
  422. sh->dependent_slice_segment_flag = get_bits1(gb);
  423. slice_address_length = av_ceil_log2(s->ps.sps->ctb_width *
  424. s->ps.sps->ctb_height);
  425. sh->slice_segment_addr = get_bitsz(gb, slice_address_length);
  426. if (sh->slice_segment_addr >= s->ps.sps->ctb_width * s->ps.sps->ctb_height) {
  427. av_log(s->avctx, AV_LOG_ERROR,
  428. "Invalid slice segment address: %u.\n",
  429. sh->slice_segment_addr);
  430. return AVERROR_INVALIDDATA;
  431. }
  432. if (!sh->dependent_slice_segment_flag) {
  433. sh->slice_addr = sh->slice_segment_addr;
  434. s->slice_idx++;
  435. }
  436. } else {
  437. sh->slice_segment_addr = sh->slice_addr = 0;
  438. s->slice_idx = 0;
  439. s->slice_initialized = 0;
  440. }
  441. if (!sh->dependent_slice_segment_flag) {
  442. s->slice_initialized = 0;
  443. for (i = 0; i < s->ps.pps->num_extra_slice_header_bits; i++)
  444. skip_bits(gb, 1); // slice_reserved_undetermined_flag[]
  445. sh->slice_type = get_ue_golomb_long(gb);
  446. if (!(sh->slice_type == HEVC_SLICE_I ||
  447. sh->slice_type == HEVC_SLICE_P ||
  448. sh->slice_type == HEVC_SLICE_B)) {
  449. av_log(s->avctx, AV_LOG_ERROR, "Unknown slice type: %d.\n",
  450. sh->slice_type);
  451. return AVERROR_INVALIDDATA;
  452. }
  453. if (IS_IRAP(s) && sh->slice_type != HEVC_SLICE_I) {
  454. av_log(s->avctx, AV_LOG_ERROR, "Inter slices in an IRAP frame.\n");
  455. return AVERROR_INVALIDDATA;
  456. }
  457. // when flag is not present, picture is inferred to be output
  458. sh->pic_output_flag = 1;
  459. if (s->ps.pps->output_flag_present_flag)
  460. sh->pic_output_flag = get_bits1(gb);
  461. if (s->ps.sps->separate_colour_plane_flag)
  462. sh->colour_plane_id = get_bits(gb, 2);
  463. if (!IS_IDR(s)) {
  464. int poc, pos;
  465. sh->pic_order_cnt_lsb = get_bits(gb, s->ps.sps->log2_max_poc_lsb);
  466. poc = ff_hevc_compute_poc(s->ps.sps, s->pocTid0, sh->pic_order_cnt_lsb, s->nal_unit_type);
  467. if (!sh->first_slice_in_pic_flag && poc != s->poc) {
  468. av_log(s->avctx, AV_LOG_WARNING,
  469. "Ignoring POC change between slices: %d -> %d\n", s->poc, poc);
  470. if (s->avctx->err_recognition & AV_EF_EXPLODE)
  471. return AVERROR_INVALIDDATA;
  472. poc = s->poc;
  473. }
  474. s->poc = poc;
  475. sh->short_term_ref_pic_set_sps_flag = get_bits1(gb);
  476. pos = get_bits_left(gb);
  477. if (!sh->short_term_ref_pic_set_sps_flag) {
  478. ret = ff_hevc_decode_short_term_rps(gb, s->avctx, &sh->slice_rps, s->ps.sps, 1);
  479. if (ret < 0)
  480. return ret;
  481. sh->short_term_rps = &sh->slice_rps;
  482. } else {
  483. int numbits, rps_idx;
  484. if (!s->ps.sps->nb_st_rps) {
  485. av_log(s->avctx, AV_LOG_ERROR, "No ref lists in the SPS.\n");
  486. return AVERROR_INVALIDDATA;
  487. }
  488. numbits = av_ceil_log2(s->ps.sps->nb_st_rps);
  489. rps_idx = numbits > 0 ? get_bits(gb, numbits) : 0;
  490. sh->short_term_rps = &s->ps.sps->st_rps[rps_idx];
  491. }
  492. sh->short_term_ref_pic_set_size = pos - get_bits_left(gb);
  493. pos = get_bits_left(gb);
  494. ret = decode_lt_rps(s, &sh->long_term_rps, gb);
  495. if (ret < 0) {
  496. av_log(s->avctx, AV_LOG_WARNING, "Invalid long term RPS.\n");
  497. if (s->avctx->err_recognition & AV_EF_EXPLODE)
  498. return AVERROR_INVALIDDATA;
  499. }
  500. sh->long_term_ref_pic_set_size = pos - get_bits_left(gb);
  501. if (s->ps.sps->sps_temporal_mvp_enabled_flag)
  502. sh->slice_temporal_mvp_enabled_flag = get_bits1(gb);
  503. else
  504. sh->slice_temporal_mvp_enabled_flag = 0;
  505. } else {
  506. s->sh.short_term_rps = NULL;
  507. s->poc = 0;
  508. }
  509. /* 8.3.1 */
  510. if (sh->first_slice_in_pic_flag && s->temporal_id == 0 &&
  511. s->nal_unit_type != HEVC_NAL_TRAIL_N &&
  512. s->nal_unit_type != HEVC_NAL_TSA_N &&
  513. s->nal_unit_type != HEVC_NAL_STSA_N &&
  514. s->nal_unit_type != HEVC_NAL_RADL_N &&
  515. s->nal_unit_type != HEVC_NAL_RADL_R &&
  516. s->nal_unit_type != HEVC_NAL_RASL_N &&
  517. s->nal_unit_type != HEVC_NAL_RASL_R)
  518. s->pocTid0 = s->poc;
  519. if (s->ps.sps->sao_enabled) {
  520. sh->slice_sample_adaptive_offset_flag[0] = get_bits1(gb);
  521. if (s->ps.sps->chroma_format_idc) {
  522. sh->slice_sample_adaptive_offset_flag[1] =
  523. sh->slice_sample_adaptive_offset_flag[2] = get_bits1(gb);
  524. }
  525. } else {
  526. sh->slice_sample_adaptive_offset_flag[0] = 0;
  527. sh->slice_sample_adaptive_offset_flag[1] = 0;
  528. sh->slice_sample_adaptive_offset_flag[2] = 0;
  529. }
  530. sh->nb_refs[L0] = sh->nb_refs[L1] = 0;
  531. if (sh->slice_type == HEVC_SLICE_P || sh->slice_type == HEVC_SLICE_B) {
  532. int nb_refs;
  533. sh->nb_refs[L0] = s->ps.pps->num_ref_idx_l0_default_active;
  534. if (sh->slice_type == HEVC_SLICE_B)
  535. sh->nb_refs[L1] = s->ps.pps->num_ref_idx_l1_default_active;
  536. if (get_bits1(gb)) { // num_ref_idx_active_override_flag
  537. sh->nb_refs[L0] = get_ue_golomb_long(gb) + 1;
  538. if (sh->slice_type == HEVC_SLICE_B)
  539. sh->nb_refs[L1] = get_ue_golomb_long(gb) + 1;
  540. }
  541. if (sh->nb_refs[L0] > HEVC_MAX_REFS || sh->nb_refs[L1] > HEVC_MAX_REFS) {
  542. av_log(s->avctx, AV_LOG_ERROR, "Too many refs: %d/%d.\n",
  543. sh->nb_refs[L0], sh->nb_refs[L1]);
  544. return AVERROR_INVALIDDATA;
  545. }
  546. sh->rpl_modification_flag[0] = 0;
  547. sh->rpl_modification_flag[1] = 0;
  548. nb_refs = ff_hevc_frame_nb_refs(s);
  549. if (!nb_refs) {
  550. av_log(s->avctx, AV_LOG_ERROR, "Zero refs for a frame with P or B slices.\n");
  551. return AVERROR_INVALIDDATA;
  552. }
  553. if (s->ps.pps->lists_modification_present_flag && nb_refs > 1) {
  554. sh->rpl_modification_flag[0] = get_bits1(gb);
  555. if (sh->rpl_modification_flag[0]) {
  556. for (i = 0; i < sh->nb_refs[L0]; i++)
  557. sh->list_entry_lx[0][i] = get_bits(gb, av_ceil_log2(nb_refs));
  558. }
  559. if (sh->slice_type == HEVC_SLICE_B) {
  560. sh->rpl_modification_flag[1] = get_bits1(gb);
  561. if (sh->rpl_modification_flag[1] == 1)
  562. for (i = 0; i < sh->nb_refs[L1]; i++)
  563. sh->list_entry_lx[1][i] = get_bits(gb, av_ceil_log2(nb_refs));
  564. }
  565. }
  566. if (sh->slice_type == HEVC_SLICE_B)
  567. sh->mvd_l1_zero_flag = get_bits1(gb);
  568. if (s->ps.pps->cabac_init_present_flag)
  569. sh->cabac_init_flag = get_bits1(gb);
  570. else
  571. sh->cabac_init_flag = 0;
  572. sh->collocated_ref_idx = 0;
  573. if (sh->slice_temporal_mvp_enabled_flag) {
  574. sh->collocated_list = L0;
  575. if (sh->slice_type == HEVC_SLICE_B)
  576. sh->collocated_list = !get_bits1(gb);
  577. if (sh->nb_refs[sh->collocated_list] > 1) {
  578. sh->collocated_ref_idx = get_ue_golomb_long(gb);
  579. if (sh->collocated_ref_idx >= sh->nb_refs[sh->collocated_list]) {
  580. av_log(s->avctx, AV_LOG_ERROR,
  581. "Invalid collocated_ref_idx: %d.\n",
  582. sh->collocated_ref_idx);
  583. return AVERROR_INVALIDDATA;
  584. }
  585. }
  586. }
  587. if ((s->ps.pps->weighted_pred_flag && sh->slice_type == HEVC_SLICE_P) ||
  588. (s->ps.pps->weighted_bipred_flag && sh->slice_type == HEVC_SLICE_B)) {
  589. pred_weight_table(s, gb);
  590. }
  591. sh->max_num_merge_cand = 5 - get_ue_golomb_long(gb);
  592. if (sh->max_num_merge_cand < 1 || sh->max_num_merge_cand > 5) {
  593. av_log(s->avctx, AV_LOG_ERROR,
  594. "Invalid number of merging MVP candidates: %d.\n",
  595. sh->max_num_merge_cand);
  596. return AVERROR_INVALIDDATA;
  597. }
  598. }
  599. sh->slice_qp_delta = get_se_golomb(gb);
  600. if (s->ps.pps->pic_slice_level_chroma_qp_offsets_present_flag) {
  601. sh->slice_cb_qp_offset = get_se_golomb(gb);
  602. sh->slice_cr_qp_offset = get_se_golomb(gb);
  603. } else {
  604. sh->slice_cb_qp_offset = 0;
  605. sh->slice_cr_qp_offset = 0;
  606. }
  607. if (s->ps.pps->chroma_qp_offset_list_enabled_flag)
  608. sh->cu_chroma_qp_offset_enabled_flag = get_bits1(gb);
  609. else
  610. sh->cu_chroma_qp_offset_enabled_flag = 0;
  611. if (s->ps.pps->deblocking_filter_control_present_flag) {
  612. int deblocking_filter_override_flag = 0;
  613. if (s->ps.pps->deblocking_filter_override_enabled_flag)
  614. deblocking_filter_override_flag = get_bits1(gb);
  615. if (deblocking_filter_override_flag) {
  616. sh->disable_deblocking_filter_flag = get_bits1(gb);
  617. if (!sh->disable_deblocking_filter_flag) {
  618. sh->beta_offset = get_se_golomb(gb) * 2;
  619. sh->tc_offset = get_se_golomb(gb) * 2;
  620. }
  621. } else {
  622. sh->disable_deblocking_filter_flag = s->ps.pps->disable_dbf;
  623. sh->beta_offset = s->ps.pps->beta_offset;
  624. sh->tc_offset = s->ps.pps->tc_offset;
  625. }
  626. } else {
  627. sh->disable_deblocking_filter_flag = 0;
  628. sh->beta_offset = 0;
  629. sh->tc_offset = 0;
  630. }
  631. if (s->ps.pps->seq_loop_filter_across_slices_enabled_flag &&
  632. (sh->slice_sample_adaptive_offset_flag[0] ||
  633. sh->slice_sample_adaptive_offset_flag[1] ||
  634. !sh->disable_deblocking_filter_flag)) {
  635. sh->slice_loop_filter_across_slices_enabled_flag = get_bits1(gb);
  636. } else {
  637. sh->slice_loop_filter_across_slices_enabled_flag = s->ps.pps->seq_loop_filter_across_slices_enabled_flag;
  638. }
  639. } else if (!s->slice_initialized) {
  640. av_log(s->avctx, AV_LOG_ERROR, "Independent slice segment missing.\n");
  641. return AVERROR_INVALIDDATA;
  642. }
  643. sh->num_entry_point_offsets = 0;
  644. if (s->ps.pps->tiles_enabled_flag || s->ps.pps->entropy_coding_sync_enabled_flag) {
  645. unsigned num_entry_point_offsets = get_ue_golomb_long(gb);
  646. // It would be possible to bound this tighter but this here is simpler
  647. if (num_entry_point_offsets > get_bits_left(gb)) {
  648. av_log(s->avctx, AV_LOG_ERROR, "num_entry_point_offsets %d is invalid\n", num_entry_point_offsets);
  649. return AVERROR_INVALIDDATA;
  650. }
  651. sh->num_entry_point_offsets = num_entry_point_offsets;
  652. if (sh->num_entry_point_offsets > 0) {
  653. int offset_len = get_ue_golomb_long(gb) + 1;
  654. if (offset_len < 1 || offset_len > 32) {
  655. sh->num_entry_point_offsets = 0;
  656. av_log(s->avctx, AV_LOG_ERROR, "offset_len %d is invalid\n", offset_len);
  657. return AVERROR_INVALIDDATA;
  658. }
  659. av_freep(&sh->entry_point_offset);
  660. av_freep(&sh->offset);
  661. av_freep(&sh->size);
  662. sh->entry_point_offset = av_malloc_array(sh->num_entry_point_offsets, sizeof(unsigned));
  663. sh->offset = av_malloc_array(sh->num_entry_point_offsets, sizeof(int));
  664. sh->size = av_malloc_array(sh->num_entry_point_offsets, sizeof(int));
  665. if (!sh->entry_point_offset || !sh->offset || !sh->size) {
  666. sh->num_entry_point_offsets = 0;
  667. av_log(s->avctx, AV_LOG_ERROR, "Failed to allocate memory\n");
  668. return AVERROR(ENOMEM);
  669. }
  670. for (i = 0; i < sh->num_entry_point_offsets; i++) {
  671. unsigned val = get_bits_long(gb, offset_len);
  672. sh->entry_point_offset[i] = val + 1; // +1; // +1 to get the size
  673. }
  674. if (s->threads_number > 1 && (s->ps.pps->num_tile_rows > 1 || s->ps.pps->num_tile_columns > 1)) {
  675. s->enable_parallel_tiles = 0; // TODO: you can enable tiles in parallel here
  676. s->threads_number = 1;
  677. } else
  678. s->enable_parallel_tiles = 0;
  679. } else
  680. s->enable_parallel_tiles = 0;
  681. }
  682. if (s->ps.pps->slice_header_extension_present_flag) {
  683. unsigned int length = get_ue_golomb_long(gb);
  684. if (length*8LL > get_bits_left(gb)) {
  685. av_log(s->avctx, AV_LOG_ERROR, "too many slice_header_extension_data_bytes\n");
  686. return AVERROR_INVALIDDATA;
  687. }
  688. for (i = 0; i < length; i++)
  689. skip_bits(gb, 8); // slice_header_extension_data_byte
  690. }
  691. // Inferred parameters
  692. sh->slice_qp = 26U + s->ps.pps->pic_init_qp_minus26 + sh->slice_qp_delta;
  693. if (sh->slice_qp > 51 ||
  694. sh->slice_qp < -s->ps.sps->qp_bd_offset) {
  695. av_log(s->avctx, AV_LOG_ERROR,
  696. "The slice_qp %d is outside the valid range "
  697. "[%d, 51].\n",
  698. sh->slice_qp,
  699. -s->ps.sps->qp_bd_offset);
  700. return AVERROR_INVALIDDATA;
  701. }
  702. sh->slice_ctb_addr_rs = sh->slice_segment_addr;
  703. if (!s->sh.slice_ctb_addr_rs && s->sh.dependent_slice_segment_flag) {
  704. av_log(s->avctx, AV_LOG_ERROR, "Impossible slice segment.\n");
  705. return AVERROR_INVALIDDATA;
  706. }
  707. if (get_bits_left(gb) < 0) {
  708. av_log(s->avctx, AV_LOG_ERROR,
  709. "Overread slice header by %d bits\n", -get_bits_left(gb));
  710. return AVERROR_INVALIDDATA;
  711. }
  712. s->HEVClc->first_qp_group = !s->sh.dependent_slice_segment_flag;
  713. if (!s->ps.pps->cu_qp_delta_enabled_flag)
  714. s->HEVClc->qp_y = s->sh.slice_qp;
  715. s->slice_initialized = 1;
  716. s->HEVClc->tu.cu_qp_offset_cb = 0;
  717. s->HEVClc->tu.cu_qp_offset_cr = 0;
  718. return 0;
  719. }
  720. #define CTB(tab, x, y) ((tab)[(y) * s->ps.sps->ctb_width + (x)])
  721. #define SET_SAO(elem, value) \
  722. do { \
  723. if (!sao_merge_up_flag && !sao_merge_left_flag) \
  724. sao->elem = value; \
  725. else if (sao_merge_left_flag) \
  726. sao->elem = CTB(s->sao, rx-1, ry).elem; \
  727. else if (sao_merge_up_flag) \
  728. sao->elem = CTB(s->sao, rx, ry-1).elem; \
  729. else \
  730. sao->elem = 0; \
  731. } while (0)
  732. static void hls_sao_param(HEVCContext *s, int rx, int ry)
  733. {
  734. HEVCLocalContext *lc = s->HEVClc;
  735. int sao_merge_left_flag = 0;
  736. int sao_merge_up_flag = 0;
  737. SAOParams *sao = &CTB(s->sao, rx, ry);
  738. int c_idx, i;
  739. if (s->sh.slice_sample_adaptive_offset_flag[0] ||
  740. s->sh.slice_sample_adaptive_offset_flag[1]) {
  741. if (rx > 0) {
  742. if (lc->ctb_left_flag)
  743. sao_merge_left_flag = ff_hevc_sao_merge_flag_decode(s);
  744. }
  745. if (ry > 0 && !sao_merge_left_flag) {
  746. if (lc->ctb_up_flag)
  747. sao_merge_up_flag = ff_hevc_sao_merge_flag_decode(s);
  748. }
  749. }
