You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

433 lines
14KB

  1. ;******************************************************************************
  2. ;* x86-optimized horizontal line scaling functions
  3. ;* Copyright (c) 2011 Ronald S. Bultje <rsbultje@gmail.com>
  4. ;*
  5. ;* This file is part of Libav.
  6. ;*
  7. ;* Libav is free software; you can redistribute it and/or
  8. ;* modify it under the terms of the GNU Lesser General Public
  9. ;* License as published by the Free Software Foundation; either
  10. ;* version 2.1 of the License, or (at your option) any later version.
  11. ;*
  12. ;* Libav is distributed in the hope that it will be useful,
  13. ;* but WITHOUT ANY WARRANTY; without even the implied warranty of
  14. ;* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  15. ;* Lesser General Public License for more details.
  16. ;*
  17. ;* You should have received a copy of the GNU Lesser General Public
  18. ;* License along with Libav; if not, write to the Free Software
  19. ;* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  20. ;******************************************************************************
  21. %include "x86inc.asm"
  22. %include "x86util.asm"
  23. SECTION_RODATA
  24. max_19bit_int: times 4 dd 0x7ffff
  25. max_19bit_flt: times 4 dd 524287.0
  26. minshort: times 8 dw 0x8000
  27. unicoeff: times 4 dd 0x20000000
  28. SECTION .text
  29. ;-----------------------------------------------------------------------------
  30. ; horizontal line scaling
  31. ;
  32. ; void hscale<source_width>to<intermediate_nbits>_<filterSize>_<opt>
  33. ; (SwsContext *c, int{16,32}_t *dst,
  34. ; int dstW, const uint{8,16}_t *src,
  35. ; const int16_t *filter,
  36. ; const int32_t *filterPos, int filterSize);
  37. ;
  38. ; Scale one horizontal line. Input is either 8-bits width or 16-bits width
  39. ; ($source_width can be either 8, 9, 10 or 16, difference is whether we have to
  40. ; downscale before multiplying). Filter is 14-bits. Output is either 15bits
  41. ; (in int16_t) or 19bits (in int32_t), as given in $intermediate_nbits. Each
  42. ; output pixel is generated from $filterSize input pixels, the position of
  43. ; the first pixel is given in filterPos[nOutputPixel].
  44. ;-----------------------------------------------------------------------------
  45. ; SCALE_FUNC source_width, intermediate_nbits, filtersize, filtersuffix, opt, n_args, n_xmm
  46. %macro SCALE_FUNC 7
  47. cglobal hscale%1to%2_%4_%5, %6, 7, %7
  48. %if ARCH_X86_64
  49. movsxd r2, r2d
  50. %define mov32 movsxd
  51. %else ; x86-32
  52. %define mov32 mov
  53. %endif ; x86-64
  54. %if %2 == 19
  55. %if mmsize == 8 ; mmx
  56. mova m2, [max_19bit_int]
  57. %elifidn %5, sse4
  58. mova m2, [max_19bit_int]
  59. %else ; ssse3/sse2
  60. mova m2, [max_19bit_flt]
  61. %endif ; mmx/sse2/ssse3/sse4
  62. %endif ; %2 == 19
  63. %if %1 == 16
  64. mova m6, [minshort]
  65. mova m7, [unicoeff]
  66. %elif %1 == 8
  67. pxor m3, m3
  68. %endif ; %1 == 8/16
  69. %if %1 == 8
  70. %define movlh movd
  71. %define movbh movh
  72. %define srcmul 1
  73. %else ; %1 == 9-16
  74. %define movlh movq
  75. %define movbh movu
  76. %define srcmul 2
