You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

1612 lines
56KB

  1. /**
  2. * VP8 compatible video decoder
  3. *
  4. * Copyright (C) 2010 David Conrad
  5. * Copyright (C) 2010 Ronald S. Bultje
  6. *
  7. * This file is part of FFmpeg.
  8. *
  9. * FFmpeg is free software; you can redistribute it and/or
  10. * modify it under the terms of the GNU Lesser General Public
  11. * License as published by the Free Software Foundation; either
  12. * version 2.1 of the License, or (at your option) any later version.
  13. *
  14. * FFmpeg is distributed in the hope that it will be useful,
  15. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  16. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  17. * Lesser General Public License for more details.
  18. *
  19. * You should have received a copy of the GNU Lesser General Public
  20. * License along with FFmpeg; if not, write to the Free Software
  21. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  22. */
  23. #include "avcodec.h"
  24. #include "vp56.h"
  25. #include "vp8data.h"
  26. #include "vp8dsp.h"
  27. #include "h264pred.h"
  28. #include "rectangle.h"
  29. typedef struct {
  30. uint8_t filter_level;
  31. uint8_t inner_limit;
  32. uint8_t inner_filter;
  33. } VP8FilterStrength;
  34. typedef struct {
  35. uint8_t skip;
  36. // todo: make it possible to check for at least (i4x4 or split_mv)
  37. // in one op. are others needed?
  38. uint8_t mode;
  39. uint8_t ref_frame;
  40. uint8_t partitioning;
  41. VP56mv mv;
  42. VP56mv bmv[16];
  43. } VP8Macroblock;
  44. typedef struct {
  45. AVCodecContext *avctx;
  46. DSPContext dsp;
  47. VP8DSPContext vp8dsp;
  48. H264PredContext hpc;
  49. vp8_mc_func put_pixels_tab[3][3][3];
  50. AVFrame frames[4];
  51. AVFrame *framep[4];
  52. uint8_t *edge_emu_buffer;
  53. VP56RangeCoder c; ///< header context, includes mb modes and motion vectors
  54. int profile;
  55. int mb_width; /* number of horizontal MB */
  56. int mb_height; /* number of vertical MB */
  57. int linesize;
  58. int uvlinesize;
  59. int keyframe;
  60. int invisible;
  61. int update_last; ///< update VP56_FRAME_PREVIOUS with the current one
  62. int update_golden; ///< VP56_FRAME_NONE if not updated, or which frame to copy if so
  63. int update_altref;
  64. int deblock_filter;
  65. /**
  66. * If this flag is not set, all the probability updates
  67. * are discarded after this frame is decoded.
  68. */
  69. int update_probabilities;
  70. /**
  71. * All coefficients are contained in separate arith coding contexts.
  72. * There can be 1, 2, 4, or 8 of these after the header context.
  73. */
  74. int num_coeff_partitions;
  75. VP56RangeCoder coeff_partition[8];
  76. VP8Macroblock *macroblocks;
  77. VP8Macroblock *macroblocks_base;
  78. VP8FilterStrength *filter_strength;
  79. int mb_stride;
  80. uint8_t *intra4x4_pred_mode;
  81. uint8_t *intra4x4_pred_mode_base;
  82. uint8_t *segmentation_map;
  83. int b4_stride;
  84. /**
  85. * Cache of the top row needed for intra prediction
  86. * 16 for luma, 8 for each chroma plane
  87. */
  88. uint8_t (*top_border)[16+8+8];
  89. /**
  90. * For coeff decode, we need to know whether the above block had non-zero
  91. * coefficients. This means for each macroblock, we need data for 4 luma
  92. * blocks, 2 u blocks, 2 v blocks, and the luma dc block, for a total of 9
  93. * per macroblock. We keep the last row in top_nnz.
  94. */
  95. uint8_t (*top_nnz)[9];
  96. DECLARE_ALIGNED(8, uint8_t, left_nnz)[9];
  97. /**
  98. * This is the index plus one of the last non-zero coeff
  99. * for each of the blocks in the current macroblock.
  100. * So, 0 -> no coeffs
  101. * 1 -> dc-only (special transform)
  102. * 2+-> full transform
  103. */
  104. DECLARE_ALIGNED(16, uint8_t, non_zero_count_cache)[6][4];
  105. DECLARE_ALIGNED(16, DCTELEM, block)[6][4][16];
  106. uint8_t intra4x4_pred_mode_mb[16];
  107. int chroma_pred_mode; ///< 8x8c pred mode of the current macroblock
  108. int segment; ///< segment of the current macroblock
  109. int mbskip_enabled;
  110. int sign_bias[4]; ///< one state [0, 1] per ref frame type
  111. /**
  112. * Base parameters for segmentation, i.e. per-macroblock parameters.
  113. * These must be kept unchanged even if segmentation is not used for
  114. * a frame, since the values persist between interframes.
  115. */
  116. struct {
  117. int enabled;
  118. int absolute_vals;
  119. int update_map;
  120. int8_t base_quant[4];
  121. int8_t filter_level[4]; ///< base loop filter level
  122. } segmentation;
  123. /**
  124. * Macroblocks can have one of 4 different quants in a frame when
  125. * segmentation is enabled.
  126. * If segmentation is disabled, only the first segment's values are used.