  750. for (c_idx = 0; c_idx < (s->ps.sps->chroma_format_idc ? 3 : 1); c_idx++) {
  751. int log2_sao_offset_scale = c_idx == 0 ? s->ps.pps->log2_sao_offset_scale_luma :
  752. s->ps.pps->log2_sao_offset_scale_chroma;
  753. if (!s->sh.slice_sample_adaptive_offset_flag[c_idx]) {
  754. sao->type_idx[c_idx] = SAO_NOT_APPLIED;
  755. continue;
  756. }
  757. if (c_idx == 2) {
  758. sao->type_idx[2] = sao->type_idx[1];
  759. sao->eo_class[2] = sao->eo_class[1];
  760. } else {
  761. SET_SAO(type_idx[c_idx], ff_hevc_sao_type_idx_decode(s));
  762. }
  763. if (sao->type_idx[c_idx] == SAO_NOT_APPLIED)
  764. continue;
  765. for (i = 0; i < 4; i++)
  766. SET_SAO(offset_abs[c_idx][i], ff_hevc_sao_offset_abs_decode(s));
  767. if (sao->type_idx[c_idx] == SAO_BAND) {
  768. for (i = 0; i < 4; i++) {
  769. if (sao->offset_abs[c_idx][i]) {
  770. SET_SAO(offset_sign[c_idx][i],
  771. ff_hevc_sao_offset_sign_decode(s));
  772. } else {
  773. sao->offset_sign[c_idx][i] = 0;
  774. }
  775. }
  776. SET_SAO(band_position[c_idx], ff_hevc_sao_band_position_decode(s));
  777. } else if (c_idx != 2) {
  778. SET_SAO(eo_class[c_idx], ff_hevc_sao_eo_class_decode(s));
  779. }
  780. // Inferred parameters
  781. sao->offset_val[c_idx][0] = 0;
  782. for (i = 0; i < 4; i++) {
  783. sao->offset_val[c_idx][i + 1] = sao->offset_abs[c_idx][i];
  784. if (sao->type_idx[c_idx] == SAO_EDGE) {
  785. if (i > 1)
  786. sao->offset_val[c_idx][i + 1] = -sao->offset_val[c_idx][i + 1];
  787. } else if (sao->offset_sign[c_idx][i]) {
  788. sao->offset_val[c_idx][i + 1] = -sao->offset_val[c_idx][i + 1];
  789. }
  790. sao->offset_val[c_idx][i + 1] *= 1 << log2_sao_offset_scale;
  791. }
  792. }
  793. }
  794. #undef SET_SAO
  795. #undef CTB
  796. static int hls_cross_component_pred(HEVCContext *s, int idx) {
  797. HEVCLocalContext *lc = s->HEVClc;
  798. int log2_res_scale_abs_plus1 = ff_hevc_log2_res_scale_abs(s, idx);
  799. if (log2_res_scale_abs_plus1 != 0) {
  800. int res_scale_sign_flag = ff_hevc_res_scale_sign_flag(s, idx);
  801. lc->tu.res_scale_val = (1 << (log2_res_scale_abs_plus1 - 1)) *
  802. (1 - 2 * res_scale_sign_flag);
  803. } else {
  804. lc->tu.res_scale_val = 0;
  805. }
  806. return 0;
  807. }
  808. static int hls_transform_unit(HEVCContext *s, int x0, int y0,
  809. int xBase, int yBase, int cb_xBase, int cb_yBase,
  810. int log2_cb_size, int log2_trafo_size,
  811. int blk_idx, int cbf_luma, int *cbf_cb, int *cbf_cr)
  812. {
  813. HEVCLocalContext *lc = s->HEVClc;
  814. const int log2_trafo_size_c = log2_trafo_size - s->ps.sps->hshift[1];
  815. int i;
  816. if (lc->cu.pred_mode == MODE_INTRA) {
  817. int trafo_size = 1 << log2_trafo_size;
  818. ff_hevc_set_neighbour_available(s, x0, y0, trafo_size, trafo_size);
  819. s->hpc.intra_pred[log2_trafo_size - 2](s, x0, y0, 0);
  820. }
  821. if (cbf_luma || cbf_cb[0] || cbf_cr[0] ||
  822. (s->ps.sps->chroma_format_idc == 2 && (cbf_cb[1] || cbf_cr[1]))) {
  823. int scan_idx = SCAN_DIAG;
  824. int scan_idx_c = SCAN_DIAG;
  825. int cbf_chroma = cbf_cb[0] || cbf_cr[0] ||
  826. (s->ps.sps->chroma_format_idc == 2 &&
  827. (cbf_cb[1] || cbf_cr[1]));
  828. if (s->ps.pps->cu_qp_delta_enabled_flag && !lc->tu.is_cu_qp_delta_coded) {
  829. lc->tu.cu_qp_delta = ff_hevc_cu_qp_delta_abs(s);
  830. if (lc->tu.cu_qp_delta != 0)
  831. if (ff_hevc_cu_qp_delta_sign_flag(s) == 1)
  832. lc->tu.cu_qp_delta = -lc->tu.cu_qp_delta;
  833. lc->tu.is_cu_qp_delta_coded = 1;
  834. if (lc->tu.cu_qp_delta < -(26 + s->ps.sps->qp_bd_offset / 2) ||
  835. lc->tu.cu_qp_delta > (25 + s->ps.sps->qp_bd_offset / 2)) {
  836. av_log(s->avctx, AV_LOG_ERROR,
  837. "The cu_qp_delta %d is outside the valid range "
  838. "[%d, %d].\n",
  839. lc->tu.cu_qp_delta,
  840. -(26 + s->ps.sps->qp_bd_offset / 2),
  841. (25 + s->ps.sps->qp_bd_offset / 2));
  842. return AVERROR_INVALIDDATA;
  843. }
  844. ff_hevc_set_qPy(s, cb_xBase, cb_yBase, log2_cb_size);
  845. }
  846. if (s->sh.cu_chroma_qp_offset_enabled_flag && cbf_chroma &&
  847. !lc->cu.cu_transquant_bypass_flag && !lc->tu.is_cu_chroma_qp_offset_coded) {
  848. int cu_chroma_qp_offset_flag = ff_hevc_cu_chroma_qp_offset_flag(s);
  849. if (cu_chroma_qp_offset_flag) {
  850. int cu_chroma_qp_offset_idx = 0;
  851. if (s->ps.pps->chroma_qp_offset_list_len_minus1 > 0) {
  852. cu_chroma_qp_offset_idx = ff_hevc_cu_chroma_qp_offset_idx(s);
  853. av_log(s->avctx, AV_LOG_ERROR,
  854. "cu_chroma_qp_offset_idx not yet tested.\n");
  855. }
  856. lc->tu.cu_qp_offset_cb = s->ps.pps->cb_qp_offset_list[cu_chroma_qp_offset_idx];
  857. lc->tu.cu_qp_offset_cr = s->ps.pps->cr_qp_offset_list[cu_chroma_qp_offset_idx];
  858. } else {
  859. lc->tu.cu_qp_offset_cb = 0;
  860. lc->tu.cu_qp_offset_cr = 0;
  861. }
  862. lc->tu.is_cu_chroma_qp_offset_coded = 1;
  863. }
  864. if (lc->cu.pred_mode == MODE_INTRA && log2_trafo_size < 4) {
  865. if (lc->tu.intra_pred_mode >= 6 &&
  866. lc->tu.intra_pred_mode <= 14) {
  867. scan_idx = SCAN_VERT;
  868. } else if (lc->tu.intra_pred_mode >= 22 &&
  869. lc->tu.intra_pred_mode <= 30) {
  870. scan_idx = SCAN_HORIZ;
  871. }
  872. if (lc->tu.intra_pred_mode_c >= 6 &&
  873. lc->tu.intra_pred_mode_c <= 14) {
  874. scan_idx_c = SCAN_VERT;
  875. } else if (lc->tu.intra_pred_mode_c >= 22 &&
  876. lc->tu.intra_pred_mode_c <= 30) {
  877. scan_idx_c = SCAN_HORIZ;
  878. }
  879. }
  880. lc->tu.cross_pf = 0;
  881. if (cbf_luma)
  882. ff_hevc_hls_residual_coding(s, x0, y0, log2_trafo_size, scan_idx, 0);
  883. if (s->ps.sps->chroma_format_idc && (log2_trafo_size > 2 || s->ps.sps->chroma_format_idc == 3)) {
  884. int trafo_size_h = 1 << (log2_trafo_size_c + s->ps.sps->hshift[1]);
  885. int trafo_size_v = 1 << (log2_trafo_size_c + s->ps.sps->vshift[1]);
  886. lc->tu.cross_pf = (s->ps.pps->cross_component_prediction_enabled_flag && cbf_luma &&
  887. (lc->cu.pred_mode == MODE_INTER ||
  888. (lc->tu.chroma_mode_c == 4)));
  889. if (lc->tu.cross_pf) {
  890. hls_cross_component_pred(s, 0);
  891. }
  892. for (i = 0; i < (s->ps.sps->chroma_format_idc == 2 ? 2 : 1); i++) {
  893. if (lc->cu.pred_mode == MODE_INTRA) {
  894. ff_hevc_set_neighbour_available(s, x0, y0 + (i << log2_trafo_size_c), trafo_size_h, trafo_size_v);
  895. s->hpc.intra_pred[log2_trafo_size_c - 2](s, x0, y0 + (i << log2_trafo_size_c), 1);
  896. }
  897. if (cbf_cb[i])
  898. ff_hevc_hls_residual_coding(s, x0, y0 + (i << log2_trafo_size_c),
  899. log2_trafo_size_c, scan_idx_c, 1);
  900. else
  901. if (lc->tu.cross_pf) {
  902. ptrdiff_t stride = s->frame->linesize[1];
  903. int hshift = s->ps.sps->hshift[1];
  904. int vshift = s->ps.sps->vshift[1];
  905. int16_t *coeffs_y = (int16_t*)lc->edge_emu_buffer;
  906. int16_t *coeffs = (int16_t*)lc->edge_emu_buffer2;
  907. int size = 1 << log2_trafo_size_c;
  908. uint8_t *dst = &s->frame->data[1][(y0 >> vshift) * stride +
  909. ((x0 >> hshift) << s->ps.sps->pixel_shift)];
  910. for (i = 0; i < (size * size); i++) {
  911. coeffs[i] = ((lc->tu.res_scale_val * coeffs_y[i]) >> 3);
  912. }
  913. s->hevcdsp.add_residual[log2_trafo_size_c-2](dst, coeffs, stride);
  914. }
  915. }
  916. if (lc->tu.cross_pf) {
  917. hls_cross_component_pred(s, 1);
  918. }
  919. for (i = 0; i < (s->ps.sps->chroma_format_idc == 2 ? 2 : 1); i++) {
  920. if (lc->cu.pred_mode == MODE_INTRA) {
  921. ff_hevc_set_neighbour_available(s, x0, y0 + (i << log2_trafo_size_c), trafo_size_h, trafo_size_v);
  922. s->hpc.intra_pred[log2_trafo_size_c - 2](s, x0, y0 + (i << log2_trafo_size_c), 2);
  923. }
  924. if (cbf_cr[i])
  925. ff_hevc_hls_residual_coding(s, x0, y0 + (i << log2_trafo_size_c),
  926. log2_trafo_size_c, scan_idx_c, 2);
  927. else
  928. if (lc->tu.cross_pf) {
  929. ptrdiff_t stride = s->frame->linesize[2];
  930. int hshift = s->ps.sps->hshift[2];
  931. int vshift = s->ps.sps->vshift[2];
  932. int16_t *coeffs_y = (int16_t*)lc->edge_emu_buffer;
  933. int16_t *coeffs = (int16_t*)lc->edge_emu_buffer2;
  934. int size = 1 << log2_trafo_size_c;
  935. uint8_t *dst = &s->frame->data[2][(y0 >> vshift) * stride +
  936. ((x0 >> hshift) << s->ps.sps->pixel_shift)];
  937. for (i = 0; i < (size * size); i++) {
  938. coeffs[i] = ((lc->tu.res_scale_val * coeffs_y[i]) >> 3);
  939. }
  940. s->hevcdsp.add_residual[log2_trafo_size_c-2](dst, coeffs, stride);
  941. }
  942. }
  943. } else if (s->ps.sps->chroma_format_idc && blk_idx == 3) {
  944. int trafo_size_h = 1 << (log2_trafo_size + 1);
  945. int trafo_size_v = 1 << (log2_trafo_size + s->ps.sps->vshift[1]);
  946. for (i = 0; i < (s->ps.sps->chroma_format_idc == 2 ? 2 : 1); i++) {
  947. if (lc->cu.pred_mode == MODE_INTRA) {
  948. ff_hevc_set_neighbour_available(s, xBase, yBase + (i << log2_trafo_size),
  949. trafo_size_h, trafo_size_v);
  950. s->hpc.intra_pred[log2_trafo_size - 2](s, xBase, yBase + (i << log2_trafo_size), 1);
  951. }
  952. if (cbf_cb[i])
  953. ff_hevc_hls_residual_coding(s, xBase, yBase + (i << log2_trafo_size),
  954. log2_trafo_size, scan_idx_c, 1);
  955. }
  956. for (i = 0; i < (s->ps.sps->chroma_format_idc == 2 ? 2 : 1); i++) {
  957. if (lc->cu.pred_mode == MODE_INTRA) {
  958. ff_hevc_set_neighbour_available(s, xBase, yBase + (i << log2_trafo_size),
  959. trafo_size_h, trafo_size_v);
  960. s->hpc.intra_pred[log2_trafo_size - 2](s, xBase, yBase + (i << log2_trafo_size), 2);
  961. }
  962. if (cbf_cr[i])
  963. ff_hevc_hls_residual_coding(s, xBase, yBase + (i << log2_trafo_size),
  964. log2_trafo_size, scan_idx_c, 2);
  965. }
  966. }
  967. } else if (s->ps.sps->chroma_format_idc && lc->cu.pred_mode == MODE_INTRA) {
  968. if (log2_trafo_size > 2 || s->ps.sps->chroma_format_idc == 3) {
  969. int trafo_size_h = 1 << (log2_trafo_size_c + s->ps.sps->hshift[1]);
  970. int trafo_size_v = 1 << (log2_trafo_size_c + s->ps.sps->vshift[1]);
  971. ff_hevc_set_neighbour_available(s, x0, y0, trafo_size_h, trafo_size_v);
  972. s->hpc.intra_pred[log2_trafo_size_c - 2](s, x0, y0, 1);
  973. s->hpc.intra_pred[log2_trafo_size_c - 2](s, x0, y0, 2);
  974. if (s->ps.sps->chroma_format_idc == 2) {
  975. ff_hevc_set_neighbour_available(s, x0, y0 + (1 << log2_trafo_size_c),
  976. trafo_size_h, trafo_size_v);
  977. s->hpc.intra_pred[log2_trafo_size_c - 2](s, x0, y0 + (1 << log2_trafo_size_c), 1);
  978. s->hpc.intra_pred[log2_trafo_size_c - 2](s, x0, y0 + (1 << log2_trafo_size_c), 2);
  979. }
  980. } else if (blk_idx == 3) {
  981. int trafo_size_h = 1 << (log2_trafo_size + 1);
  982. int trafo_size_v = 1 << (log2_trafo_size + s->ps.sps->vshift[1]);
  983. ff_hevc_set_neighbour_available(s, xBase, yBase,
  984. trafo_size_h, trafo_size_v);
  985. s->hpc.intra_pred[log2_trafo_size - 2](s, xBase, yBase, 1);
  986. s->hpc.intra_pred[log2_trafo_size - 2](s, xBase, yBase, 2);
  987. if (s->ps.sps->chroma_format_idc == 2) {
  988. ff_hevc_set_neighbour_available(s, xBase, yBase + (1 << (log2_trafo_size)),
  989. trafo_size_h, trafo_size_v);
  990. s->hpc.intra_pred[log2_trafo_size - 2](s, xBase, yBase + (1 << (log2_trafo_size)), 1);
  991. s->hpc.intra_pred[log2_trafo_size - 2](s, xBase, yBase + (1 << (log2_trafo_size)), 2);
  992. }
  993. }
  994. }
  995. return 0;
  996. }
  997. static void set_deblocking_bypass(HEVCContext *s, int x0, int y0, int log2_cb_size)
  998. {
  999. int cb_size = 1 << log2_cb_size;
  1000. int log2_min_pu_size = s->ps.sps->log2_min_pu_size;
  1001. int min_pu_width = s->ps.sps->min_pu_width;
  1002. int x_end = FFMIN(x0 + cb_size, s->ps.sps->width);
  1003. int y_end = FFMIN(y0 + cb_size, s->ps.sps->height);
  1004. int i, j;
  1005. for (j = (y0 >> log2_min_pu_size); j < (y_end >> log2_min_pu_size); j++)
  1006. for (i = (x0 >> log2_min_pu_size); i < (x_end >> log2_min_pu_size); i++)
  1007. s->is_pcm[i + j * min_pu_width] = 2;
  1008. }
  1009. static int hls_transform_tree(HEVCContext *s, int x0, int y0,
  1010. int xBase, int yBase, int cb_xBase, int cb_yBase,
  1011. int log2_cb_size, int log2_trafo_size,
  1012. int trafo_depth, int blk_idx,
  1013. const int *base_cbf_cb, const int *base_cbf_cr)
  1014. {
  1015. HEVCLocalContext *lc = s->HEVClc;
  1016. uint8_t split_transform_flag;
  1017. int cbf_cb[2];
  1018. int cbf_cr[2];
  1019. int ret;
  1020. cbf_cb[0] = base_cbf_cb[0];
  1021. cbf_cb[1] = base_cbf_cb[1];
  1022. cbf_cr[0] = base_cbf_cr[0];
  1023. cbf_cr[1] = base_cbf_cr[1];
  1024. if (lc->cu.intra_split_flag) {
  1025. if (trafo_depth == 1) {
  1026. lc->tu.intra_pred_mode = lc->pu.intra_pred_mode[blk_idx];
  1027. if (s->ps.sps->chroma_format_idc == 3) {
  1028. lc->tu.intra_pred_mode_c = lc->pu.intra_pred_mode_c[blk_idx];
  1029. lc->tu.chroma_mode_c = lc->pu.chroma_mode_c[blk_idx];
  1030. } else {
  1031. lc->tu.intra_pred_mode_c = lc->pu.intra_pred_mode_c[0];
  1032. lc->tu.chroma_mode_c = lc->pu.chroma_mode_c[0];
  1033. }
  1034. }
  1035. } else {
  1036. lc->tu.intra_pred_mode = lc->pu.intra_pred_mode[0];
  1037. lc->tu.intra_pred_mode_c = lc->pu.intra_pred_mode_c[0];
  1038. lc->tu.chroma_mode_c = lc->pu.chroma_mode_c[0];
  1039. }
  1040. if (log2_trafo_size <= s->ps.sps->log2_max_trafo_size &&
  1041. log2_trafo_size > s->ps.sps->log2_min_tb_size &&
  1042. trafo_depth < lc->cu.max_trafo_depth &&
  1043. !(lc->cu.intra_split_flag && trafo_depth == 0)) {
  1044. split_transform_flag = ff_hevc_split_transform_flag_decode(s, log2_trafo_size);
  1045. } else {
  1046. int inter_split = s->ps.sps->max_transform_hierarchy_depth_inter == 0 &&
  1047. lc->cu.pred_mode == MODE_INTER &&
  1048. lc->cu.part_mode != PART_2Nx2N &&
  1049. trafo_depth == 0;
  1050. split_transform_flag = log2_trafo_size > s->ps.sps->log2_max_trafo_size ||
  1051. (lc->cu.intra_split_flag && trafo_depth == 0) ||
  1052. inter_split;
  1053. }
  1054. if (s->ps.sps->chroma_format_idc && (log2_trafo_size > 2 || s->ps.sps->chroma_format_idc == 3)) {
  1055. if (trafo_depth == 0 || cbf_cb[0]) {