  77. %endif ; %1 == 8/9-16
  78. %ifnidn %3, X
  79. ; setup loop
  80. %if %3 == 8
  81. shl r2, 1 ; this allows *16 (i.e. now *8) in lea instructions for the 8-tap filter
  82. %define r2shr 1
  83. %else ; %3 == 4
  84. %define r2shr 0
  85. %endif ; %3 == 8
  86. lea r4, [r4+r2*8]
  87. %if %2 == 15
  88. lea r1, [r1+r2*(2>>r2shr)]
  89. %else ; %2 == 19
  90. lea r1, [r1+r2*(4>>r2shr)]
  91. %endif ; %2 == 15/19
  92. lea r5, [r5+r2*(4>>r2shr)]
  93. neg r2
  94. .loop:
  95. %if %3 == 4 ; filterSize == 4 scaling
  96. ; load 2x4 or 4x4 source pixels into m0/m1
  97. mov32 r0, dword [r5+r2*4+0] ; filterPos[0]
  98. mov32 r6, dword [r5+r2*4+4] ; filterPos[1]
  99. movlh m0, [r3+r0*srcmul] ; src[filterPos[0] + {0,1,2,3}]
  100. %if mmsize == 8
  101. movlh m1, [r3+r6*srcmul] ; src[filterPos[1] + {0,1,2,3}]
  102. %else ; mmsize == 16
  103. %if %1 > 8
  104. movhps m0, [r3+r6*srcmul] ; src[filterPos[1] + {0,1,2,3}]
  105. %else ; %1 == 8
  106. movd m4, [r3+r6*srcmul] ; src[filterPos[1] + {0,1,2,3}]
  107. %endif
  108. mov32 r0, dword [r5+r2*4+8] ; filterPos[2]
  109. mov32 r6, dword [r5+r2*4+12] ; filterPos[3]
  110. movlh m1, [r3+r0*srcmul] ; src[filterPos[2] + {0,1,2,3}]
  111. %if %1 > 8
  112. movhps m1, [r3+r6*srcmul] ; src[filterPos[3] + {0,1,2,3}]
  113. %else ; %1 == 8
  114. movd m5, [r3+r6*srcmul] ; src[filterPos[3] + {0,1,2,3}]
  115. punpckldq m0, m4
  116. punpckldq m1, m5
  117. %endif ; %1 == 8 && %5 <= ssse
  118. %endif ; mmsize == 8/16
  119. %if %1 == 8
  120. punpcklbw m0, m3 ; byte -> word
  121. punpcklbw m1, m3 ; byte -> word
  122. %endif ; %1 == 8
  123. ; multiply with filter coefficients
  124. %if %1 == 16 ; pmaddwd needs signed adds, so this moves unsigned -> signed, we'll
  125. ; add back 0x8000 * sum(coeffs) after the horizontal add
  126. psubw m0, m6
  127. psubw m1, m6
  128. %endif ; %1 == 16
  129. pmaddwd m0, [r4+r2*8+mmsize*0] ; *= filter[{0,1,..,6,7}]
  130. pmaddwd m1, [r4+r2*8+mmsize*1] ; *= filter[{8,9,..,14,15}]
  131. ; add up horizontally (4 srcpix * 4 coefficients -> 1 dstpix)
  132. %if mmsize == 8 ; mmx
  133. movq m4, m0
  134. punpckldq m0, m1
  135. punpckhdq m4, m1
  136. paddd m0, m4
  137. %elifidn %5, sse2
  138. mova m4, m0
  139. shufps m0, m1, 10001000b
  140. shufps m4, m1, 11011101b
  141. paddd m0, m4
  142. %else ; ssse3/sse4
  143. phaddd m0, m1 ; filter[{ 0, 1, 2, 3}]*src[filterPos[0]+{0,1,2,3}],
  144. ; filter[{ 4, 5, 6, 7}]*src[filterPos[1]+{0,1,2,3}],
  145. ; filter[{ 8, 9,10,11}]*src[filterPos[2]+{0,1,2,3}],
  146. ; filter[{12,13,14,15}]*src[filterPos[3]+{0,1,2,3}]
  147. %endif ; mmx/sse2/ssse3/sse4
  148. %else ; %3 == 8, i.e. filterSize == 8 scaling
  149. ; load 2x8 or 4x8 source pixels into m0, m1, m4 and m5
  150. mov32 r0, dword [r5+r2*2+0] ; filterPos[0]
  151. mov32 r6, dword [r5+r2*2+4] ; filterPos[1]
  152. movbh m0, [r3+ r0 *srcmul] ; src[filterPos[0] + {0,1,2,3,4,5,6,7}]
  153. %if mmsize == 8
  154. movbh m1, [r3+(r0+4)*srcmul] ; src[filterPos[0] + {4,5,6,7}]
  155. movbh m4, [r3+ r6 *srcmul] ; src[filterPos[1] + {0,1,2,3}]
  156. movbh m5, [r3+(r6+4)*srcmul] ; src[filterPos[1] + {4,5,6,7}]
  157. %else ; mmsize == 16
  158. movbh m1, [r3+ r6 *srcmul] ; src[filterPos[1] + {0,1,2,3,4,5,6,7}]