  127. */
  128. struct {
  129. // [0] - DC qmul [1] - AC qmul
  130. int16_t luma_qmul[2];
  131. int16_t luma_dc_qmul[2]; ///< luma dc-only block quant
  132. int16_t chroma_qmul[2];
  133. } qmat[4];
  134. struct {
  135. int simple;
  136. int level;
  137. int sharpness;
  138. } filter;
  139. struct {
  140. int enabled; ///< whether each mb can have a different strength based on mode/ref
  141. /**
  142. * filter strength adjustment for the following macroblock modes:
  143. * [0] - i4x4
  144. * [1] - zero mv
  145. * [2] - inter modes except for zero or split mv
  146. * [3] - split mv
  147. * i16x16 modes never have any adjustment
  148. */
  149. int8_t mode[4];
  150. /**
  151. * filter strength adjustment for macroblocks that reference:
  152. * [0] - intra / VP56_FRAME_CURRENT
  153. * [1] - VP56_FRAME_PREVIOUS
  154. * [2] - VP56_FRAME_GOLDEN
  155. * [3] - altref / VP56_FRAME_GOLDEN2
  156. */
  157. int8_t ref[4];
  158. } lf_delta;
  159. /**
  160. * These are all of the updatable probabilities for binary decisions.
  161. * They are only implictly reset on keyframes, making it quite likely
  162. * for an interframe to desync if a prior frame's header was corrupt
  163. * or missing outright!
  164. */
  165. struct {
  166. uint8_t segmentid[3];
  167. uint8_t mbskip;
  168. uint8_t intra;
  169. uint8_t last;
  170. uint8_t golden;
  171. uint8_t pred16x16[4];
  172. uint8_t pred8x8c[3];
  173. uint8_t token[4][8][3][NUM_DCT_TOKENS-1];
  174. uint8_t mvc[2][19];
  175. } prob[2];
  176. } VP8Context;
  177. #define RL24(p) (AV_RL16(p) + ((p)[2] << 16))
  178. static void vp8_decode_flush(AVCodecContext *avctx)
  179. {
  180. VP8Context *s = avctx->priv_data;
  181. int i;
  182. for (i = 0; i < 4; i++)
  183. if (s->frames[i].data[0])
  184. avctx->release_buffer(avctx, &s->frames[i]);
  185. memset(s->framep, 0, sizeof(s->framep));
  186. av_freep(&s->macroblocks_base);
  187. av_freep(&s->intra4x4_pred_mode_base);
  188. av_freep(&s->top_nnz);
  189. av_freep(&s->edge_emu_buffer);
  190. av_freep(&s->top_border);
  191. av_freep(&s->segmentation_map);
  192. s->macroblocks = NULL;
  193. s->intra4x4_pred_mode = NULL;
  194. }
  195. static int update_dimensions(VP8Context *s, int width, int height)
  196. {
  197. int i;
  198. if (avcodec_check_dimensions(s->avctx, width, height))
  199. return AVERROR_INVALIDDATA;
  200. vp8_decode_flush(s->avctx);
  201. avcodec_set_dimensions(s->avctx, width, height);
  202. s->mb_width = (s->avctx->coded_width +15) / 16;
  203. s->mb_height = (s->avctx->coded_height+15) / 16;
  204. // we allocate a border around the top/left of intra4x4 modes
  205. // this is 4 blocks for intra4x4 to keep 4-byte alignment for fill_rectangle
  206. s->mb_stride = s->mb_width+1;
  207. s->b4_stride = 4*s->mb_stride;
  208. s->macroblocks_base = av_mallocz((s->mb_stride+s->mb_height*2+2)*sizeof(*s->macroblocks));
  209. s->filter_strength = av_mallocz(s->mb_stride*sizeof(*s->filter_strength));
  210. s->intra4x4_pred_mode_base = av_mallocz(s->b4_stride*(4*s->mb_height+1));
  211. s->top_nnz = av_mallocz(s->mb_width*sizeof(*s->top_nnz));
  212. s->top_border = av_mallocz((s->mb_width+1)*sizeof(*s->top_border));
  213. s->segmentation_map = av_mallocz(s->mb_stride*s->mb_height);
  214. if (!s->macroblocks_base || !s->filter_strength || !s->intra4x4_pred_mode_base ||
  215. !s->top_nnz || !s->top_border || !s->segmentation_map)
  216. return AVERROR(ENOMEM);
  217. s->macroblocks = s->macroblocks_base + 1;
  218. s->intra4x4_pred_mode = s->intra4x4_pred_mode_base + 4 + s->b4_stride;
  219. memset(s->intra4x4_pred_mode_base, DC_PRED, s->b4_stride);
  220. for (i = 0; i < 4*s->mb_height; i++)
  221. s->intra4x4_pred_mode[i*s->b4_stride-1] = DC_PRED;
  222. return 0;
  223. }
  224. static void parse_segment_info(VP8Context *s)
  225. {
  226. VP56RangeCoder *c = &s->c;
  227. int i;
  228. s->segmentation.update_map = vp8_rac_get(c);
  229. if (vp8_rac_get(c)) { // update segment feature data
