You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

1617 lines
59KB

  1. /*
  2. * Copyright (C) 2001-2003 Michael Niedermayer <michaelni@gmx.at>
  3. *
  4. * This file is part of Libav.
  5. *
  6. * Libav is free software; you can redistribute it and/or
  7. * modify it under the terms of the GNU Lesser General Public
  8. * License as published by the Free Software Foundation; either
  9. * version 2.1 of the License, or (at your option) any later version.
  10. *
  11. * Libav is distributed in the hope that it will be useful,
  12. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  13. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  14. * Lesser General Public License for more details.
  15. *
  16. * You should have received a copy of the GNU Lesser General Public
  17. * License along with Libav; if not, write to the Free Software
  18. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  19. */
  20. #include <inttypes.h>
  21. #include <string.h>
  22. #include <math.h>
  23. #include <stdio.h>
  24. #include "config.h"
  25. #include <assert.h>
  26. #if HAVE_SYS_MMAN_H
  27. #include <sys/mman.h>
  28. #if defined(MAP_ANON) && !defined(MAP_ANONYMOUS)
  29. #define MAP_ANONYMOUS MAP_ANON
  30. #endif
  31. #endif
  32. #if HAVE_VIRTUALALLOC
  33. #define WIN32_LEAN_AND_MEAN
  34. #include <windows.h>
  35. #endif
  36. #include "swscale.h"
  37. #include "swscale_internal.h"
  38. #include "rgb2rgb.h"
  39. #include "libavutil/intreadwrite.h"
  40. #include "libavutil/x86_cpu.h"
  41. #include "libavutil/cpu.h"
  42. #include "libavutil/avutil.h"
  43. #include "libavutil/bswap.h"
  44. #include "libavutil/opt.h"
  45. #include "libavutil/pixdesc.h"
  46. unsigned swscale_version(void)
  47. {
  48. return LIBSWSCALE_VERSION_INT;
  49. }
  50. const char *swscale_configuration(void)
  51. {
  52. return LIBAV_CONFIGURATION;
  53. }
  54. const char *swscale_license(void)
  55. {
  56. #define LICENSE_PREFIX "libswscale license: "
  57. return LICENSE_PREFIX LIBAV_LICENSE + sizeof(LICENSE_PREFIX) - 1;
  58. }
  59. #define RET 0xC3 //near return opcode for x86
  60. #define isSupportedIn(x) ( \
  61. (x)==PIX_FMT_YUV420P \
  62. || (x)==PIX_FMT_YUVA420P \
  63. || (x)==PIX_FMT_YUYV422 \
  64. || (x)==PIX_FMT_UYVY422 \
  65. || (x)==PIX_FMT_RGB48BE \
  66. || (x)==PIX_FMT_RGB48LE \
  67. || (x)==PIX_FMT_RGB32 \
  68. || (x)==PIX_FMT_RGB32_1 \
  69. || (x)==PIX_FMT_BGR48BE \
  70. || (x)==PIX_FMT_BGR48LE \
  71. || (x)==PIX_FMT_BGR24 \
  72. || (x)==PIX_FMT_BGR565LE \
  73. || (x)==PIX_FMT_BGR565BE \
  74. || (x)==PIX_FMT_BGR555LE \
  75. || (x)==PIX_FMT_BGR555BE \
  76. || (x)==PIX_FMT_BGR32 \
  77. || (x)==PIX_FMT_BGR32_1 \
  78. || (x)==PIX_FMT_RGB24 \
  79. || (x)==PIX_FMT_RGB565LE \
  80. || (x)==PIX_FMT_RGB565BE \
  81. || (x)==PIX_FMT_RGB555LE \
  82. || (x)==PIX_FMT_RGB555BE \
  83. || (x)==PIX_FMT_GRAY8 \
  84. || (x)==PIX_FMT_Y400A \
  85. || (x)==PIX_FMT_YUV410P \
  86. || (x)==PIX_FMT_YUV440P \
  87. || (x)==PIX_FMT_NV12 \
  88. || (x)==PIX_FMT_NV21 \
  89. || (x)==PIX_FMT_GRAY16BE \
  90. || (x)==PIX_FMT_GRAY16LE \
  91. || (x)==PIX_FMT_YUV444P \
  92. || (x)==PIX_FMT_YUV422P \
  93. || (x)==PIX_FMT_YUV411P \
  94. || (x)==PIX_FMT_YUVJ420P \
  95. || (x)==PIX_FMT_YUVJ422P \
  96. || (x)==PIX_FMT_YUVJ440P \
  97. || (x)==PIX_FMT_YUVJ444P \
  98. || (x)==PIX_FMT_PAL8 \
  99. || (x)==PIX_FMT_BGR8 \
  100. || (x)==PIX_FMT_RGB8 \
  101. || (x)==PIX_FMT_BGR4_BYTE \
  102. || (x)==PIX_FMT_RGB4_BYTE \
  103. || (x)==PIX_FMT_YUV440P \
  104. || (x)==PIX_FMT_MONOWHITE \
  105. || (x)==PIX_FMT_MONOBLACK \
  106. || (x)==PIX_FMT_YUV420P9LE \
  107. || (x)==PIX_FMT_YUV444P9LE \
  108. || (x)==PIX_FMT_YUV420P10LE \
  109. || (x)==PIX_FMT_YUV422P10LE \
  110. || (x)==PIX_FMT_YUV444P10LE \
  111. || (x)==PIX_FMT_YUV420P16LE \
  112. || (x)==PIX_FMT_YUV422P16LE \
  113. || (x)==PIX_FMT_YUV444P16LE \
  114. || (x)==PIX_FMT_YUV420P9BE \
  115. || (x)==PIX_FMT_YUV444P9BE \
  116. || (x)==PIX_FMT_YUV420P10BE \
  117. || (x)==PIX_FMT_YUV444P10BE \
  118. || (x)==PIX_FMT_YUV422P10BE \
  119. || (x)==PIX_FMT_YUV420P16BE \
  120. || (x)==PIX_FMT_YUV422P16BE \
  121. || (x)==PIX_FMT_YUV444P16BE \
  122. )
  123. int sws_isSupportedInput(enum PixelFormat pix_fmt)
  124. {
  125. return isSupportedIn(pix_fmt);
  126. }
  127. #define isSupportedOut(x) ( \
  128. (x)==PIX_FMT_YUV420P \
  129. || (x)==PIX_FMT_YUVA420P \
  130. || (x)==PIX_FMT_YUYV422 \
  131. || (x)==PIX_FMT_UYVY422 \
  132. || (x)==PIX_FMT_YUV444P \
  133. || (x)==PIX_FMT_YUV422P \
  134. || (x)==PIX_FMT_YUV411P \
  135. || (x)==PIX_FMT_YUVJ420P \
  136. || (x)==PIX_FMT_YUVJ422P \
  137. || (x)==PIX_FMT_YUVJ440P \
  138. || (x)==PIX_FMT_YUVJ444P \
  139. || isRGBinBytes(x) \
  140. || isBGRinBytes(x) \
  141. || (x)==PIX_FMT_RGB565LE \
  142. || (x)==PIX_FMT_RGB565BE \
  143. || (x)==PIX_FMT_RGB555LE \
  144. || (x)==PIX_FMT_RGB555BE \
  145. || (x)==PIX_FMT_RGB444LE \
  146. || (x)==PIX_FMT_RGB444BE \
  147. || (x)==PIX_FMT_BGR565LE \
  148. || (x)==PIX_FMT_BGR565BE \
  149. || (x)==PIX_FMT_BGR555LE \
  150. || (x)==PIX_FMT_BGR555BE \
  151. || (x)==PIX_FMT_BGR444LE \
  152. || (x)==PIX_FMT_BGR444BE \
  153. || (x)==PIX_FMT_RGB8 \
  154. || (x)==PIX_FMT_BGR8 \
  155. || (x)==PIX_FMT_RGB4_BYTE \
  156. || (x)==PIX_FMT_BGR4_BYTE \
  157. || (x)==PIX_FMT_RGB4 \
  158. || (x)==PIX_FMT_BGR4 \
  159. || (x)==PIX_FMT_MONOBLACK \
  160. || (x)==PIX_FMT_MONOWHITE \
  161. || (x)==PIX_FMT_NV12 \
  162. || (x)==PIX_FMT_NV21 \
  163. || (x)==PIX_FMT_GRAY16BE \
  164. || (x)==PIX_FMT_GRAY16LE \
  165. || (x)==PIX_FMT_GRAY8 \
  166. || (x)==PIX_FMT_YUV410P \
  167. || (x)==PIX_FMT_YUV440P \
  168. || (x)==PIX_FMT_YUV420P9LE \
  169. || (x)==PIX_FMT_YUV420P10LE \
  170. || (x)==PIX_FMT_YUV420P16LE \
  171. || (x)==PIX_FMT_YUV422P16LE \
  172. || (x)==PIX_FMT_YUV444P16LE \
  173. || (x)==PIX_FMT_YUV420P9BE \
  174. || (x)==PIX_FMT_YUV420P10BE \
  175. || (x)==PIX_FMT_YUV420P16BE \
  176. || (x)==PIX_FMT_YUV422P16BE \
  177. || (x)==PIX_FMT_YUV444P16BE \
  178. )
  179. int sws_isSupportedOutput(enum PixelFormat pix_fmt)
  180. {
  181. return isSupportedOut(pix_fmt);
  182. }
  183. extern const int32_t ff_yuv2rgb_coeffs[8][4];
  184. const char *sws_format_name(enum PixelFormat format)
  185. {
  186. if ((unsigned)format < PIX_FMT_NB && av_pix_fmt_descriptors[format].name)
  187. return av_pix_fmt_descriptors[format].name;
  188. else
  189. return "Unknown format";
  190. }
  191. static double getSplineCoeff(double a, double b, double c, double d, double dist)
  192. {
  193. if (dist<=1.0) return ((d*dist + c)*dist + b)*dist +a;
  194. else return getSplineCoeff( 0.0,
  195. b+ 2.0*c + 3.0*d,
  196. c + 3.0*d,
  197. -b- 3.0*c - 6.0*d,
