You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

1059 lines
37KB

  1. /*
  2. * VC3/DNxHD encoder
  3. * Copyright (c) 2007 Baptiste Coudurier <baptiste dot coudurier at smartjog dot com>
  4. * Copyright (c) 2011 MirriAd Ltd
  5. *
  6. * VC-3 encoder funded by the British Broadcasting Corporation
  7. * 10 bit support added by MirriAd Ltd, Joseph Artsimovich <joseph@mirriad.com>
  8. *
  9. * This file is part of FFmpeg.
  10. *
  11. * FFmpeg is free software; you can redistribute it and/or
  12. * modify it under the terms of the GNU Lesser General Public
  13. * License as published by the Free Software Foundation; either
  14. * version 2.1 of the License, or (at your option) any later version.
  15. *
  16. * FFmpeg is distributed in the hope that it will be useful,
  17. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  18. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  19. * Lesser General Public License for more details.
  20. *
  21. * You should have received a copy of the GNU Lesser General Public
  22. * License along with FFmpeg; if not, write to the Free Software
  23. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  24. */
  25. #define RC_VARIANCE 1 // use variance or ssd for fast rc
  26. #include "libavutil/attributes.h"
  27. #include "libavutil/internal.h"
  28. #include "libavutil/opt.h"
  29. #include "avcodec.h"
  30. #include "dsputil.h"
  31. #include "internal.h"
  32. #include "mpegvideo.h"
  33. #include "dnxhdenc.h"
  34. #define VE AV_OPT_FLAG_VIDEO_PARAM | AV_OPT_FLAG_ENCODING_PARAM
  35. #define DNX10BIT_QMAT_SHIFT 18 // The largest value that will not lead to overflow for 10bit samples.
  36. static const AVOption options[]={
  37. {"nitris_compat", "encode with Avid Nitris compatibility", offsetof(DNXHDEncContext, nitris_compat), AV_OPT_TYPE_INT, {.i64 = 0}, 0, 1, VE},
  38. {NULL}
  39. };
  40. static const AVClass dnxhd_class = {
  41. .class_name = "dnxhd",
  42. .item_name = av_default_item_name,
  43. .option = options,
  44. .version = LIBAVUTIL_VERSION_INT,
  45. };
  46. #define LAMBDA_FRAC_BITS 10
  47. static void dnxhd_8bit_get_pixels_8x4_sym(int16_t *av_restrict block, const uint8_t *pixels, int line_size)
  48. {
  49. int i;
  50. for (i = 0; i < 4; i++) {
  51. block[0] = pixels[0]; block[1] = pixels[1];
  52. block[2] = pixels[2]; block[3] = pixels[3];
  53. block[4] = pixels[4]; block[5] = pixels[5];
  54. block[6] = pixels[6]; block[7] = pixels[7];
  55. pixels += line_size;
  56. block += 8;
  57. }
  58. memcpy(block, block - 8, sizeof(*block) * 8);
  59. memcpy(block + 8, block - 16, sizeof(*block) * 8);
  60. memcpy(block + 16, block - 24, sizeof(*block) * 8);
  61. memcpy(block + 24, block - 32, sizeof(*block) * 8);
  62. }
  63. static av_always_inline void dnxhd_10bit_get_pixels_8x4_sym(int16_t *av_restrict block, const uint8_t *pixels, int line_size)
  64. {
  65. int i;
  66. const uint16_t* pixels16 = (const uint16_t*)pixels;
  67. line_size >>= 1;
  68. for (i = 0; i < 4; i++) {
  69. block[0] = pixels16[0]; block[1] = pixels16[1];
  70. block[2] = pixels16[2]; block[3] = pixels16[3];
  71. block[4] = pixels16[4]; block[5] = pixels16[5];
  72. block[6] = pixels16[6]; block[7] = pixels16[7];
  73. pixels16 += line_size;
  74. block += 8;
  75. }
  76. memcpy(block, block - 8, sizeof(*block) * 8);
  77. memcpy(block + 8, block - 16, sizeof(*block) * 8);
  78. memcpy(block + 16, block - 24, sizeof(*block) * 8);
  79. memcpy(block + 24, block - 32, sizeof(*block) * 8);
  80. }
  81. static int dnxhd_10bit_dct_quantize(MpegEncContext *ctx, int16_t *block,
  82. int n, int qscale, int *overflow)
  83. {
  84. const uint8_t *scantable= ctx->intra_scantable.scantable;
  85. const int *qmat = n<4 ? ctx->q_intra_matrix[qscale] : ctx->q_chroma_intra_matrix[qscale];
  86. int last_non_zero = 0;
  87. int i;
  88. ctx->dsp.fdct(block);
  89. // Divide by 4 with rounding, to compensate scaling of DCT coefficients
  90. block[0] = (block[0] + 2) >> 2;
  91. for (i = 1; i < 64; ++i) {
  92. int j = scantable[i];
  93. int sign = block[j] >> 31;
  94. int level = (block[j] ^ sign) - sign;
  95. level = level * qmat[j] >> DNX10BIT_QMAT_SHIFT;
  96. block[j] = (level ^ sign) - sign;
  97. if (level)
  98. last_non_zero = i;
  99. }
  100. return last_non_zero;
  101. }
  102. static av_cold int dnxhd_init_vlc(DNXHDEncContext *ctx)
  103. {