  230. s->segmentation.absolute_vals = vp8_rac_get(c);
  231. for (i = 0; i < 4; i++)
  232. s->segmentation.base_quant[i] = vp8_rac_get_sint(c, 7);
  233. for (i = 0; i < 4; i++)
  234. s->segmentation.filter_level[i] = vp8_rac_get_sint(c, 6);
  235. }
  236. if (s->segmentation.update_map)
  237. for (i = 0; i < 3; i++)
  238. s->prob->segmentid[i] = vp8_rac_get(c) ? vp8_rac_get_uint(c, 8) : 255;
  239. }
  240. static void update_lf_deltas(VP8Context *s)
  241. {
  242. VP56RangeCoder *c = &s->c;
  243. int i;
  244. for (i = 0; i < 4; i++)
  245. s->lf_delta.ref[i] = vp8_rac_get_sint(c, 6);
  246. for (i = 0; i < 4; i++)
  247. s->lf_delta.mode[i] = vp8_rac_get_sint(c, 6);
  248. }
  249. static int setup_partitions(VP8Context *s, const uint8_t *buf, int buf_size)
  250. {
  251. const uint8_t *sizes = buf;
  252. int i;
  253. s->num_coeff_partitions = 1 << vp8_rac_get_uint(&s->c, 2);
  254. buf += 3*(s->num_coeff_partitions-1);
  255. buf_size -= 3*(s->num_coeff_partitions-1);
  256. if (buf_size < 0)
  257. return -1;
  258. for (i = 0; i < s->num_coeff_partitions-1; i++) {
  259. int size = RL24(sizes + 3*i);
  260. if (buf_size - size < 0)
  261. return -1;
  262. vp56_init_range_decoder(&s->coeff_partition[i], buf, size);
  263. buf += size;
  264. buf_size -= size;
  265. }
  266. vp56_init_range_decoder(&s->coeff_partition[i], buf, buf_size);
  267. return 0;
  268. }
  269. static void get_quants(VP8Context *s)
  270. {
  271. VP56RangeCoder *c = &s->c;
  272. int i, base_qi;
  273. int yac_qi = vp8_rac_get_uint(c, 7);
  274. int ydc_delta = vp8_rac_get_sint(c, 4);
  275. int y2dc_delta = vp8_rac_get_sint(c, 4);
  276. int y2ac_delta = vp8_rac_get_sint(c, 4);
  277. int uvdc_delta = vp8_rac_get_sint(c, 4);
  278. int uvac_delta = vp8_rac_get_sint(c, 4);
  279. for (i = 0; i < 4; i++) {
  280. if (s->segmentation.enabled) {
  281. base_qi = s->segmentation.base_quant[i];
  282. if (!s->segmentation.absolute_vals)
  283. base_qi += yac_qi;
  284. } else
  285. base_qi = yac_qi;
  286. s->qmat[i].luma_qmul[0] = vp8_dc_qlookup[av_clip(base_qi + ydc_delta , 0, 127)];
  287. s->qmat[i].luma_qmul[1] = vp8_ac_qlookup[av_clip(base_qi , 0, 127)];
  288. s->qmat[i].luma_dc_qmul[0] = 2 * vp8_dc_qlookup[av_clip(base_qi + y2dc_delta, 0, 127)];
  289. s->qmat[i].luma_dc_qmul[1] = 155 * vp8_ac_qlookup[av_clip(base_qi + y2ac_delta, 0, 127)] / 100;
  290. s->qmat[i].chroma_qmul[0] = vp8_dc_qlookup[av_clip(base_qi + uvdc_delta, 0, 127)];
  291. s->qmat[i].chroma_qmul[1] = vp8_ac_qlookup[av_clip(base_qi + uvac_delta, 0, 127)];
  292. s->qmat[i].luma_dc_qmul[1] = FFMAX(s->qmat[i].luma_dc_qmul[1], 8);
  293. s->qmat[i].chroma_qmul[0] = FFMIN(s->qmat[i].chroma_qmul[0], 132);
  294. }
  295. }
  296. /**
  297. * Determine which buffers golden and altref should be updated with after this frame.
  298. * The spec isn't clear here, so I'm going by my understanding of what libvpx does
  299. *
  300. * Intra frames update all 3 references
  301. * Inter frames update VP56_FRAME_PREVIOUS if the update_last flag is set
  302. * If the update (golden|altref) flag is set, it's updated with the current frame
  303. * if update_last is set, and VP56_FRAME_PREVIOUS otherwise.
  304. * If the flag is not set, the number read means:
  305. * 0: no update
  306. * 1: VP56_FRAME_PREVIOUS
  307. * 2: update golden with altref, or update altref with golden
  308. */
  309. static VP56Frame ref_to_update(VP8Context *s, int update, VP56Frame ref)
  310. {
  311. VP56RangeCoder *c = &s->c;
  312. if (update)
  313. return VP56_FRAME_CURRENT;
  314. switch (vp8_rac_get_uint(c, 2)) {
  315. case 1:
  316. return VP56_FRAME_PREVIOUS;
  317. case 2:
  318. return (ref == VP56_FRAME_GOLDEN) ? VP56_FRAME_GOLDEN2 : VP56_FRAME_GOLDEN;
  319. }
  320. return VP56_FRAME_NONE;
  321. }
  322. static void update_refs(VP8Context *s)
  323. {
  324. VP56RangeCoder *c = &s->c;
  325. int update_golden = vp8_rac_get(c);
  326. int update_altref = vp8_rac_get(c);
  327. s->update_golden = ref_to_update(s, update_golden, VP56_FRAME_GOLDEN);