  198. dist-1.0);
  199. }
  200. static int initFilter(int16_t **outFilter, int16_t **filterPos, int *outFilterSize, int xInc,
  201. int srcW, int dstW, int filterAlign, int one, int flags, int cpu_flags,
  202. SwsVector *srcFilter, SwsVector *dstFilter, double param[2])
  203. {
  204. int i;
  205. int filterSize;
  206. int filter2Size;
  207. int minFilterSize;
  208. int64_t *filter=NULL;
  209. int64_t *filter2=NULL;
  210. const int64_t fone= 1LL<<54;
  211. int ret= -1;
  212. emms_c(); //FIXME this should not be required but it IS (even for non-MMX versions)
  213. // NOTE: the +1 is for the MMX scaler which reads over the end
  214. FF_ALLOC_OR_GOTO(NULL, *filterPos, (dstW+1)*sizeof(int16_t), fail);
  215. if (FFABS(xInc - 0x10000) <10) { // unscaled
  216. int i;
  217. filterSize= 1;
  218. FF_ALLOCZ_OR_GOTO(NULL, filter, dstW*sizeof(*filter)*filterSize, fail);
  219. for (i=0; i<dstW; i++) {
  220. filter[i*filterSize]= fone;
  221. (*filterPos)[i]=i;
  222. }
  223. } else if (flags&SWS_POINT) { // lame looking point sampling mode
  224. int i;
  225. int xDstInSrc;
  226. filterSize= 1;
  227. FF_ALLOC_OR_GOTO(NULL, filter, dstW*sizeof(*filter)*filterSize, fail);
  228. xDstInSrc= xInc/2 - 0x8000;
  229. for (i=0; i<dstW; i++) {
  230. int xx= (xDstInSrc - ((filterSize-1)<<15) + (1<<15))>>16;
  231. (*filterPos)[i]= xx;
  232. filter[i]= fone;
  233. xDstInSrc+= xInc;
  234. }
  235. } else if ((xInc <= (1<<16) && (flags&SWS_AREA)) || (flags&SWS_FAST_BILINEAR)) { // bilinear upscale
  236. int i;
  237. int xDstInSrc;
  238. filterSize= 2;
  239. FF_ALLOC_OR_GOTO(NULL, filter, dstW*sizeof(*filter)*filterSize, fail);
  240. xDstInSrc= xInc/2 - 0x8000;
  241. for (i=0; i<dstW; i++) {
  242. int xx= (xDstInSrc - ((filterSize-1)<<15) + (1<<15))>>16;
  243. int j;
  244. (*filterPos)[i]= xx;
  245. //bilinear upscale / linear interpolate / area averaging
  246. for (j=0; j<filterSize; j++) {
  247. int64_t coeff= fone - FFABS((xx<<16) - xDstInSrc)*(fone>>16);
  248. if (coeff<0) coeff=0;
  249. filter[i*filterSize + j]= coeff;
  250. xx++;
  251. }
  252. xDstInSrc+= xInc;
  253. }
  254. } else {
  255. int xDstInSrc;
  256. int sizeFactor;
  257. if (flags&SWS_BICUBIC) sizeFactor= 4;
  258. else if (flags&SWS_X) sizeFactor= 8;
  259. else if (flags&SWS_AREA) sizeFactor= 1; //downscale only, for upscale it is bilinear
  260. else if (flags&SWS_GAUSS) sizeFactor= 8; // infinite ;)
  261. else if (flags&SWS_LANCZOS) sizeFactor= param[0] != SWS_PARAM_DEFAULT ? ceil(2*param[0]) : 6;
  262. else if (flags&SWS_SINC) sizeFactor= 20; // infinite ;)
  263. else if (flags&SWS_SPLINE) sizeFactor= 20; // infinite ;)
  264. else if (flags&SWS_BILINEAR) sizeFactor= 2;
  265. else {
  266. sizeFactor= 0; //GCC warning killer
  267. assert(0);
  268. }
  269. if (xInc <= 1<<16) filterSize= 1 + sizeFactor; // upscale
  270. else filterSize= 1 + (sizeFactor*srcW + dstW - 1)/ dstW;
  271. if (filterSize > srcW-2) filterSize=srcW-2;
  272. FF_ALLOC_OR_GOTO(NULL, filter, dstW*sizeof(*filter)*filterSize, fail);
  273. xDstInSrc= xInc - 0x10000;
  274. for (i=0; i<dstW; i++) {
  275. int xx= (xDstInSrc - ((filterSize-2)<<16)) / (1<<17);
  276. int j;
  277. (*filterPos)[i]= xx;
  278. for (j=0; j<filterSize; j++) {
  279. int64_t d= ((int64_t)FFABS((xx<<17) - xDstInSrc))<<13;
  280. double floatd;
  281. int64_t coeff;
  282. if (xInc > 1<<16)
  283. d= d*dstW/srcW;
  284. floatd= d * (1.0/(1<<30));
  285. if (flags & SWS_BICUBIC) {
  286. int64_t B= (param[0] != SWS_PARAM_DEFAULT ? param[0] : 0) * (1<<24);
  287. int64_t C= (param[1] != SWS_PARAM_DEFAULT ? param[1] : 0.6) * (1<<24);
  288. int64_t dd = ( d*d)>>30;
  289. int64_t ddd= (dd*d)>>30;
  290. if (d < 1LL<<30)
  291. coeff = (12*(1<<24)-9*B-6*C)*ddd + (-18*(1<<24)+12*B+6*C)*dd + (6*(1<<24)-2*B)*(1<<30);
  292. else if (d < 1LL<<31)
  293. coeff = (-B-6*C)*ddd + (6*B+30*C)*dd + (-12*B-48*C)*d + (8*B+24*C)*(1<<30);
  294. else
  295. coeff=0.0;
  296. coeff *= fone>>(30+24);
  297. }
  298. /* else if (flags & SWS_X) {
  299. double p= param ? param*0.01 : 0.3;
  300. coeff = d ? sin(d*M_PI)/(d*M_PI) : 1.0;
  301. coeff*= pow(2.0, - p*d*d);
  302. }*/
  303. else if (flags & SWS_X) {
  304. double A= param[0] != SWS_PARAM_DEFAULT ? param[0] : 1.0;
  305. double c;
  306. if (floatd<1.0)
  307. c = cos(floatd*M_PI);
  308. else
  309. c=-1.0;
  310. if (c<0.0) c= -pow(-c, A);
  311. else c= pow( c, A);
  312. coeff= (c*0.5 + 0.5)*fone;
  313. } else if (flags & SWS_AREA) {
  314. int64_t d2= d - (1<<29);
  315. if (d2*xInc < -(1LL<<(29+16))) coeff= 1.0 * (1LL<<(30+16));
  316. else if (d2*xInc < (1LL<<(29+16))) coeff= -d2*xInc + (1LL<<(29+16));
  317. else coeff=0.0;
  318. coeff *= fone>>(30+16);
  319. } else if (flags & SWS_GAUSS) {
  320. double p= param[0] != SWS_PARAM_DEFAULT ? param[0] : 3.0;
  321. coeff = (pow(2.0, - p*floatd*floatd))*fone;
  322. } else if (flags & SWS_SINC) {
  323. coeff = (d ? sin(floatd*M_PI)/(floatd*M_PI) : 1.0)*fone;
  324. } else if (flags & SWS_LANCZOS) {
  325. double p= param[0] != SWS_PARAM_DEFAULT ? param[0] : 3.0;
  326. coeff = (d ? sin(floatd*M_PI)*sin(floatd*M_PI/p)/(floatd*floatd*M_PI*M_PI/p) : 1.0)*fone;
  327. if (floatd>p) coeff=0;
  328. } else if (flags & SWS_BILINEAR) {
  329. coeff= (1<<30) - d;
  330. if (coeff<0) coeff=0;
  331. coeff *= fone >> 30;
  332. } else if (flags & SWS_SPLINE) {
  333. double p=-2.196152422706632;
  334. coeff = getSplineCoeff(1.0, 0.0, p, -p-1.0, floatd) * fone;
  335. } else {
  336. coeff= 0.0; //GCC warning killer
  337. assert(0);
  338. }
  339. filter[i*filterSize + j]= coeff;
  340. xx++;
  341. }
  342. xDstInSrc+= 2*xInc;
  343. }
  344. }
  345. /* apply src & dst Filter to filter -> filter2
  346. av_free(filter);
  347. */
  348. assert(filterSize>0);
  349. filter2Size= filterSize;
  350. if (srcFilter) filter2Size+= srcFilter->length - 1;
  351. if (dstFilter) filter2Size+= dstFilter->length - 1;
  352. assert(filter2Size>0);
  353. FF_ALLOCZ_OR_GOTO(NULL, filter2, filter2Size*dstW*sizeof(*filter2), fail);
  354. for (i=0; i<dstW; i++) {
  355. int j, k;
  356. if(srcFilter) {
  357. for (k=0; k<srcFilter->length; k++) {
  358. for (j=0; j<filterSize; j++)
  359. filter2[i*filter2Size + k + j] += srcFilter->coeff[k]*filter[i*filterSize + j];
  360. }
  361. } else {
  362. for (j=0; j<filterSize; j++)
  363. filter2[i*filter2Size + j]= filter[i*filterSize + j];
  364. }
  365. //FIXME dstFilter
  366. (*filterPos)[i]+= (filterSize-1)/2 - (filter2Size-1)/2;
  367. }
  368. av_freep(&filter);
  369. /* try to reduce the filter-size (step1 find size and shift left) */
  370. // Assume it is near normalized (*0.5 or *2.0 is OK but * 0.001 is not).