  104. int i, j, level, run;
  105. int max_level = 1<<(ctx->cid_table->bit_depth+2);
  106. FF_ALLOCZ_OR_GOTO(ctx->m.avctx, ctx->vlc_codes, max_level*4*sizeof(*ctx->vlc_codes), fail);
  107. FF_ALLOCZ_OR_GOTO(ctx->m.avctx, ctx->vlc_bits, max_level*4*sizeof(*ctx->vlc_bits) , fail);
  108. FF_ALLOCZ_OR_GOTO(ctx->m.avctx, ctx->run_codes, 63*2, fail);
  109. FF_ALLOCZ_OR_GOTO(ctx->m.avctx, ctx->run_bits, 63, fail);
  110. ctx->vlc_codes += max_level*2;
  111. ctx->vlc_bits += max_level*2;
  112. for (level = -max_level; level < max_level; level++) {
  113. for (run = 0; run < 2; run++) {
  114. int index = (level<<1)|run;
  115. int sign, offset = 0, alevel = level;
  116. MASK_ABS(sign, alevel);
  117. if (alevel > 64) {
  118. offset = (alevel-1)>>6;
  119. alevel -= offset<<6;
  120. }
  121. for (j = 0; j < 257; j++) {
  122. if (ctx->cid_table->ac_level[j] >> 1 == alevel &&
  123. (!offset || (ctx->cid_table->ac_flags[j] & 1) && offset) &&
  124. (!run || (ctx->cid_table->ac_flags[j] & 2) && run)) {
  125. av_assert1(!ctx->vlc_codes[index]);
  126. if (alevel) {
  127. ctx->vlc_codes[index] = (ctx->cid_table->ac_codes[j]<<1)|(sign&1);
  128. ctx->vlc_bits [index] = ctx->cid_table->ac_bits[j]+1;
  129. } else {
  130. ctx->vlc_codes[index] = ctx->cid_table->ac_codes[j];
  131. ctx->vlc_bits [index] = ctx->cid_table->ac_bits [j];
  132. }
  133. break;
  134. }
  135. }
  136. av_assert0(!alevel || j < 257);
  137. if (offset) {
  138. ctx->vlc_codes[index] = (ctx->vlc_codes[index]<<ctx->cid_table->index_bits)|offset;
  139. ctx->vlc_bits [index]+= ctx->cid_table->index_bits;
  140. }
  141. }
  142. }
  143. for (i = 0; i < 62; i++) {
  144. int run = ctx->cid_table->run[i];
  145. av_assert0(run < 63);
  146. ctx->run_codes[run] = ctx->cid_table->run_codes[i];
  147. ctx->run_bits [run] = ctx->cid_table->run_bits[i];
  148. }
  149. return 0;
  150. fail:
  151. return AVERROR(ENOMEM);
  152. }
  153. static av_cold int dnxhd_init_qmat(DNXHDEncContext *ctx, int lbias, int cbias)
  154. {
  155. // init first elem to 1 to avoid div by 0 in convert_matrix
  156. uint16_t weight_matrix[64] = {1,}; // convert_matrix needs uint16_t*
  157. int qscale, i;
  158. const uint8_t *luma_weight_table = ctx->cid_table->luma_weight;
  159. const uint8_t *chroma_weight_table = ctx->cid_table->chroma_weight;
  160. FF_ALLOCZ_OR_GOTO(ctx->m.avctx, ctx->qmatrix_l, (ctx->m.avctx->qmax+1) * 64 * sizeof(int), fail);
  161. FF_ALLOCZ_OR_GOTO(ctx->m.avctx, ctx->qmatrix_c, (ctx->m.avctx->qmax+1) * 64 * sizeof(int), fail);
  162. FF_ALLOCZ_OR_GOTO(ctx->m.avctx, ctx->qmatrix_l16, (ctx->m.avctx->qmax+1) * 64 * 2 * sizeof(uint16_t), fail);
  163. FF_ALLOCZ_OR_GOTO(ctx->m.avctx, ctx->qmatrix_c16, (ctx->m.avctx->qmax+1) * 64 * 2 * sizeof(uint16_t), fail);
  164. if (ctx->cid_table->bit_depth == 8) {
  165. for (i = 1; i < 64; i++) {
  166. int j = ctx->m.dsp.idct_permutation[ff_zigzag_direct[i]];
  167. weight_matrix[j] = ctx->cid_table->luma_weight[i];
  168. }
  169. ff_convert_matrix(&ctx->m.dsp, ctx->qmatrix_l, ctx->qmatrix_l16, weight_matrix,
  170. ctx->m.intra_quant_bias, 1, ctx->m.avctx->qmax, 1);
  171. for (i = 1; i < 64; i++) {
  172. int j = ctx->m.dsp.idct_permutation[ff_zigzag_direct[i]];
  173. weight_matrix[j] = ctx->cid_table->chroma_weight[i];
  174. }
  175. ff_convert_matrix(&ctx->m.dsp, ctx->qmatrix_c, ctx->qmatrix_c16, weight_matrix,
  176. ctx->m.intra_quant_bias, 1, ctx->m.avctx->qmax, 1);
  177. for (qscale = 1; qscale <= ctx->m.avctx->qmax; qscale++) {
  178. for (i = 0; i < 64; i++) {
  179. ctx->qmatrix_l [qscale] [i] <<= 2; ctx->qmatrix_c [qscale] [i] <<= 2;
  180. ctx->qmatrix_l16[qscale][0][i] <<= 2; ctx->qmatrix_l16[qscale][1][i] <<= 2;
  181. ctx->qmatrix_c16[qscale][0][i] <<= 2; ctx->qmatrix_c16[qscale][1][i] <<= 2;
  182. }
  183. }
  184. } else {
  185. // 10-bit
  186. for (qscale = 1; qscale <= ctx->m.avctx->qmax; qscale++) {
  187. for (i = 1; i < 64; i++) {
  188. int j = ctx->m.dsp.idct_permutation[ff_zigzag_direct[i]];
  189. // The quantization formula from the VC-3 standard is:
  190. // quantized = sign(block[i]) * floor(abs(block[i]/s) * p / (qscale * weight_table[i]))
  191. // Where p is 32 for 8-bit samples and 8 for 10-bit ones.
  192. // The s factor compensates scaling of DCT coefficients done by the DCT routines,
  193. // and therefore is not present in standard. It's 8 for 8-bit samples and 4 for 10-bit ones.