  1056. cbf_cb[0] = ff_hevc_cbf_cb_cr_decode(s, trafo_depth);
  1057. if (s->ps.sps->chroma_format_idc == 2 && (!split_transform_flag || log2_trafo_size == 3)) {
  1058. cbf_cb[1] = ff_hevc_cbf_cb_cr_decode(s, trafo_depth);
  1059. }
  1060. }
  1061. if (trafo_depth == 0 || cbf_cr[0]) {
  1062. cbf_cr[0] = ff_hevc_cbf_cb_cr_decode(s, trafo_depth);
  1063. if (s->ps.sps->chroma_format_idc == 2 && (!split_transform_flag || log2_trafo_size == 3)) {
  1064. cbf_cr[1] = ff_hevc_cbf_cb_cr_decode(s, trafo_depth);
  1065. }
  1066. }
  1067. }
  1068. if (split_transform_flag) {
  1069. const int trafo_size_split = 1 << (log2_trafo_size - 1);
  1070. const int x1 = x0 + trafo_size_split;
  1071. const int y1 = y0 + trafo_size_split;
  1072. #define SUBDIVIDE(x, y, idx) \
  1073. do { \
  1074. ret = hls_transform_tree(s, x, y, x0, y0, cb_xBase, cb_yBase, log2_cb_size, \
  1075. log2_trafo_size - 1, trafo_depth + 1, idx, \
  1076. cbf_cb, cbf_cr); \
  1077. if (ret < 0) \
  1078. return ret; \
  1079. } while (0)
  1080. SUBDIVIDE(x0, y0, 0);
  1081. SUBDIVIDE(x1, y0, 1);
  1082. SUBDIVIDE(x0, y1, 2);
  1083. SUBDIVIDE(x1, y1, 3);
  1084. #undef SUBDIVIDE
  1085. } else {
  1086. int min_tu_size = 1 << s->ps.sps->log2_min_tb_size;
  1087. int log2_min_tu_size = s->ps.sps->log2_min_tb_size;
  1088. int min_tu_width = s->ps.sps->min_tb_width;
  1089. int cbf_luma = 1;
  1090. if (lc->cu.pred_mode == MODE_INTRA || trafo_depth != 0 ||
  1091. cbf_cb[0] || cbf_cr[0] ||
  1092. (s->ps.sps->chroma_format_idc == 2 && (cbf_cb[1] || cbf_cr[1]))) {
  1093. cbf_luma = ff_hevc_cbf_luma_decode(s, trafo_depth);
  1094. }
  1095. ret = hls_transform_unit(s, x0, y0, xBase, yBase, cb_xBase, cb_yBase,
  1096. log2_cb_size, log2_trafo_size,
  1097. blk_idx, cbf_luma, cbf_cb, cbf_cr);
  1098. if (ret < 0)
  1099. return ret;
  1100. // TODO: store cbf_luma somewhere else
  1101. if (cbf_luma) {
  1102. int i, j;
  1103. for (i = 0; i < (1 << log2_trafo_size); i += min_tu_size)
  1104. for (j = 0; j < (1 << log2_trafo_size); j += min_tu_size) {
  1105. int x_tu = (x0 + j) >> log2_min_tu_size;
  1106. int y_tu = (y0 + i) >> log2_min_tu_size;
  1107. s->cbf_luma[y_tu * min_tu_width + x_tu] = 1;
  1108. }
  1109. }
  1110. if (!s->sh.disable_deblocking_filter_flag) {
  1111. ff_hevc_deblocking_boundary_strengths(s, x0, y0, log2_trafo_size);
  1112. if (s->ps.pps->transquant_bypass_enable_flag &&
  1113. lc->cu.cu_transquant_bypass_flag)
  1114. set_deblocking_bypass(s, x0, y0, log2_trafo_size);
  1115. }
  1116. }
  1117. return 0;
  1118. }
  1119. static int hls_pcm_sample(HEVCContext *s, int x0, int y0, int log2_cb_size)
  1120. {
  1121. HEVCLocalContext *lc = s->HEVClc;
  1122. GetBitContext gb;
  1123. int cb_size = 1 << log2_cb_size;
  1124. ptrdiff_t stride0 = s->frame->linesize[0];
  1125. ptrdiff_t stride1 = s->frame->linesize[1];
  1126. ptrdiff_t stride2 = s->frame->linesize[2];
  1127. uint8_t *dst0 = &s->frame->data[0][y0 * stride0 + (x0 << s->ps.sps->pixel_shift)];
  1128. uint8_t *dst1 = &s->frame->data[1][(y0 >> s->ps.sps->vshift[1]) * stride1 + ((x0 >> s->ps.sps->hshift[1]) << s->ps.sps->pixel_shift)];
  1129. uint8_t *dst2 = &s->frame->data[2][(y0 >> s->ps.sps->vshift[2]) * stride2 + ((x0 >> s->ps.sps->hshift[2]) << s->ps.sps->pixel_shift)];
  1130. int length = cb_size * cb_size * s->ps.sps->pcm.bit_depth +
  1131. (((cb_size >> s->ps.sps->hshift[1]) * (cb_size >> s->ps.sps->vshift[1])) +
  1132. ((cb_size >> s->ps.sps->hshift[2]) * (cb_size >> s->ps.sps->vshift[2]))) *
  1133. s->ps.sps->pcm.bit_depth_chroma;
  1134. const uint8_t *pcm = skip_bytes(&lc->cc, (length + 7) >> 3);
  1135. int ret;
  1136. if (!s->sh.disable_deblocking_filter_flag)
  1137. ff_hevc_deblocking_boundary_strengths(s, x0, y0, log2_cb_size);
  1138. ret = init_get_bits(&gb, pcm, length);
  1139. if (ret < 0)
  1140. return ret;
  1141. s->hevcdsp.put_pcm(dst0, stride0, cb_size, cb_size, &gb, s->ps.sps->pcm.bit_depth);
  1142. if (s->ps.sps->chroma_format_idc) {
  1143. s->hevcdsp.put_pcm(dst1, stride1,
  1144. cb_size >> s->ps.sps->hshift[1],
  1145. cb_size >> s->ps.sps->vshift[1],
  1146. &gb, s->ps.sps->pcm.bit_depth_chroma);
  1147. s->hevcdsp.put_pcm(dst2, stride2,
  1148. cb_size >> s->ps.sps->hshift[2],
  1149. cb_size >> s->ps.sps->vshift[2],
  1150. &gb, s->ps.sps->pcm.bit_depth_chroma);
  1151. }
  1152. return 0;
  1153. }
  1154. /**
  1155. * 8.5.3.2.2.1 Luma sample unidirectional interpolation process
  1156. *
  1157. * @param s HEVC decoding context
  1158. * @param dst target buffer for block data at block position
  1159. * @param dststride stride of the dst buffer
  1160. * @param ref reference picture buffer at origin (0, 0)
  1161. * @param mv motion vector (relative to block position) to get pixel data from
  1162. * @param x_off horizontal position of block from origin (0, 0)
  1163. * @param y_off vertical position of block from origin (0, 0)
  1164. * @param block_w width of block
  1165. * @param block_h height of block
  1166. * @param luma_weight weighting factor applied to the luma prediction
  1167. * @param luma_offset additive offset applied to the luma prediction value
  1168. */
  1169. static void luma_mc_uni(HEVCContext *s, uint8_t *dst, ptrdiff_t dststride,
  1170. AVFrame *ref, const Mv *mv, int x_off, int y_off,
  1171. int block_w, int block_h, int luma_weight, int luma_offset)
  1172. {
  1173. HEVCLocalContext *lc = s->HEVClc;
  1174. uint8_t *src = ref->data[0];
  1175. ptrdiff_t srcstride = ref->linesize[0];
  1176. int pic_width = s->ps.sps->width;
  1177. int pic_height = s->ps.sps->height;
  1178. int mx = mv->x & 3;
  1179. int my = mv->y & 3;
  1180. int weight_flag = (s->sh.slice_type == HEVC_SLICE_P && s->ps.pps->weighted_pred_flag) ||
  1181. (s->sh.slice_type == HEVC_SLICE_B && s->ps.pps->weighted_bipred_flag);
  1182. int idx = ff_hevc_pel_weight[block_w];
  1183. x_off += mv->x >> 2;
  1184. y_off += mv->y >> 2;
  1185. src += y_off * srcstride + (x_off * (1 << s->ps.sps->pixel_shift));
  1186. if (x_off < QPEL_EXTRA_BEFORE || y_off < QPEL_EXTRA_AFTER ||
  1187. x_off >= pic_width - block_w - QPEL_EXTRA_AFTER ||
  1188. y_off >= pic_height - block_h - QPEL_EXTRA_AFTER) {
  1189. const ptrdiff_t edge_emu_stride = EDGE_EMU_BUFFER_STRIDE << s->ps.sps->pixel_shift;
  1190. int offset = QPEL_EXTRA_BEFORE * srcstride + (QPEL_EXTRA_BEFORE << s->ps.sps->pixel_shift);
  1191. int buf_offset = QPEL_EXTRA_BEFORE * edge_emu_stride + (QPEL_EXTRA_BEFORE << s->ps.sps->pixel_shift);
  1192. s->vdsp.emulated_edge_mc(lc->edge_emu_buffer, src - offset,
  1193. edge_emu_stride, srcstride,
  1194. block_w + QPEL_EXTRA,
  1195. block_h + QPEL_EXTRA,
  1196. x_off - QPEL_EXTRA_BEFORE, y_off - QPEL_EXTRA_BEFORE,
  1197. pic_width, pic_height);
  1198. src = lc->edge_emu_buffer + buf_offset;
  1199. srcstride = edge_emu_stride;
  1200. }
  1201. if (!weight_flag)
  1202. s->hevcdsp.put_hevc_qpel_uni[idx][!!my][!!mx](dst, dststride, src, srcstride,
  1203. block_h, mx, my, block_w);
  1204. else
  1205. s->hevcdsp.put_hevc_qpel_uni_w[idx][!!my][!!mx](dst, dststride, src, srcstride,
  1206. block_h, s->sh.luma_log2_weight_denom,
  1207. luma_weight, luma_offset, mx, my, block_w);
  1208. }
  1209. /**
  1210. * 8.5.3.2.2.1 Luma sample bidirectional interpolation process
  1211. *
  1212. * @param s HEVC decoding context
  1213. * @param dst target buffer for block data at block position
  1214. * @param dststride stride of the dst buffer
  1215. * @param ref0 reference picture0 buffer at origin (0, 0)
  1216. * @param mv0 motion vector0 (relative to block position) to get pixel data from
  1217. * @param x_off horizontal position of block from origin (0, 0)
  1218. * @param y_off vertical position of block from origin (0, 0)
  1219. * @param block_w width of block
  1220. * @param block_h height of block
  1221. * @param ref1 reference picture1 buffer at origin (0, 0)
  1222. * @param mv1 motion vector1 (relative to block position) to get pixel data from
  1223. * @param current_mv current motion vector structure
  1224. */
  1225. static void luma_mc_bi(HEVCContext *s, uint8_t *dst, ptrdiff_t dststride,
  1226. AVFrame *ref0, const Mv *mv0, int x_off, int y_off,
  1227. int block_w, int block_h, AVFrame *ref1, const Mv *mv1, struct MvField *current_mv)
  1228. {
  1229. HEVCLocalContext *lc = s->HEVClc;
  1230. ptrdiff_t src0stride = ref0->linesize[0];
  1231. ptrdiff_t src1stride = ref1->linesize[0];
  1232. int pic_width = s->ps.sps->width;
  1233. int pic_height = s->ps.sps->height;
  1234. int mx0 = mv0->x & 3;
  1235. int my0 = mv0->y & 3;
  1236. int mx1 = mv1->x & 3;
  1237. int my1 = mv1->y & 3;
  1238. int weight_flag = (s->sh.slice_type == HEVC_SLICE_P && s->ps.pps->weighted_pred_flag) ||
  1239. (s->sh.slice_type == HEVC_SLICE_B && s->ps.pps->weighted_bipred_flag);
  1240. int x_off0 = x_off + (mv0->x >> 2);
  1241. int y_off0 = y_off + (mv0->y >> 2);
  1242. int x_off1 = x_off + (mv1->x >> 2);
  1243. int y_off1 = y_off + (mv1->y >> 2);
  1244. int idx = ff_hevc_pel_weight[block_w];
  1245. uint8_t *src0 = ref0->data[0] + y_off0 * src0stride + (int)((unsigned)x_off0 << s->ps.sps->pixel_shift);
  1246. uint8_t *src1 = ref1->data[0] + y_off1 * src1stride + (int)((unsigned)x_off1 << s->ps.sps->pixel_shift);
  1247. if (x_off0 < QPEL_EXTRA_BEFORE || y_off0 < QPEL_EXTRA_AFTER ||
  1248. x_off0 >= pic_width - block_w - QPEL_EXTRA_AFTER ||
  1249. y_off0 >= pic_height - block_h - QPEL_EXTRA_AFTER) {
  1250. const ptrdiff_t edge_emu_stride = EDGE_EMU_BUFFER_STRIDE << s->ps.sps->pixel_shift;
  1251. int offset = QPEL_EXTRA_BEFORE * src0stride + (QPEL_EXTRA_BEFORE << s->ps.sps->pixel_shift);
  1252. int buf_offset = QPEL_EXTRA_BEFORE * edge_emu_stride + (QPEL_EXTRA_BEFORE << s->ps.sps->pixel_shift);
  1253. s->vdsp.emulated_edge_mc(lc->edge_emu_buffer, src0 - offset,
  1254. edge_emu_stride, src0stride,
  1255. block_w + QPEL_EXTRA,
  1256. block_h + QPEL_EXTRA,
  1257. x_off0 - QPEL_EXTRA_BEFORE, y_off0 - QPEL_EXTRA_BEFORE,
  1258. pic_width, pic_height);
  1259. src0 = lc->edge_emu_buffer + buf_offset;
  1260. src0stride = edge_emu_stride;
  1261. }
  1262. if (x_off1 < QPEL_EXTRA_BEFORE || y_off1 < QPEL_EXTRA_AFTER ||
  1263. x_off1 >= pic_width - block_w - QPEL_EXTRA_AFTER ||
  1264. y_off1 >= pic_height - block_h - QPEL_EXTRA_AFTER) {
  1265. const ptrdiff_t edge_emu_stride = EDGE_EMU_BUFFER_STRIDE << s->ps.sps->pixel_shift;
  1266. int offset = QPEL_EXTRA_BEFORE * src1stride + (QPEL_EXTRA_BEFORE << s->ps.sps->pixel_shift);
  1267. int buf_offset = QPEL_EXTRA_BEFORE * edge_emu_stride + (QPEL_EXTRA_BEFORE << s->ps.sps->pixel_shift);
  1268. s->vdsp.emulated_edge_mc(lc->edge_emu_buffer2, src1 - offset,
  1269. edge_emu_stride, src1stride,
  1270. block_w + QPEL_EXTRA,
  1271. block_h + QPEL_EXTRA,
  1272. x_off1 - QPEL_EXTRA_BEFORE, y_off1 - QPEL_EXTRA_BEFORE,
  1273. pic_width, pic_height);
  1274. src1 = lc->edge_emu_buffer2 + buf_offset;
  1275. src1stride = edge_emu_stride;
  1276. }
  1277. s->hevcdsp.put_hevc_qpel[idx][!!my0][!!mx0](lc->tmp, src0, src0stride,
  1278. block_h, mx0, my0, block_w);
  1279. if (!weight_flag)
  1280. s->hevcdsp.put_hevc_qpel_bi[idx][!!my1][!!mx1](dst, dststride, src1, src1stride, lc->tmp,
  1281. block_h, mx1, my1, block_w);
  1282. else
  1283. s->hevcdsp.put_hevc_qpel_bi_w[idx][!!my1][!!mx1](dst, dststride, src1, src1stride, lc->tmp,
  1284. block_h, s->sh.luma_log2_weight_denom,
  1285. s->sh.luma_weight_l0[current_mv->ref_idx[0]],
  1286. s->sh.luma_weight_l1[current_mv->ref_idx[1]],
  1287. s->sh.luma_offset_l0[current_mv->ref_idx[0]],
  1288. s->sh.luma_offset_l1[current_mv->ref_idx[1]],
  1289. mx1, my1, block_w);
  1290. }
  1291. /**
  1292. * 8.5.3.2.2.2 Chroma sample uniprediction interpolation process
  1293. *
  1294. * @param s HEVC decoding context
  1295. * @param dst1 target buffer for block data at block position (U plane)
  1296. * @param dst2 target buffer for block data at block position (V plane)
  1297. * @param dststride stride of the dst1 and dst2 buffers
  1298. * @param ref reference picture buffer at origin (0, 0)
  1299. * @param mv motion vector (relative to block position) to get pixel data from
  1300. * @param x_off horizontal position of block from origin (0, 0)
  1301. * @param y_off vertical position of block from origin (0, 0)
  1302. * @param block_w width of block
  1303. * @param block_h height of block
  1304. * @param chroma_weight weighting factor applied to the chroma prediction
  1305. * @param chroma_offset additive offset applied to the chroma prediction value
  1306. */
  1307. static void chroma_mc_uni(HEVCContext *s, uint8_t *dst0,
  1308. ptrdiff_t dststride, uint8_t *src0, ptrdiff_t srcstride, int reflist,
  1309. int x_off, int y_off, int block_w, int block_h, struct MvField *current_mv, int chroma_weight, int chroma_offset)
  1310. {
  1311. HEVCLocalContext *lc = s->HEVClc;
  1312. int pic_width = s->ps.sps->width >> s->ps.sps->hshift[1];
  1313. int pic_height = s->ps.sps->height >> s->ps.sps->vshift[1];
  1314. const Mv *mv = &current_mv->mv[reflist];
  1315. int weight_flag = (s->sh.slice_type == HEVC_SLICE_P && s->ps.pps->weighted_pred_flag) ||
  1316. (s->sh.slice_type == HEVC_SLICE_B && s->ps.pps->weighted_bipred_flag);
  1317. int idx = ff_hevc_pel_weight[block_w];
  1318. int hshift = s->ps.sps->hshift[1];
  1319. int vshift = s->ps.sps->vshift[1];
  1320. intptr_t mx = av_mod_uintp2(mv->x, 2 + hshift);
  1321. intptr_t my = av_mod_uintp2(mv->y, 2 + vshift);
  1322. intptr_t _mx = mx << (1 - hshift);
  1323. intptr_t _my = my << (1 - vshift);
  1324. x_off += mv->x >> (2 + hshift);
  1325. y_off += mv->y >> (2 + vshift);
  1326. src0 += y_off * srcstride + (x_off * (1 << s->ps.sps->pixel_shift));
  1327. if (x_off < EPEL_EXTRA_BEFORE || y_off < EPEL_EXTRA_AFTER ||
  1328. x_off >= pic_width - block_w - EPEL_EXTRA_AFTER ||