  371. minFilterSize= 0;
  372. for (i=dstW-1; i>=0; i--) {
  373. int min= filter2Size;
  374. int j;
  375. int64_t cutOff=0.0;
  376. /* get rid of near zero elements on the left by shifting left */
  377. for (j=0; j<filter2Size; j++) {
  378. int k;
  379. cutOff += FFABS(filter2[i*filter2Size]);
  380. if (cutOff > SWS_MAX_REDUCE_CUTOFF*fone) break;
  381. /* preserve monotonicity because the core can't handle the filter otherwise */
  382. if (i<dstW-1 && (*filterPos)[i] >= (*filterPos)[i+1]) break;
  383. // move filter coefficients left
  384. for (k=1; k<filter2Size; k++)
  385. filter2[i*filter2Size + k - 1]= filter2[i*filter2Size + k];
  386. filter2[i*filter2Size + k - 1]= 0;
  387. (*filterPos)[i]++;
  388. }
  389. cutOff=0;
  390. /* count near zeros on the right */
  391. for (j=filter2Size-1; j>0; j--) {
  392. cutOff += FFABS(filter2[i*filter2Size + j]);
  393. if (cutOff > SWS_MAX_REDUCE_CUTOFF*fone) break;
  394. min--;
  395. }
  396. if (min>minFilterSize) minFilterSize= min;
  397. }
  398. if (HAVE_ALTIVEC && cpu_flags & AV_CPU_FLAG_ALTIVEC) {
  399. // we can handle the special case 4,
  400. // so we don't want to go to the full 8
  401. if (minFilterSize < 5)
  402. filterAlign = 4;
  403. // We really don't want to waste our time
  404. // doing useless computation, so fall back on
  405. // the scalar C code for very small filters.
  406. // Vectorizing is worth it only if you have a
  407. // decent-sized vector.
  408. if (minFilterSize < 3)
  409. filterAlign = 1;
  410. }
  411. if (HAVE_MMX && cpu_flags & AV_CPU_FLAG_MMX) {
  412. // special case for unscaled vertical filtering
  413. if (minFilterSize == 1 && filterAlign == 2)
  414. filterAlign= 1;
  415. }
  416. assert(minFilterSize > 0);
  417. filterSize= (minFilterSize +(filterAlign-1)) & (~(filterAlign-1));
  418. assert(filterSize > 0);
  419. filter= av_malloc(filterSize*dstW*sizeof(*filter));
  420. if (filterSize >= MAX_FILTER_SIZE*16/((flags&SWS_ACCURATE_RND) ? APCK_SIZE : 16) || !filter)
  421. goto fail;
  422. *outFilterSize= filterSize;
  423. if (flags&SWS_PRINT_INFO)
  424. av_log(NULL, AV_LOG_VERBOSE, "SwScaler: reducing / aligning filtersize %d -> %d\n", filter2Size, filterSize);
  425. /* try to reduce the filter-size (step2 reduce it) */
  426. for (i=0; i<dstW; i++) {
  427. int j;
  428. for (j=0; j<filterSize; j++) {
  429. if (j>=filter2Size) filter[i*filterSize + j]= 0;
  430. else filter[i*filterSize + j]= filter2[i*filter2Size + j];
  431. if((flags & SWS_BITEXACT) && j>=minFilterSize)
  432. filter[i*filterSize + j]= 0;
  433. }
  434. }
  435. //FIXME try to align filterPos if possible
  436. //fix borders
  437. for (i=0; i<dstW; i++) {
  438. int j;
  439. if ((*filterPos)[i] < 0) {
  440. // move filter coefficients left to compensate for filterPos
  441. for (j=1; j<filterSize; j++) {
  442. int left= FFMAX(j + (*filterPos)[i], 0);
  443. filter[i*filterSize + left] += filter[i*filterSize + j];
  444. filter[i*filterSize + j]=0;
  445. }
  446. (*filterPos)[i]= 0;
  447. }
  448. if ((*filterPos)[i] + filterSize > srcW) {
  449. int shift= (*filterPos)[i] + filterSize - srcW;
  450. // move filter coefficients right to compensate for filterPos
  451. for (j=filterSize-2; j>=0; j--) {
  452. int right= FFMIN(j + shift, filterSize-1);
  453. filter[i*filterSize +right] += filter[i*filterSize +j];
  454. filter[i*filterSize +j]=0;
  455. }
  456. (*filterPos)[i]= srcW - filterSize;
  457. }
  458. }
  459. // Note the +1 is for the MMX scaler which reads over the end
  460. /* align at 16 for AltiVec (needed by hScale_altivec_real) */
  461. FF_ALLOCZ_OR_GOTO(NULL, *outFilter, *outFilterSize*(dstW+1)*sizeof(int16_t), fail);
  462. /* normalize & store in outFilter */
  463. for (i=0; i<dstW; i++) {
  464. int j;
  465. int64_t error=0;
  466. int64_t sum=0;
  467. for (j=0; j<filterSize; j++) {
  468. sum+= filter[i*filterSize + j];
  469. }
  470. sum= (sum + one/2)/ one;
  471. for (j=0; j<*outFilterSize; j++) {
  472. int64_t v= filter[i*filterSize + j] + error;
  473. int intV= ROUNDED_DIV(v, sum);
  474. (*outFilter)[i*(*outFilterSize) + j]= intV;
  475. error= v - intV*sum;
  476. }
  477. }
  478. (*filterPos)[dstW]= (*filterPos)[dstW-1]; // the MMX scaler will read over the end
  479. for (i=0; i<*outFilterSize; i++) {
  480. int j= dstW*(*outFilterSize);
  481. (*outFilter)[j + i]= (*outFilter)[j + i - (*outFilterSize)];
  482. }
  483. ret=0;
  484. fail:
  485. av_free(filter);
  486. av_free(filter2);
  487. return ret;
  488. }
  489. #if HAVE_MMX2
  490. static int initMMX2HScaler(int dstW, int xInc, uint8_t *filterCode, int16_t *filter, int32_t *filterPos, int numSplits)
  491. {
  492. uint8_t *fragmentA;
  493. x86_reg imm8OfPShufW1A;
  494. x86_reg imm8OfPShufW2A;
  495. x86_reg fragmentLengthA;
  496. uint8_t *fragmentB;
  497. x86_reg imm8OfPShufW1B;
  498. x86_reg imm8OfPShufW2B;
  499. x86_reg fragmentLengthB;
  500. int fragmentPos;
  501. int xpos, i;
  502. // create an optimized horizontal scaling routine
  503. /* This scaler is made of runtime-generated MMX2 code using specially
  504. * tuned pshufw instructions. For every four output pixels, if four
  505. * input pixels are enough for the fast bilinear scaling, then a chunk
  506. * of fragmentB is used. If five input pixels are needed, then a chunk
  507. * of fragmentA is used.
  508. */
  509. //code fragment
  510. __asm__ volatile(
  511. "jmp 9f \n\t"
  512. // Begin
  513. "0: \n\t"
  514. "movq (%%"REG_d", %%"REG_a"), %%mm3 \n\t"
  515. "movd (%%"REG_c", %%"REG_S"), %%mm0 \n\t"
  516. "movd 1(%%"REG_c", %%"REG_S"), %%mm1 \n\t"
  517. "punpcklbw %%mm7, %%mm1 \n\t"
  518. "punpcklbw %%mm7, %%mm0 \n\t"
  519. "pshufw $0xFF, %%mm1, %%mm1 \n\t"
  520. "1: \n\t"
  521. "pshufw $0xFF, %%mm0, %%mm0 \n\t"
  522. "2: \n\t"
  523. "psubw %%mm1, %%mm0 \n\t"
  524. "movl 8(%%"REG_b", %%"REG_a"), %%esi \n\t"
  525. "pmullw %%mm3, %%mm0 \n\t"
  526. "psllw $7, %%mm1 \n\t"
  527. "paddw %%mm1, %%mm0 \n\t"
  528. "movq %%mm0, (%%"REG_D", %%"REG_a") \n\t"
  529. "add $8, %%"REG_a" \n\t"
  530. // End
  531. "9: \n\t"
  532. // "int $3 \n\t"
  533. "lea " LOCAL_MANGLE(0b) ", %0 \n\t"
  534. "lea " LOCAL_MANGLE(1b) ", %1 \n\t"
  535. "lea " LOCAL_MANGLE(2b) ", %2 \n\t"
  536. "dec %1 \n\t"
  537. "dec %2 \n\t"
  538. "sub %0, %1 \n\t"
  539. "sub %0, %2 \n\t"
  540. "lea " LOCAL_MANGLE(9b) ", %3 \n\t"
  541. "sub %0, %3 \n\t"
  542. :"=r" (fragmentA), "=r" (imm8OfPShufW1A), "=r" (imm8OfPShufW2A),
  543. "=r" (fragmentLengthA)
  544. );
  545. __asm__ volatile(
  546. "jmp 9f \n\t"
  547. // Begin
  548. "0: \n\t"
  549. "movq (%%"REG_d", %%"REG_a"), %%mm3 \n\t"
  550. "movd (%%"REG_c", %%"REG_S"), %%mm0 \n\t"
  551. "punpcklbw %%mm7, %%mm0 \n\t"
  552. "pshufw $0xFF, %%mm0, %%mm1 \n\t"
  553. "1: \n\t"
  554. "pshufw $0xFF, %%mm0, %%mm0 \n\t"
  555. "2: \n\t"
  556. "psubw %%mm1, %%mm0 \n\t"
  557. "movl 8(%%"REG_b", %%"REG_a"), %%esi \n\t"
  558. "pmullw %%mm3, %%mm0 \n\t"
  559. "psllw $7, %%mm1 \n\t"
  560. "paddw %%mm1, %%mm0 \n\t"
  561. "movq %%mm0, (%%"REG_D", %%"REG_a") \n\t"
  562. "add $8, %%"REG_a" \n\t"
  563. // End
  564. "9: \n\t"
  565. // "int $3 \n\t"
  566. "lea " LOCAL_MANGLE(0b) ", %0 \n\t"
  567. "lea " LOCAL_MANGLE(1b) ", %1 \n\t"
  568. "lea " LOCAL_MANGLE(2b) ", %2 \n\t"
  569. "dec %1 \n\t"
  570. "dec %2 \n\t"
  571. "sub %0, %1 \n\t"
  572. "sub %0, %2 \n\t"
  573. "lea " LOCAL_MANGLE(9b) ", %3 \n\t"
  574. "sub %0, %3 \n\t"
  575. :"=r" (fragmentB), "=r" (imm8OfPShufW1B), "=r" (imm8OfPShufW2B),
  576. "=r" (fragmentLengthB)
  577. );
  578. xpos= 0; //lumXInc/2 - 0x8000; // difference between pixel centers
  579. fragmentPos=0;
  580. for (i=0; i<dstW/numSplits; i++) {
  581. int xx=xpos>>16;
  582. if ((i&3) == 0) {
  583. int a=0;
  584. int b=((xpos+xInc)>>16) - xx;
  585. int c=((xpos+xInc*2)>>16) - xx;
  586. int d=((xpos+xInc*3)>>16) - xx;
  587. int inc = (d+1<4);
  588. uint8_t *fragment = (d+1<4) ? fragmentB : fragmentA;