  194. // We want values of ctx->qtmatrix_l and ctx->qtmatrix_r to be:
  195. // ((1 << DNX10BIT_QMAT_SHIFT) * (p / s)) / (qscale * weight_table[i])
  196. // For 10-bit samples, p / s == 2
  197. ctx->qmatrix_l[qscale][j] = (1 << (DNX10BIT_QMAT_SHIFT + 1)) / (qscale * luma_weight_table[i]);
  198. ctx->qmatrix_c[qscale][j] = (1 << (DNX10BIT_QMAT_SHIFT + 1)) / (qscale * chroma_weight_table[i]);
  199. }
  200. }
  201. }
  202. ctx->m.q_chroma_intra_matrix16 = ctx->qmatrix_c16;
  203. ctx->m.q_chroma_intra_matrix = ctx->qmatrix_c;
  204. ctx->m.q_intra_matrix16 = ctx->qmatrix_l16;
  205. ctx->m.q_intra_matrix = ctx->qmatrix_l;
  206. return 0;
  207. fail:
  208. return AVERROR(ENOMEM);
  209. }
  210. static av_cold int dnxhd_init_rc(DNXHDEncContext *ctx)
  211. {
  212. FF_ALLOCZ_OR_GOTO(ctx->m.avctx, ctx->mb_rc, 8160*(ctx->m.avctx->qmax + 1)*sizeof(RCEntry), fail);
  213. if (ctx->m.avctx->mb_decision != FF_MB_DECISION_RD)
  214. FF_ALLOCZ_OR_GOTO(ctx->m.avctx, ctx->mb_cmp, ctx->m.mb_num*sizeof(RCCMPEntry), fail);
  215. ctx->frame_bits = (ctx->cid_table->coding_unit_size - 640 - 4 - ctx->min_padding) * 8;
  216. ctx->qscale = 1;
  217. ctx->lambda = 2<<LAMBDA_FRAC_BITS; // qscale 2
  218. return 0;
  219. fail:
  220. return AVERROR(ENOMEM);
  221. }
  222. static av_cold int dnxhd_encode_init(AVCodecContext *avctx)
  223. {
  224. DNXHDEncContext *ctx = avctx->priv_data;
  225. int i, index, bit_depth, ret;
  226. switch (avctx->pix_fmt) {
  227. case AV_PIX_FMT_YUV422P:
  228. bit_depth = 8;
  229. break;
  230. case AV_PIX_FMT_YUV422P10:
  231. bit_depth = 10;
  232. break;
  233. default:
  234. av_log(avctx, AV_LOG_ERROR, "pixel format is incompatible with DNxHD\n");
  235. return AVERROR(EINVAL);
  236. }
  237. ctx->cid = ff_dnxhd_find_cid(avctx, bit_depth);
  238. if (!ctx->cid) {
  239. av_log(avctx, AV_LOG_ERROR, "video parameters incompatible with DNxHD. Valid DNxHD profiles:\n");
  240. ff_dnxhd_print_profiles(avctx, AV_LOG_ERROR);
  241. return AVERROR(EINVAL);
  242. }
  243. av_log(avctx, AV_LOG_DEBUG, "cid %d\n", ctx->cid);
  244. index = ff_dnxhd_get_cid_table(ctx->cid);
  245. av_assert0(index >= 0);
  246. ctx->cid_table = &ff_dnxhd_cid_table[index];
  247. ctx->m.avctx = avctx;
  248. ctx->m.mb_intra = 1;
  249. ctx->m.h263_aic = 1;
  250. avctx->bits_per_raw_sample = ctx->cid_table->bit_depth;
  251. ff_dct_common_init(&ctx->m);
  252. ff_dct_encode_init(&ctx->m);
  253. if (!ctx->m.dct_quantize)
  254. ctx->m.dct_quantize = ff_dct_quantize_c;
  255. if (ctx->cid_table->bit_depth == 10) {
  256. ctx->m.dct_quantize = dnxhd_10bit_dct_quantize;
  257. ctx->get_pixels_8x4_sym = dnxhd_10bit_get_pixels_8x4_sym;
  258. ctx->block_width_l2 = 4;
  259. } else {
  260. ctx->get_pixels_8x4_sym = dnxhd_8bit_get_pixels_8x4_sym;
  261. ctx->block_width_l2 = 3;
  262. }
  263. if (ARCH_X86)
  264. ff_dnxhdenc_init_x86(ctx);
  265. ctx->m.mb_height = (avctx->height + 15) / 16;
  266. ctx->m.mb_width = (avctx->width + 15) / 16;
  267. if (avctx->flags & CODEC_FLAG_INTERLACED_DCT) {
  268. ctx->interlaced = 1;
  269. ctx->m.mb_height /= 2;
  270. }
  271. ctx->m.mb_num = ctx->m.mb_height * ctx->m.mb_width;
  272. if (avctx->intra_quant_bias != FF_DEFAULT_QUANT_BIAS)
  273. ctx->m.intra_quant_bias = avctx->intra_quant_bias;
  274. if ((ret = dnxhd_init_qmat(ctx, ctx->m.intra_quant_bias, 0)) < 0) // XXX tune lbias/cbias
  275. return ret;
  276. // Avid Nitris hardware decoder requires a minimum amount of padding in the coding unit payload
  277. if (ctx->nitris_compat)
  278. ctx->min_padding = 1600;
  279. if ((ret = dnxhd_init_vlc(ctx)) < 0)
  280. return ret;
  281. if ((ret = dnxhd_init_rc(ctx)) < 0)
  282. return ret;
  283. FF_ALLOCZ_OR_GOTO(ctx->m.avctx, ctx->slice_size, ctx->m.mb_height*sizeof(uint32_t), fail);
  284. FF_ALLOCZ_OR_GOTO(ctx->m.avctx, ctx->slice_offs, ctx->m.mb_height*sizeof(uint32_t), fail);
  285. FF_ALLOCZ_OR_GOTO(ctx->m.avctx, ctx->mb_bits, ctx->m.mb_num *sizeof(uint16_t), fail);
  286. FF_ALLOCZ_OR_GOTO(ctx->m.avctx, ctx->mb_qscale, ctx->m.mb_num *sizeof(uint8_t), fail);
  287. avctx->coded_frame = av_frame_alloc();
  288. if (!avctx->coded_frame)
  289. return AVERROR(ENOMEM);
  290. avctx->coded_frame->key_frame = 1;
  291. avctx->coded_frame->pict_type = AV_PICTURE_TYPE_I;
  292. if (avctx->thread_count > MAX_THREADS) {
  293. av_log(avctx, AV_LOG_ERROR, "too many threads\n");
  294. return AVERROR(EINVAL);
  295. }
  296. if (avctx->qmax <= 1) {
  297. av_log(avctx, AV_LOG_ERROR, "qmax must be at least 2\n");
  298. return AVERROR(EINVAL);
  299. }
  300. ctx->thread[0] = ctx;
  301. for (i = 1; i < avctx->thread_count; i++) {
  302. ctx->thread[i] = av_malloc(sizeof(DNXHDEncContext));