  1329. y_off >= pic_height - block_h - EPEL_EXTRA_AFTER) {
  1330. const int edge_emu_stride = EDGE_EMU_BUFFER_STRIDE << s->ps.sps->pixel_shift;
  1331. int offset0 = EPEL_EXTRA_BEFORE * (srcstride + (1 << s->ps.sps->pixel_shift));
  1332. int buf_offset0 = EPEL_EXTRA_BEFORE *
  1333. (edge_emu_stride + (1 << s->ps.sps->pixel_shift));
  1334. s->vdsp.emulated_edge_mc(lc->edge_emu_buffer, src0 - offset0,
  1335. edge_emu_stride, srcstride,
  1336. block_w + EPEL_EXTRA, block_h + EPEL_EXTRA,
  1337. x_off - EPEL_EXTRA_BEFORE,
  1338. y_off - EPEL_EXTRA_BEFORE,
  1339. pic_width, pic_height);
  1340. src0 = lc->edge_emu_buffer + buf_offset0;
  1341. srcstride = edge_emu_stride;
  1342. }
  1343. if (!weight_flag)
  1344. s->hevcdsp.put_hevc_epel_uni[idx][!!my][!!mx](dst0, dststride, src0, srcstride,
  1345. block_h, _mx, _my, block_w);
  1346. else
  1347. s->hevcdsp.put_hevc_epel_uni_w[idx][!!my][!!mx](dst0, dststride, src0, srcstride,
  1348. block_h, s->sh.chroma_log2_weight_denom,
  1349. chroma_weight, chroma_offset, _mx, _my, block_w);
  1350. }
  1351. /**
  1352. * 8.5.3.2.2.2 Chroma sample bidirectional interpolation process
  1353. *
  1354. * @param s HEVC decoding context
  1355. * @param dst target buffer for block data at block position
  1356. * @param dststride stride of the dst buffer
  1357. * @param ref0 reference picture0 buffer at origin (0, 0)
  1358. * @param mv0 motion vector0 (relative to block position) to get pixel data from
  1359. * @param x_off horizontal position of block from origin (0, 0)
  1360. * @param y_off vertical position of block from origin (0, 0)
  1361. * @param block_w width of block
  1362. * @param block_h height of block
  1363. * @param ref1 reference picture1 buffer at origin (0, 0)
  1364. * @param mv1 motion vector1 (relative to block position) to get pixel data from
  1365. * @param current_mv current motion vector structure
  1366. * @param cidx chroma component(cb, cr)
  1367. */
  1368. static void chroma_mc_bi(HEVCContext *s, uint8_t *dst0, ptrdiff_t dststride, AVFrame *ref0, AVFrame *ref1,
  1369. int x_off, int y_off, int block_w, int block_h, struct MvField *current_mv, int cidx)
  1370. {
  1371. HEVCLocalContext *lc = s->HEVClc;
  1372. uint8_t *src1 = ref0->data[cidx+1];
  1373. uint8_t *src2 = ref1->data[cidx+1];
  1374. ptrdiff_t src1stride = ref0->linesize[cidx+1];
  1375. ptrdiff_t src2stride = ref1->linesize[cidx+1];
  1376. int weight_flag = (s->sh.slice_type == HEVC_SLICE_P && s->ps.pps->weighted_pred_flag) ||
  1377. (s->sh.slice_type == HEVC_SLICE_B && s->ps.pps->weighted_bipred_flag);
  1378. int pic_width = s->ps.sps->width >> s->ps.sps->hshift[1];
  1379. int pic_height = s->ps.sps->height >> s->ps.sps->vshift[1];
  1380. Mv *mv0 = &current_mv->mv[0];
  1381. Mv *mv1 = &current_mv->mv[1];
  1382. int hshift = s->ps.sps->hshift[1];
  1383. int vshift = s->ps.sps->vshift[1];
  1384. intptr_t mx0 = av_mod_uintp2(mv0->x, 2 + hshift);
  1385. intptr_t my0 = av_mod_uintp2(mv0->y, 2 + vshift);
  1386. intptr_t mx1 = av_mod_uintp2(mv1->x, 2 + hshift);
  1387. intptr_t my1 = av_mod_uintp2(mv1->y, 2 + vshift);
  1388. intptr_t _mx0 = mx0 << (1 - hshift);
  1389. intptr_t _my0 = my0 << (1 - vshift);
  1390. intptr_t _mx1 = mx1 << (1 - hshift);
  1391. intptr_t _my1 = my1 << (1 - vshift);
  1392. int x_off0 = x_off + (mv0->x >> (2 + hshift));
  1393. int y_off0 = y_off + (mv0->y >> (2 + vshift));
  1394. int x_off1 = x_off + (mv1->x >> (2 + hshift));
  1395. int y_off1 = y_off + (mv1->y >> (2 + vshift));
  1396. int idx = ff_hevc_pel_weight[block_w];
  1397. src1 += y_off0 * src1stride + (int)((unsigned)x_off0 << s->ps.sps->pixel_shift);
  1398. src2 += y_off1 * src2stride + (int)((unsigned)x_off1 << s->ps.sps->pixel_shift);
  1399. if (x_off0 < EPEL_EXTRA_BEFORE || y_off0 < EPEL_EXTRA_AFTER ||
  1400. x_off0 >= pic_width - block_w - EPEL_EXTRA_AFTER ||
  1401. y_off0 >= pic_height - block_h - EPEL_EXTRA_AFTER) {
  1402. const int edge_emu_stride = EDGE_EMU_BUFFER_STRIDE << s->ps.sps->pixel_shift;
  1403. int offset1 = EPEL_EXTRA_BEFORE * (src1stride + (1 << s->ps.sps->pixel_shift));
  1404. int buf_offset1 = EPEL_EXTRA_BEFORE *
  1405. (edge_emu_stride + (1 << s->ps.sps->pixel_shift));
  1406. s->vdsp.emulated_edge_mc(lc->edge_emu_buffer, src1 - offset1,
  1407. edge_emu_stride, src1stride,
  1408. block_w + EPEL_EXTRA, block_h + EPEL_EXTRA,
  1409. x_off0 - EPEL_EXTRA_BEFORE,
  1410. y_off0 - EPEL_EXTRA_BEFORE,
  1411. pic_width, pic_height);
  1412. src1 = lc->edge_emu_buffer + buf_offset1;
  1413. src1stride = edge_emu_stride;
  1414. }
  1415. if (x_off1 < EPEL_EXTRA_BEFORE || y_off1 < EPEL_EXTRA_AFTER ||
  1416. x_off1 >= pic_width - block_w - EPEL_EXTRA_AFTER ||
  1417. y_off1 >= pic_height - block_h - EPEL_EXTRA_AFTER) {
  1418. const int edge_emu_stride = EDGE_EMU_BUFFER_STRIDE << s->ps.sps->pixel_shift;
  1419. int offset1 = EPEL_EXTRA_BEFORE * (src2stride + (1 << s->ps.sps->pixel_shift));
  1420. int buf_offset1 = EPEL_EXTRA_BEFORE *
  1421. (edge_emu_stride + (1 << s->ps.sps->pixel_shift));
  1422. s->vdsp.emulated_edge_mc(lc->edge_emu_buffer2, src2 - offset1,
  1423. edge_emu_stride, src2stride,
  1424. block_w + EPEL_EXTRA, block_h + EPEL_EXTRA,
  1425. x_off1 - EPEL_EXTRA_BEFORE,
  1426. y_off1 - EPEL_EXTRA_BEFORE,
  1427. pic_width, pic_height);
  1428. src2 = lc->edge_emu_buffer2 + buf_offset1;
  1429. src2stride = edge_emu_stride;
  1430. }
  1431. s->hevcdsp.put_hevc_epel[idx][!!my0][!!mx0](lc->tmp, src1, src1stride,
  1432. block_h, _mx0, _my0, block_w);
  1433. if (!weight_flag)
  1434. s->hevcdsp.put_hevc_epel_bi[idx][!!my1][!!mx1](dst0, s->frame->linesize[cidx+1],
  1435. src2, src2stride, lc->tmp,
  1436. block_h, _mx1, _my1, block_w);
  1437. else
  1438. s->hevcdsp.put_hevc_epel_bi_w[idx][!!my1][!!mx1](dst0, s->frame->linesize[cidx+1],
  1439. src2, src2stride, lc->tmp,
  1440. block_h,
  1441. s->sh.chroma_log2_weight_denom,
  1442. s->sh.chroma_weight_l0[current_mv->ref_idx[0]][cidx],
  1443. s->sh.chroma_weight_l1[current_mv->ref_idx[1]][cidx],
  1444. s->sh.chroma_offset_l0[current_mv->ref_idx[0]][cidx],
  1445. s->sh.chroma_offset_l1[current_mv->ref_idx[1]][cidx],
  1446. _mx1, _my1, block_w);
  1447. }
  1448. static void hevc_await_progress(HEVCContext *s, HEVCFrame *ref,
  1449. const Mv *mv, int y0, int height)
  1450. {
  1451. int y = FFMAX(0, (mv->y >> 2) + y0 + height + 9);
  1452. if (s->threads_type == FF_THREAD_FRAME )
  1453. ff_thread_await_progress(&ref->tf, y, 0);
  1454. }
  1455. static void hevc_luma_mv_mvp_mode(HEVCContext *s, int x0, int y0, int nPbW,
  1456. int nPbH, int log2_cb_size, int part_idx,
  1457. int merge_idx, MvField *mv)
  1458. {
  1459. HEVCLocalContext *lc = s->HEVClc;
  1460. enum InterPredIdc inter_pred_idc = PRED_L0;
  1461. int mvp_flag;
  1462. ff_hevc_set_neighbour_available(s, x0, y0, nPbW, nPbH);
  1463. mv->pred_flag = 0;
  1464. if (s->sh.slice_type == HEVC_SLICE_B)
  1465. inter_pred_idc = ff_hevc_inter_pred_idc_decode(s, nPbW, nPbH);
  1466. if (inter_pred_idc != PRED_L1) {
  1467. if (s->sh.nb_refs[L0])
  1468. mv->ref_idx[0]= ff_hevc_ref_idx_lx_decode(s, s->sh.nb_refs[L0]);
  1469. mv->pred_flag = PF_L0;
  1470. ff_hevc_hls_mvd_coding(s, x0, y0, 0);
  1471. mvp_flag = ff_hevc_mvp_lx_flag_decode(s);
  1472. ff_hevc_luma_mv_mvp_mode(s, x0, y0, nPbW, nPbH, log2_cb_size,
  1473. part_idx, merge_idx, mv, mvp_flag, 0);
  1474. mv->mv[0].x += lc->pu.mvd.x;
  1475. mv->mv[0].y += lc->pu.mvd.y;
  1476. }
  1477. if (inter_pred_idc != PRED_L0) {
  1478. if (s->sh.nb_refs[L1])
  1479. mv->ref_idx[1]= ff_hevc_ref_idx_lx_decode(s, s->sh.nb_refs[L1]);
  1480. if (s->sh.mvd_l1_zero_flag == 1 && inter_pred_idc == PRED_BI) {
  1481. AV_ZERO32(&lc->pu.mvd);
  1482. } else {
  1483. ff_hevc_hls_mvd_coding(s, x0, y0, 1);
  1484. }
  1485. mv->pred_flag += PF_L1;
  1486. mvp_flag = ff_hevc_mvp_lx_flag_decode(s);
  1487. ff_hevc_luma_mv_mvp_mode(s, x0, y0, nPbW, nPbH, log2_cb_size,
  1488. part_idx, merge_idx, mv, mvp_flag, 1);
  1489. mv->mv[1].x += lc->pu.mvd.x;
  1490. mv->mv[1].y += lc->pu.mvd.y;
  1491. }
  1492. }
  1493. static void hls_prediction_unit(HEVCContext *s, int x0, int y0,
  1494. int nPbW, int nPbH,
  1495. int log2_cb_size, int partIdx, int idx)
  1496. {
  1497. #define POS(c_idx, x, y) \
  1498. &s->frame->data[c_idx][((y) >> s->ps.sps->vshift[c_idx]) * s->frame->linesize[c_idx] + \
  1499. (((x) >> s->ps.sps->hshift[c_idx]) << s->ps.sps->pixel_shift)]
  1500. HEVCLocalContext *lc = s->HEVClc;
  1501. int merge_idx = 0;
  1502. struct MvField current_mv = {{{ 0 }}};
  1503. int min_pu_width = s->ps.sps->min_pu_width;
  1504. MvField *tab_mvf = s->ref->tab_mvf;
  1505. RefPicList *refPicList = s->ref->refPicList;
  1506. HEVCFrame *ref0 = NULL, *ref1 = NULL;
  1507. uint8_t *dst0 = POS(0, x0, y0);
  1508. uint8_t *dst1 = POS(1, x0, y0);
  1509. uint8_t *dst2 = POS(2, x0, y0);
  1510. int log2_min_cb_size = s->ps.sps->log2_min_cb_size;
  1511. int min_cb_width = s->ps.sps->min_cb_width;
  1512. int x_cb = x0 >> log2_min_cb_size;
  1513. int y_cb = y0 >> log2_min_cb_size;
  1514. int x_pu, y_pu;
  1515. int i, j;
  1516. int skip_flag = SAMPLE_CTB(s->skip_flag, x_cb, y_cb);
  1517. if (!skip_flag)
  1518. lc->pu.merge_flag = ff_hevc_merge_flag_decode(s);
  1519. if (skip_flag || lc->pu.merge_flag) {
  1520. if (s->sh.max_num_merge_cand > 1)
  1521. merge_idx = ff_hevc_merge_idx_decode(s);
  1522. else
  1523. merge_idx = 0;
  1524. ff_hevc_luma_mv_merge_mode(s, x0, y0, nPbW, nPbH, log2_cb_size,
  1525. partIdx, merge_idx, &current_mv);
  1526. } else {
  1527. hevc_luma_mv_mvp_mode(s, x0, y0, nPbW, nPbH, log2_cb_size,
  1528. partIdx, merge_idx, &current_mv);
  1529. }
  1530. x_pu = x0 >> s->ps.sps->log2_min_pu_size;
  1531. y_pu = y0 >> s->ps.sps->log2_min_pu_size;
  1532. for (j = 0; j < nPbH >> s->ps.sps->log2_min_pu_size; j++)
  1533. for (i = 0; i < nPbW >> s->ps.sps->log2_min_pu_size; i++)
  1534. tab_mvf[(y_pu + j) * min_pu_width + x_pu + i] = current_mv;
  1535. if (current_mv.pred_flag & PF_L0) {
  1536. ref0 = refPicList[0].ref[current_mv.ref_idx[0]];
  1537. if (!ref0)
  1538. return;
  1539. hevc_await_progress(s, ref0, &current_mv.mv[0], y0, nPbH);
  1540. }
  1541. if (current_mv.pred_flag & PF_L1) {
  1542. ref1 = refPicList[1].ref[current_mv.ref_idx[1]];
  1543. if (!ref1)
  1544. return;
  1545. hevc_await_progress(s, ref1, &current_mv.mv[1], y0, nPbH);
  1546. }
  1547. if (current_mv.pred_flag == PF_L0) {
  1548. int x0_c = x0 >> s->ps.sps->hshift[1];
  1549. int y0_c = y0 >> s->ps.sps->vshift[1];
  1550. int nPbW_c = nPbW >> s->ps.sps->hshift[1];
  1551. int nPbH_c = nPbH >> s->ps.sps->vshift[1];
  1552. luma_mc_uni(s, dst0, s->frame->linesize[0], ref0->frame,
  1553. &current_mv.mv[0], x0, y0, nPbW, nPbH,
  1554. s->sh.luma_weight_l0[current_mv.ref_idx[0]],
  1555. s->sh.luma_offset_l0[current_mv.ref_idx[0]]);
  1556. if (s->ps.sps->chroma_format_idc) {
  1557. chroma_mc_uni(s, dst1, s->frame->linesize[1], ref0->frame->data[1], ref0->frame->linesize[1],
  1558. 0, x0_c, y0_c, nPbW_c, nPbH_c, &current_mv,
  1559. s->sh.chroma_weight_l0[current_mv.ref_idx[0]][0], s->sh.chroma_offset_l0[current_mv.ref_idx[0]][0]);
  1560. chroma_mc_uni(s, dst2, s->frame->linesize[2], ref0->frame->data[2], ref0->frame->linesize[2],
  1561. 0, x0_c, y0_c, nPbW_c, nPbH_c, &current_mv,
  1562. s->sh.chroma_weight_l0[current_mv.ref_idx[0]][1], s->sh.chroma_offset_l0[current_mv.ref_idx[0]][1]);
  1563. }
  1564. } else if (current_mv.pred_flag == PF_L1) {
  1565. int x0_c = x0 >> s->ps.sps->hshift[1];
  1566. int y0_c = y0 >> s->ps.sps->vshift[1];
  1567. int nPbW_c = nPbW >> s->ps.sps->hshift[1];
  1568. int nPbH_c = nPbH >> s->ps.sps->vshift[1];
  1569. luma_mc_uni(s, dst0, s->frame->linesize[0], ref1->frame,
  1570. &current_mv.mv[1], x0, y0, nPbW, nPbH,
  1571. s->sh.luma_weight_l1[current_mv.ref_idx[1]],
  1572. s->sh.luma_offset_l1[current_mv.ref_idx[1]]);
  1573. if (s->ps.sps->chroma_format_idc) {
  1574. chroma_mc_uni(s, dst1, s->frame->linesize[1], ref1->frame->data[1], ref1->frame->linesize[1],
  1575. 1, x0_c, y0_c, nPbW_c, nPbH_c, &current_mv,
  1576. s->sh.chroma_weight_l1[current_mv.ref_idx[1]][0], s->sh.chroma_offset_l1[current_mv.ref_idx[1]][0]);
  1577. chroma_mc_uni(s, dst2, s->frame->linesize[2], ref1->frame->data[2], ref1->frame->linesize[2],
  1578. 1, x0_c, y0_c, nPbW_c, nPbH_c, &current_mv,
  1579. s->sh.chroma_weight_l1[current_mv.ref_idx[1]][1], s->sh.chroma_offset_l1[current_mv.ref_idx[1]][1]);
  1580. }
  1581. } else if (current_mv.pred_flag == PF_BI) {
  1582. int x0_c = x0 >> s->ps.sps->hshift[1];
  1583. int y0_c = y0 >> s->ps.sps->vshift[1];
  1584. int nPbW_c = nPbW >> s->ps.sps->hshift[1];
  1585. int nPbH_c = nPbH >> s->ps.sps->vshift[1];
  1586. luma_mc_bi(s, dst0, s->frame->linesize[0], ref0->frame,
  1587. &current_mv.mv[0], x0, y0, nPbW, nPbH,
  1588. ref1->frame, &current_mv.mv[1], &current_mv);
  1589. if (s->ps.sps->chroma_format_idc) {
  1590. chroma_mc_bi(s, dst1, s->frame->linesize[1], ref0->frame, ref1->frame,
  1591. x0_c, y0_c, nPbW_c, nPbH_c, &current_mv, 0);
  1592. chroma_mc_bi(s, dst2, s->frame->linesize[2], ref0->frame, ref1->frame,
  1593. x0_c, y0_c, nPbW_c, nPbH_c, &current_mv, 1);
  1594. }
  1595. }
  1596. }
  1597. /**
  1598. * 8.4.1
  1599. */
  1600. static int luma_intra_pred_mode(HEVCContext *s, int x0, int y0, int pu_size,
  1601. int prev_intra_luma_pred_flag)
  1602. {
  1603. HEVCLocalContext *lc = s->HEVClc;
  1604. int x_pu = x0 >> s->ps.sps->log2_min_pu_size;
  1605. int y_pu = y0 >> s->ps.sps->log2_min_pu_size;
  1606. int min_pu_width = s->ps.sps->min_pu_width;
  1607. int size_in_pus = pu_size >> s->ps.sps->log2_min_pu_size;
  1608. int x0b = av_mod_uintp2(x0, s->ps.sps->log2_ctb_size);
  1609. int y0b = av_mod_uintp2(y0, s->ps.sps->log2_ctb_size);
  1610. int cand_up = (lc->ctb_up_flag || y0b) ?