  328. s->update_altref = ref_to_update(s, update_altref, VP56_FRAME_GOLDEN2);
  329. }
  330. static int decode_frame_header(VP8Context *s, const uint8_t *buf, int buf_size)
  331. {
  332. VP56RangeCoder *c = &s->c;
  333. int header_size, hscale, vscale, i, j, k, l, ret;
  334. int width = s->avctx->width;
  335. int height = s->avctx->height;
  336. s->keyframe = !(buf[0] & 1);
  337. s->profile = (buf[0]>>1) & 7;
  338. s->invisible = !(buf[0] & 0x10);
  339. header_size = RL24(buf) >> 5;
  340. buf += 3;
  341. buf_size -= 3;
  342. if (s->profile > 3)
  343. av_log(s->avctx, AV_LOG_WARNING, "Unknown profile %d\n", s->profile);
  344. if (!s->profile)
  345. memcpy(s->put_pixels_tab, s->vp8dsp.put_vp8_epel_pixels_tab, sizeof(s->put_pixels_tab));
  346. else // profile 1-3 use bilinear, 4+ aren't defined so whatever
  347. memcpy(s->put_pixels_tab, s->vp8dsp.put_vp8_bilinear_pixels_tab, sizeof(s->put_pixels_tab));
  348. if (header_size > buf_size - 7*s->keyframe) {
  349. av_log(s->avctx, AV_LOG_ERROR, "Header size larger than data provided\n");
  350. return AVERROR_INVALIDDATA;
  351. }
  352. if (s->keyframe) {
  353. if (RL24(buf) != 0x2a019d) {
  354. av_log(s->avctx, AV_LOG_ERROR, "Invalid start code 0x%x\n", RL24(buf));
  355. return AVERROR_INVALIDDATA;
  356. }
  357. width = AV_RL16(buf+3) & 0x3fff;
  358. height = AV_RL16(buf+5) & 0x3fff;
  359. hscale = buf[4] >> 6;
  360. vscale = buf[6] >> 6;
  361. buf += 7;
  362. buf_size -= 7;
  363. if (hscale || vscale)
  364. av_log_missing_feature(s->avctx, "Upscaling", 1);
  365. s->update_golden = s->update_altref = VP56_FRAME_CURRENT;
  366. memcpy(s->prob->token , vp8_token_default_probs , sizeof(s->prob->token));
  367. memcpy(s->prob->pred16x16, vp8_pred16x16_prob_inter, sizeof(s->prob->pred16x16));
  368. memcpy(s->prob->pred8x8c , vp8_pred8x8c_prob_inter , sizeof(s->prob->pred8x8c));
  369. memcpy(s->prob->mvc , vp8_mv_default_prob , sizeof(s->prob->mvc));
  370. memset(&s->segmentation, 0, sizeof(s->segmentation));
  371. }
  372. if (!s->macroblocks_base || /* first frame */
  373. width != s->avctx->width || height != s->avctx->height) {
  374. if ((ret = update_dimensions(s, width, height) < 0))
  375. return ret;
  376. }
  377. vp56_init_range_decoder(c, buf, header_size);
  378. buf += header_size;
  379. buf_size -= header_size;
  380. if (s->keyframe) {
  381. if (vp8_rac_get(c))
  382. av_log(s->avctx, AV_LOG_WARNING, "Unspecified colorspace\n");
  383. vp8_rac_get(c); // whether we can skip clamping in dsp functions
  384. }
  385. if ((s->segmentation.enabled = vp8_rac_get(c)))
  386. parse_segment_info(s);
  387. else
  388. s->segmentation.update_map = 0; // FIXME: move this to some init function?
  389. s->filter.simple = vp8_rac_get(c);
  390. s->filter.level = vp8_rac_get_uint(c, 6);
  391. s->filter.sharpness = vp8_rac_get_uint(c, 3);
  392. if ((s->lf_delta.enabled = vp8_rac_get(c)))
  393. if (vp8_rac_get(c))
  394. update_lf_deltas(s);
  395. if (setup_partitions(s, buf, buf_size)) {
  396. av_log(s->avctx, AV_LOG_ERROR, "Invalid partitions\n");
  397. return AVERROR_INVALIDDATA;
  398. }
  399. get_quants(s);
  400. if (!s->keyframe) {
  401. update_refs(s);
  402. s->sign_bias[VP56_FRAME_GOLDEN] = vp8_rac_get(c);
  403. s->sign_bias[VP56_FRAME_GOLDEN2 /* altref */] = vp8_rac_get(c);
  404. }
  405. // if we aren't saving this frame's probabilities for future frames,
  406. // make a copy of the current probabilities
  407. if (!(s->update_probabilities = vp8_rac_get(c)))
  408. s->prob[1] = s->prob[0];
  409. s->update_last = s->keyframe || vp8_rac_get(c);
  410. for (i = 0; i < 4; i++)
  411. for (j = 0; j < 8; j++)
  412. for (k = 0; k < 3; k++)
  413. for (l = 0; l < NUM_DCT_TOKENS-1; l++)
  414. if (vp56_rac_get_prob(c, vp8_token_update_probs[i][j][k][l]))
  415. s->prob->token[i][j][k][l] = vp8_rac_get_uint(c, 8);
  416. if ((s->mbskip_enabled = vp8_rac_get(c)))
  417. s->prob->mbskip = vp8_rac_get_uint(c, 8);
  418. if (!s->keyframe) {
  419. s->prob->intra = vp8_rac_get_uint(c, 8);