  303. memcpy(ctx->thread[i], ctx, sizeof(DNXHDEncContext));
  304. }
  305. return 0;
  306. fail: //for FF_ALLOCZ_OR_GOTO
  307. return AVERROR(ENOMEM);
  308. }
  309. static int dnxhd_write_header(AVCodecContext *avctx, uint8_t *buf)
  310. {
  311. DNXHDEncContext *ctx = avctx->priv_data;
  312. static const uint8_t header_prefix[5] = { 0x00,0x00,0x02,0x80,0x01 };
  313. memset(buf, 0, 640);
  314. memcpy(buf, header_prefix, 5);
  315. buf[5] = ctx->interlaced ? ctx->cur_field+2 : 0x01;
  316. buf[6] = 0x80; // crc flag off
  317. buf[7] = 0xa0; // reserved
  318. AV_WB16(buf + 0x18, avctx->height>>ctx->interlaced); // ALPF
  319. AV_WB16(buf + 0x1a, avctx->width); // SPL
  320. AV_WB16(buf + 0x1d, avctx->height>>ctx->interlaced); // NAL
  321. buf[0x21] = ctx->cid_table->bit_depth == 10 ? 0x58 : 0x38;
  322. buf[0x22] = 0x88 + (ctx->interlaced<<2);
  323. AV_WB32(buf + 0x28, ctx->cid); // CID
  324. buf[0x2c] = ctx->interlaced ? 0 : 0x80;
  325. buf[0x5f] = 0x01; // UDL
  326. buf[0x167] = 0x02; // reserved
  327. AV_WB16(buf + 0x16a, ctx->m.mb_height * 4 + 4); // MSIPS
  328. buf[0x16d] = ctx->m.mb_height; // Ns
  329. buf[0x16f] = 0x10; // reserved
  330. ctx->msip = buf + 0x170;
  331. return 0;
  332. }
  333. static av_always_inline void dnxhd_encode_dc(DNXHDEncContext *ctx, int diff)
  334. {
  335. int nbits;
  336. if (diff < 0) {
  337. nbits = av_log2_16bit(-2*diff);
  338. diff--;
  339. } else {
  340. nbits = av_log2_16bit(2*diff);
  341. }
  342. put_bits(&ctx->m.pb, ctx->cid_table->dc_bits[nbits] + nbits,
  343. (ctx->cid_table->dc_codes[nbits]<<nbits) + (diff & ((1 << nbits) - 1)));
  344. }
  345. static av_always_inline void dnxhd_encode_block(DNXHDEncContext *ctx, int16_t *block, int last_index, int n)
  346. {
  347. int last_non_zero = 0;
  348. int slevel, i, j;
  349. dnxhd_encode_dc(ctx, block[0] - ctx->m.last_dc[n]);
  350. ctx->m.last_dc[n] = block[0];
  351. for (i = 1; i <= last_index; i++) {
  352. j = ctx->m.intra_scantable.permutated[i];
  353. slevel = block[j];
  354. if (slevel) {
  355. int run_level = i - last_non_zero - 1;
  356. int rlevel = (slevel<<1)|!!run_level;
  357. put_bits(&ctx->m.pb, ctx->vlc_bits[rlevel], ctx->vlc_codes[rlevel]);
  358. if (run_level)
  359. put_bits(&ctx->m.pb, ctx->run_bits[run_level], ctx->run_codes[run_level]);
  360. last_non_zero = i;
  361. }
  362. }
  363. put_bits(&ctx->m.pb, ctx->vlc_bits[0], ctx->vlc_codes[0]); // EOB
  364. }
  365. static av_always_inline void dnxhd_unquantize_c(DNXHDEncContext *ctx, int16_t *block, int n, int qscale, int last_index)
  366. {
  367. const uint8_t *weight_matrix;
  368. int level;
  369. int i;
  370. weight_matrix = (n&2) ? ctx->cid_table->chroma_weight : ctx->cid_table->luma_weight;
  371. for (i = 1; i <= last_index; i++) {
  372. int j = ctx->m.intra_scantable.permutated[i];
  373. level = block[j];
  374. if (level) {
  375. if (level < 0) {
  376. level = (1-2*level) * qscale * weight_matrix[i];
  377. if (ctx->cid_table->bit_depth == 10) {
  378. if (weight_matrix[i] != 8)
  379. level += 8;
  380. level >>= 4;
  381. } else {
  382. if (weight_matrix[i] != 32)
  383. level += 32;
  384. level >>= 6;
  385. }
  386. level = -level;
  387. } else {
  388. level = (2*level+1) * qscale * weight_matrix[i];
  389. if (ctx->cid_table->bit_depth == 10) {
  390. if (weight_matrix[i] != 8)
  391. level += 8;
  392. level >>= 4;
  393. } else {
  394. if (weight_matrix[i] != 32)
  395. level += 32;
  396. level >>= 6;
  397. }
  398. }
  399. block[j] = level;
  400. }
  401. }
  402. }
  403. static av_always_inline int dnxhd_ssd_block(int16_t *qblock, int16_t *block)
  404. {
  405. int score = 0;
  406. int i;
  407. for (i = 0; i < 64; i++)
  408. score += (block[i] - qblock[i]) * (block[i] - qblock[i]);
  409. return score;
  410. }
  411. static av_always_inline int dnxhd_calc_ac_bits(DNXHDEncContext *ctx, int16_t *block, int last_index)
  412. {
  413. int last_non_zero = 0;
  414. int bits = 0;
  415. int i, j, level;
  416. for (i = 1; i <= last_index; i++) {
  417. j = ctx->m.intra_scantable.permutated[i];
  418. level = block[j];
  419. if (level) {
  420. int run_level = i - last_non_zero - 1;
  421. bits += ctx->vlc_bits[(level<<1)|!!run_level]+ctx->run_bits[run_level];
  422. last_non_zero = i;
  423. }
  424. }
  425. return bits;
  426. }
  427. static av_always_inline void dnxhd_get_blocks(DNXHDEncContext *ctx, int mb_x, int mb_y)
  428. {
  429. const int bs = ctx->block_width_l2;
  430. const int bw = 1 << bs;
  431. const uint8_t *ptr_y = ctx->thread[0]->src[0] + ((mb_y << 4) * ctx->m.linesize) + (mb_x << bs+1);
  432. const uint8_t *ptr_u = ctx->thread[0]->src[1] + ((mb_y << 4) * ctx->m.uvlinesize) + (mb_x << bs);