  1611. s->tab_ipm[(y_pu - 1) * min_pu_width + x_pu] : INTRA_DC;
  1612. int cand_left = (lc->ctb_left_flag || x0b) ?
  1613. s->tab_ipm[y_pu * min_pu_width + x_pu - 1] : INTRA_DC;
  1614. int y_ctb = (y0 >> (s->ps.sps->log2_ctb_size)) << (s->ps.sps->log2_ctb_size);
  1615. MvField *tab_mvf = s->ref->tab_mvf;
  1616. int intra_pred_mode;
  1617. int candidate[3];
  1618. int i, j;
  1619. // intra_pred_mode prediction does not cross vertical CTB boundaries
  1620. if ((y0 - 1) < y_ctb)
  1621. cand_up = INTRA_DC;
  1622. if (cand_left == cand_up) {
  1623. if (cand_left < 2) {
  1624. candidate[0] = INTRA_PLANAR;
  1625. candidate[1] = INTRA_DC;
  1626. candidate[2] = INTRA_ANGULAR_26;
  1627. } else {
  1628. candidate[0] = cand_left;
  1629. candidate[1] = 2 + ((cand_left - 2 - 1 + 32) & 31);
  1630. candidate[2] = 2 + ((cand_left - 2 + 1) & 31);
  1631. }
  1632. } else {
  1633. candidate[0] = cand_left;
  1634. candidate[1] = cand_up;
  1635. if (candidate[0] != INTRA_PLANAR && candidate[1] != INTRA_PLANAR) {
  1636. candidate[2] = INTRA_PLANAR;
  1637. } else if (candidate[0] != INTRA_DC && candidate[1] != INTRA_DC) {
  1638. candidate[2] = INTRA_DC;
  1639. } else {
  1640. candidate[2] = INTRA_ANGULAR_26;
  1641. }
  1642. }
  1643. if (prev_intra_luma_pred_flag) {
  1644. intra_pred_mode = candidate[lc->pu.mpm_idx];
  1645. } else {
  1646. if (candidate[0] > candidate[1])
  1647. FFSWAP(uint8_t, candidate[0], candidate[1]);
  1648. if (candidate[0] > candidate[2])
  1649. FFSWAP(uint8_t, candidate[0], candidate[2]);
  1650. if (candidate[1] > candidate[2])
  1651. FFSWAP(uint8_t, candidate[1], candidate[2]);
  1652. intra_pred_mode = lc->pu.rem_intra_luma_pred_mode;
  1653. for (i = 0; i < 3; i++)
  1654. if (intra_pred_mode >= candidate[i])
  1655. intra_pred_mode++;
  1656. }
  1657. /* write the intra prediction units into the mv array */
  1658. if (!size_in_pus)
  1659. size_in_pus = 1;
  1660. for (i = 0; i < size_in_pus; i++) {
  1661. memset(&s->tab_ipm[(y_pu + i) * min_pu_width + x_pu],
  1662. intra_pred_mode, size_in_pus);
  1663. for (j = 0; j < size_in_pus; j++) {
  1664. tab_mvf[(y_pu + j) * min_pu_width + x_pu + i].pred_flag = PF_INTRA;
  1665. }
  1666. }
  1667. return intra_pred_mode;
  1668. }
  1669. static av_always_inline void set_ct_depth(HEVCContext *s, int x0, int y0,
  1670. int log2_cb_size, int ct_depth)
  1671. {
  1672. int length = (1 << log2_cb_size) >> s->ps.sps->log2_min_cb_size;
  1673. int x_cb = x0 >> s->ps.sps->log2_min_cb_size;
  1674. int y_cb = y0 >> s->ps.sps->log2_min_cb_size;
  1675. int y;
  1676. for (y = 0; y < length; y++)
  1677. memset(&s->tab_ct_depth[(y_cb + y) * s->ps.sps->min_cb_width + x_cb],
  1678. ct_depth, length);
  1679. }
  1680. static const uint8_t tab_mode_idx[] = {
  1681. 0, 1, 2, 2, 2, 2, 3, 5, 7, 8, 10, 12, 13, 15, 17, 18, 19, 20,
  1682. 21, 22, 23, 23, 24, 24, 25, 25, 26, 27, 27, 28, 28, 29, 29, 30, 31};
  1683. static void intra_prediction_unit(HEVCContext *s, int x0, int y0,
  1684. int log2_cb_size)
  1685. {
  1686. HEVCLocalContext *lc = s->HEVClc;
  1687. static const uint8_t intra_chroma_table[4] = { 0, 26, 10, 1 };
  1688. uint8_t prev_intra_luma_pred_flag[4];
  1689. int split = lc->cu.part_mode == PART_NxN;
  1690. int pb_size = (1 << log2_cb_size) >> split;
  1691. int side = split + 1;
  1692. int chroma_mode;
  1693. int i, j;
  1694. for (i = 0; i < side; i++)
  1695. for (j = 0; j < side; j++)
  1696. prev_intra_luma_pred_flag[2 * i + j] = ff_hevc_prev_intra_luma_pred_flag_decode(s);
  1697. for (i = 0; i < side; i++) {
  1698. for (j = 0; j < side; j++) {
  1699. if (prev_intra_luma_pred_flag[2 * i + j])
  1700. lc->pu.mpm_idx = ff_hevc_mpm_idx_decode(s);
  1701. else
  1702. lc->pu.rem_intra_luma_pred_mode = ff_hevc_rem_intra_luma_pred_mode_decode(s);
  1703. lc->pu.intra_pred_mode[2 * i + j] =
  1704. luma_intra_pred_mode(s, x0 + pb_size * j, y0 + pb_size * i, pb_size,
  1705. prev_intra_luma_pred_flag[2 * i + j]);
  1706. }
  1707. }
  1708. if (s->ps.sps->chroma_format_idc == 3) {
  1709. for (i = 0; i < side; i++) {
  1710. for (j = 0; j < side; j++) {
  1711. lc->pu.chroma_mode_c[2 * i + j] = chroma_mode = ff_hevc_intra_chroma_pred_mode_decode(s);
  1712. if (chroma_mode != 4) {
  1713. if (lc->pu.intra_pred_mode[2 * i + j] == intra_chroma_table[chroma_mode])
  1714. lc->pu.intra_pred_mode_c[2 * i + j] = 34;
  1715. else
  1716. lc->pu.intra_pred_mode_c[2 * i + j] = intra_chroma_table[chroma_mode];
  1717. } else {
  1718. lc->pu.intra_pred_mode_c[2 * i + j] = lc->pu.intra_pred_mode[2 * i + j];
  1719. }
  1720. }
  1721. }
  1722. } else if (s->ps.sps->chroma_format_idc == 2) {
  1723. int mode_idx;
  1724. lc->pu.chroma_mode_c[0] = chroma_mode = ff_hevc_intra_chroma_pred_mode_decode(s);
  1725. if (chroma_mode != 4) {
  1726. if (lc->pu.intra_pred_mode[0] == intra_chroma_table[chroma_mode])
  1727. mode_idx = 34;
  1728. else
  1729. mode_idx = intra_chroma_table[chroma_mode];
  1730. } else {
  1731. mode_idx = lc->pu.intra_pred_mode[0];
  1732. }
  1733. lc->pu.intra_pred_mode_c[0] = tab_mode_idx[mode_idx];
  1734. } else if (s->ps.sps->chroma_format_idc != 0) {
  1735. chroma_mode = ff_hevc_intra_chroma_pred_mode_decode(s);
  1736. if (chroma_mode != 4) {
  1737. if (lc->pu.intra_pred_mode[0] == intra_chroma_table[chroma_mode])
  1738. lc->pu.intra_pred_mode_c[0] = 34;
  1739. else
  1740. lc->pu.intra_pred_mode_c[0] = intra_chroma_table[chroma_mode];
  1741. } else {
  1742. lc->pu.intra_pred_mode_c[0] = lc->pu.intra_pred_mode[0];
  1743. }
  1744. }
  1745. }
  1746. static void intra_prediction_unit_default_value(HEVCContext *s,
  1747. int x0, int y0,
  1748. int log2_cb_size)
  1749. {
  1750. HEVCLocalContext *lc = s->HEVClc;
  1751. int pb_size = 1 << log2_cb_size;
  1752. int size_in_pus = pb_size >> s->ps.sps->log2_min_pu_size;
  1753. int min_pu_width = s->ps.sps->min_pu_width;
  1754. MvField *tab_mvf = s->ref->tab_mvf;
  1755. int x_pu = x0 >> s->ps.sps->log2_min_pu_size;
  1756. int y_pu = y0 >> s->ps.sps->log2_min_pu_size;
  1757. int j, k;
  1758. if (size_in_pus == 0)
  1759. size_in_pus = 1;
  1760. for (j = 0; j < size_in_pus; j++)
  1761. memset(&s->tab_ipm[(y_pu + j) * min_pu_width + x_pu], INTRA_DC, size_in_pus);
  1762. if (lc->cu.pred_mode == MODE_INTRA)
  1763. for (j = 0; j < size_in_pus; j++)
  1764. for (k = 0; k < size_in_pus; k++)
  1765. tab_mvf[(y_pu + j) * min_pu_width + x_pu + k].pred_flag = PF_INTRA;
  1766. }
  1767. static int hls_coding_unit(HEVCContext *s, int x0, int y0, int log2_cb_size)
  1768. {
  1769. int cb_size = 1 << log2_cb_size;
  1770. HEVCLocalContext *lc = s->HEVClc;
  1771. int log2_min_cb_size = s->ps.sps->log2_min_cb_size;
  1772. int length = cb_size >> log2_min_cb_size;
  1773. int min_cb_width = s->ps.sps->min_cb_width;
  1774. int x_cb = x0 >> log2_min_cb_size;
  1775. int y_cb = y0 >> log2_min_cb_size;
  1776. int idx = log2_cb_size - 2;
  1777. int qp_block_mask = (1<<(s->ps.sps->log2_ctb_size - s->ps.pps->diff_cu_qp_delta_depth)) - 1;
  1778. int x, y, ret;
  1779. lc->cu.x = x0;
  1780. lc->cu.y = y0;
  1781. lc->cu.pred_mode = MODE_INTRA;
  1782. lc->cu.part_mode = PART_2Nx2N;
  1783. lc->cu.intra_split_flag = 0;
  1784. SAMPLE_CTB(s->skip_flag, x_cb, y_cb) = 0;
  1785. for (x = 0; x < 4; x++)
  1786. lc->pu.intra_pred_mode[x] = 1;
  1787. if (s->ps.pps->transquant_bypass_enable_flag) {
  1788. lc->cu.cu_transquant_bypass_flag = ff_hevc_cu_transquant_bypass_flag_decode(s);
  1789. if (lc->cu.cu_transquant_bypass_flag)
  1790. set_deblocking_bypass(s, x0, y0, log2_cb_size);
  1791. } else
  1792. lc->cu.cu_transquant_bypass_flag = 0;
  1793. if (s->sh.slice_type != HEVC_SLICE_I) {
  1794. uint8_t skip_flag = ff_hevc_skip_flag_decode(s, x0, y0, x_cb, y_cb);
  1795. x = y_cb * min_cb_width + x_cb;
  1796. for (y = 0; y < length; y++) {
  1797. memset(&s->skip_flag[x], skip_flag, length);
  1798. x += min_cb_width;
  1799. }
  1800. lc->cu.pred_mode = skip_flag ? MODE_SKIP : MODE_INTER;
  1801. } else {
  1802. x = y_cb * min_cb_width + x_cb;
  1803. for (y = 0; y < length; y++) {
  1804. memset(&s->skip_flag[x], 0, length);
  1805. x += min_cb_width;
  1806. }
  1807. }
  1808. if (SAMPLE_CTB(s->skip_flag, x_cb, y_cb)) {
  1809. hls_prediction_unit(s, x0, y0, cb_size, cb_size, log2_cb_size, 0, idx);
  1810. intra_prediction_unit_default_value(s, x0, y0, log2_cb_size);
  1811. if (!s->sh.disable_deblocking_filter_flag)
  1812. ff_hevc_deblocking_boundary_strengths(s, x0, y0, log2_cb_size);
  1813. } else {
  1814. int pcm_flag = 0;
  1815. if (s->sh.slice_type != HEVC_SLICE_I)
  1816. lc->cu.pred_mode = ff_hevc_pred_mode_decode(s);
  1817. if (lc->cu.pred_mode != MODE_INTRA ||
  1818. log2_cb_size == s->ps.sps->log2_min_cb_size) {
  1819. lc->cu.part_mode = ff_hevc_part_mode_decode(s, log2_cb_size);
  1820. lc->cu.intra_split_flag = lc->cu.part_mode == PART_NxN &&
  1821. lc->cu.pred_mode == MODE_INTRA;
  1822. }
  1823. if (lc->cu.pred_mode == MODE_INTRA) {
  1824. if (lc->cu.part_mode == PART_2Nx2N && s->ps.sps->pcm_enabled_flag &&
  1825. log2_cb_size >= s->ps.sps->pcm.log2_min_pcm_cb_size &&
  1826. log2_cb_size <= s->ps.sps->pcm.log2_max_pcm_cb_size) {
  1827. pcm_flag = ff_hevc_pcm_flag_decode(s);
  1828. }
  1829. if (pcm_flag) {
  1830. intra_prediction_unit_default_value(s, x0, y0, log2_cb_size);
  1831. ret = hls_pcm_sample(s, x0, y0, log2_cb_size);
  1832. if (s->ps.sps->pcm.loop_filter_disable_flag)
  1833. set_deblocking_bypass(s, x0, y0, log2_cb_size);
  1834. if (ret < 0)
  1835. return ret;
  1836. } else {
  1837. intra_prediction_unit(s, x0, y0, log2_cb_size);
  1838. }
  1839. } else {
  1840. intra_prediction_unit_default_value(s, x0, y0, log2_cb_size);
  1841. switch (lc->cu.part_mode) {
  1842. case PART_2Nx2N:
  1843. hls_prediction_unit(s, x0, y0, cb_size, cb_size, log2_cb_size, 0, idx);
  1844. break;
  1845. case PART_2NxN:
  1846. hls_prediction_unit(s, x0, y0, cb_size, cb_size / 2, log2_cb_size, 0, idx);
  1847. hls_prediction_unit(s, x0, y0 + cb_size / 2, cb_size, cb_size / 2, log2_cb_size, 1, idx);
  1848. break;
  1849. case PART_Nx2N:
  1850. hls_prediction_unit(s, x0, y0, cb_size / 2, cb_size, log2_cb_size, 0, idx - 1);
  1851. hls_prediction_unit(s, x0 + cb_size / 2, y0, cb_size / 2, cb_size, log2_cb_size, 1, idx - 1);
  1852. break;
  1853. case PART_2NxnU:
  1854. hls_prediction_unit(s, x0, y0, cb_size, cb_size / 4, log2_cb_size, 0, idx);
  1855. hls_prediction_unit(s, x0, y0 + cb_size / 4, cb_size, cb_size * 3 / 4, log2_cb_size, 1, idx);
  1856. break;
  1857. case PART_2NxnD:
  1858. hls_prediction_unit(s, x0, y0, cb_size, cb_size * 3 / 4, log2_cb_size, 0, idx);
  1859. hls_prediction_unit(s, x0, y0 + cb_size * 3 / 4, cb_size, cb_size / 4, log2_cb_size, 1, idx);
  1860. break;
  1861. case PART_nLx2N:
  1862. hls_prediction_unit(s, x0, y0, cb_size / 4, cb_size, log2_cb_size, 0, idx - 2);
  1863. hls_prediction_unit(s, x0 + cb_size / 4, y0, cb_size * 3 / 4, cb_size, log2_cb_size, 1, idx - 2);
  1864. break;
  1865. case PART_nRx2N:
  1866. hls_prediction_unit(s, x0, y0, cb_size * 3 / 4, cb_size, log2_cb_size, 0, idx - 2);
  1867. hls_prediction_unit(s, x0 + cb_size * 3 / 4, y0, cb_size / 4, cb_size, log2_cb_size, 1, idx - 2);
  1868. break;
  1869. case PART_NxN:
  1870. hls_prediction_unit(s, x0, y0, cb_size / 2, cb_size / 2, log2_cb_size, 0, idx - 1);
  1871. hls_prediction_unit(s, x0 + cb_size / 2, y0, cb_size / 2, cb_size / 2, log2_cb_size, 1, idx - 1);
  1872. hls_prediction_unit(s, x0, y0 + cb_size / 2, cb_size / 2, cb_size / 2, log2_cb_size, 2, idx - 1);
  1873. hls_prediction_unit(s, x0 + cb_size / 2, y0 + cb_size / 2, cb_size / 2, cb_size / 2, log2_cb_size, 3, idx - 1);
  1874. break;
  1875. }
  1876. }
  1877. if (!pcm_flag) {
  1878. int rqt_root_cbf = 1;
  1879. if (lc->cu.pred_mode != MODE_INTRA &&
  1880. !(lc->cu.part_mode == PART_2Nx2N && lc->pu.merge_flag)) {
  1881. rqt_root_cbf = ff_hevc_no_residual_syntax_flag_decode(s);
  1882. }
  1883. if (rqt_root_cbf) {
  1884. const static int cbf[2] = { 0 };
  1885. lc->cu.max_trafo_depth = lc->cu.pred_mode == MODE_INTRA ?