  589. x86_reg imm8OfPShufW1 = (d+1<4) ? imm8OfPShufW1B : imm8OfPShufW1A;
  590. x86_reg imm8OfPShufW2 = (d+1<4) ? imm8OfPShufW2B : imm8OfPShufW2A;
  591. x86_reg fragmentLength = (d+1<4) ? fragmentLengthB : fragmentLengthA;
  592. int maxShift= 3-(d+inc);
  593. int shift=0;
  594. if (filterCode) {
  595. filter[i ] = (( xpos & 0xFFFF) ^ 0xFFFF)>>9;
  596. filter[i+1] = (((xpos+xInc ) & 0xFFFF) ^ 0xFFFF)>>9;
  597. filter[i+2] = (((xpos+xInc*2) & 0xFFFF) ^ 0xFFFF)>>9;
  598. filter[i+3] = (((xpos+xInc*3) & 0xFFFF) ^ 0xFFFF)>>9;
  599. filterPos[i/2]= xx;
  600. memcpy(filterCode + fragmentPos, fragment, fragmentLength);
  601. filterCode[fragmentPos + imm8OfPShufW1]=
  602. (a+inc) | ((b+inc)<<2) | ((c+inc)<<4) | ((d+inc)<<6);
  603. filterCode[fragmentPos + imm8OfPShufW2]=
  604. a | (b<<2) | (c<<4) | (d<<6);
  605. if (i+4-inc>=dstW) shift=maxShift; //avoid overread
  606. else if ((filterPos[i/2]&3) <= maxShift) shift=filterPos[i/2]&3; //Align
  607. if (shift && i>=shift) {
  608. filterCode[fragmentPos + imm8OfPShufW1]+= 0x55*shift;
  609. filterCode[fragmentPos + imm8OfPShufW2]+= 0x55*shift;
  610. filterPos[i/2]-=shift;
  611. }
  612. }
  613. fragmentPos+= fragmentLength;
  614. if (filterCode)
  615. filterCode[fragmentPos]= RET;
  616. }
  617. xpos+=xInc;
  618. }
  619. if (filterCode)
  620. filterPos[((i/2)+1)&(~1)]= xpos>>16; // needed to jump to the next part
  621. return fragmentPos + 1;
  622. }
  623. #endif /* HAVE_MMX2 */
  624. static void getSubSampleFactors(int *h, int *v, enum PixelFormat format)
  625. {
  626. *h = av_pix_fmt_descriptors[format].log2_chroma_w;
  627. *v = av_pix_fmt_descriptors[format].log2_chroma_h;
  628. }
  629. int sws_setColorspaceDetails(struct SwsContext *c, const int inv_table[4],
  630. int srcRange, const int table[4], int dstRange,
  631. int brightness, int contrast, int saturation)
  632. {
  633. memcpy(c->srcColorspaceTable, inv_table, sizeof(int)*4);
  634. memcpy(c->dstColorspaceTable, table, sizeof(int)*4);
  635. c->brightness= brightness;
  636. c->contrast = contrast;
  637. c->saturation= saturation;
  638. c->srcRange = srcRange;
  639. c->dstRange = dstRange;
  640. if (isYUV(c->dstFormat) || isGray(c->dstFormat)) return -1;
  641. c->dstFormatBpp = av_get_bits_per_pixel(&av_pix_fmt_descriptors[c->dstFormat]);
  642. c->srcFormatBpp = av_get_bits_per_pixel(&av_pix_fmt_descriptors[c->srcFormat]);
  643. ff_yuv2rgb_c_init_tables(c, inv_table, srcRange, brightness, contrast, saturation);
  644. //FIXME factorize
  645. if (HAVE_ALTIVEC && av_get_cpu_flags() & AV_CPU_FLAG_ALTIVEC)
  646. ff_yuv2rgb_init_tables_altivec(c, inv_table, brightness, contrast, saturation);
  647. return 0;
  648. }
  649. int sws_getColorspaceDetails(struct SwsContext *c, int **inv_table,
  650. int *srcRange, int **table, int *dstRange,
  651. int *brightness, int *contrast, int *saturation)
  652. {
  653. if (isYUV(c->dstFormat) || isGray(c->dstFormat)) return -1;
  654. *inv_table = c->srcColorspaceTable;
  655. *table = c->dstColorspaceTable;
  656. *srcRange = c->srcRange;
  657. *dstRange = c->dstRange;
  658. *brightness= c->brightness;
  659. *contrast = c->contrast;
  660. *saturation= c->saturation;
  661. return 0;
  662. }
  663. static int handle_jpeg(enum PixelFormat *format)
  664. {
  665. switch (*format) {
  666. case PIX_FMT_YUVJ420P: *format = PIX_FMT_YUV420P; return 1;
  667. case PIX_FMT_YUVJ422P: *format = PIX_FMT_YUV422P; return 1;
  668. case PIX_FMT_YUVJ444P: *format = PIX_FMT_YUV444P; return 1;
  669. case PIX_FMT_YUVJ440P: *format = PIX_FMT_YUV440P; return 1;
  670. default: return 0;
  671. }
  672. }
  673. SwsContext *sws_alloc_context(void)
  674. {
  675. SwsContext *c= av_mallocz(sizeof(SwsContext));
  676. c->av_class = &sws_context_class;
  677. av_opt_set_defaults(c);
  678. return c;
  679. }
  680. int sws_init_context(SwsContext *c, SwsFilter *srcFilter, SwsFilter *dstFilter)
  681. {
  682. int i;
  683. int usesVFilter, usesHFilter;
  684. int unscaled;
  685. SwsFilter dummyFilter= {NULL, NULL, NULL, NULL};
  686. int srcW= c->srcW;
  687. int srcH= c->srcH;
  688. int dstW= c->dstW;
  689. int dstH= c->dstH;
  690. int dst_stride = FFALIGN(dstW * sizeof(int16_t) + 16, 16), dst_stride_px = dst_stride >> 1;
  691. int flags, cpu_flags;
  692. enum PixelFormat srcFormat= c->srcFormat;
  693. enum PixelFormat dstFormat= c->dstFormat;
  694. cpu_flags = av_get_cpu_flags();
  695. flags = c->flags;
  696. emms_c();
  697. if (!rgb15to16) sws_rgb2rgb_init();
  698. unscaled = (srcW == dstW && srcH == dstH);
  699. if (!isSupportedIn(srcFormat)) {
  700. av_log(c, AV_LOG_ERROR, "%s is not supported as input pixel format\n", sws_format_name(srcFormat));
  701. return AVERROR(EINVAL);
  702. }
  703. if (!isSupportedOut(dstFormat)) {
  704. av_log(c, AV_LOG_ERROR, "%s is not supported as output pixel format\n", sws_format_name(dstFormat));
  705. return AVERROR(EINVAL);
  706. }
  707. i= flags & ( SWS_POINT
  708. |SWS_AREA
  709. |SWS_BILINEAR
  710. |SWS_FAST_BILINEAR
  711. |SWS_BICUBIC
  712. |SWS_X
  713. |SWS_GAUSS
  714. |SWS_LANCZOS
  715. |SWS_SINC
  716. |SWS_SPLINE
  717. |SWS_BICUBLIN);
  718. if(!i || (i & (i-1))) {
  719. av_log(c, AV_LOG_ERROR, "Exactly one scaler algorithm must be chosen\n");
  720. return AVERROR(EINVAL);
  721. }
  722. /* sanity check */
  723. if (srcW<4 || srcH<1 || dstW<8 || dstH<1) { //FIXME check if these are enough and try to lowwer them after fixing the relevant parts of the code
  724. av_log(c, AV_LOG_ERROR, "%dx%d -> %dx%d is invalid scaling dimension\n",
  725. srcW, srcH, dstW, dstH);
  726. return AVERROR(EINVAL);
  727. }
  728. if (!dstFilter) dstFilter= &dummyFilter;
  729. if (!srcFilter) srcFilter= &dummyFilter;
  730. c->lumXInc= ((srcW<<16) + (dstW>>1))/dstW;
  731. c->lumYInc= ((srcH<<16) + (dstH>>1))/dstH;
  732. c->dstFormatBpp = av_get_bits_per_pixel(&av_pix_fmt_descriptors[dstFormat]);
  733. c->srcFormatBpp = av_get_bits_per_pixel(&av_pix_fmt_descriptors[srcFormat]);
  734. c->vRounder= 4* 0x0001000100010001ULL;
  735. usesVFilter = (srcFilter->lumV && srcFilter->lumV->length>1) ||
  736. (srcFilter->chrV && srcFilter->chrV->length>1) ||
  737. (dstFilter->lumV && dstFilter->lumV->length>1) ||
  738. (dstFilter->chrV && dstFilter->chrV->length>1);
  739. usesHFilter = (srcFilter->lumH && srcFilter->lumH->length>1) ||
  740. (srcFilter->chrH && srcFilter->chrH->length>1) ||
  741. (dstFilter->lumH && dstFilter->lumH->length>1) ||
  742. (dstFilter->chrH && dstFilter->chrH->length>1);
  743. getSubSampleFactors(&c->chrSrcHSubSample, &c->chrSrcVSubSample, srcFormat);
  744. getSubSampleFactors(&c->chrDstHSubSample, &c->chrDstVSubSample, dstFormat);
  745. // reuse chroma for 2 pixels RGB/BGR unless user wants full chroma interpolation
  746. if (flags & SWS_FULL_CHR_H_INT &&
  747. dstFormat != PIX_FMT_RGBA &&
  748. dstFormat != PIX_FMT_ARGB &&
  749. dstFormat != PIX_FMT_BGRA &&
  750. dstFormat != PIX_FMT_ABGR &&
  751. dstFormat != PIX_FMT_RGB24 &&
  752. dstFormat != PIX_FMT_BGR24) {
  753. av_log(c, AV_LOG_ERROR,
  754. "full chroma interpolation for destination format '%s' not yet implemented\n",
  755. sws_format_name(dstFormat));
  756. flags &= ~SWS_FULL_CHR_H_INT;
  757. c->flags = flags;
  758. }
  759. if (isAnyRGB(dstFormat) && !(flags&SWS_FULL_CHR_H_INT)) c->chrDstHSubSample=1;
  760. // drop some chroma lines if the user wants it
  761. c->vChrDrop= (flags&SWS_SRC_V_CHR_DROP_MASK)>>SWS_SRC_V_CHR_DROP_SHIFT;
  762. c->chrSrcVSubSample+= c->vChrDrop;
  763. // drop every other pixel for chroma calculation unless user wants full chroma
  764. if (isAnyRGB(srcFormat) && !(flags&SWS_FULL_CHR_H_INP)
  765. && srcFormat!=PIX_FMT_RGB8 && srcFormat!=PIX_FMT_BGR8
  766. && srcFormat!=PIX_FMT_RGB4 && srcFormat!=PIX_FMT_BGR4
  767. && srcFormat!=PIX_FMT_RGB4_BYTE && srcFormat!=PIX_FMT_BGR4_BYTE
  768. && ((dstW>>c->chrDstHSubSample) <= (srcW>>1) || (flags&SWS_FAST_BILINEAR)))
  769. c->chrSrcHSubSample=1;
  770. // Note the -((-x)>>y) is so that we always round toward +inf.