  433. const uint8_t *ptr_v = ctx->thread[0]->src[2] + ((mb_y << 4) * ctx->m.uvlinesize) + (mb_x << bs);
  434. DSPContext *dsp = &ctx->m.dsp;
  435. dsp->get_pixels(ctx->blocks[0], ptr_y, ctx->m.linesize);
  436. dsp->get_pixels(ctx->blocks[1], ptr_y + bw, ctx->m.linesize);
  437. dsp->get_pixels(ctx->blocks[2], ptr_u, ctx->m.uvlinesize);
  438. dsp->get_pixels(ctx->blocks[3], ptr_v, ctx->m.uvlinesize);
  439. if (mb_y+1 == ctx->m.mb_height && ctx->m.avctx->height == 1080) {
  440. if (ctx->interlaced) {
  441. ctx->get_pixels_8x4_sym(ctx->blocks[4], ptr_y + ctx->dct_y_offset, ctx->m.linesize);
  442. ctx->get_pixels_8x4_sym(ctx->blocks[5], ptr_y + ctx->dct_y_offset + bw, ctx->m.linesize);
  443. ctx->get_pixels_8x4_sym(ctx->blocks[6], ptr_u + ctx->dct_uv_offset, ctx->m.uvlinesize);
  444. ctx->get_pixels_8x4_sym(ctx->blocks[7], ptr_v + ctx->dct_uv_offset, ctx->m.uvlinesize);
  445. } else {
  446. dsp->clear_block(ctx->blocks[4]);
  447. dsp->clear_block(ctx->blocks[5]);
  448. dsp->clear_block(ctx->blocks[6]);
  449. dsp->clear_block(ctx->blocks[7]);
  450. }
  451. } else {
  452. dsp->get_pixels(ctx->blocks[4], ptr_y + ctx->dct_y_offset, ctx->m.linesize);
  453. dsp->get_pixels(ctx->blocks[5], ptr_y + ctx->dct_y_offset + bw, ctx->m.linesize);
  454. dsp->get_pixels(ctx->blocks[6], ptr_u + ctx->dct_uv_offset, ctx->m.uvlinesize);
  455. dsp->get_pixels(ctx->blocks[7], ptr_v + ctx->dct_uv_offset, ctx->m.uvlinesize);
  456. }
  457. }
  458. static av_always_inline int dnxhd_switch_matrix(DNXHDEncContext *ctx, int i)
  459. {
  460. const static uint8_t component[8]={0,0,1,2,0,0,1,2};
  461. return component[i];
  462. }
  463. static int dnxhd_calc_bits_thread(AVCodecContext *avctx, void *arg, int jobnr, int threadnr)
  464. {
  465. DNXHDEncContext *ctx = avctx->priv_data;
  466. int mb_y = jobnr, mb_x;
  467. int qscale = ctx->qscale;
  468. LOCAL_ALIGNED_16(int16_t, block, [64]);
  469. ctx = ctx->thread[threadnr];
  470. ctx->m.last_dc[0] =
  471. ctx->m.last_dc[1] =
  472. ctx->m.last_dc[2] = 1 << (ctx->cid_table->bit_depth + 2);
  473. for (mb_x = 0; mb_x < ctx->m.mb_width; mb_x++) {
  474. unsigned mb = mb_y * ctx->m.mb_width + mb_x;
  475. int ssd = 0;
  476. int ac_bits = 0;
  477. int dc_bits = 0;
  478. int i;
  479. dnxhd_get_blocks(ctx, mb_x, mb_y);
  480. for (i = 0; i < 8; i++) {
  481. int16_t *src_block = ctx->blocks[i];
  482. int overflow, nbits, diff, last_index;
  483. int n = dnxhd_switch_matrix(ctx, i);
  484. memcpy(block, src_block, 64*sizeof(*block));
  485. last_index = ctx->m.dct_quantize(&ctx->m, block, 4&(2*i), qscale, &overflow);
  486. ac_bits += dnxhd_calc_ac_bits(ctx, block, last_index);
  487. diff = block[0] - ctx->m.last_dc[n];
  488. if (diff < 0) nbits = av_log2_16bit(-2*diff);
  489. else nbits = av_log2_16bit( 2*diff);
  490. av_assert1(nbits < ctx->cid_table->bit_depth + 4);
  491. dc_bits += ctx->cid_table->dc_bits[nbits] + nbits;
  492. ctx->m.last_dc[n] = block[0];
  493. if (avctx->mb_decision == FF_MB_DECISION_RD || !RC_VARIANCE) {
  494. dnxhd_unquantize_c(ctx, block, i, qscale, last_index);
  495. ctx->m.dsp.idct(block);
  496. ssd += dnxhd_ssd_block(block, src_block);
  497. }
  498. }
  499. ctx->mb_rc[qscale][mb].ssd = ssd;
  500. ctx->mb_rc[qscale][mb].bits = ac_bits+dc_bits+12+8*ctx->vlc_bits[0];
  501. }
  502. return 0;
  503. }
  504. static int dnxhd_encode_thread(AVCodecContext *avctx, void *arg, int jobnr, int threadnr)
  505. {
  506. DNXHDEncContext *ctx = avctx->priv_data;
  507. int mb_y = jobnr, mb_x;
  508. ctx = ctx->thread[threadnr];
  509. init_put_bits(&ctx->m.pb, (uint8_t *)arg + 640 + ctx->slice_offs[jobnr], ctx->slice_size[jobnr]);
  510. ctx->m.last_dc[0] =
  511. ctx->m.last_dc[1] =
  512. ctx->m.last_dc[2] = 1 << (ctx->cid_table->bit_depth + 2);
  513. for (mb_x = 0; mb_x < ctx->m.mb_width; mb_x++) {
  514. unsigned mb = mb_y * ctx->m.mb_width + mb_x;
  515. int qscale = ctx->mb_qscale[mb];
  516. int i;
  517. put_bits(&ctx->m.pb, 12, qscale<<1);
  518. dnxhd_get_blocks(ctx, mb_x, mb_y);
  519. for (i = 0; i < 8; i++) {
  520. int16_t *block = ctx->blocks[i];
  521. int overflow, n = dnxhd_switch_matrix(ctx, i);
  522. int last_index = ctx->m.dct_quantize(&ctx->m, block, 4&(2*i), qscale, &overflow);
  523. //START_TIMER;
  524. dnxhd_encode_block(ctx, block, last_index, n);
  525. //STOP_TIMER("encode_block");
  526. }
  527. }
  528. if (put_bits_count(&ctx->m.pb)&31)
  529. put_bits(&ctx->m.pb, 32-(put_bits_count(&ctx->m.pb)&31), 0);
  530. flush_put_bits(&ctx->m.pb);
  531. return 0;
  532. }
  533. static void dnxhd_setup_threads_slices(DNXHDEncContext *ctx)
  534. {
  535. int mb_y, mb_x;