  1886. s->ps.sps->max_transform_hierarchy_depth_intra + lc->cu.intra_split_flag :
  1887. s->ps.sps->max_transform_hierarchy_depth_inter;
  1888. ret = hls_transform_tree(s, x0, y0, x0, y0, x0, y0,
  1889. log2_cb_size,
  1890. log2_cb_size, 0, 0, cbf, cbf);
  1891. if (ret < 0)
  1892. return ret;
  1893. } else {
  1894. if (!s->sh.disable_deblocking_filter_flag)
  1895. ff_hevc_deblocking_boundary_strengths(s, x0, y0, log2_cb_size);
  1896. }
  1897. }
  1898. }
  1899. if (s->ps.pps->cu_qp_delta_enabled_flag && lc->tu.is_cu_qp_delta_coded == 0)
  1900. ff_hevc_set_qPy(s, x0, y0, log2_cb_size);
  1901. x = y_cb * min_cb_width + x_cb;
  1902. for (y = 0; y < length; y++) {
  1903. memset(&s->qp_y_tab[x], lc->qp_y, length);
  1904. x += min_cb_width;
  1905. }
  1906. if(((x0 + (1<<log2_cb_size)) & qp_block_mask) == 0 &&
  1907. ((y0 + (1<<log2_cb_size)) & qp_block_mask) == 0) {
  1908. lc->qPy_pred = lc->qp_y;
  1909. }
  1910. set_ct_depth(s, x0, y0, log2_cb_size, lc->ct_depth);
  1911. return 0;
  1912. }
  1913. static int hls_coding_quadtree(HEVCContext *s, int x0, int y0,
  1914. int log2_cb_size, int cb_depth)
  1915. {
  1916. HEVCLocalContext *lc = s->HEVClc;
  1917. const int cb_size = 1 << log2_cb_size;
  1918. int ret;
  1919. int split_cu;
  1920. lc->ct_depth = cb_depth;
  1921. if (x0 + cb_size <= s->ps.sps->width &&
  1922. y0 + cb_size <= s->ps.sps->height &&
  1923. log2_cb_size > s->ps.sps->log2_min_cb_size) {
  1924. split_cu = ff_hevc_split_coding_unit_flag_decode(s, cb_depth, x0, y0);
  1925. } else {
  1926. split_cu = (log2_cb_size > s->ps.sps->log2_min_cb_size);
  1927. }
  1928. if (s->ps.pps->cu_qp_delta_enabled_flag &&
  1929. log2_cb_size >= s->ps.sps->log2_ctb_size - s->ps.pps->diff_cu_qp_delta_depth) {
  1930. lc->tu.is_cu_qp_delta_coded = 0;
  1931. lc->tu.cu_qp_delta = 0;
  1932. }
  1933. if (s->sh.cu_chroma_qp_offset_enabled_flag &&
  1934. log2_cb_size >= s->ps.sps->log2_ctb_size - s->ps.pps->diff_cu_chroma_qp_offset_depth) {
  1935. lc->tu.is_cu_chroma_qp_offset_coded = 0;
  1936. }
  1937. if (split_cu) {
  1938. int qp_block_mask = (1<<(s->ps.sps->log2_ctb_size - s->ps.pps->diff_cu_qp_delta_depth)) - 1;
  1939. const int cb_size_split = cb_size >> 1;
  1940. const int x1 = x0 + cb_size_split;
  1941. const int y1 = y0 + cb_size_split;
  1942. int more_data = 0;
  1943. more_data = hls_coding_quadtree(s, x0, y0, log2_cb_size - 1, cb_depth + 1);
  1944. if (more_data < 0)
  1945. return more_data;
  1946. if (more_data && x1 < s->ps.sps->width) {
  1947. more_data = hls_coding_quadtree(s, x1, y0, log2_cb_size - 1, cb_depth + 1);
  1948. if (more_data < 0)
  1949. return more_data;
  1950. }
  1951. if (more_data && y1 < s->ps.sps->height) {
  1952. more_data = hls_coding_quadtree(s, x0, y1, log2_cb_size - 1, cb_depth + 1);
  1953. if (more_data < 0)
  1954. return more_data;
  1955. }
  1956. if (more_data && x1 < s->ps.sps->width &&
  1957. y1 < s->ps.sps->height) {
  1958. more_data = hls_coding_quadtree(s, x1, y1, log2_cb_size - 1, cb_depth + 1);
  1959. if (more_data < 0)
  1960. return more_data;
  1961. }
  1962. if(((x0 + (1<<log2_cb_size)) & qp_block_mask) == 0 &&
  1963. ((y0 + (1<<log2_cb_size)) & qp_block_mask) == 0)
  1964. lc->qPy_pred = lc->qp_y;
  1965. if (more_data)
  1966. return ((x1 + cb_size_split) < s->ps.sps->width ||
  1967. (y1 + cb_size_split) < s->ps.sps->height);
  1968. else
  1969. return 0;
  1970. } else {
  1971. ret = hls_coding_unit(s, x0, y0, log2_cb_size);
  1972. if (ret < 0)
  1973. return ret;
  1974. if ((!((x0 + cb_size) %
  1975. (1 << (s->ps.sps->log2_ctb_size))) ||
  1976. (x0 + cb_size >= s->ps.sps->width)) &&
  1977. (!((y0 + cb_size) %
  1978. (1 << (s->ps.sps->log2_ctb_size))) ||
  1979. (y0 + cb_size >= s->ps.sps->height))) {
  1980. int end_of_slice_flag = ff_hevc_end_of_slice_flag_decode(s);
  1981. return !end_of_slice_flag;
  1982. } else {
  1983. return 1;
  1984. }
  1985. }
  1986. return 0;
  1987. }
  1988. static void hls_decode_neighbour(HEVCContext *s, int x_ctb, int y_ctb,
  1989. int ctb_addr_ts)
  1990. {
  1991. HEVCLocalContext *lc = s->HEVClc;
  1992. int ctb_size = 1 << s->ps.sps->log2_ctb_size;
  1993. int ctb_addr_rs = s->ps.pps->ctb_addr_ts_to_rs[ctb_addr_ts];
  1994. int ctb_addr_in_slice = ctb_addr_rs - s->sh.slice_addr;
  1995. s->tab_slice_address[ctb_addr_rs] = s->sh.slice_addr;
  1996. if (s->ps.pps->entropy_coding_sync_enabled_flag) {
  1997. if (x_ctb == 0 && (y_ctb & (ctb_size - 1)) == 0)
  1998. lc->first_qp_group = 1;
  1999. lc->end_of_tiles_x = s->ps.sps->width;
  2000. } else if (s->ps.pps->tiles_enabled_flag) {
  2001. if (ctb_addr_ts && s->ps.pps->tile_id[ctb_addr_ts] != s->ps.pps->tile_id[ctb_addr_ts - 1]) {
  2002. int idxX = s->ps.pps->col_idxX[x_ctb >> s->ps.sps->log2_ctb_size];
  2003. lc->end_of_tiles_x = x_ctb + (s->ps.pps->column_width[idxX] << s->ps.sps->log2_ctb_size);
  2004. lc->first_qp_group = 1;
  2005. }
  2006. } else {
  2007. lc->end_of_tiles_x = s->ps.sps->width;
  2008. }
  2009. lc->end_of_tiles_y = FFMIN(y_ctb + ctb_size, s->ps.sps->height);
  2010. lc->boundary_flags = 0;
  2011. if (s->ps.pps->tiles_enabled_flag) {
  2012. if (x_ctb > 0 && s->ps.pps->tile_id[ctb_addr_ts] != s->ps.pps->tile_id[s->ps.pps->ctb_addr_rs_to_ts[ctb_addr_rs - 1]])
  2013. lc->boundary_flags |= BOUNDARY_LEFT_TILE;
  2014. if (x_ctb > 0 && s->tab_slice_address[ctb_addr_rs] != s->tab_slice_address[ctb_addr_rs - 1])
  2015. lc->boundary_flags |= BOUNDARY_LEFT_SLICE;
  2016. if (y_ctb > 0 && s->ps.pps->tile_id[ctb_addr_ts] != s->ps.pps->tile_id[s->ps.pps->ctb_addr_rs_to_ts[ctb_addr_rs - s->ps.sps->ctb_width]])
  2017. lc->boundary_flags |= BOUNDARY_UPPER_TILE;
  2018. if (y_ctb > 0 && s->tab_slice_address[ctb_addr_rs] != s->tab_slice_address[ctb_addr_rs - s->ps.sps->ctb_width])
  2019. lc->boundary_flags |= BOUNDARY_UPPER_SLICE;
  2020. } else {
  2021. if (ctb_addr_in_slice <= 0)
  2022. lc->boundary_flags |= BOUNDARY_LEFT_SLICE;
  2023. if (ctb_addr_in_slice < s->ps.sps->ctb_width)
  2024. lc->boundary_flags |= BOUNDARY_UPPER_SLICE;
  2025. }
  2026. lc->ctb_left_flag = ((x_ctb > 0) && (ctb_addr_in_slice > 0) && !(lc->boundary_flags & BOUNDARY_LEFT_TILE));
  2027. lc->ctb_up_flag = ((y_ctb > 0) && (ctb_addr_in_slice >= s->ps.sps->ctb_width) && !(lc->boundary_flags & BOUNDARY_UPPER_TILE));
  2028. lc->ctb_up_right_flag = ((y_ctb > 0) && (ctb_addr_in_slice+1 >= s->ps.sps->ctb_width) && (s->ps.pps->tile_id[ctb_addr_ts] == s->ps.pps->tile_id[s->ps.pps->ctb_addr_rs_to_ts[ctb_addr_rs+1 - s->ps.sps->ctb_width]]));
  2029. lc->ctb_up_left_flag = ((x_ctb > 0) && (y_ctb > 0) && (ctb_addr_in_slice-1 >= s->ps.sps->ctb_width) && (s->ps.pps->tile_id[ctb_addr_ts] == s->ps.pps->tile_id[s->ps.pps->ctb_addr_rs_to_ts[ctb_addr_rs-1 - s->ps.sps->ctb_width]]));
  2030. }
  2031. static int hls_decode_entry(AVCodecContext *avctxt, void *isFilterThread)
  2032. {
  2033. HEVCContext *s = avctxt->priv_data;
  2034. int ctb_size = 1 << s->ps.sps->log2_ctb_size;
  2035. int more_data = 1;
  2036. int x_ctb = 0;
  2037. int y_ctb = 0;
  2038. int ctb_addr_ts = s->ps.pps->ctb_addr_rs_to_ts[s->sh.slice_ctb_addr_rs];
  2039. if (!ctb_addr_ts && s->sh.dependent_slice_segment_flag) {
  2040. av_log(s->avctx, AV_LOG_ERROR, "Impossible initial tile.\n");
  2041. return AVERROR_INVALIDDATA;
  2042. }
  2043. if (s->sh.dependent_slice_segment_flag) {
  2044. int prev_rs = s->ps.pps->ctb_addr_ts_to_rs[ctb_addr_ts - 1];
  2045. if (s->tab_slice_address[prev_rs] != s->sh.slice_addr) {
  2046. av_log(s->avctx, AV_LOG_ERROR, "Previous slice segment missing\n");
  2047. return AVERROR_INVALIDDATA;
  2048. }
  2049. }
  2050. while (more_data && ctb_addr_ts < s->ps.sps->ctb_size) {
  2051. int ctb_addr_rs = s->ps.pps->ctb_addr_ts_to_rs[ctb_addr_ts];
  2052. x_ctb = (ctb_addr_rs % ((s->ps.sps->width + ctb_size - 1) >> s->ps.sps->log2_ctb_size)) << s->ps.sps->log2_ctb_size;
  2053. y_ctb = (ctb_addr_rs / ((s->ps.sps->width + ctb_size - 1) >> s->ps.sps->log2_ctb_size)) << s->ps.sps->log2_ctb_size;
  2054. hls_decode_neighbour(s, x_ctb, y_ctb, ctb_addr_ts);
  2055. ff_hevc_cabac_init(s, ctb_addr_ts);
  2056. hls_sao_param(s, x_ctb >> s->ps.sps->log2_ctb_size, y_ctb >> s->ps.sps->log2_ctb_size);
  2057. s->deblock[ctb_addr_rs].beta_offset = s->sh.beta_offset;
  2058. s->deblock[ctb_addr_rs].tc_offset = s->sh.tc_offset;
  2059. s->filter_slice_edges[ctb_addr_rs] = s->sh.slice_loop_filter_across_slices_enabled_flag;
  2060. more_data = hls_coding_quadtree(s, x_ctb, y_ctb, s->ps.sps->log2_ctb_size, 0);
  2061. if (more_data < 0) {
  2062. s->tab_slice_address[ctb_addr_rs] = -1;
  2063. return more_data;
  2064. }
  2065. ctb_addr_ts++;
  2066. ff_hevc_save_states(s, ctb_addr_ts);
  2067. ff_hevc_hls_filters(s, x_ctb, y_ctb, ctb_size);
  2068. }
  2069. if (x_ctb + ctb_size >= s->ps.sps->width &&
  2070. y_ctb + ctb_size >= s->ps.sps->height)
  2071. ff_hevc_hls_filter(s, x_ctb, y_ctb, ctb_size);
  2072. return ctb_addr_ts;
  2073. }
  2074. static int hls_slice_data(HEVCContext *s)
  2075. {
  2076. int arg[2];
  2077. int ret[2];
  2078. arg[0] = 0;
  2079. arg[1] = 1;
  2080. s->avctx->execute(s->avctx, hls_decode_entry, arg, ret , 1, sizeof(int));
  2081. return ret[0];
  2082. }
  2083. static int hls_decode_entry_wpp(AVCodecContext *avctxt, void *input_ctb_row, int job, int self_id)
  2084. {
  2085. HEVCContext *s1 = avctxt->priv_data, *s;
  2086. HEVCLocalContext *lc;
  2087. int ctb_size = 1<< s1->ps.sps->log2_ctb_size;
  2088. int more_data = 1;
  2089. int *ctb_row_p = input_ctb_row;
  2090. int ctb_row = ctb_row_p[job];
  2091. int ctb_addr_rs = s1->sh.slice_ctb_addr_rs + ctb_row * ((s1->ps.sps->width + ctb_size - 1) >> s1->ps.sps->log2_ctb_size);
  2092. int ctb_addr_ts = s1->ps.pps->ctb_addr_rs_to_ts[ctb_addr_rs];
  2093. int thread = ctb_row % s1->threads_number;
  2094. int ret;
  2095. s = s1->sList[self_id];
  2096. lc = s->HEVClc;
  2097. if(ctb_row) {
  2098. ret = init_get_bits8(&lc->gb, s->data + s->sh.offset[ctb_row - 1], s->sh.size[ctb_row - 1]);
  2099. if (ret < 0)
  2100. return ret;
  2101. ff_init_cabac_decoder(&lc->cc, s->data + s->sh.offset[(ctb_row)-1], s->sh.size[ctb_row - 1]);
  2102. }
  2103. while(more_data && ctb_addr_ts < s->ps.sps->ctb_size) {
  2104. int x_ctb = (ctb_addr_rs % s->ps.sps->ctb_width) << s->ps.sps->log2_ctb_size;
  2105. int y_ctb = (ctb_addr_rs / s->ps.sps->ctb_width) << s->ps.sps->log2_ctb_size;
  2106. hls_decode_neighbour(s, x_ctb, y_ctb, ctb_addr_ts);
  2107. ff_thread_await_progress2(s->avctx, ctb_row, thread, SHIFT_CTB_WPP);
  2108. if (atomic_load(&s1->wpp_err)) {
  2109. ff_thread_report_progress2(s->avctx, ctb_row , thread, SHIFT_CTB_WPP);
  2110. return 0;
  2111. }
  2112. ff_hevc_cabac_init(s, ctb_addr_ts);
  2113. hls_sao_param(s, x_ctb >> s->ps.sps->log2_ctb_size, y_ctb >> s->ps.sps->log2_ctb_size);
  2114. more_data = hls_coding_quadtree(s, x_ctb, y_ctb, s->ps.sps->log2_ctb_size, 0);
  2115. if (more_data < 0) {
  2116. s->tab_slice_address[ctb_addr_rs] = -1;
  2117. atomic_store(&s1->wpp_err, 1);
  2118. ff_thread_report_progress2(s->avctx, ctb_row ,thread, SHIFT_CTB_WPP);
  2119. return more_data;
  2120. }
  2121. ctb_addr_ts++;
  2122. ff_hevc_save_states(s, ctb_addr_ts);
  2123. ff_thread_report_progress2(s->avctx, ctb_row, thread, 1);
  2124. ff_hevc_hls_filters(s, x_ctb, y_ctb, ctb_size);
  2125. if (!more_data && (x_ctb+ctb_size) < s->ps.sps->width && ctb_row != s->sh.num_entry_point_offsets) {
  2126. atomic_store(&s1->wpp_err, 1);
  2127. ff_thread_report_progress2(s->avctx, ctb_row ,thread, SHIFT_CTB_WPP);
  2128. return 0;
  2129. }
  2130. if ((x_ctb+ctb_size) >= s->ps.sps->width && (y_ctb+ctb_size) >= s->ps.sps->height ) {
  2131. ff_hevc_hls_filter(s, x_ctb, y_ctb, ctb_size);
  2132. ff_thread_report_progress2(s->avctx, ctb_row , thread, SHIFT_CTB_WPP);
  2133. return ctb_addr_ts;
  2134. }
  2135. ctb_addr_rs = s->ps.pps->ctb_addr_ts_to_rs[ctb_addr_ts];
  2136. x_ctb+=ctb_size;
  2137. if(x_ctb >= s->ps.sps->width) {
  2138. break;
  2139. }
  2140. }
  2141. ff_thread_report_progress2(s->avctx, ctb_row ,thread, SHIFT_CTB_WPP);
  2142. return 0;
  2143. }
  2144. static int hls_slice_data_wpp(HEVCContext *s, const H2645NAL *nal)
  2145. {
  2146. const uint8_t *data = nal->data;
  2147. int length = nal->size;
  2148. HEVCLocalContext *lc = s->HEVClc;
  2149. int *ret = av_malloc_array(s->sh.num_entry_point_offsets + 1, sizeof(int));
  2150. int *arg = av_malloc_array(s->sh.num_entry_point_offsets + 1, sizeof(int));
  2151. int64_t offset;
  2152. int64_t startheader, cmpt = 0;
  2153. int i, j, res = 0;
  2154. if (!ret || !arg) {
  2155. av_free(ret);
  2156. av_free(arg);
  2157. return AVERROR(ENOMEM);
  2158. }
  2159. if (s->sh.slice_ctb_addr_rs + s->sh.num_entry_point_offsets * s->ps.sps->ctb_width >= s->ps.sps->ctb_width * s->ps.sps->ctb_height) {
  2160. av_log(s->avctx, AV_LOG_ERROR, "WPP ctb addresses are wrong (%d %d %d %d)\n",
  2161. s->sh.slice_ctb_addr_rs, s->sh.num_entry_point_offsets,
  2162. s->ps.sps->ctb_width, s->ps.sps->ctb_height
  2163. );
  2164. res = AVERROR_INVALIDDATA;
  2165. goto error;
  2166. }
  2167. ff_alloc_entries(s->avctx, s->sh.num_entry_point_offsets + 1);
  2168. if (!s->sList[1]) {
  2169. for (i = 1; i < s->threads_number; i++) {
  2170. s->sList[i] = av_malloc(sizeof(HEVCContext));
  2171. memcpy(s->sList[i], s, sizeof(HEVCContext));
  2172. s->HEVClcList[i] = av_mallocz(sizeof(HEVCLocalContext));
  2173. s->sList[i]->HEVClc = s->HEVClcList[i];
  2174. }
  2175. }
  2176. offset = (lc->gb.index >> 3);
  2177. for (j = 0, cmpt = 0, startheader = offset + s->sh.entry_point_offset[0]; j < nal->skipped_bytes; j++) {
  2178. if (nal->skipped_bytes_pos[j] >= offset && nal->skipped_bytes_pos[j] < startheader) {
  2179. startheader--;
  2180. cmpt++;
  2181. }
  2182. }
  2183. for (i = 1; i < s->sh.num_entry_point_offsets; i++) {
  2184. offset += (s->sh.entry_point_offset[i - 1] - cmpt);
  2185. for (j = 0, cmpt = 0, startheader = offset
  2186. + s->sh.entry_point_offset[i]; j < nal->skipped_bytes; j++) {
  2187. if (nal->skipped_bytes_pos[j] >= offset && nal->skipped_bytes_pos[j] < startheader) {
  2188. startheader--;
  2189. cmpt++;
  2190. }
  2191. }
  2192. s->sh.size[i - 1] = s->sh.entry_point_offset[i] - cmpt;
  2193. s->sh.offset[i - 1] = offset;
  2194. }
  2195. if (s->sh.num_entry_point_offsets != 0) {
  2196. offset += s->sh.entry_point_offset[s->sh.num_entry_point_offsets - 1] - cmpt;
  2197. if (length < offset) {
  2198. av_log(s->avctx, AV_LOG_ERROR, "entry_point_offset table is corrupted\n");
  2199. res = AVERROR_INVALIDDATA;
  2200. goto error;
  2201. }
  2202. s->sh.size[s->sh.num_entry_point_offsets - 1] = length - offset;
  2203. s->sh.offset[s->sh.num_entry_point_offsets - 1] = offset;
  2204. }
  2205. s->data = data;
  2206. for (i = 1; i < s->threads_number; i++) {
  2207. s->sList[i]->HEVClc->first_qp_group = 1;
  2208. s->sList[i]->HEVClc->qp_y = s->sList[0]->HEVClc->qp_y;
  2209. memcpy(s->sList[i], s, sizeof(HEVCContext));
  2210. s->sList[i]->HEVClc = s->HEVClcList[i];
  2211. }
  2212. atomic_store(&s->wpp_err, 0);
  2213. ff_reset_entries(s->avctx);
  2214. for (i = 0; i <= s->sh.num_entry_point_offsets; i++) {
  2215. arg[i] = i;
  2216. ret[i] = 0;
  2217. }
  2218. if (s->ps.pps->entropy_coding_sync_enabled_flag)
  2219. s->avctx->execute2(s->avctx, hls_decode_entry_wpp, arg, ret, s->sh.num_entry_point_offsets + 1);
  2220. for (i = 0; i <= s->sh.num_entry_point_offsets; i++)
  2221. res += ret[i];
  2222. error:
  2223. av_free(ret);
  2224. av_free(arg);
  2225. return res;
  2226. }
  2227. static int set_side_data(HEVCContext *s)
  2228. {
  2229. AVFrame *out = s->ref->frame;
  2230. if (s->sei.frame_packing.present &&
  2231. s->sei.frame_packing.arrangement_type >= 3 &&
  2232. s->sei.frame_packing.arrangement_type <= 5 &&
  2233. s->sei.frame_packing.content_interpretation_type > 0 &&
  2234. s->sei.frame_packing.content_interpretation_type < 3) {
  2235. AVStereo3D *stereo = av_stereo3d_create_side_data(out);
  2236. if (!stereo)
  2237. return AVERROR(ENOMEM);
  2238. switch (s->sei.frame_packing.arrangement_type) {
  2239. case 3:
  2240. if (s->sei.frame_packing.quincunx_subsampling)
  2241. stereo->type = AV_STEREO3D_SIDEBYSIDE_QUINCUNX;
  2242. else
  2243. stereo->type = AV_STEREO3D_SIDEBYSIDE;
  2244. break;
  2245. case 4:
  2246. stereo->type = AV_STEREO3D_TOPBOTTOM;
  2247. break;
  2248. case 5:
  2249. stereo->type = AV_STEREO3D_FRAMESEQUENCE;
  2250. break;
  2251. }
  2252. if (s->sei.frame_packing.content_interpretation_type == 2)
  2253. stereo->flags = AV_STEREO3D_FLAG_INVERT;
  2254. }
  2255. if (s->sei.display_orientation.present &&
  2256. (s->sei.display_orientation.anticlockwise_rotation ||
  2257. s->sei.display_orientation.hflip || s->sei.display_orientation.vflip)) {
  2258. double angle = s->sei.display_orientation.anticlockwise_rotation * 360 / (double) (1 << 16);
  2259. AVFrameSideData *rotation = av_frame_new_side_data(out,
  2260. AV_FRAME_DATA_DISPLAYMATRIX,
  2261. sizeof(int32_t) * 9);
  2262. if (!rotation)
  2263. return AVERROR(ENOMEM);
  2264. av_display_rotation_set((int32_t *)rotation->data, angle);
  2265. av_display_matrix_flip((int32_t *)rotation->data,
  2266. s->sei.display_orientation.hflip,
  2267. s->sei.display_orientation.vflip);
  2268. }
  2269. // Decrement the mastering display flag when IRAP frame has no_rasl_output_flag=1
  2270. // so the side data persists for the entire coded video sequence.