  771. c->chrSrcW= -((-srcW) >> c->chrSrcHSubSample);
  772. c->chrSrcH= -((-srcH) >> c->chrSrcVSubSample);
  773. c->chrDstW= -((-dstW) >> c->chrDstHSubSample);
  774. c->chrDstH= -((-dstH) >> c->chrDstVSubSample);
  775. /* unscaled special cases */
  776. if (unscaled && !usesHFilter && !usesVFilter && (c->srcRange == c->dstRange || isAnyRGB(dstFormat))) {
  777. ff_get_unscaled_swscale(c);
  778. if (c->swScale) {
  779. if (flags&SWS_PRINT_INFO)
  780. av_log(c, AV_LOG_INFO, "using unscaled %s -> %s special converter\n",
  781. sws_format_name(srcFormat), sws_format_name(dstFormat));
  782. return 0;
  783. }
  784. }
  785. c->scalingBpp = FFMAX(av_pix_fmt_descriptors[srcFormat].comp[0].depth_minus1,
  786. av_pix_fmt_descriptors[dstFormat].comp[0].depth_minus1) >= 8 ? 16 : 8;
  787. if (c->scalingBpp == 16)
  788. dst_stride <<= 1;
  789. FF_ALLOC_OR_GOTO(c, c->formatConvBuffer, FFALIGN(srcW, 16) * 2 * c->scalingBpp >> 3, fail);
  790. if (HAVE_MMX2 && cpu_flags & AV_CPU_FLAG_MMX2 && c->scalingBpp == 8) {
  791. c->canMMX2BeUsed= (dstW >=srcW && (dstW&31)==0 && (srcW&15)==0) ? 1 : 0;
  792. if (!c->canMMX2BeUsed && dstW >=srcW && (srcW&15)==0 && (flags&SWS_FAST_BILINEAR)) {
  793. if (flags&SWS_PRINT_INFO)
  794. av_log(c, AV_LOG_INFO, "output width is not a multiple of 32 -> no MMX2 scaler\n");
  795. }
  796. if (usesHFilter) c->canMMX2BeUsed=0;
  797. }
  798. else
  799. c->canMMX2BeUsed=0;
  800. c->chrXInc= ((c->chrSrcW<<16) + (c->chrDstW>>1))/c->chrDstW;
  801. c->chrYInc= ((c->chrSrcH<<16) + (c->chrDstH>>1))/c->chrDstH;
  802. // match pixel 0 of the src to pixel 0 of dst and match pixel n-2 of src to pixel n-2 of dst
  803. // but only for the FAST_BILINEAR mode otherwise do correct scaling
  804. // n-2 is the last chrominance sample available
  805. // this is not perfect, but no one should notice the difference, the more correct variant
  806. // would be like the vertical one, but that would require some special code for the
  807. // first and last pixel
  808. if (flags&SWS_FAST_BILINEAR) {
  809. if (c->canMMX2BeUsed) {
  810. c->lumXInc+= 20;
  811. c->chrXInc+= 20;
  812. }
  813. //we don't use the x86 asm scaler if MMX is available
  814. else if (HAVE_MMX && cpu_flags & AV_CPU_FLAG_MMX) {
  815. c->lumXInc = ((srcW-2)<<16)/(dstW-2) - 20;
  816. c->chrXInc = ((c->chrSrcW-2)<<16)/(c->chrDstW-2) - 20;
  817. }
  818. }
  819. /* precalculate horizontal scaler filter coefficients */
  820. {
  821. #if HAVE_MMX2
  822. // can't downscale !!!
  823. if (c->canMMX2BeUsed && (flags & SWS_FAST_BILINEAR)) {
  824. c->lumMmx2FilterCodeSize = initMMX2HScaler( dstW, c->lumXInc, NULL, NULL, NULL, 8);
  825. c->chrMmx2FilterCodeSize = initMMX2HScaler(c->chrDstW, c->chrXInc, NULL, NULL, NULL, 4);
  826. #ifdef MAP_ANONYMOUS
  827. c->lumMmx2FilterCode = mmap(NULL, c->lumMmx2FilterCodeSize, PROT_READ | PROT_WRITE, MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
  828. c->chrMmx2FilterCode = mmap(NULL, c->chrMmx2FilterCodeSize, PROT_READ | PROT_WRITE, MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
  829. #elif HAVE_VIRTUALALLOC
  830. c->lumMmx2FilterCode = VirtualAlloc(NULL, c->lumMmx2FilterCodeSize, MEM_COMMIT, PAGE_EXECUTE_READWRITE);
  831. c->chrMmx2FilterCode = VirtualAlloc(NULL, c->chrMmx2FilterCodeSize, MEM_COMMIT, PAGE_EXECUTE_READWRITE);
  832. #else
  833. c->lumMmx2FilterCode = av_malloc(c->lumMmx2FilterCodeSize);
  834. c->chrMmx2FilterCode = av_malloc(c->chrMmx2FilterCodeSize);
  835. #endif
  836. if (!c->lumMmx2FilterCode || !c->chrMmx2FilterCode)
  837. return AVERROR(ENOMEM);
  838. FF_ALLOCZ_OR_GOTO(c, c->hLumFilter , (dstW /8+8)*sizeof(int16_t), fail);
  839. FF_ALLOCZ_OR_GOTO(c, c->hChrFilter , (c->chrDstW /4+8)*sizeof(int16_t), fail);
  840. FF_ALLOCZ_OR_GOTO(c, c->hLumFilterPos, (dstW /2/8+8)*sizeof(int32_t), fail);
  841. FF_ALLOCZ_OR_GOTO(c, c->hChrFilterPos, (c->chrDstW/2/4+8)*sizeof(int32_t), fail);
  842. initMMX2HScaler( dstW, c->lumXInc, c->lumMmx2FilterCode, c->hLumFilter, c->hLumFilterPos, 8);
  843. initMMX2HScaler(c->chrDstW, c->chrXInc, c->chrMmx2FilterCode, c->hChrFilter, c->hChrFilterPos, 4);
  844. #ifdef MAP_ANONYMOUS
  845. mprotect(c->lumMmx2FilterCode, c->lumMmx2FilterCodeSize, PROT_EXEC | PROT_READ);
  846. mprotect(c->chrMmx2FilterCode, c->chrMmx2FilterCodeSize, PROT_EXEC | PROT_READ);
  847. #endif
  848. } else
  849. #endif /* HAVE_MMX2 */
  850. {
  851. const int filterAlign=
  852. (HAVE_MMX && cpu_flags & AV_CPU_FLAG_MMX) ? 4 :
  853. (HAVE_ALTIVEC && cpu_flags & AV_CPU_FLAG_ALTIVEC) ? 8 :
  854. 1;
  855. if (initFilter(&c->hLumFilter, &c->hLumFilterPos, &c->hLumFilterSize, c->lumXInc,
  856. srcW , dstW, filterAlign, 1<<14,
  857. (flags&SWS_BICUBLIN) ? (flags|SWS_BICUBIC) : flags, cpu_flags,
  858. srcFilter->lumH, dstFilter->lumH, c->param) < 0)
  859. goto fail;
  860. if (initFilter(&c->hChrFilter, &c->hChrFilterPos, &c->hChrFilterSize, c->chrXInc,
  861. c->chrSrcW, c->chrDstW, filterAlign, 1<<14,
  862. (flags&SWS_BICUBLIN) ? (flags|SWS_BILINEAR) : flags, cpu_flags,
  863. srcFilter->chrH, dstFilter->chrH, c->param) < 0)
  864. goto fail;
  865. }
  866. } // initialize horizontal stuff
  867. /* precalculate vertical scaler filter coefficients */
  868. {
  869. const int filterAlign=
  870. (HAVE_MMX && cpu_flags & AV_CPU_FLAG_MMX) && (flags & SWS_ACCURATE_RND) ? 2 :
  871. (HAVE_ALTIVEC && cpu_flags & AV_CPU_FLAG_ALTIVEC) ? 8 :
  872. 1;
  873. if (initFilter(&c->vLumFilter, &c->vLumFilterPos, &c->vLumFilterSize, c->lumYInc,
  874. srcH , dstH, filterAlign, (1<<12),
  875. (flags&SWS_BICUBLIN) ? (flags|SWS_BICUBIC) : flags, cpu_flags,
  876. srcFilter->lumV, dstFilter->lumV, c->param) < 0)
  877. goto fail;
  878. if (initFilter(&c->vChrFilter, &c->vChrFilterPos, &c->vChrFilterSize, c->chrYInc,
  879. c->chrSrcH, c->chrDstH, filterAlign, (1<<12),
  880. (flags&SWS_BICUBLIN) ? (flags|SWS_BILINEAR) : flags, cpu_flags,
  881. srcFilter->chrV, dstFilter->chrV, c->param) < 0)
  882. goto fail;
  883. #if HAVE_ALTIVEC
  884. FF_ALLOC_OR_GOTO(c, c->vYCoeffsBank, sizeof (vector signed short)*c->vLumFilterSize*c->dstH, fail);
  885. FF_ALLOC_OR_GOTO(c, c->vCCoeffsBank, sizeof (vector signed short)*c->vChrFilterSize*c->chrDstH, fail);
  886. for (i=0;i<c->vLumFilterSize*c->dstH;i++) {
  887. int j;
  888. short *p = (short *)&c->vYCoeffsBank[i];
  889. for (j=0;j<8;j++)
  890. p[j] = c->vLumFilter[i];
  891. }
  892. for (i=0;i<c->vChrFilterSize*c->chrDstH;i++) {
  893. int j;
  894. short *p = (short *)&c->vCCoeffsBank[i];
  895. for (j=0;j<8;j++)
  896. p[j] = c->vChrFilter[i];
  897. }
  898. #endif
  899. }
  900. // calculate buffer sizes so that they won't run out while handling these damn slices
  901. c->vLumBufSize= c->vLumFilterSize;
  902. c->vChrBufSize= c->vChrFilterSize;
  903. for (i=0; i<dstH; i++) {
  904. int chrI= i*c->chrDstH / dstH;