  536. int offset = 0;
  537. for (mb_y = 0; mb_y < ctx->m.mb_height; mb_y++) {
  538. int thread_size;
  539. ctx->slice_offs[mb_y] = offset;
  540. ctx->slice_size[mb_y] = 0;
  541. for (mb_x = 0; mb_x < ctx->m.mb_width; mb_x++) {
  542. unsigned mb = mb_y * ctx->m.mb_width + mb_x;
  543. ctx->slice_size[mb_y] += ctx->mb_bits[mb];
  544. }
  545. ctx->slice_size[mb_y] = (ctx->slice_size[mb_y]+31)&~31;
  546. ctx->slice_size[mb_y] >>= 3;
  547. thread_size = ctx->slice_size[mb_y];
  548. offset += thread_size;
  549. }
  550. }
  551. static int dnxhd_mb_var_thread(AVCodecContext *avctx, void *arg, int jobnr, int threadnr)
  552. {
  553. DNXHDEncContext *ctx = avctx->priv_data;
  554. int mb_y = jobnr, mb_x, x, y;
  555. int partial_last_row = (mb_y == ctx->m.mb_height - 1) &&
  556. ((avctx->height >> ctx->interlaced) & 0xF);
  557. ctx = ctx->thread[threadnr];
  558. if (ctx->cid_table->bit_depth == 8) {
  559. uint8_t *pix = ctx->thread[0]->src[0] + ((mb_y<<4) * ctx->m.linesize);
  560. for (mb_x = 0; mb_x < ctx->m.mb_width; ++mb_x, pix += 16) {
  561. unsigned mb = mb_y * ctx->m.mb_width + mb_x;
  562. int sum;
  563. int varc;
  564. if (!partial_last_row && mb_x * 16 <= avctx->width - 16) {
  565. sum = ctx->m.dsp.pix_sum(pix, ctx->m.linesize);
  566. varc = ctx->m.dsp.pix_norm1(pix, ctx->m.linesize);
  567. } else {
  568. int bw = FFMIN(avctx->width - 16 * mb_x, 16);
  569. int bh = FFMIN((avctx->height >> ctx->interlaced) - 16 * mb_y, 16);
  570. sum = varc = 0;
  571. for (y = 0; y < bh; y++) {
  572. for (x = 0; x < bw; x++) {
  573. uint8_t val = pix[x + y * ctx->m.linesize];
  574. sum += val;
  575. varc += val * val;
  576. }
  577. }
  578. }
  579. varc = (varc - (((unsigned)sum * sum) >> 8) + 128) >> 8;
  580. ctx->mb_cmp[mb].value = varc;
  581. ctx->mb_cmp[mb].mb = mb;
  582. }
  583. } else { // 10-bit
  584. int const linesize = ctx->m.linesize >> 1;
  585. for (mb_x = 0; mb_x < ctx->m.mb_width; ++mb_x) {
  586. uint16_t *pix = (uint16_t*)ctx->thread[0]->src[0] + ((mb_y << 4) * linesize) + (mb_x << 4);
  587. unsigned mb = mb_y * ctx->m.mb_width + mb_x;
  588. int sum = 0;
  589. int sqsum = 0;
  590. int mean, sqmean;
  591. int i, j;
  592. // Macroblocks are 16x16 pixels, unlike DCT blocks which are 8x8.
  593. for (i = 0; i < 16; ++i) {
  594. for (j = 0; j < 16; ++j) {
  595. // Turn 16-bit pixels into 10-bit ones.
  596. int const sample = (unsigned)pix[j] >> 6;
  597. sum += sample;
  598. sqsum += sample * sample;
  599. // 2^10 * 2^10 * 16 * 16 = 2^28, which is less than INT_MAX
  600. }
  601. pix += linesize;
  602. }
  603. mean = sum >> 8; // 16*16 == 2^8
  604. sqmean = sqsum >> 8;
  605. ctx->mb_cmp[mb].value = sqmean - mean * mean;
  606. ctx->mb_cmp[mb].mb = mb;
  607. }
  608. }
  609. return 0;
  610. }
  611. static int dnxhd_encode_rdo(AVCodecContext *avctx, DNXHDEncContext *ctx)
  612. {
  613. int lambda, up_step, down_step;
  614. int last_lower = INT_MAX, last_higher = 0;
  615. int x, y, q;
  616. for (q = 1; q < avctx->qmax; q++) {
  617. ctx->qscale = q;
  618. avctx->execute2(avctx, dnxhd_calc_bits_thread, NULL, NULL, ctx->m.mb_height);
  619. }
  620. up_step = down_step = 2<<LAMBDA_FRAC_BITS;
  621. lambda = ctx->lambda;
  622. for (;;) {
  623. int bits = 0;
  624. int end = 0;
  625. if (lambda == last_higher) {
  626. lambda++;
  627. end = 1; // need to set final qscales/bits
  628. }
  629. for (y = 0; y < ctx->m.mb_height; y++) {
  630. for (x = 0; x < ctx->m.mb_width; x++) {
  631. unsigned min = UINT_MAX;
  632. int qscale = 1;
  633. int mb = y*ctx->m.mb_width+x;
  634. for (q = 1; q < avctx->qmax; q++) {
  635. unsigned score = ctx->mb_rc[q][mb].bits*lambda+
  636. ((unsigned)ctx->mb_rc[q][mb].ssd<<LAMBDA_FRAC_BITS);
  637. if (score < min) {
  638. min = score;
  639. qscale = q;
  640. }
  641. }
  642. bits += ctx->mb_rc[qscale][mb].bits;
  643. ctx->mb_qscale[mb] = qscale;
  644. ctx->mb_bits[mb] = ctx->mb_rc[qscale][mb].bits;
  645. }
  646. bits = (bits+31)&~31; // padding
  647. if (bits > ctx->frame_bits)
  648. break;
  649. }
  650. //av_dlog(ctx->m.avctx, "lambda %d, up %u, down %u, bits %d, frame %d\n",
  651. // lambda, last_higher, last_lower, bits, ctx->frame_bits);
  652. if (end) {
  653. if (bits > ctx->frame_bits)
  654. return AVERROR(EINVAL);
  655. break;
  656. }
  657. if (bits < ctx->frame_bits) {
  658. last_lower = FFMIN(lambda, last_lower);
  659. if (last_higher != 0)
  660. lambda = (lambda+last_higher)>>1;
  661. else
  662. lambda -= down_step;
  663. down_step = FFMIN((int64_t)down_step*5, INT_MAX);
  664. up_step = 1<<LAMBDA_FRAC_BITS;
  665. lambda = FFMAX(1, lambda);
  666. if (lambda == last_lower)
  667. break;
  668. } else {