  159. mov32 r0, dword [r5+r2*2+8] ; filterPos[2]
  160. mov32 r6, dword [r5+r2*2+12] ; filterPos[3]
  161. movbh m4, [r3+ r0 *srcmul] ; src[filterPos[2] + {0,1,2,3,4,5,6,7}]
  162. movbh m5, [r3+ r6 *srcmul] ; src[filterPos[3] + {0,1,2,3,4,5,6,7}]
  163. %endif ; mmsize == 8/16
  164. %if %1 == 8
  165. punpcklbw m0, m3 ; byte -> word
  166. punpcklbw m1, m3 ; byte -> word
  167. punpcklbw m4, m3 ; byte -> word
  168. punpcklbw m5, m3 ; byte -> word
  169. %endif ; %1 == 8
  170. ; multiply
  171. %if %1 == 16 ; pmaddwd needs signed adds, so this moves unsigned -> signed, we'll
  172. ; add back 0x8000 * sum(coeffs) after the horizontal add
  173. psubw m0, m6
  174. psubw m1, m6
  175. psubw m4, m6
  176. psubw m5, m6
  177. %endif ; %1 == 16
  178. pmaddwd m0, [r4+r2*8+mmsize*0] ; *= filter[{0,1,..,6,7}]
  179. pmaddwd m1, [r4+r2*8+mmsize*1] ; *= filter[{8,9,..,14,15}]
  180. pmaddwd m4, [r4+r2*8+mmsize*2] ; *= filter[{16,17,..,22,23}]
  181. pmaddwd m5, [r4+r2*8+mmsize*3] ; *= filter[{24,25,..,30,31}]
  182. ; add up horizontally (8 srcpix * 8 coefficients -> 1 dstpix)
  183. %if mmsize == 8
  184. paddd m0, m1
  185. paddd m4, m5
  186. movq m1, m0
  187. punpckldq m0, m4
  188. punpckhdq m1, m4
  189. paddd m0, m1
  190. %elifidn %5, sse2
  191. %if %1 == 8
  192. %define mex m6
  193. %else
  194. %define mex m3
  195. %endif
  196. ; emulate horizontal add as transpose + vertical add
  197. mova mex, m0
  198. punpckldq m0, m1
  199. punpckhdq mex, m1
  200. paddd m0, mex
  201. mova m1, m4
  202. punpckldq m4, m5
  203. punpckhdq m1, m5
  204. paddd m4, m1
  205. mova m1, m0
  206. punpcklqdq m0, m4
  207. punpckhqdq m1, m4
  208. paddd m0, m1
  209. %else ; ssse3/sse4
  210. ; FIXME if we rearrange the filter in pairs of 4, we can
  211. ; load pixels likewise and use 2 x paddd + phaddd instead
  212. ; of 3 x phaddd here, faster on older cpus
  213. phaddd m0, m1
  214. phaddd m4, m5
  215. phaddd m0, m4 ; filter[{ 0, 1,..., 6, 7}]*src[filterPos[0]+{0,1,...,6,7}],
  216. ; filter[{ 8, 9,...,14,15}]*src[filterPos[1]+{0,1,...,6,7}],
  217. ; filter[{16,17,...,22,23}]*src[filterPos[2]+{0,1,...,6,7}],
  218. ; filter[{24,25,...,30,31}]*src[filterPos[3]+{0,1,...,6,7}]
  219. %endif ; mmx/sse2/ssse3/sse4
  220. %endif ; %3 == 4/8
  221. %else ; %3 == X, i.e. any filterSize scaling
  222. %ifidn %4, X4
  223. %define r6sub 4
  224. %else ; %4 == X || %4 == X8
  225. %define r6sub 0
  226. %endif ; %4 ==/!= X4
  227. %if ARCH_X86_64
  228. push r12
  229. movsxd r6, r6d ; filterSize
  230. lea r12, [r3+(r6-r6sub)*srcmul] ; &src[filterSize&~4]
  231. %define src_reg r11
  232. %define r1x r10
  233. %define filter2 r12
  234. %else ; x86-32
  235. lea r0, [r3+(r6-r6sub)*srcmul] ; &src[filterSize&~4]
  236. mov r6m, r0
  237. %define src_reg r3
  238. %define r1x r1
  239. %define filter2 r6m
  240. %endif ; x86-32/64
  241. lea r5, [r5+r2*4]
  242. %if %2 == 15
  243. lea r1, [r1+r2*2]
  244. %else ; %2 == 19
  245. lea r1, [r1+r2*4]
  246. %endif ; %2 == 15/19
  247. movifnidn r1mp, r1
  248. neg r2
  249. .loop:
  250. mov32 r0, dword [r5+r2*4+0] ; filterPos[0]
  251. mov32 r1x, dword [r5+r2*4+4] ; filterPos[1]
  252. ; FIXME maybe do 4px/iteration on x86-64 (x86-32 wouldn't have enough regs)?