  420. s->prob->last = vp8_rac_get_uint(c, 8);
  421. s->prob->golden = vp8_rac_get_uint(c, 8);
  422. if (vp8_rac_get(c))
  423. for (i = 0; i < 4; i++)
  424. s->prob->pred16x16[i] = vp8_rac_get_uint(c, 8);
  425. if (vp8_rac_get(c))
  426. for (i = 0; i < 3; i++)
  427. s->prob->pred8x8c[i] = vp8_rac_get_uint(c, 8);
  428. // 17.2 MV probability update
  429. for (i = 0; i < 2; i++)
  430. for (j = 0; j < 19; j++)
  431. if (vp56_rac_get_prob(c, vp8_mv_update_prob[i][j]))
  432. s->prob->mvc[i][j] = vp8_rac_get_nn(c);
  433. }
  434. return 0;
  435. }
  436. static inline void clamp_mv(VP8Context *s, VP56mv *dst, const VP56mv *src,
  437. int mb_x, int mb_y)
  438. {
  439. #define MARGIN (16 << 2)
  440. dst->x = av_clip(src->x, -((mb_x << 6) + MARGIN),
  441. ((s->mb_width - 1 - mb_x) << 6) + MARGIN);
  442. dst->y = av_clip(src->y, -((mb_y << 6) + MARGIN),
  443. ((s->mb_height - 1 - mb_y) << 6) + MARGIN);
  444. }
  445. static void find_near_mvs(VP8Context *s, VP8Macroblock *mb, int mb_x, int mb_y,
  446. VP56mv near[2], VP56mv *best, uint8_t cnt[4])
  447. {
  448. VP8Macroblock *mb_edge[3] = { mb + 2 /* top */,
  449. mb - 1 /* left */,
  450. mb + 1 /* top-left */ };
  451. enum { EDGE_TOP, EDGE_LEFT, EDGE_TOPLEFT };
  452. VP56mv near_mv[4] = {{ 0 }};
  453. enum { CNT_ZERO, CNT_NEAREST, CNT_NEAR, CNT_SPLITMV };
  454. int idx = CNT_ZERO;
  455. int best_idx = CNT_ZERO;
  456. int cur_sign_bias = s->sign_bias[mb->ref_frame];
  457. int *sign_bias = s->sign_bias;
  458. /* Process MB on top, left and top-left */
  459. #define MV_EDGE_CHECK(n)\
  460. {\
  461. VP8Macroblock *edge = mb_edge[n];\
  462. int edge_ref = edge->ref_frame;\
  463. if (edge_ref != VP56_FRAME_CURRENT) {\
  464. uint32_t mv = AV_RN32A(&edge->mv);\
  465. if (mv) {\
  466. if (cur_sign_bias != sign_bias[edge_ref]) {\
  467. /* SWAR negate of the values in mv. */\
  468. mv = ((mv&0x80008000) + 0x00010001) ^ (mv&0x7fff7fff);\
  469. }\
  470. if (!n || mv != AV_RN32A(&near_mv[idx]))\
  471. AV_WN32A(&near_mv[++idx], mv);\
  472. cnt[idx] += 1 + (n != 2);\
  473. } else\
  474. cnt[CNT_ZERO] += 1 + (n != 2);\
  475. }\
  476. }
  477. MV_EDGE_CHECK(0)
  478. MV_EDGE_CHECK(1)
  479. MV_EDGE_CHECK(2)
  480. /* If we have three distinct MVs, merge first and last if they're the same */
  481. if (cnt[CNT_SPLITMV] && AV_RN32A(&near_mv[1+EDGE_TOP]) == AV_RN32A(&near_mv[1+EDGE_TOPLEFT]))
  482. cnt[CNT_NEAREST] += 1;
  483. cnt[CNT_SPLITMV] = ((mb_edge[EDGE_LEFT]->mode == VP8_MVMODE_SPLIT) +
  484. (mb_edge[EDGE_TOP]->mode == VP8_MVMODE_SPLIT)) * 2 +
  485. (mb_edge[EDGE_TOPLEFT]->mode == VP8_MVMODE_SPLIT);
  486. /* Swap near and nearest if necessary */
  487. if (cnt[CNT_NEAR] > cnt[CNT_NEAREST]) {
  488. FFSWAP(uint8_t, cnt[CNT_NEAREST], cnt[CNT_NEAR]);
  489. FFSWAP( VP56mv, near_mv[CNT_NEAREST], near_mv[CNT_NEAR]);
  490. }
  491. /* Choose the best mv out of 0,0 and the nearest mv */
  492. if (cnt[CNT_NEAREST] >= cnt[CNT_ZERO])
  493. best_idx = CNT_NEAREST;
  494. clamp_mv(s, best, &near_mv[best_idx], mb_x, mb_y);
  495. near[0] = near_mv[CNT_NEAREST];
  496. near[1] = near_mv[CNT_NEAR];
  497. }
  498. /**
  499. * Motion vector coding, 17.1.
  500. */
  501. static int read_mv_component(VP56RangeCoder *c, const uint8_t *p)
  502. {
  503. int x = 0;
  504. if (vp56_rac_get_prob(c, p[0])) {
  505. int i;
  506. for (i = 0; i < 3; i++)
  507. x += vp56_rac_get_prob(c, p[9 + i]) << i;
  508. for (i = 9; i > 3; i--)
  509. x += vp56_rac_get_prob(c, p[9 + i]) << i;
  510. if (!(x & 0xFFF0) || vp56_rac_get_prob(c, p[12]))
  511. x += 8;
  512. } else
  513. x = vp8_rac_get_tree(c, vp8_small_mvtree, &p[2]);
  514. return (x && vp56_rac_get_prob(c, p[1])) ? -x : x;
  515. }
  516. static const uint8_t *get_submv_prob(uint32_t left, uint32_t top)
  517. {
  518. if (left == top)
  519. return vp8_submv_prob[4-!!left];
  520. if (!top)
  521. return vp8_submv_prob[2];
  522. return vp8_submv_prob[1-!!left];
  523. }
  524. /**
  525. * Split motion vector prediction, 16.4.