  669. last_higher = FFMAX(lambda, last_higher);
  670. if (last_lower != INT_MAX)
  671. lambda = (lambda+last_lower)>>1;
  672. else if ((int64_t)lambda + up_step > INT_MAX)
  673. return AVERROR(EINVAL);
  674. else
  675. lambda += up_step;
  676. up_step = FFMIN((int64_t)up_step*5, INT_MAX);
  677. down_step = 1<<LAMBDA_FRAC_BITS;
  678. }
  679. }
  680. //av_dlog(ctx->m.avctx, "out lambda %d\n", lambda);
  681. ctx->lambda = lambda;
  682. return 0;
  683. }
  684. static int dnxhd_find_qscale(DNXHDEncContext *ctx)
  685. {
  686. int bits = 0;
  687. int up_step = 1;
  688. int down_step = 1;
  689. int last_higher = 0;
  690. int last_lower = INT_MAX;
  691. int qscale;
  692. int x, y;
  693. qscale = ctx->qscale;
  694. for (;;) {
  695. bits = 0;
  696. ctx->qscale = qscale;
  697. // XXX avoid recalculating bits
  698. ctx->m.avctx->execute2(ctx->m.avctx, dnxhd_calc_bits_thread, NULL, NULL, ctx->m.mb_height);
  699. for (y = 0; y < ctx->m.mb_height; y++) {
  700. for (x = 0; x < ctx->m.mb_width; x++)
  701. bits += ctx->mb_rc[qscale][y*ctx->m.mb_width+x].bits;
  702. bits = (bits+31)&~31; // padding
  703. if (bits > ctx->frame_bits)
  704. break;
  705. }
  706. //av_dlog(ctx->m.avctx, "%d, qscale %d, bits %d, frame %d, higher %d, lower %d\n",
  707. // ctx->m.avctx->frame_number, qscale, bits, ctx->frame_bits, last_higher, last_lower);
  708. if (bits < ctx->frame_bits) {
  709. if (qscale == 1)
  710. return 1;
  711. if (last_higher == qscale - 1) {
  712. qscale = last_higher;
  713. break;
  714. }
  715. last_lower = FFMIN(qscale, last_lower);
  716. if (last_higher != 0)
  717. qscale = (qscale+last_higher)>>1;
  718. else
  719. qscale -= down_step++;
  720. if (qscale < 1)
  721. qscale = 1;
  722. up_step = 1;
  723. } else {
  724. if (last_lower == qscale + 1)
  725. break;
  726. last_higher = FFMAX(qscale, last_higher);
  727. if (last_lower != INT_MAX)
  728. qscale = (qscale+last_lower)>>1;
  729. else
  730. qscale += up_step++;
  731. down_step = 1;
  732. if (qscale >= ctx->m.avctx->qmax)
  733. return AVERROR(EINVAL);
  734. }
  735. }
  736. //av_dlog(ctx->m.avctx, "out qscale %d\n", qscale);
  737. ctx->qscale = qscale;
  738. return 0;
  739. }
  740. #define BUCKET_BITS 8
  741. #define RADIX_PASSES 4
  742. #define NBUCKETS (1 << BUCKET_BITS)
  743. static inline int get_bucket(int value, int shift)
  744. {
  745. value >>= shift;
  746. value &= NBUCKETS - 1;
  747. return NBUCKETS - 1 - value;
  748. }
  749. static void radix_count(const RCCMPEntry *data, int size, int buckets[RADIX_PASSES][NBUCKETS])
  750. {
  751. int i, j;
  752. memset(buckets, 0, sizeof(buckets[0][0]) * RADIX_PASSES * NBUCKETS);
  753. for (i = 0; i < size; i++) {
  754. int v = data[i].value;
  755. for (j = 0; j < RADIX_PASSES; j++) {
  756. buckets[j][get_bucket(v, 0)]++;
  757. v >>= BUCKET_BITS;
  758. }
  759. av_assert1(!v);
  760. }
  761. for (j = 0; j < RADIX_PASSES; j++) {
  762. int offset = size;
  763. for (i = NBUCKETS - 1; i >= 0; i--)
  764. buckets[j][i] = offset -= buckets[j][i];
  765. av_assert1(!buckets[j][0]);
  766. }
  767. }
  768. static void radix_sort_pass(RCCMPEntry *dst, const RCCMPEntry *data, int size, int buckets[NBUCKETS], int pass)
  769. {
  770. int shift = pass * BUCKET_BITS;
  771. int i;
  772. for (i = 0; i < size; i++) {
  773. int v = get_bucket(data[i].value, shift);
  774. int pos = buckets[v]++;
  775. dst[pos] = data[i];
  776. }
  777. }
  778. static void radix_sort(RCCMPEntry *data, int size)
  779. {
  780. int buckets[RADIX_PASSES][NBUCKETS];
  781. RCCMPEntry *tmp = av_malloc(sizeof(*tmp) * size);
  782. radix_count(data, size, buckets);
  783. radix_sort_pass(tmp, data, size, buckets[0], 0);
  784. radix_sort_pass(data, tmp, size, buckets[1], 1);
  785. if (buckets[2][NBUCKETS - 1] || buckets[3][NBUCKETS - 1]) {
  786. radix_sort_pass(tmp, data, size, buckets[2], 2);
  787. radix_sort_pass(data, tmp, size, buckets[3], 3);
  788. }
  789. av_free(tmp);
  790. }
  791. static int dnxhd_encode_fast(AVCodecContext *avctx, DNXHDEncContext *ctx)
  792. {
  793. int max_bits = 0;
  794. int ret, x, y;
  795. if ((ret = dnxhd_find_qscale(ctx)) < 0)
  796. return ret;
  797. for (y = 0; y < ctx->m.mb_height; y++) {
  798. for (x = 0; x < ctx->m.mb_width; x++) {
  799. int mb = y*ctx->m.mb_width+x;
  800. int delta_bits;
  801. ctx->mb_qscale[mb] = ctx->qscale;
  802. ctx->mb_bits[mb] = ctx->mb_rc[ctx->qscale][mb].bits;
  803. max_bits += ctx->mb_rc[ctx->qscale][mb].bits;
  804. if (!RC_VARIANCE) {
  805. delta_bits = ctx->mb_rc[ctx->qscale][mb].bits-ctx->mb_rc[ctx->qscale+1][mb].bits;
  806. ctx->mb_cmp[mb].mb = mb;
  807. ctx->mb_cmp[mb].value = delta_bits ?