  2271. if (s->sei.mastering_display.present > 0 &&
  2272. IS_IRAP(s) && s->no_rasl_output_flag) {
  2273. s->sei.mastering_display.present--;
  2274. }
  2275. if (s->sei.mastering_display.present) {
  2276. // HEVC uses a g,b,r ordering, which we convert to a more natural r,g,b
  2277. const int mapping[3] = {2, 0, 1};
  2278. const int chroma_den = 50000;
  2279. const int luma_den = 10000;
  2280. int i;
  2281. AVMasteringDisplayMetadata *metadata =
  2282. av_mastering_display_metadata_create_side_data(out);
  2283. if (!metadata)
  2284. return AVERROR(ENOMEM);
  2285. for (i = 0; i < 3; i++) {
  2286. const int j = mapping[i];
  2287. metadata->display_primaries[i][0].num = s->sei.mastering_display.display_primaries[j][0];
  2288. metadata->display_primaries[i][0].den = chroma_den;
  2289. metadata->display_primaries[i][1].num = s->sei.mastering_display.display_primaries[j][1];
  2290. metadata->display_primaries[i][1].den = chroma_den;
  2291. }
  2292. metadata->white_point[0].num = s->sei.mastering_display.white_point[0];
  2293. metadata->white_point[0].den = chroma_den;
  2294. metadata->white_point[1].num = s->sei.mastering_display.white_point[1];
  2295. metadata->white_point[1].den = chroma_den;
  2296. metadata->max_luminance.num = s->sei.mastering_display.max_luminance;
  2297. metadata->max_luminance.den = luma_den;
  2298. metadata->min_luminance.num = s->sei.mastering_display.min_luminance;
  2299. metadata->min_luminance.den = luma_den;
  2300. metadata->has_luminance = 1;
  2301. metadata->has_primaries = 1;
  2302. av_log(s->avctx, AV_LOG_DEBUG, "Mastering Display Metadata:\n");
  2303. av_log(s->avctx, AV_LOG_DEBUG,
  2304. "r(%5.4f,%5.4f) g(%5.4f,%5.4f) b(%5.4f %5.4f) wp(%5.4f, %5.4f)\n",
  2305. av_q2d(metadata->display_primaries[0][0]),
  2306. av_q2d(metadata->display_primaries[0][1]),
  2307. av_q2d(metadata->display_primaries[1][0]),
  2308. av_q2d(metadata->display_primaries[1][1]),
  2309. av_q2d(metadata->display_primaries[2][0]),
  2310. av_q2d(metadata->display_primaries[2][1]),
  2311. av_q2d(metadata->white_point[0]), av_q2d(metadata->white_point[1]));
  2312. av_log(s->avctx, AV_LOG_DEBUG,
  2313. "min_luminance=%f, max_luminance=%f\n",
  2314. av_q2d(metadata->min_luminance), av_q2d(metadata->max_luminance));
  2315. }
  2316. // Decrement the mastering display flag when IRAP frame has no_rasl_output_flag=1
  2317. // so the side data persists for the entire coded video sequence.
  2318. if (s->sei.content_light.present > 0 &&
  2319. IS_IRAP(s) && s->no_rasl_output_flag) {
  2320. s->sei.content_light.present--;
  2321. }
  2322. if (s->sei.content_light.present) {
  2323. AVContentLightMetadata *metadata =
  2324. av_content_light_metadata_create_side_data(out);
  2325. if (!metadata)
  2326. return AVERROR(ENOMEM);
  2327. metadata->MaxCLL = s->sei.content_light.max_content_light_level;
  2328. metadata->MaxFALL = s->sei.content_light.max_pic_average_light_level;
  2329. av_log(s->avctx, AV_LOG_DEBUG, "Content Light Level Metadata:\n");
  2330. av_log(s->avctx, AV_LOG_DEBUG, "MaxCLL=%d, MaxFALL=%d\n",
  2331. metadata->MaxCLL, metadata->MaxFALL);
  2332. }
  2333. if (s->sei.a53_caption.a53_caption) {
  2334. AVFrameSideData* sd = av_frame_new_side_data(out,
  2335. AV_FRAME_DATA_A53_CC,
  2336. s->sei.a53_caption.a53_caption_size);
  2337. if (sd)
  2338. memcpy(sd->data, s->sei.a53_caption.a53_caption, s->sei.a53_caption.a53_caption_size);
  2339. av_freep(&s->sei.a53_caption.a53_caption);
  2340. s->sei.a53_caption.a53_caption_size = 0;
  2341. s->avctx->properties |= FF_CODEC_PROPERTY_CLOSED_CAPTIONS;
  2342. }
  2343. return 0;
  2344. }
  2345. static int hevc_frame_start(HEVCContext *s)
  2346. {
  2347. HEVCLocalContext *lc = s->HEVClc;
  2348. int pic_size_in_ctb = ((s->ps.sps->width >> s->ps.sps->log2_min_cb_size) + 1) *
  2349. ((s->ps.sps->height >> s->ps.sps->log2_min_cb_size) + 1);
  2350. int ret;
  2351. memset(s->horizontal_bs, 0, s->bs_width * s->bs_height);
  2352. memset(s->vertical_bs, 0, s->bs_width * s->bs_height);
  2353. memset(s->cbf_luma, 0, s->ps.sps->min_tb_width * s->ps.sps->min_tb_height);
  2354. memset(s->is_pcm, 0, (s->ps.sps->min_pu_width + 1) * (s->ps.sps->min_pu_height + 1));
  2355. memset(s->tab_slice_address, -1, pic_size_in_ctb * sizeof(*s->tab_slice_address));
  2356. s->is_decoded = 0;
  2357. s->first_nal_type = s->nal_unit_type;
  2358. s->no_rasl_output_flag = IS_IDR(s) || IS_BLA(s) || (s->nal_unit_type == HEVC_NAL_CRA_NUT && s->last_eos);
  2359. if (s->ps.pps->tiles_enabled_flag)
  2360. lc->end_of_tiles_x = s->ps.pps->column_width[0] << s->ps.sps->log2_ctb_size;
  2361. ret = ff_hevc_set_new_ref(s, &s->frame, s->poc);
  2362. if (ret < 0)
  2363. goto fail;
  2364. ret = ff_hevc_frame_rps(s);
  2365. if (ret < 0) {
  2366. av_log(s->avctx, AV_LOG_ERROR, "Error constructing the frame RPS.\n");
  2367. goto fail;
  2368. }
  2369. s->ref->frame->key_frame = IS_IRAP(s);
  2370. ret = set_side_data(s);
  2371. if (ret < 0)
  2372. goto fail;
  2373. s->frame->pict_type = 3 - s->sh.slice_type;
  2374. if (!IS_IRAP(s))
  2375. ff_hevc_bump_frame(s);
  2376. av_frame_unref(s->output_frame);
  2377. ret = ff_hevc_output_frame(s, s->output_frame, 0);
  2378. if (ret < 0)
  2379. goto fail;
  2380. if (!s->avctx->hwaccel)
  2381. ff_thread_finish_setup(s->avctx);
  2382. return 0;
  2383. fail:
  2384. if (s->ref)
  2385. ff_hevc_unref_frame(s, s->ref, ~0);
  2386. s->ref = NULL;
  2387. return ret;
  2388. }
  2389. static int decode_nal_unit(HEVCContext *s, const H2645NAL *nal)
  2390. {
  2391. HEVCLocalContext *lc = s->HEVClc;
  2392. GetBitContext *gb = &lc->gb;
  2393. int ctb_addr_ts, ret;
  2394. *gb = nal->gb;
  2395. s->nal_unit_type = nal->type;
  2396. s->temporal_id = nal->temporal_id;
  2397. switch (s->nal_unit_type) {
  2398. case HEVC_NAL_VPS:
  2399. ret = ff_hevc_decode_nal_vps(gb, s->avctx, &s->ps);
  2400. if (ret < 0)
  2401. goto fail;
  2402. break;
  2403. case HEVC_NAL_SPS:
  2404. ret = ff_hevc_decode_nal_sps(gb, s->avctx, &s->ps,
  2405. s->apply_defdispwin);
  2406. if (ret < 0)
  2407. goto fail;
  2408. break;
  2409. case HEVC_NAL_PPS:
  2410. ret = ff_hevc_decode_nal_pps(gb, s->avctx, &s->ps);
  2411. if (ret < 0)
  2412. goto fail;
  2413. break;
  2414. case HEVC_NAL_SEI_PREFIX:
  2415. case HEVC_NAL_SEI_SUFFIX:
  2416. ret = ff_hevc_decode_nal_sei(gb, s->avctx, &s->sei, &s->ps, s->nal_unit_type);
  2417. if (ret < 0)
  2418. goto fail;
  2419. break;
  2420. case HEVC_NAL_TRAIL_R:
  2421. case HEVC_NAL_TRAIL_N:
  2422. case HEVC_NAL_TSA_N:
  2423. case HEVC_NAL_TSA_R:
  2424. case HEVC_NAL_STSA_N:
  2425. case HEVC_NAL_STSA_R:
  2426. case HEVC_NAL_BLA_W_LP:
  2427. case HEVC_NAL_BLA_W_RADL:
  2428. case HEVC_NAL_BLA_N_LP:
  2429. case HEVC_NAL_IDR_W_RADL:
  2430. case HEVC_NAL_IDR_N_LP:
  2431. case HEVC_NAL_CRA_NUT:
  2432. case HEVC_NAL_RADL_N:
  2433. case HEVC_NAL_RADL_R:
  2434. case HEVC_NAL_RASL_N:
  2435. case HEVC_NAL_RASL_R:
  2436. ret = hls_slice_header(s);
  2437. if (ret < 0)
  2438. return ret;
  2439. if (s->sh.first_slice_in_pic_flag) {
  2440. if (s->max_ra == INT_MAX) {
  2441. if (s->nal_unit_type == HEVC_NAL_CRA_NUT || IS_BLA(s)) {
  2442. s->max_ra = s->poc;
  2443. } else {
  2444. if (IS_IDR(s))
  2445. s->max_ra = INT_MIN;
  2446. }
  2447. }
  2448. if ((s->nal_unit_type == HEVC_NAL_RASL_R || s->nal_unit_type == HEVC_NAL_RASL_N) &&
  2449. s->poc <= s->max_ra) {
  2450. s->is_decoded = 0;
  2451. break;
  2452. } else {
  2453. if (s->nal_unit_type == HEVC_NAL_RASL_R && s->poc > s->max_ra)
  2454. s->max_ra = INT_MIN;
  2455. }
  2456. ret = hevc_frame_start(s);
  2457. if (ret < 0)
  2458. return ret;
  2459. } else if (!s->ref) {
  2460. av_log(s->avctx, AV_LOG_ERROR, "First slice in a frame missing.\n");
  2461. goto fail;
  2462. }
  2463. if (s->nal_unit_type != s->first_nal_type) {
  2464. av_log(s->avctx, AV_LOG_ERROR,
  2465. "Non-matching NAL types of the VCL NALUs: %d %d\n",
  2466. s->first_nal_type, s->nal_unit_type);
  2467. return AVERROR_INVALIDDATA;
  2468. }
  2469. if (!s->sh.dependent_slice_segment_flag &&
  2470. s->sh.slice_type != HEVC_SLICE_I) {
  2471. ret = ff_hevc_slice_rpl(s);
  2472. if (ret < 0) {
  2473. av_log(s->avctx, AV_LOG_WARNING,
  2474. "Error constructing the reference lists for the current slice.\n");
  2475. goto fail;
  2476. }
  2477. }
  2478. if (s->sh.first_slice_in_pic_flag && s->avctx->hwaccel) {
  2479. ret = s->avctx->hwaccel->start_frame(s->avctx, NULL, 0);
  2480. if (ret < 0)
  2481. goto fail;
  2482. }
  2483. if (s->avctx->hwaccel) {
  2484. ret = s->avctx->hwaccel->decode_slice(s->avctx, nal->raw_data, nal->raw_size);
  2485. if (ret < 0)
  2486. goto fail;
  2487. } else {
  2488. if (s->threads_number > 1 && s->sh.num_entry_point_offsets > 0)
  2489. ctb_addr_ts = hls_slice_data_wpp(s, nal);
  2490. else
  2491. ctb_addr_ts = hls_slice_data(s);
  2492. if (ctb_addr_ts >= (s->ps.sps->ctb_width * s->ps.sps->ctb_height)) {
  2493. s->is_decoded = 1;
  2494. }
  2495. if (ctb_addr_ts < 0) {
  2496. ret = ctb_addr_ts;
  2497. goto fail;
  2498. }
  2499. }
  2500. break;
  2501. case HEVC_NAL_EOS_NUT:
  2502. case HEVC_NAL_EOB_NUT:
  2503. s->seq_decode = (s->seq_decode + 1) & 0xff;
  2504. s->max_ra = INT_MAX;
  2505. break;
  2506. case HEVC_NAL_AUD:
  2507. case HEVC_NAL_FD_NUT:
  2508. break;
  2509. default:
  2510. av_log(s->avctx, AV_LOG_INFO,
  2511. "Skipping NAL unit %d\n", s->nal_unit_type);
  2512. }
  2513. return 0;
  2514. fail:
  2515. if (s->avctx->err_recognition & AV_EF_EXPLODE)
  2516. return ret;
  2517. return 0;
  2518. }
  2519. static int decode_nal_units(HEVCContext *s, const uint8_t *buf, int length)
  2520. {
  2521. int i, ret = 0;
  2522. int eos_at_start = 1;
  2523. s->ref = NULL;
  2524. s->last_eos = s->eos;
  2525. s->eos = 0;
  2526. /* split the input packet into NAL units, so we know the upper bound on the
  2527. * number of slices in the frame */
  2528. ret = ff_h2645_packet_split(&s->pkt, buf, length, s->avctx, s->is_nalff,
  2529. s->nal_length_size, s->avctx->codec_id, 1);
  2530. if (ret < 0) {
  2531. av_log(s->avctx, AV_LOG_ERROR,
  2532. "Error splitting the input into NAL units.\n");
  2533. return ret;
  2534. }
  2535. for (i = 0; i < s->pkt.nb_nals; i++) {
  2536. if (s->pkt.nals[i].type == HEVC_NAL_EOB_NUT ||
  2537. s->pkt.nals[i].type == HEVC_NAL_EOS_NUT) {
  2538. if (eos_at_start) {
  2539. s->last_eos = 1;
  2540. } else {
  2541. s->eos = 1;
  2542. }
  2543. } else {
  2544. eos_at_start = 0;
  2545. }
  2546. }
  2547. /* decode the NAL units */
  2548. for (i = 0; i < s->pkt.nb_nals; i++) {
  2549. ret = decode_nal_unit(s, &s->pkt.nals[i]);
  2550. if (ret < 0) {
  2551. av_log(s->avctx, AV_LOG_WARNING,
  2552. "Error parsing NAL unit #%d.\n", i);
  2553. goto fail;
  2554. }
  2555. }
  2556. fail:
  2557. if (s->ref && s->threads_type == FF_THREAD_FRAME)
  2558. ff_thread_report_progress(&s->ref->tf, INT_MAX, 0);
  2559. return ret;
  2560. }
  2561. static void print_md5(void *log_ctx, int level, uint8_t md5[16])
  2562. {
  2563. int i;
  2564. for (i = 0; i < 16; i++)
  2565. av_log(log_ctx, level, "%02"PRIx8, md5[i]);
  2566. }
  2567. static int verify_md5(HEVCContext *s, AVFrame *frame)
  2568. {
  2569. const AVPixFmtDescriptor *desc = av_pix_fmt_desc_get(frame->format);
  2570. int pixel_shift;
  2571. int i, j;
  2572. if (!desc)
  2573. return AVERROR(EINVAL);
  2574. pixel_shift = desc->comp[0].depth > 8;
  2575. av_log(s->avctx, AV_LOG_DEBUG, "Verifying checksum for frame with POC %d: ",
  2576. s->poc);
  2577. /* the checksums are LE, so we have to byteswap for >8bpp formats
  2578. * on BE arches */
  2579. #if HAVE_BIGENDIAN
  2580. if (pixel_shift && !s->checksum_buf) {
  2581. av_fast_malloc(&s->checksum_buf, &s->checksum_buf_size,
  2582. FFMAX3(frame->linesize[0], frame->linesize[1],
  2583. frame->linesize[2]));
  2584. if (!s->checksum_buf)
  2585. return AVERROR(ENOMEM);
  2586. }
  2587. #endif
  2588. for (i = 0; frame->data[i]; i++) {
  2589. int width = s->avctx->coded_width;
  2590. int height = s->avctx->coded_height;
  2591. int w = (i == 1 || i == 2) ? (width >> desc->log2_chroma_w) : width;
  2592. int h = (i == 1 || i == 2) ? (height >> desc->log2_chroma_h) : height;
  2593. uint8_t md5[16];
  2594. av_md5_init(s->sei.picture_hash.md5_ctx);
  2595. for (j = 0; j < h; j++) {
  2596. const uint8_t *src = frame->data[i] + j * frame->linesize[i];