  526. * @returns the number of motion vectors parsed (2, 4 or 16)
  527. */
  528. static int decode_splitmvs(VP8Context *s, VP56RangeCoder *c,
  529. VP8Macroblock *mb, VP56mv *base_mv)
  530. {
  531. int part_idx = mb->partitioning =
  532. vp8_rac_get_tree(c, vp8_mbsplit_tree, vp8_mbsplit_prob);
  533. int n, num = vp8_mbsplit_count[part_idx];
  534. VP8Macroblock *top_mb = &mb[2];
  535. VP8Macroblock *left_mb = &mb[-1];
  536. const uint8_t *mbsplits_left = vp8_mbsplits[left_mb->partitioning],
  537. *mbsplits_top = vp8_mbsplits[top_mb->partitioning],
  538. *mbsplits_cur = vp8_mbsplits[part_idx],
  539. *firstidx = vp8_mbfirstidx[part_idx];
  540. VP56mv *top_mv = top_mb->bmv;
  541. VP56mv *left_mv = left_mb->bmv;
  542. VP56mv *cur_mv = mb->bmv;
  543. for (n = 0; n < num; n++) {
  544. int k = firstidx[n];
  545. uint32_t left, above;
  546. const uint8_t *submv_prob;
  547. if (!(k & 3))
  548. left = AV_RN32A(&left_mv[mbsplits_left[k + 3]]);
  549. else
  550. left = AV_RN32A(&cur_mv[mbsplits_cur[k - 1]]);
  551. if (k <= 3)
  552. above = AV_RN32A(&top_mv[mbsplits_top[k + 12]]);
  553. else
  554. above = AV_RN32A(&cur_mv[mbsplits_cur[k - 4]]);
  555. submv_prob = get_submv_prob(left, above);
  556. switch (vp8_rac_get_tree(c, vp8_submv_ref_tree, submv_prob)) {
  557. case VP8_SUBMVMODE_NEW4X4:
  558. mb->bmv[n].y = base_mv->y + read_mv_component(c, s->prob->mvc[0]);
  559. mb->bmv[n].x = base_mv->x + read_mv_component(c, s->prob->mvc[1]);
  560. break;
  561. case VP8_SUBMVMODE_ZERO4X4:
  562. AV_WN32A(&mb->bmv[n], 0);
  563. break;
  564. case VP8_SUBMVMODE_LEFT4X4:
  565. AV_WN32A(&mb->bmv[n], left);
  566. break;
  567. case VP8_SUBMVMODE_TOP4X4:
  568. AV_WN32A(&mb->bmv[n], above);
  569. break;
  570. }
  571. }
  572. return num;
  573. }
  574. static inline void decode_intra4x4_modes(VP56RangeCoder *c, uint8_t *intra4x4,
  575. int stride, int keyframe)
  576. {
  577. int x, y, t, l, i;
  578. if (keyframe) {
  579. const uint8_t *ctx;
  580. for (y = 0; y < 4; y++) {
  581. for (x = 0; x < 4; x++) {
  582. t = intra4x4[x - stride];
  583. l = intra4x4[x - 1];
  584. ctx = vp8_pred4x4_prob_intra[t][l];
  585. intra4x4[x] = vp8_rac_get_tree(c, vp8_pred4x4_tree, ctx);
  586. }
  587. intra4x4 += stride;
  588. }
  589. } else {
  590. for (i = 0; i < 16; i++)
  591. intra4x4[i] = vp8_rac_get_tree(c, vp8_pred4x4_tree, vp8_pred4x4_prob_inter);
  592. }
  593. }
  594. static void decode_mb_mode(VP8Context *s, VP8Macroblock *mb, int mb_x, int mb_y,
  595. uint8_t *intra4x4, uint8_t *segment)
  596. {
  597. VP56RangeCoder *c = &s->c;
  598. if (s->segmentation.update_map)
  599. *segment = vp8_rac_get_tree(c, vp8_segmentid_tree, s->prob->segmentid);
  600. s->segment = *segment;
  601. mb->skip = s->mbskip_enabled ? vp56_rac_get_prob(c, s->prob->mbskip) : 0;
  602. if (s->keyframe) {
  603. mb->mode = vp8_rac_get_tree(c, vp8_pred16x16_tree_intra, vp8_pred16x16_prob_intra);
  604. if (mb->mode == MODE_I4x4) {
  605. decode_intra4x4_modes(c, intra4x4, s->b4_stride, 1);
  606. } else
  607. fill_rectangle(intra4x4, 4, 4, s->b4_stride, vp8_pred4x4_mode[mb->mode], 1);
  608. s->chroma_pred_mode = vp8_rac_get_tree(c, vp8_pred8x8c_tree, vp8_pred8x8c_prob_intra);
  609. mb->ref_frame = VP56_FRAME_CURRENT;
  610. } else if (vp56_rac_get_prob(c, s->prob->intra)) {
  611. VP56mv near[2], best;
  612. uint8_t cnt[4] = { 0 };
  613. uint8_t p[4];
  614. // inter MB, 16.2
  615. if (vp56_rac_get_prob(c, s->prob->last))
  616. mb->ref_frame = vp56_rac_get_prob(c, s->prob->golden) ?
  617. VP56_FRAME_GOLDEN2 /* altref */ : VP56_FRAME_GOLDEN;
  618. else
  619. mb->ref_frame = VP56_FRAME_PREVIOUS;
  620. // motion vectors, 16.3
  621. find_near_mvs(s, mb, mb_x, mb_y, near, &best, cnt);
  622. p[0] = vp8_mode_contexts[cnt[0]][0];
  623. p[1] = vp8_mode_contexts[cnt[1]][1];
  624. p[2] = vp8_mode_contexts[cnt[2]][2];
  625. p[3] = vp8_mode_contexts[cnt[3]][3];
  626. mb->mode = vp8_rac_get_tree(c, vp8_pred16x16_tree_mvinter, p);
  627. switch (mb->mode) {
  628. case VP8_MVMODE_SPLIT:
  629. mb->mv = mb->bmv[decode_splitmvs(s, c, mb, &best) - 1];
  630. break;
  631. case VP8_MVMODE_ZERO:
  632. mb->mv.x = 0;
  633. mb->mv.y = 0;
  634. break;
  635. case VP8_MVMODE_NEAREST:
  636. clamp_mv(s, &mb->mv, &near[0], mb_x, mb_y);
  637. break;
  638. case VP8_MVMODE_NEAR:
  639. clamp_mv(s, &mb->mv, &near[1], mb_x, mb_y);
  640. break;