  905. int nextSlice= FFMAX(c->vLumFilterPos[i ] + c->vLumFilterSize - 1,
  906. ((c->vChrFilterPos[chrI] + c->vChrFilterSize - 1)<<c->chrSrcVSubSample));
  907. nextSlice>>= c->chrSrcVSubSample;
  908. nextSlice<<= c->chrSrcVSubSample;
  909. if (c->vLumFilterPos[i ] + c->vLumBufSize < nextSlice)
  910. c->vLumBufSize= nextSlice - c->vLumFilterPos[i];
  911. if (c->vChrFilterPos[chrI] + c->vChrBufSize < (nextSlice>>c->chrSrcVSubSample))
  912. c->vChrBufSize= (nextSlice>>c->chrSrcVSubSample) - c->vChrFilterPos[chrI];
  913. }
  914. // allocate pixbufs (we use dynamic allocation because otherwise we would need to
  915. // allocate several megabytes to handle all possible cases)
  916. FF_ALLOC_OR_GOTO(c, c->lumPixBuf, c->vLumBufSize*2*sizeof(int16_t*), fail);
  917. FF_ALLOC_OR_GOTO(c, c->chrUPixBuf, c->vChrBufSize*2*sizeof(int16_t*), fail);
  918. FF_ALLOC_OR_GOTO(c, c->chrVPixBuf, c->vChrBufSize*2*sizeof(int16_t*), fail);
  919. if (CONFIG_SWSCALE_ALPHA && isALPHA(c->srcFormat) && isALPHA(c->dstFormat))
  920. FF_ALLOCZ_OR_GOTO(c, c->alpPixBuf, c->vLumBufSize*2*sizeof(int16_t*), fail);
  921. //Note we need at least one pixel more at the end because of the MMX code (just in case someone wanna replace the 4000/8000)
  922. /* align at 16 bytes for AltiVec */
  923. for (i=0; i<c->vLumBufSize; i++) {
  924. FF_ALLOCZ_OR_GOTO(c, c->lumPixBuf[i+c->vLumBufSize], dst_stride+16, fail);
  925. c->lumPixBuf[i] = c->lumPixBuf[i+c->vLumBufSize];
  926. }
  927. // 64 / c->scalingBpp is the same as 16 / sizeof(scaling_intermediate)
  928. c->uv_off_px = dst_stride_px + 64 / c->scalingBpp;
  929. c->uv_off_byte = dst_stride + 16;
  930. for (i=0; i<c->vChrBufSize; i++) {
  931. FF_ALLOC_OR_GOTO(c, c->chrUPixBuf[i+c->vChrBufSize], dst_stride*2+32, fail);
  932. c->chrUPixBuf[i] = c->chrUPixBuf[i+c->vChrBufSize];
  933. c->chrVPixBuf[i] = c->chrVPixBuf[i+c->vChrBufSize] = c->chrUPixBuf[i] + (dst_stride >> 1) + 8;
  934. }
  935. if (CONFIG_SWSCALE_ALPHA && c->alpPixBuf)
  936. for (i=0; i<c->vLumBufSize; i++) {
  937. FF_ALLOCZ_OR_GOTO(c, c->alpPixBuf[i+c->vLumBufSize], dst_stride+16, fail);
  938. c->alpPixBuf[i] = c->alpPixBuf[i+c->vLumBufSize];
  939. }
  940. //try to avoid drawing green stuff between the right end and the stride end
  941. for (i=0; i<c->vChrBufSize; i++)
  942. memset(c->chrUPixBuf[i], 64, dst_stride*2+1);
  943. assert(c->chrDstH <= dstH);
  944. if (flags&SWS_PRINT_INFO) {
  945. if (flags&SWS_FAST_BILINEAR) av_log(c, AV_LOG_INFO, "FAST_BILINEAR scaler, ");
  946. else if (flags&SWS_BILINEAR) av_log(c, AV_LOG_INFO, "BILINEAR scaler, ");
  947. else if (flags&SWS_BICUBIC) av_log(c, AV_LOG_INFO, "BICUBIC scaler, ");
  948. else if (flags&SWS_X) av_log(c, AV_LOG_INFO, "Experimental scaler, ");
  949. else if (flags&SWS_POINT) av_log(c, AV_LOG_INFO, "Nearest Neighbor / POINT scaler, ");
  950. else if (flags&SWS_AREA) av_log(c, AV_LOG_INFO, "Area Averaging scaler, ");
  951. else if (flags&SWS_BICUBLIN) av_log(c, AV_LOG_INFO, "luma BICUBIC / chroma BILINEAR scaler, ");
  952. else if (flags&SWS_GAUSS) av_log(c, AV_LOG_INFO, "Gaussian scaler, ");
  953. else if (flags&SWS_SINC) av_log(c, AV_LOG_INFO, "Sinc scaler, ");
  954. else if (flags&SWS_LANCZOS) av_log(c, AV_LOG_INFO, "Lanczos scaler, ");
  955. else if (flags&SWS_SPLINE) av_log(c, AV_LOG_INFO, "Bicubic spline scaler, ");
  956. else av_log(c, AV_LOG_INFO, "ehh flags invalid?! ");
  957. av_log(c, AV_LOG_INFO, "from %s to %s%s ",
  958. sws_format_name(srcFormat),
  959. #ifdef DITHER1XBPP
  960. dstFormat == PIX_FMT_BGR555 || dstFormat == PIX_FMT_BGR565 ||
  961. dstFormat == PIX_FMT_RGB444BE || dstFormat == PIX_FMT_RGB444LE ||
  962. dstFormat == PIX_FMT_BGR444BE || dstFormat == PIX_FMT_BGR444LE ? "dithered " : "",
  963. #else
  964. "",
  965. #endif
  966. sws_format_name(dstFormat));
  967. if (HAVE_MMX2 && cpu_flags & AV_CPU_FLAG_MMX2) av_log(c, AV_LOG_INFO, "using MMX2\n");
  968. else if (HAVE_AMD3DNOW && cpu_flags & AV_CPU_FLAG_3DNOW) av_log(c, AV_LOG_INFO, "using 3DNOW\n");
  969. else if (HAVE_MMX && cpu_flags & AV_CPU_FLAG_MMX) av_log(c, AV_LOG_INFO, "using MMX\n");
  970. else if (HAVE_ALTIVEC && cpu_flags & AV_CPU_FLAG_ALTIVEC) av_log(c, AV_LOG_INFO, "using AltiVec\n");
  971. else av_log(c, AV_LOG_INFO, "using C\n");
  972. if (HAVE_MMX && cpu_flags & AV_CPU_FLAG_MMX) {
  973. if (c->canMMX2BeUsed && (flags&SWS_FAST_BILINEAR))
  974. av_log(c, AV_LOG_VERBOSE, "using FAST_BILINEAR MMX2 scaler for horizontal scaling\n");
  975. else {
  976. if (c->hLumFilterSize==4)
  977. av_log(c, AV_LOG_VERBOSE, "using 4-tap MMX scaler for horizontal luminance scaling\n");
  978. else if (c->hLumFilterSize==8)
  979. av_log(c, AV_LOG_VERBOSE, "using 8-tap MMX scaler for horizontal luminance scaling\n");
  980. else
  981. av_log(c, AV_LOG_VERBOSE, "using n-tap MMX scaler for horizontal luminance scaling\n");
  982. if (c->hChrFilterSize==4)
  983. av_log(c, AV_LOG_VERBOSE, "using 4-tap MMX scaler for horizontal chrominance scaling\n");
  984. else if (c->hChrFilterSize==8)
  985. av_log(c, AV_LOG_VERBOSE, "using 8-tap MMX scaler for horizontal chrominance scaling\n");
  986. else
  987. av_log(c, AV_LOG_VERBOSE, "using n-tap MMX scaler for horizontal chrominance scaling\n");
  988. }
  989. } else {
  990. #if HAVE_MMX
  991. av_log(c, AV_LOG_VERBOSE, "using x86 asm scaler for horizontal scaling\n");
  992. #else
  993. if (flags & SWS_FAST_BILINEAR)
  994. av_log(c, AV_LOG_VERBOSE, "using FAST_BILINEAR C scaler for horizontal scaling\n");
  995. else
  996. av_log(c, AV_LOG_VERBOSE, "using C scaler for horizontal scaling\n");
  997. #endif
  998. }
  999. if (isPlanarYUV(dstFormat)) {
  1000. if (c->vLumFilterSize==1)
  1001. av_log(c, AV_LOG_VERBOSE, "using 1-tap %s \"scaler\" for vertical scaling (YV12 like)\n",
  1002. (HAVE_MMX && cpu_flags & AV_CPU_FLAG_MMX) ? "MMX" : "C");
  1003. else
  1004. av_log(c, AV_LOG_VERBOSE, "using n-tap %s scaler for vertical scaling (YV12 like)\n",
  1005. (HAVE_MMX && cpu_flags & AV_CPU_FLAG_MMX) ? "MMX" : "C");
  1006. } else {
  1007. if (c->vLumFilterSize==1 && c->vChrFilterSize==2)
  1008. av_log(c, AV_LOG_VERBOSE, "using 1-tap %s \"scaler\" for vertical luminance scaling (BGR)\n"
  1009. " 2-tap scaler for vertical chrominance scaling (BGR)\n",
  1010. (HAVE_MMX && cpu_flags & AV_CPU_FLAG_MMX) ? "MMX" : "C");
  1011. else if (c->vLumFilterSize==2 && c->vChrFilterSize==2)
  1012. av_log(c, AV_LOG_VERBOSE, "using 2-tap linear %s scaler for vertical scaling (BGR)\n",
  1013. (HAVE_MMX && cpu_flags & AV_CPU_FLAG_MMX) ? "MMX" : "C");
  1014. else
  1015. av_log(c, AV_LOG_VERBOSE, "using n-tap %s scaler for vertical scaling (BGR)\n",
  1016. (HAVE_MMX && cpu_flags & AV_CPU_FLAG_MMX) ? "MMX" : "C");
  1017. }
  1018. if (dstFormat==PIX_FMT_BGR24)
  1019. av_log(c, AV_LOG_VERBOSE, "using %s YV12->BGR24 converter\n",