  253. pxor m4, m4
  254. pxor m5, m5
  255. mov src_reg, r3mp
  256. .innerloop:
  257. ; load 2x4 (mmx) or 2x8 (sse) source pixels into m0/m1 -> m4/m5
  258. movbh m0, [src_reg+r0 *srcmul] ; src[filterPos[0] + {0,1,2,3(,4,5,6,7)}]
  259. movbh m1, [src_reg+(r1x+r6sub)*srcmul] ; src[filterPos[1] + {0,1,2,3(,4,5,6,7)}]
  260. %if %1 == 8
  261. punpcklbw m0, m3
  262. punpcklbw m1, m3
  263. %endif ; %1 == 8
  264. ; multiply
  265. %if %1 == 16 ; pmaddwd needs signed adds, so this moves unsigned -> signed, we'll
  266. ; add back 0x8000 * sum(coeffs) after the horizontal add
  267. psubw m0, m6
  268. psubw m1, m6
  269. %endif ; %1 == 16
  270. pmaddwd m0, [r4 ] ; filter[{0,1,2,3(,4,5,6,7)}]
  271. pmaddwd m1, [r4+(r6+r6sub)*2] ; filter[filtersize+{0,1,2,3(,4,5,6,7)}]
  272. paddd m4, m0
  273. paddd m5, m1
  274. add r4, mmsize
  275. add src_reg, srcmul*mmsize/2
  276. cmp src_reg, filter2 ; while (src += 4) < &src[filterSize]
  277. jl .innerloop
  278. %ifidn %4, X4
  279. mov32 r1x, dword [r5+r2*4+4] ; filterPos[1]
  280. movlh m0, [src_reg+r0 *srcmul] ; split last 4 srcpx of dstpx[0]
  281. sub r1x, r6 ; and first 4 srcpx of dstpx[1]
  282. %if %1 > 8
  283. movhps m0, [src_reg+(r1x+r6sub)*srcmul]
  284. %else ; %1 == 8
  285. movd m1, [src_reg+(r1x+r6sub)*srcmul]
  286. punpckldq m0, m1
  287. %endif ; %1 == 8 && %5 <= ssse
  288. %if %1 == 8
  289. punpcklbw m0, m3
  290. %endif ; %1 == 8
  291. %if %1 == 16 ; pmaddwd needs signed adds, so this moves unsigned -> signed, we'll
  292. ; add back 0x8000 * sum(coeffs) after the horizontal add
  293. psubw m0, m6
  294. %endif ; %1 == 16
  295. pmaddwd m0, [r4]
  296. %endif ; %4 == X4
  297. lea r4, [r4+(r6+r6sub)*2]
  298. %if mmsize == 8 ; mmx
  299. movq m0, m4
  300. punpckldq m4, m5
  301. punpckhdq m0, m5
  302. paddd m0, m4
  303. %else ; mmsize == 16
  304. %ifidn %5, sse2
  305. mova m1, m4
  306. punpcklqdq m4, m5
  307. punpckhqdq m1, m5
  308. paddd m4, m1
  309. %else ; ssse3/sse4
  310. phaddd m4, m5
  311. %endif ; sse2/ssse3/sse4
  312. %ifidn %4, X4
  313. paddd m4, m0
  314. %endif ; %3 == X4
  315. %ifidn %5, sse2
  316. pshufd m4, m4, 11011000b
  317. movhlps m0, m4
  318. paddd m0, m4
  319. %else ; ssse3/sse4
  320. phaddd m4, m4
  321. SWAP 0, 4
  322. %endif ; sse2/ssse3/sse4
  323. %endif ; mmsize == 8/16