  641. case VP8_MVMODE_NEW:
  642. mb->mv.y = best.y + read_mv_component(c, s->prob->mvc[0]);
  643. mb->mv.x = best.x + read_mv_component(c, s->prob->mvc[1]);
  644. break;
  645. }
  646. if (mb->mode != VP8_MVMODE_SPLIT) {
  647. mb->partitioning = VP8_SPLITMVMODE_NONE;
  648. mb->bmv[0] = mb->mv;
  649. }
  650. } else {
  651. // intra MB, 16.1
  652. mb->mode = vp8_rac_get_tree(c, vp8_pred16x16_tree_inter, s->prob->pred16x16);
  653. if (mb->mode == MODE_I4x4)
  654. decode_intra4x4_modes(c, intra4x4, 4, 0);
  655. s->chroma_pred_mode = vp8_rac_get_tree(c, vp8_pred8x8c_tree, s->prob->pred8x8c);
  656. mb->ref_frame = VP56_FRAME_CURRENT;
  657. }
  658. }
  659. /**
  660. * @param c arithmetic bitstream reader context
  661. * @param block destination for block coefficients
  662. * @param probs probabilities to use when reading trees from the bitstream
  663. * @param i initial coeff index, 0 unless a separate DC block is coded
  664. * @param zero_nhood the initial prediction context for number of surrounding
  665. * all-zero blocks (only left/top, so 0-2)
  666. * @param qmul array holding the dc/ac dequant factor at position 0/1
  667. * @return 0 if no coeffs were decoded
  668. * otherwise, the index of the last coeff decoded plus one
  669. */
  670. static int decode_block_coeffs(VP56RangeCoder *c, DCTELEM block[16],
  671. uint8_t probs[8][3][NUM_DCT_TOKENS-1],
  672. int i, int zero_nhood, int16_t qmul[2])
  673. {
  674. int token, nonzero = 0;
  675. int offset = 0;
  676. for (; i < 16; i++) {
  677. token = vp8_rac_get_tree_with_offset(c, vp8_coeff_tree, probs[vp8_coeff_band[i]][zero_nhood], offset);
  678. if (token == DCT_EOB)
  679. break;
  680. else if (token >= DCT_CAT1) {
  681. int cat = token-DCT_CAT1;
  682. token = vp8_rac_get_coeff(c, vp8_dct_cat_prob[cat]);
  683. token += vp8_dct_cat_offset[cat];
  684. }
  685. // after the first token, the non-zero prediction context becomes
  686. // based on the last decoded coeff
  687. if (!token) {
  688. zero_nhood = 0;
  689. offset = 1;
  690. continue;
  691. } else if (token == 1)
  692. zero_nhood = 1;
  693. else
  694. zero_nhood = 2;
  695. // todo: full [16] qmat? load into register?
  696. block[zigzag_scan[i]] = (vp8_rac_get(c) ? -token : token) * qmul[!!i];
  697. nonzero = i+1;
  698. offset = 0;
  699. }
  700. return nonzero;
  701. }
  702. static void decode_mb_coeffs(VP8Context *s, VP56RangeCoder *c, VP8Macroblock *mb,
  703. uint8_t t_nnz[9], uint8_t l_nnz[9])
  704. {
  705. LOCAL_ALIGNED_16(DCTELEM, dc,[16]);
  706. int i, x, y, luma_start = 0, luma_ctx = 3;
  707. int nnz_pred, nnz, nnz_total = 0;
  708. int segment = s->segment;
  709. s->dsp.clear_blocks((DCTELEM *)s->block);
  710. if (mb->mode != MODE_I4x4 && mb->mode != VP8_MVMODE_SPLIT) {
  711. AV_ZERO128(dc);
  712. AV_ZERO128(dc+8);
  713. nnz_pred = t_nnz[8] + l_nnz[8];
  714. // decode DC values and do hadamard
  715. nnz = decode_block_coeffs(c, dc, s->prob->token[1], 0, nnz_pred,
  716. s->qmat[segment].luma_dc_qmul);
  717. l_nnz[8] = t_nnz[8] = !!nnz;
  718. nnz_total += nnz;
  719. s->vp8dsp.vp8_luma_dc_wht(s->block, dc);
  720. luma_start = 1;
  721. luma_ctx = 0;
  722. }
  723. // luma blocks
  724. for (y = 0; y < 4; y++)
  725. for (x = 0; x < 4; x++) {
  726. nnz_pred = l_nnz[y] + t_nnz[x];
  727. nnz = decode_block_coeffs(c, s->block[y][x], s->prob->token[luma_ctx], luma_start,
  728. nnz_pred, s->qmat[segment].luma_qmul);
  729. // nnz+luma_start may be one more than the actual last index, but we don't care
  730. s->non_zero_count_cache[y][x] = nnz + luma_start;
  731. t_nnz[x] = l_nnz[y] = !!nnz;
  732. nnz_total += nnz;
  733. }
  734. // chroma blocks
  735. // TODO: what to do about dimensions? 2nd dim for luma is x,
  736. // but for chroma it's (y<<1)|x
  737. for (i = 4; i < 6; i++)
  738. for (y = 0; y < 2; y++)
  739. for (x = 0; x < 2; x++) {
  740. nnz_pred = l_nnz[i+2*y] + t_nnz[i+2*x];
  741. nnz = decode_block_coeffs(c, s->block[i][(y<<1)+x], s->prob->token[2], 0,
  742. nnz_pred, s->qmat[segment].chroma_qmul);
  743. s->non_zero_count_cache[i][(y<<1)+x] = nnz;
  744. t_nnz[i+2*x] = l_nnz[i+2*y] = !!nnz;
  745. nnz_total += nnz;
  746. }
  747. // if there were no coded coeffs despite the macroblock not being marked skip,
  748. // we MUST not do the inner loop filter and should not do IDCT
  749. // Since skip isn't used for bitstream prediction, just manually set it.