  1020. (HAVE_MMX2 && cpu_flags & AV_CPU_FLAG_MMX2) ? "MMX2" :
  1021. ((HAVE_MMX && cpu_flags & AV_CPU_FLAG_MMX) ? "MMX" : "C"));
  1022. else if (dstFormat==PIX_FMT_RGB32)
  1023. av_log(c, AV_LOG_VERBOSE, "using %s YV12->BGR32 converter\n",
  1024. (HAVE_MMX && cpu_flags & AV_CPU_FLAG_MMX) ? "MMX" : "C");
  1025. else if (dstFormat==PIX_FMT_BGR565)
  1026. av_log(c, AV_LOG_VERBOSE, "using %s YV12->BGR16 converter\n",
  1027. (HAVE_MMX && cpu_flags & AV_CPU_FLAG_MMX) ? "MMX" : "C");
  1028. else if (dstFormat==PIX_FMT_BGR555)
  1029. av_log(c, AV_LOG_VERBOSE, "using %s YV12->BGR15 converter\n",
  1030. (HAVE_MMX && cpu_flags & AV_CPU_FLAG_MMX) ? "MMX" : "C");
  1031. else if (dstFormat == PIX_FMT_RGB444BE || dstFormat == PIX_FMT_RGB444LE ||
  1032. dstFormat == PIX_FMT_BGR444BE || dstFormat == PIX_FMT_BGR444LE)
  1033. av_log(c, AV_LOG_VERBOSE, "using %s YV12->BGR12 converter\n",
  1034. (HAVE_MMX && cpu_flags & AV_CPU_FLAG_MMX) ? "MMX" : "C");
  1035. av_log(c, AV_LOG_VERBOSE, "%dx%d -> %dx%d\n", srcW, srcH, dstW, dstH);
  1036. av_log(c, AV_LOG_DEBUG, "lum srcW=%d srcH=%d dstW=%d dstH=%d xInc=%d yInc=%d\n",
  1037. c->srcW, c->srcH, c->dstW, c->dstH, c->lumXInc, c->lumYInc);
  1038. av_log(c, AV_LOG_DEBUG, "chr srcW=%d srcH=%d dstW=%d dstH=%d xInc=%d yInc=%d\n",
  1039. c->chrSrcW, c->chrSrcH, c->chrDstW, c->chrDstH, c->chrXInc, c->chrYInc);
  1040. }
  1041. c->swScale= ff_getSwsFunc(c);
  1042. return 0;
  1043. fail: //FIXME replace things by appropriate error codes
  1044. return -1;
  1045. }
  1046. #if FF_API_SWS_GETCONTEXT
  1047. SwsContext *sws_getContext(int srcW, int srcH, enum PixelFormat srcFormat,
  1048. int dstW, int dstH, enum PixelFormat dstFormat, int flags,
  1049. SwsFilter *srcFilter, SwsFilter *dstFilter, const double *param)
  1050. {
  1051. SwsContext *c;
  1052. if(!(c=sws_alloc_context()))
  1053. return NULL;
  1054. c->flags= flags;
  1055. c->srcW= srcW;
  1056. c->srcH= srcH;
  1057. c->dstW= dstW;
  1058. c->dstH= dstH;
  1059. c->srcRange = handle_jpeg(&srcFormat);
  1060. c->dstRange = handle_jpeg(&dstFormat);
  1061. c->srcFormat= srcFormat;
  1062. c->dstFormat= dstFormat;
  1063. if (param) {
  1064. c->param[0] = param[0];
  1065. c->param[1] = param[1];
  1066. }
  1067. sws_setColorspaceDetails(c, ff_yuv2rgb_coeffs[SWS_CS_DEFAULT], c->srcRange, ff_yuv2rgb_coeffs[SWS_CS_DEFAULT] /* FIXME*/, c->dstRange, 0, 1<<16, 1<<16);
  1068. if(sws_init_context(c, srcFilter, dstFilter) < 0){
  1069. sws_freeContext(c);
  1070. return NULL;
  1071. }
  1072. return c;
  1073. }
  1074. #endif
  1075. SwsFilter *sws_getDefaultFilter(float lumaGBlur, float chromaGBlur,
  1076. float lumaSharpen, float chromaSharpen,
  1077. float chromaHShift, float chromaVShift,
  1078. int verbose)
  1079. {
  1080. SwsFilter *filter= av_malloc(sizeof(SwsFilter));
  1081. if (!filter)
  1082. return NULL;
  1083. if (lumaGBlur!=0.0) {
  1084. filter->lumH= sws_getGaussianVec(lumaGBlur, 3.0);
  1085. filter->lumV= sws_getGaussianVec(lumaGBlur, 3.0);
  1086. } else {
  1087. filter->lumH= sws_getIdentityVec();
  1088. filter->lumV= sws_getIdentityVec();
  1089. }
  1090. if (chromaGBlur!=0.0) {
  1091. filter->chrH= sws_getGaussianVec(chromaGBlur, 3.0);
  1092. filter->chrV= sws_getGaussianVec(chromaGBlur, 3.0);
  1093. } else {
  1094. filter->chrH= sws_getIdentityVec();
  1095. filter->chrV= sws_getIdentityVec();
  1096. }
  1097. if (chromaSharpen!=0.0) {
  1098. SwsVector *id= sws_getIdentityVec();
  1099. sws_scaleVec(filter->chrH, -chromaSharpen);
  1100. sws_scaleVec(filter->chrV, -chromaSharpen);
  1101. sws_addVec(filter->chrH, id);
  1102. sws_addVec(filter->chrV, id);
  1103. sws_freeVec(id);
  1104. }
  1105. if (lumaSharpen!=0.0) {
  1106. SwsVector *id= sws_getIdentityVec();
  1107. sws_scaleVec(filter->lumH, -lumaSharpen);
  1108. sws_scaleVec(filter->lumV, -lumaSharpen);
  1109. sws_addVec(filter->lumH, id);
  1110. sws_addVec(filter->lumV, id);
  1111. sws_freeVec(id);
  1112. }
  1113. if (chromaHShift != 0.0)
  1114. sws_shiftVec(filter->chrH, (int)(chromaHShift+0.5));
  1115. if (chromaVShift != 0.0)
  1116. sws_shiftVec(filter->chrV, (int)(chromaVShift+0.5));
  1117. sws_normalizeVec(filter->chrH, 1.0);
  1118. sws_normalizeVec(filter->chrV, 1.0);
  1119. sws_normalizeVec(filter->lumH, 1.0);
  1120. sws_normalizeVec(filter->lumV, 1.0);
  1121. if (verbose) sws_printVec2(filter->chrH, NULL, AV_LOG_DEBUG);
  1122. if (verbose) sws_printVec2(filter->lumH, NULL, AV_LOG_DEBUG);
  1123. return filter;
  1124. }
  1125. SwsVector *sws_allocVec(int length)
  1126. {
  1127. SwsVector *vec = av_malloc(sizeof(SwsVector));
  1128. if (!vec)
  1129. return NULL;
  1130. vec->length = length;
  1131. vec->coeff = av_malloc(sizeof(double) * length);
  1132. if (!vec->coeff)
  1133. av_freep(&vec);
  1134. return vec;
  1135. }
  1136. SwsVector *sws_getGaussianVec(double variance, double quality)
  1137. {
  1138. const int length= (int)(variance*quality + 0.5) | 1;
  1139. int i;
  1140. double middle= (length-1)*0.5;
  1141. SwsVector *vec= sws_allocVec(length);
  1142. if (!vec)
  1143. return NULL;
  1144. for (i=0; i<length; i++) {
  1145. double dist= i-middle;
  1146. vec->coeff[i]= exp(-dist*dist/(2*variance*variance)) / sqrt(2*variance*M_PI);
  1147. }
  1148. sws_normalizeVec(vec, 1.0);
  1149. return vec;
  1150. }
  1151. SwsVector *sws_getConstVec(double c, int length)
  1152. {
  1153. int i;
  1154. SwsVector *vec= sws_allocVec(length);
  1155. if (!vec)
  1156. return NULL;
  1157. for (i=0; i<length; i++)
  1158. vec->coeff[i]= c;
  1159. return vec;
  1160. }
  1161. SwsVector *sws_getIdentityVec(void)
  1162. {
  1163. return sws_getConstVec(1.0, 1);
  1164. }
  1165. static double sws_dcVec(SwsVector *a)
  1166. {
  1167. int i;
  1168. double sum=0;
  1169. for (i=0; i<a->length; i++)
  1170. sum+= a->coeff[i];
  1171. return sum;
  1172. }
  1173. void sws_scaleVec(SwsVector *a, double scalar)
  1174. {
  1175. int i;
  1176. for (i=0; i<a->length; i++)
  1177. a->coeff[i]*= scalar;
  1178. }
  1179. void sws_normalizeVec(SwsVector *a, double height)
  1180. {
  1181. sws_scaleVec(a, height/sws_dcVec(a));
  1182. }
  1183. static SwsVector *sws_getConvVec(SwsVector *a, SwsVector *b)
  1184. {
  1185. int length= a->length + b->length - 1;
  1186. int i, j;
  1187. SwsVector *vec= sws_getConstVec(0.0, length);
  1188. if (!vec)
  1189. return NULL;
  1190. for (i=0; i<a->length; i++) {
  1191. for (j=0; j<b->length; j++) {
  1192. vec->coeff[i+j]+= a->coeff[i]*b->coeff[j];
  1193. }
  1194. }
  1195. return vec;
  1196. }
  1197. static SwsVector *sws_sumVec(SwsVector *a, SwsVector *b)
  1198. {
  1199. int length= FFMAX(a->length, b->length);
  1200. int i;
  1201. SwsVector *vec= sws_getConstVec(0.0, length);
  1202. if (!vec)
  1203. return NULL;