  324. %endif ; %3 ==/!= X
  325. %if %1 == 16 ; add 0x8000 * sum(coeffs), i.e. back from signed -> unsigned
  326. paddd m0, m7
  327. %endif ; %1 == 16
  328. ; clip, store
  329. psrad m0, 14 + %1 - %2
  330. %ifidn %3, X
  331. movifnidn r1, r1mp
  332. %endif ; %3 == X
  333. %if %2 == 15
  334. packssdw m0, m0
  335. %ifnidn %3, X
  336. movh [r1+r2*(2>>r2shr)], m0
  337. %else ; %3 == X
  338. movd [r1+r2*2], m0
  339. %endif ; %3 ==/!= X
  340. %else ; %2 == 19
  341. %if mmsize == 8
  342. PMINSD_MMX m0, m2, m4
  343. %elifidn %5, sse4
  344. pminsd m0, m2
  345. %else ; sse2/ssse3
  346. cvtdq2ps m0, m0
  347. minps m0, m2
  348. cvtps2dq m0, m0
  349. %endif ; mmx/sse2/ssse3/sse4
  350. %ifnidn %3, X
  351. mova [r1+r2*(4>>r2shr)], m0
  352. %else ; %3 == X
  353. movq [r1+r2*4], m0
  354. %endif ; %3 ==/!= X
  355. %endif ; %2 == 15/19
  356. %ifnidn %3, X
  357. add r2, (mmsize<<r2shr)/4 ; both 8tap and 4tap really only do 4 pixels (or for mmx: 2 pixels)
  358. ; per iteration. see "shl r2,1" above as for why we do this
  359. %else ; %3 == X
  360. add r2, 2
  361. %endif ; %3 ==/!= X
  362. jl .loop
  363. %ifnidn %3, X
  364. REP_RET
  365. %else ; %3 == X
  366. %if ARCH_X86_64
  367. pop r12
  368. RET
  369. %else ; x86-32
  370. REP_RET
  371. %endif ; x86-32/64
  372. %endif ; %3 ==/!= X
  373. %endmacro
  374. ; SCALE_FUNCS source_width, intermediate_nbits, opt, n_xmm
  375. %macro SCALE_FUNCS 4
  376. SCALE_FUNC %1, %2, 4, 4, %3, 6, %4
  377. SCALE_FUNC %1, %2, 8, 8, %3, 6, %4
  378. %if mmsize == 8
  379. SCALE_FUNC %1, %2, X, X, %3, 7, %4
  380. %else
  381. SCALE_FUNC %1, %2, X, X4, %3, 7, %4
  382. SCALE_FUNC %1, %2, X, X8, %3, 7, %4
  383. %endif
  384. %endmacro
  385. ; SCALE_FUNCS2 opt, 8_xmm_args, 9to10_xmm_args, 16_xmm_args
  386. %macro SCALE_FUNCS2 4
  387. %ifnidn %1, sse4
  388. SCALE_FUNCS 8, 15, %1, %2
  389. SCALE_FUNCS 9, 15, %1, %3
  390. SCALE_FUNCS 10, 15, %1, %3
  391. SCALE_FUNCS 16, 15, %1, %4
  392. %endif ; !sse4
  393. SCALE_FUNCS 8, 19, %1, %2
  394. SCALE_FUNCS 9, 19, %1, %3
  395. SCALE_FUNCS 10, 19, %1, %3
  396. SCALE_FUNCS 16, 19, %1, %4
  397. %endmacro
  398. %if ARCH_X86_32
  399. INIT_MMX
  400. SCALE_FUNCS2 mmx, 0, 0, 0
  401. %endif
  402. INIT_XMM
  403. SCALE_FUNCS2 sse2, 6, 7, 8
  404. SCALE_FUNCS2 ssse3, 6, 6, 8
  405. SCALE_FUNCS2 sse4, 6, 6, 8