  2597. #if HAVE_BIGENDIAN
  2598. if (pixel_shift) {
  2599. s->bdsp.bswap16_buf((uint16_t *) s->checksum_buf,
  2600. (const uint16_t *) src, w);
  2601. src = s->checksum_buf;
  2602. }
  2603. #endif
  2604. av_md5_update(s->sei.picture_hash.md5_ctx, src, w << pixel_shift);
  2605. }
  2606. av_md5_final(s->sei.picture_hash.md5_ctx, md5);
  2607. if (!memcmp(md5, s->sei.picture_hash.md5[i], 16)) {
  2608. av_log (s->avctx, AV_LOG_DEBUG, "plane %d - correct ", i);
  2609. print_md5(s->avctx, AV_LOG_DEBUG, md5);
  2610. av_log (s->avctx, AV_LOG_DEBUG, "; ");
  2611. } else {
  2612. av_log (s->avctx, AV_LOG_ERROR, "mismatching checksum of plane %d - ", i);
  2613. print_md5(s->avctx, AV_LOG_ERROR, md5);
  2614. av_log (s->avctx, AV_LOG_ERROR, " != ");
  2615. print_md5(s->avctx, AV_LOG_ERROR, s->sei.picture_hash.md5[i]);
  2616. av_log (s->avctx, AV_LOG_ERROR, "\n");
  2617. return AVERROR_INVALIDDATA;
  2618. }
  2619. }
  2620. av_log(s->avctx, AV_LOG_DEBUG, "\n");
  2621. return 0;
  2622. }
  2623. static int hevc_decode_extradata(HEVCContext *s, uint8_t *buf, int length)
  2624. {
  2625. int ret, i;
  2626. ret = ff_hevc_decode_extradata(buf, length, &s->ps, &s->sei, &s->is_nalff,
  2627. &s->nal_length_size, s->avctx->err_recognition,
  2628. s->apply_defdispwin, s->avctx);
  2629. if (ret < 0)
  2630. return ret;
  2631. /* export stream parameters from the first SPS */
  2632. for (i = 0; i < FF_ARRAY_ELEMS(s->ps.sps_list); i++) {
  2633. if (s->ps.sps_list[i]) {
  2634. const HEVCSPS *sps = (const HEVCSPS*)s->ps.sps_list[i]->data;
  2635. export_stream_params(s->avctx, &s->ps, sps);
  2636. break;
  2637. }
  2638. }
  2639. return 0;
  2640. }
  2641. static int hevc_decode_frame(AVCodecContext *avctx, void *data, int *got_output,
  2642. AVPacket *avpkt)
  2643. {
  2644. int ret;
  2645. int new_extradata_size;
  2646. uint8_t *new_extradata;
  2647. HEVCContext *s = avctx->priv_data;
  2648. if (!avpkt->size) {
  2649. ret = ff_hevc_output_frame(s, data, 1);
  2650. if (ret < 0)
  2651. return ret;
  2652. *got_output = ret;
  2653. return 0;
  2654. }
  2655. new_extradata = av_packet_get_side_data(avpkt, AV_PKT_DATA_NEW_EXTRADATA,
  2656. &new_extradata_size);
  2657. if (new_extradata && new_extradata_size > 0) {
  2658. ret = hevc_decode_extradata(s, new_extradata, new_extradata_size);
  2659. if (ret < 0)
  2660. return ret;
  2661. }
  2662. s->ref = NULL;
  2663. ret = decode_nal_units(s, avpkt->data, avpkt->size);
  2664. if (ret < 0)
  2665. return ret;
  2666. if (avctx->hwaccel) {
  2667. if (s->ref && (ret = avctx->hwaccel->end_frame(avctx)) < 0) {
  2668. av_log(avctx, AV_LOG_ERROR,
  2669. "hardware accelerator failed to decode picture\n");
  2670. ff_hevc_unref_frame(s, s->ref, ~0);
  2671. return ret;
  2672. }
  2673. } else {
  2674. /* verify the SEI checksum */
  2675. if (avctx->err_recognition & AV_EF_CRCCHECK && s->is_decoded &&
  2676. s->sei.picture_hash.is_md5) {
  2677. ret = verify_md5(s, s->ref->frame);
  2678. if (ret < 0 && avctx->err_recognition & AV_EF_EXPLODE) {
  2679. ff_hevc_unref_frame(s, s->ref, ~0);
  2680. return ret;
  2681. }
  2682. }
  2683. }
  2684. s->sei.picture_hash.is_md5 = 0;
  2685. if (s->is_decoded) {
  2686. av_log(avctx, AV_LOG_DEBUG, "Decoded frame with POC %d.\n", s->poc);
  2687. s->is_decoded = 0;
  2688. }
  2689. if (s->output_frame->buf[0]) {
  2690. av_frame_move_ref(data, s->output_frame);
  2691. *got_output = 1;
  2692. }
  2693. return avpkt->size;
  2694. }
  2695. static int hevc_ref_frame(HEVCContext *s, HEVCFrame *dst, HEVCFrame *src)
  2696. {
  2697. int ret;
  2698. ret = ff_thread_ref_frame(&dst->tf, &src->tf);
  2699. if (ret < 0)
  2700. return ret;
  2701. dst->tab_mvf_buf = av_buffer_ref(src->tab_mvf_buf);
  2702. if (!dst->tab_mvf_buf)
  2703. goto fail;
  2704. dst->tab_mvf = src->tab_mvf;
  2705. dst->rpl_tab_buf = av_buffer_ref(src->rpl_tab_buf);
  2706. if (!dst->rpl_tab_buf)
  2707. goto fail;
  2708. dst->rpl_tab = src->rpl_tab;
  2709. dst->rpl_buf = av_buffer_ref(src->rpl_buf);
  2710. if (!dst->rpl_buf)
  2711. goto fail;
  2712. dst->poc = src->poc;
  2713. dst->ctb_count = src->ctb_count;
  2714. dst->flags = src->flags;
  2715. dst->sequence = src->sequence;
  2716. if (src->hwaccel_picture_private) {
  2717. dst->hwaccel_priv_buf = av_buffer_ref(src->hwaccel_priv_buf);
  2718. if (!dst->hwaccel_priv_buf)
  2719. goto fail;
  2720. dst->hwaccel_picture_private = dst->hwaccel_priv_buf->data;
  2721. }
  2722. return 0;
  2723. fail:
  2724. ff_hevc_unref_frame(s, dst, ~0);
  2725. return AVERROR(ENOMEM);
  2726. }
  2727. static av_cold int hevc_decode_free(AVCodecContext *avctx)
  2728. {
  2729. HEVCContext *s = avctx->priv_data;
  2730. int i;
  2731. pic_arrays_free(s);
  2732. av_freep(&s->sei.picture_hash.md5_ctx);
  2733. av_freep(&s->cabac_state);
  2734. for (i = 0; i < 3; i++) {
  2735. av_freep(&s->sao_pixel_buffer_h[i]);
  2736. av_freep(&s->sao_pixel_buffer_v[i]);
  2737. }
  2738. av_frame_free(&s->output_frame);
  2739. for (i = 0; i < FF_ARRAY_ELEMS(s->DPB); i++) {
  2740. ff_hevc_unref_frame(s, &s->DPB[i], ~0);
  2741. av_frame_free(&s->DPB[i].frame);
  2742. }
  2743. for (i = 0; i < FF_ARRAY_ELEMS(s->ps.vps_list); i++)
  2744. av_buffer_unref(&s->ps.vps_list[i]);
  2745. for (i = 0; i < FF_ARRAY_ELEMS(s->ps.sps_list); i++)
  2746. av_buffer_unref(&s->ps.sps_list[i]);
  2747. for (i = 0; i < FF_ARRAY_ELEMS(s->ps.pps_list); i++)
  2748. av_buffer_unref(&s->ps.pps_list[i]);
  2749. s->ps.sps = NULL;
  2750. s->ps.pps = NULL;
  2751. s->ps.vps = NULL;
  2752. av_freep(&s->sh.entry_point_offset);
  2753. av_freep(&s->sh.offset);
  2754. av_freep(&s->sh.size);
  2755. for (i = 1; i < s->threads_number; i++) {
  2756. HEVCLocalContext *lc = s->HEVClcList[i];
  2757. if (lc) {
  2758. av_freep(&s->HEVClcList[i]);
  2759. av_freep(&s->sList[i]);
  2760. }
  2761. }
  2762. if (s->HEVClc == s->HEVClcList[0])
  2763. s->HEVClc = NULL;
  2764. av_freep(&s->HEVClcList[0]);
  2765. ff_h2645_packet_uninit(&s->pkt);
  2766. return 0;
  2767. }
  2768. static av_cold int hevc_init_context(AVCodecContext *avctx)
  2769. {
  2770. HEVCContext *s = avctx->priv_data;
  2771. int i;
  2772. s->avctx = avctx;
  2773. s->HEVClc = av_mallocz(sizeof(HEVCLocalContext));
  2774. if (!s->HEVClc)
  2775. goto fail;
  2776. s->HEVClcList[0] = s->HEVClc;
  2777. s->sList[0] = s;
  2778. s->cabac_state = av_malloc(HEVC_CONTEXTS);
  2779. if (!s->cabac_state)
  2780. goto fail;
  2781. s->output_frame = av_frame_alloc();
  2782. if (!s->output_frame)
  2783. goto fail;
  2784. for (i = 0; i < FF_ARRAY_ELEMS(s->DPB); i++) {
  2785. s->DPB[i].frame = av_frame_alloc();
  2786. if (!s->DPB[i].frame)
  2787. goto fail;
  2788. s->DPB[i].tf.f = s->DPB[i].frame;
  2789. }
  2790. s->max_ra = INT_MAX;
  2791. s->sei.picture_hash.md5_ctx = av_md5_alloc();
  2792. if (!s->sei.picture_hash.md5_ctx)
  2793. goto fail;
  2794. ff_bswapdsp_init(&s->bdsp);
  2795. s->context_initialized = 1;
  2796. s->eos = 0;
  2797. ff_hevc_reset_sei(&s->sei);
  2798. return 0;
  2799. fail:
  2800. hevc_decode_free(avctx);
  2801. return AVERROR(ENOMEM);
  2802. }
  2803. static int hevc_update_thread_context(AVCodecContext *dst,
  2804. const AVCodecContext *src)
  2805. {
  2806. HEVCContext *s = dst->priv_data;
  2807. HEVCContext *s0 = src->priv_data;
  2808. int i, ret;
  2809. if (!s->context_initialized) {
  2810. ret = hevc_init_context(dst);
  2811. if (ret < 0)
  2812. return ret;
  2813. }
  2814. for (i = 0; i < FF_ARRAY_ELEMS(s->DPB); i++) {
  2815. ff_hevc_unref_frame(s, &s->DPB[i], ~0);
  2816. if (s0->DPB[i].frame->buf[0]) {
  2817. ret = hevc_ref_frame(s, &s->DPB[i], &s0->DPB[i]);
  2818. if (ret < 0)
  2819. return ret;
  2820. }
  2821. }
  2822. if (s->ps.sps != s0->ps.sps)
  2823. s->ps.sps = NULL;
  2824. for (i = 0; i < FF_ARRAY_ELEMS(s->ps.vps_list); i++) {
  2825. av_buffer_unref(&s->ps.vps_list[i]);
  2826. if (s0->ps.vps_list[i]) {
  2827. s->ps.vps_list[i] = av_buffer_ref(s0->ps.vps_list[i]);
  2828. if (!s->ps.vps_list[i])
  2829. return AVERROR(ENOMEM);
  2830. }
  2831. }
  2832. for (i = 0; i < FF_ARRAY_ELEMS(s->ps.sps_list); i++) {
  2833. av_buffer_unref(&s->ps.sps_list[i]);
  2834. if (s0->ps.sps_list[i]) {
  2835. s->ps.sps_list[i] = av_buffer_ref(s0->ps.sps_list[i]);
  2836. if (!s->ps.sps_list[i])
  2837. return AVERROR(ENOMEM);
  2838. }
  2839. }
  2840. for (i = 0; i < FF_ARRAY_ELEMS(s->ps.pps_list); i++) {
  2841. av_buffer_unref(&s->ps.pps_list[i]);
  2842. if (s0->ps.pps_list[i]) {
  2843. s->ps.pps_list[i] = av_buffer_ref(s0->ps.pps_list[i]);
  2844. if (!s->ps.pps_list[i])
  2845. return AVERROR(ENOMEM);
  2846. }
  2847. }
  2848. if (s->ps.sps != s0->ps.sps)
  2849. if ((ret = set_sps(s, s0->ps.sps, src->pix_fmt)) < 0)
  2850. return ret;
  2851. s->seq_decode = s0->seq_decode;
  2852. s->seq_output = s0->seq_output;
  2853. s->pocTid0 = s0->pocTid0;
  2854. s->max_ra = s0->max_ra;
  2855. s->eos = s0->eos;
  2856. s->no_rasl_output_flag = s0->no_rasl_output_flag;
  2857. s->is_nalff = s0->is_nalff;
  2858. s->nal_length_size = s0->nal_length_size;
  2859. s->threads_number = s0->threads_number;
  2860. s->threads_type = s0->threads_type;
  2861. if (s0->eos) {
  2862. s->seq_decode = (s->seq_decode + 1) & 0xff;
  2863. s->max_ra = INT_MAX;
  2864. }
  2865. return 0;
  2866. }
  2867. static av_cold int hevc_decode_init(AVCodecContext *avctx)
  2868. {
  2869. HEVCContext *s = avctx->priv_data;
  2870. int ret;
  2871. avctx->internal->allocate_progress = 1;
  2872. ret = hevc_init_context(avctx);
  2873. if (ret < 0)
  2874. return ret;
  2875. s->enable_parallel_tiles = 0;
  2876. s->sei.picture_timing.picture_struct = 0;
  2877. s->eos = 1;
  2878. atomic_init(&s->wpp_err, 0);
  2879. if(avctx->active_thread_type & FF_THREAD_SLICE)
  2880. s->threads_number = avctx->thread_count;
  2881. else
  2882. s->threads_number = 1;
  2883. if (avctx->extradata_size > 0 && avctx->extradata) {
  2884. ret = hevc_decode_extradata(s, avctx->extradata, avctx->extradata_size);
  2885. if (ret < 0) {
  2886. hevc_decode_free(avctx);
  2887. return ret;
  2888. }
  2889. }
  2890. if((avctx->active_thread_type & FF_THREAD_FRAME) && avctx->thread_count > 1)
  2891. s->threads_type = FF_THREAD_FRAME;
  2892. else
  2893. s->threads_type = FF_THREAD_SLICE;
  2894. return 0;
  2895. }
  2896. static av_cold int hevc_init_thread_copy(AVCodecContext *avctx)
  2897. {
  2898. HEVCContext *s = avctx->priv_data;
  2899. int ret;
  2900. memset(s, 0, sizeof(*s));
  2901. ret = hevc_init_context(avctx);
  2902. if (ret < 0)
  2903. return ret;
  2904. return 0;
  2905. }
  2906. static void hevc_decode_flush(AVCodecContext *avctx)
  2907. {
  2908. HEVCContext *s = avctx->priv_data;
  2909. ff_hevc_flush_dpb(s);
  2910. s->max_ra = INT_MAX;
  2911. s->eos = 1;
  2912. }
  2913. #define OFFSET(x) offsetof(HEVCContext, x)
  2914. #define PAR (AV_OPT_FLAG_DECODING_PARAM | AV_OPT_FLAG_VIDEO_PARAM)
  2915. static const AVOption options[] = {
  2916. { "apply_defdispwin", "Apply default display window from VUI", OFFSET(apply_defdispwin),
  2917. AV_OPT_TYPE_BOOL, {.i64 = 0}, 0, 1, PAR },
  2918. { "strict-displaywin", "stricly apply default display window size", OFFSET(apply_defdispwin),
  2919. AV_OPT_TYPE_BOOL, {.i64 = 0}, 0, 1, PAR },
  2920. { NULL },
  2921. };
  2922. static const AVClass hevc_decoder_class = {
  2923. .class_name = "HEVC decoder",
  2924. .item_name = av_default_item_name,
  2925. .option = options,
  2926. .version = LIBAVUTIL_VERSION_INT,
  2927. };
  2928. AVCodec ff_hevc_decoder = {
  2929. .name = "hevc",
  2930. .long_name = NULL_IF_CONFIG_SMALL("HEVC (High Efficiency Video Coding)"),
  2931. .type = AVMEDIA_TYPE_VIDEO,
  2932. .id = AV_CODEC_ID_HEVC,
  2933. .priv_data_size = sizeof(HEVCContext),
  2934. .priv_class = &hevc_decoder_class,
  2935. .init = hevc_decode_init,
  2936. .close = hevc_decode_free,
  2937. .decode = hevc_decode_frame,
  2938. .flush = hevc_decode_flush,
  2939. .update_thread_context = hevc_update_thread_context,
  2940. .init_thread_copy = hevc_init_thread_copy,
  2941. .capabilities = AV_CODEC_CAP_DR1 | AV_CODEC_CAP_DELAY |
  2942. AV_CODEC_CAP_SLICE_THREADS | AV_CODEC_CAP_FRAME_THREADS,
  2943. .caps_internal = FF_CODEC_CAP_INIT_THREADSAFE | FF_CODEC_CAP_EXPORTS_CROPPING,
  2944. .profiles = NULL_IF_CONFIG_SMALL(ff_hevc_profiles),
  2945. };