  1204. for (i=0; i<a->length; i++) vec->coeff[i + (length-1)/2 - (a->length-1)/2]+= a->coeff[i];
  1205. for (i=0; i<b->length; i++) vec->coeff[i + (length-1)/2 - (b->length-1)/2]+= b->coeff[i];
  1206. return vec;
  1207. }
  1208. static SwsVector *sws_diffVec(SwsVector *a, SwsVector *b)
  1209. {
  1210. int length= FFMAX(a->length, b->length);
  1211. int i;
  1212. SwsVector *vec= sws_getConstVec(0.0, length);
  1213. if (!vec)
  1214. return NULL;
  1215. for (i=0; i<a->length; i++) vec->coeff[i + (length-1)/2 - (a->length-1)/2]+= a->coeff[i];
  1216. for (i=0; i<b->length; i++) vec->coeff[i + (length-1)/2 - (b->length-1)/2]-= b->coeff[i];
  1217. return vec;
  1218. }
  1219. /* shift left / or right if "shift" is negative */
  1220. static SwsVector *sws_getShiftedVec(SwsVector *a, int shift)
  1221. {
  1222. int length= a->length + FFABS(shift)*2;
  1223. int i;
  1224. SwsVector *vec= sws_getConstVec(0.0, length);
  1225. if (!vec)
  1226. return NULL;
  1227. for (i=0; i<a->length; i++) {
  1228. vec->coeff[i + (length-1)/2 - (a->length-1)/2 - shift]= a->coeff[i];
  1229. }
  1230. return vec;
  1231. }
  1232. void sws_shiftVec(SwsVector *a, int shift)
  1233. {
  1234. SwsVector *shifted= sws_getShiftedVec(a, shift);
  1235. av_free(a->coeff);
  1236. a->coeff= shifted->coeff;
  1237. a->length= shifted->length;
  1238. av_free(shifted);
  1239. }
  1240. void sws_addVec(SwsVector *a, SwsVector *b)
  1241. {
  1242. SwsVector *sum= sws_sumVec(a, b);
  1243. av_free(a->coeff);
  1244. a->coeff= sum->coeff;
  1245. a->length= sum->length;
  1246. av_free(sum);
  1247. }
  1248. void sws_subVec(SwsVector *a, SwsVector *b)
  1249. {
  1250. SwsVector *diff= sws_diffVec(a, b);
  1251. av_free(a->coeff);
  1252. a->coeff= diff->coeff;
  1253. a->length= diff->length;
  1254. av_free(diff);
  1255. }
  1256. void sws_convVec(SwsVector *a, SwsVector *b)
  1257. {
  1258. SwsVector *conv= sws_getConvVec(a, b);
  1259. av_free(a->coeff);
  1260. a->coeff= conv->coeff;
  1261. a->length= conv->length;
  1262. av_free(conv);
  1263. }
  1264. SwsVector *sws_cloneVec(SwsVector *a)
  1265. {
  1266. int i;
  1267. SwsVector *vec= sws_allocVec(a->length);
  1268. if (!vec)
  1269. return NULL;
  1270. for (i=0; i<a->length; i++) vec->coeff[i]= a->coeff[i];
  1271. return vec;
  1272. }
  1273. void sws_printVec2(SwsVector *a, AVClass *log_ctx, int log_level)
  1274. {
  1275. int i;
  1276. double max=0;
  1277. double min=0;
  1278. double range;
  1279. for (i=0; i<a->length; i++)
  1280. if (a->coeff[i]>max) max= a->coeff[i];
  1281. for (i=0; i<a->length; i++)
  1282. if (a->coeff[i]<min) min= a->coeff[i];
  1283. range= max - min;
  1284. for (i=0; i<a->length; i++) {
  1285. int x= (int)((a->coeff[i]-min)*60.0/range +0.5);
  1286. av_log(log_ctx, log_level, "%1.3f ", a->coeff[i]);
  1287. for (;x>0; x--) av_log(log_ctx, log_level, " ");
  1288. av_log(log_ctx, log_level, "|\n");
  1289. }
  1290. }
  1291. void sws_freeVec(SwsVector *a)
  1292. {
  1293. if (!a) return;
  1294. av_freep(&a->coeff);
  1295. a->length=0;
  1296. av_free(a);
  1297. }
  1298. void sws_freeFilter(SwsFilter *filter)
  1299. {
  1300. if (!filter) return;
  1301. if (filter->lumH) sws_freeVec(filter->lumH);
  1302. if (filter->lumV) sws_freeVec(filter->lumV);
  1303. if (filter->chrH) sws_freeVec(filter->chrH);
  1304. if (filter->chrV) sws_freeVec(filter->chrV);
  1305. av_free(filter);
  1306. }
  1307. void sws_freeContext(SwsContext *c)
  1308. {
  1309. int i;
  1310. if (!c) return;
  1311. if (c->lumPixBuf) {
  1312. for (i=0; i<c->vLumBufSize; i++)
  1313. av_freep(&c->lumPixBuf[i]);
  1314. av_freep(&c->lumPixBuf);
  1315. }
  1316. if (c->chrUPixBuf) {
  1317. for (i=0; i<c->vChrBufSize; i++)
  1318. av_freep(&c->chrUPixBuf[i]);
  1319. av_freep(&c->chrUPixBuf);
  1320. av_freep(&c->chrVPixBuf);
  1321. }
  1322. if (CONFIG_SWSCALE_ALPHA && c->alpPixBuf) {
  1323. for (i=0; i<c->vLumBufSize; i++)
  1324. av_freep(&c->alpPixBuf[i]);
  1325. av_freep(&c->alpPixBuf);
  1326. }
  1327. av_freep(&c->vLumFilter);
  1328. av_freep(&c->vChrFilter);
  1329. av_freep(&c->hLumFilter);
  1330. av_freep(&c->hChrFilter);
  1331. #if HAVE_ALTIVEC
  1332. av_freep(&c->vYCoeffsBank);
  1333. av_freep(&c->vCCoeffsBank);
  1334. #endif
  1335. av_freep(&c->vLumFilterPos);
  1336. av_freep(&c->vChrFilterPos);
  1337. av_freep(&c->hLumFilterPos);
  1338. av_freep(&c->hChrFilterPos);
  1339. #if HAVE_MMX
  1340. #ifdef MAP_ANONYMOUS
  1341. if (c->lumMmx2FilterCode) munmap(c->lumMmx2FilterCode, c->lumMmx2FilterCodeSize);
  1342. if (c->chrMmx2FilterCode) munmap(c->chrMmx2FilterCode, c->chrMmx2FilterCodeSize);
  1343. #elif HAVE_VIRTUALALLOC
  1344. if (c->lumMmx2FilterCode) VirtualFree(c->lumMmx2FilterCode, 0, MEM_RELEASE);
  1345. if (c->chrMmx2FilterCode) VirtualFree(c->chrMmx2FilterCode, 0, MEM_RELEASE);
  1346. #else
  1347. av_free(c->lumMmx2FilterCode);
  1348. av_free(c->chrMmx2FilterCode);
  1349. #endif
  1350. c->lumMmx2FilterCode=NULL;
  1351. c->chrMmx2FilterCode=NULL;
  1352. #endif /* HAVE_MMX */
  1353. av_freep(&c->yuvTable);
  1354. av_free(c->formatConvBuffer);
  1355. av_free(c);
  1356. }
  1357. struct SwsContext *sws_getCachedContext(struct SwsContext *context,
  1358. int srcW, int srcH, enum PixelFormat srcFormat,
  1359. int dstW, int dstH, enum PixelFormat dstFormat, int flags,
  1360. SwsFilter *srcFilter, SwsFilter *dstFilter, const double *param)
  1361. {
  1362. static const double default_param[2] = {SWS_PARAM_DEFAULT, SWS_PARAM_DEFAULT};
  1363. if (!param)
  1364. param = default_param;
  1365. if (context &&
  1366. (context->srcW != srcW ||
  1367. context->srcH != srcH ||
  1368. context->srcFormat != srcFormat ||
  1369. context->dstW != dstW ||
  1370. context->dstH != dstH ||
  1371. context->dstFormat != dstFormat ||
  1372. context->flags != flags ||
  1373. context->param[0] != param[0] ||
  1374. context->param[1] != param[1])) {
  1375. sws_freeContext(context);
  1376. context = NULL;
  1377. }
  1378. if (!context) {
  1379. if (!(context = sws_alloc_context()))
  1380. return NULL;
  1381. context->srcW = srcW;
  1382. context->srcH = srcH;
  1383. context->srcRange = handle_jpeg(&srcFormat);
  1384. context->srcFormat = srcFormat;
  1385. context->dstW = dstW;
  1386. context->dstH = dstH;
  1387. context->dstRange = handle_jpeg(&dstFormat);
  1388. context->dstFormat = dstFormat;
  1389. context->flags = flags;
  1390. context->param[0] = param[0];
  1391. context->param[1] = param[1];
  1392. sws_setColorspaceDetails(context, ff_yuv2rgb_coeffs[SWS_CS_DEFAULT], context->srcRange, ff_yuv2rgb_coeffs[SWS_CS_DEFAULT] /* FIXME*/, context->dstRange, 0, 1<<16, 1<<16);
  1393. if (sws_init_context(context, srcFilter, dstFilter) < 0) {
  1394. sws_freeContext(context);
  1395. return NULL;
  1396. }
  1397. }
  1398. return context;
  1399. }