  808. ((ctx->mb_rc[ctx->qscale][mb].ssd-ctx->mb_rc[ctx->qscale+1][mb].ssd)*100)/delta_bits
  809. : INT_MIN; //avoid increasing qscale
  810. }
  811. }
  812. max_bits += 31; //worst padding
  813. }
  814. if (!ret) {
  815. if (RC_VARIANCE)
  816. avctx->execute2(avctx, dnxhd_mb_var_thread, NULL, NULL, ctx->m.mb_height);
  817. radix_sort(ctx->mb_cmp, ctx->m.mb_num);
  818. for (x = 0; x < ctx->m.mb_num && max_bits > ctx->frame_bits; x++) {
  819. int mb = ctx->mb_cmp[x].mb;
  820. max_bits -= ctx->mb_rc[ctx->qscale][mb].bits - ctx->mb_rc[ctx->qscale+1][mb].bits;
  821. ctx->mb_qscale[mb] = ctx->qscale+1;
  822. ctx->mb_bits[mb] = ctx->mb_rc[ctx->qscale+1][mb].bits;
  823. }
  824. }
  825. return 0;
  826. }
  827. static void dnxhd_load_picture(DNXHDEncContext *ctx, const AVFrame *frame)
  828. {
  829. int i;
  830. for (i = 0; i < ctx->m.avctx->thread_count; i++) {
  831. ctx->thread[i]->m.linesize = frame->linesize[0] << ctx->interlaced;
  832. ctx->thread[i]->m.uvlinesize = frame->linesize[1] << ctx->interlaced;
  833. ctx->thread[i]->dct_y_offset = ctx->m.linesize *8;
  834. ctx->thread[i]->dct_uv_offset = ctx->m.uvlinesize*8;
  835. }
  836. ctx->m.avctx->coded_frame->interlaced_frame = frame->interlaced_frame;
  837. ctx->cur_field = frame->interlaced_frame && !frame->top_field_first;
  838. }
  839. static int dnxhd_encode_picture(AVCodecContext *avctx, AVPacket *pkt,
  840. const AVFrame *frame, int *got_packet)
  841. {
  842. DNXHDEncContext *ctx = avctx->priv_data;
  843. int first_field = 1;
  844. int offset, i, ret;
  845. uint8_t *buf;
  846. if ((ret = ff_alloc_packet2(avctx, pkt, ctx->cid_table->frame_size)) < 0)
  847. return ret;
  848. buf = pkt->data;
  849. dnxhd_load_picture(ctx, frame);
  850. encode_coding_unit:
  851. for (i = 0; i < 3; i++) {
  852. ctx->src[i] = frame->data[i];
  853. if (ctx->interlaced && ctx->cur_field)
  854. ctx->src[i] += frame->linesize[i];
  855. }
  856. dnxhd_write_header(avctx, buf);
  857. if (avctx->mb_decision == FF_MB_DECISION_RD)
  858. ret = dnxhd_encode_rdo(avctx, ctx);
  859. else
  860. ret = dnxhd_encode_fast(avctx, ctx);
  861. if (ret < 0) {
  862. av_log(avctx, AV_LOG_ERROR,
  863. "picture could not fit ratecontrol constraints, increase qmax\n");
  864. return ret;
  865. }
  866. dnxhd_setup_threads_slices(ctx);
  867. offset = 0;
  868. for (i = 0; i < ctx->m.mb_height; i++) {
  869. AV_WB32(ctx->msip + i * 4, offset);
  870. offset += ctx->slice_size[i];
  871. av_assert1(!(ctx->slice_size[i] & 3));
  872. }
  873. avctx->execute2(avctx, dnxhd_encode_thread, buf, NULL, ctx->m.mb_height);
  874. av_assert1(640 + offset + 4 <= ctx->cid_table->coding_unit_size);
  875. memset(buf + 640 + offset, 0, ctx->cid_table->coding_unit_size - 4 - offset - 640);
  876. AV_WB32(buf + ctx->cid_table->coding_unit_size - 4, 0x600DC0DE); // EOF
  877. if (ctx->interlaced && first_field) {
  878. first_field = 0;
  879. ctx->cur_field ^= 1;
  880. buf += ctx->cid_table->coding_unit_size;
  881. goto encode_coding_unit;
  882. }
  883. avctx->coded_frame->quality = ctx->qscale * FF_QP2LAMBDA;
  884. pkt->flags |= AV_PKT_FLAG_KEY;
  885. *got_packet = 1;
  886. return 0;
  887. }
  888. static av_cold int dnxhd_encode_end(AVCodecContext *avctx)
  889. {
  890. DNXHDEncContext *ctx = avctx->priv_data;
  891. int max_level = 1<<(ctx->cid_table->bit_depth+2);
  892. int i;
  893. av_free(ctx->vlc_codes-max_level*2);
  894. av_free(ctx->vlc_bits -max_level*2);
  895. av_freep(&ctx->run_codes);
  896. av_freep(&ctx->run_bits);
  897. av_freep(&ctx->mb_bits);
  898. av_freep(&ctx->mb_qscale);
  899. av_freep(&ctx->mb_rc);
  900. av_freep(&ctx->mb_cmp);
  901. av_freep(&ctx->slice_size);
  902. av_freep(&ctx->slice_offs);
  903. av_freep(&ctx->qmatrix_c);
  904. av_freep(&ctx->qmatrix_l);
  905. av_freep(&ctx->qmatrix_c16);
  906. av_freep(&ctx->qmatrix_l16);
  907. for (i = 1; i < avctx->thread_count; i++)
  908. av_freep(&ctx->thread[i]);
  909. av_frame_free(&avctx->coded_frame);
  910. return 0;
  911. }
  912. static const AVCodecDefault dnxhd_defaults[] = {
  913. { "qmax", "1024" }, /* Maximum quantization scale factor allowed for VC-3 */
  914. { NULL },
  915. };
  916. AVCodec ff_dnxhd_encoder = {
  917. .name = "dnxhd",
  918. .long_name = NULL_IF_CONFIG_SMALL("VC3/DNxHD"),
  919. .type = AVMEDIA_TYPE_VIDEO,
  920. .id = AV_CODEC_ID_DNXHD,
  921. .priv_data_size = sizeof(DNXHDEncContext),
  922. .init = dnxhd_encode_init,
  923. .encode2 = dnxhd_encode_picture,
  924. .close = dnxhd_encode_end,
  925. .capabilities = CODEC_CAP_SLICE_THREADS,
  926. .pix_fmts = (const enum AVPixelFormat[]){ AV_PIX_FMT_YUV422P,
  927. AV_PIX_FMT_YUV422P10,
  928. AV_PIX_FMT_NONE },
  929. .priv_class = &dnxhd_class,
  930. .defaults = dnxhd_defaults,
  931. };