  750. if (!nnz_total)
  751. mb->skip = 1;
  752. }
  753. static av_always_inline
  754. void backup_mb_border(uint8_t *top_border, uint8_t *src_y, uint8_t *src_cb, uint8_t *src_cr,
  755. int linesize, int uvlinesize, int simple)
  756. {
  757. AV_COPY128(top_border, src_y + 15*linesize);
  758. if (!simple) {
  759. AV_COPY64(top_border+16, src_cb + 7*uvlinesize);
  760. AV_COPY64(top_border+24, src_cr + 7*uvlinesize);
  761. }
  762. }
  763. static av_always_inline
  764. void xchg_mb_border(uint8_t *top_border, uint8_t *src_y, uint8_t *src_cb, uint8_t *src_cr,
  765. int linesize, int uvlinesize, int mb_x, int mb_y, int mb_width,
  766. int simple, int xchg)
  767. {
  768. uint8_t *top_border_m1 = top_border-32; // for TL prediction
  769. src_y -= linesize;
  770. src_cb -= uvlinesize;
  771. src_cr -= uvlinesize;
  772. #define XCHG(a,b,xchg) do { \
  773. if (xchg) AV_SWAP64(b,a); \
  774. else AV_COPY64(b,a); \
  775. } while (0)
  776. XCHG(top_border_m1+8, src_y-8, xchg);
  777. XCHG(top_border, src_y, xchg);
  778. XCHG(top_border+8, src_y+8, 1);
  779. if (mb_x < mb_width-1)
  780. XCHG(top_border+32, src_y+16, 1);
  781. // only copy chroma for normal loop filter
  782. // or to initialize the top row to 127
  783. if (!simple || !mb_y) {
  784. XCHG(top_border_m1+16, src_cb-8, xchg);
  785. XCHG(top_border_m1+24, src_cr-8, xchg);
  786. XCHG(top_border+16, src_cb, 1);
  787. XCHG(top_border+24, src_cr, 1);
  788. }
  789. }
  790. static int check_intra_pred_mode(int mode, int mb_x, int mb_y)
  791. {
  792. if (mode == DC_PRED8x8) {
  793. if (!(mb_x|mb_y))
  794. mode = DC_128_PRED8x8;
  795. else if (!mb_y)
  796. mode = LEFT_DC_PRED8x8;
  797. else if (!mb_x)
  798. mode = TOP_DC_PRED8x8;
  799. }
  800. return mode;
  801. }
  802. static void intra_predict(VP8Context *s, uint8_t *dst[3], VP8Macroblock *mb,
  803. uint8_t *intra4x4, int mb_x, int mb_y)
  804. {
  805. int x, y, mode, nnz, tr;
  806. // for the first row, we need to run xchg_mb_border to init the top edge to 127
  807. // otherwise, skip it if we aren't going to deblock
  808. if (s->deblock_filter || !mb_y)
  809. xchg_mb_border(s->top_border[mb_x+1], dst[0], dst[1], dst[2],
  810. s->linesize, s->uvlinesize, mb_x, mb_y, s->mb_width,
  811. s->filter.simple, 1);
  812. if (mb->mode < MODE_I4x4) {
  813. mode = check_intra_pred_mode(mb->mode, mb_x, mb_y);
  814. s->hpc.pred16x16[mode](dst[0], s->linesize);
  815. } else {
  816. uint8_t *ptr = dst[0];
  817. int stride = s->keyframe ? s->b4_stride : 4;
  818. // all blocks on the right edge of the macroblock use bottom edge
  819. // the top macroblock for their topright edge
  820. uint8_t *tr_right = ptr - s->linesize + 16;
  821. // if we're on the right edge of the frame, said edge is extended
  822. // from the top macroblock
  823. if (mb_x == s->mb_width-1) {
  824. tr = tr_right[-1]*0x01010101;
  825. tr_right = (uint8_t *)&tr;
  826. }
  827. for (y = 0; y < 4; y++) {
  828. uint8_t *topright = ptr + 4 - s->linesize;
  829. for (x = 0; x < 4; x++) {
  830. if (x == 3)
  831. topright = tr_right;
  832. s->hpc.pred4x4[intra4x4[x]](ptr+4*x, topright, s->linesize);
  833. nnz = s->non_zero_count_cache[y][x];
  834. if (nnz) {
  835. if (nnz == 1)
  836. s->vp8dsp.vp8_idct_dc_add(ptr+4*x, s->block[y][x], s->linesize);
  837. else
  838. s->vp8dsp.vp8_idct_add(ptr+4*x, s->block[y][x], s->linesize);
  839. }
  840. topright += 4;
  841. }
  842. ptr += 4*s->linesize;
  843. intra4x4 += stride;
  844. }
  845. }
  846. mode = check_intra_pred_mode(s->chroma_pred_mode, mb_x, mb_y);
  847. s->hpc.pred8x8[mode](dst[1], s->uvlinesize);
  848. s->hpc.pred8x8[mode](dst[2], s->uvlinesize);
  849. if (s->deblock_filter || !mb_y)
  850. xchg_mb_border(s->top_border[mb_x+1], dst[0], dst[1], dst[2],
  851. s->linesize, s->uvlinesize, mb_x, mb_y, s->mb_width,
  852. s->filter.simple, 0);
  853. }
  854. /**
  855. * Generic MC function.
  856. *
  857. * @param s VP8 decoding context
  858. * @param luma 1 for luma (Y) planes, 0 for chroma (Cb/Cr) planes
  859. * @param dst target buffer for block data at block position
  860. * @param src reference picture buffer at origin (0, 0)
  861. * @param mv motion vector (relative to block position) to get pixel data from
  862. * @param x_off horizontal position of block from origin (0, 0)
  863. * @param y_off vertical position of block from origin (0, 0)
  864. * @param block_w width of block (16, 8 or 4)
  865. * @param block_h height of block (always same as block_w)
  866. * @param width width of src/dst plane data
  867. * @param height height of src/dst plane data
  868. * @param linesize size of a single line of plane data, including padding
  869. * @param mc_func motion compensation function pointers (bilinear or sixtap MC)
  870. */
  871. static inline void vp8_mc(VP8Context *s, int luma,
  872. uint8_t *dst, uint8_t *src, const VP56mv *mv,
  873. int x_off, int y_off, int block_w, int block_h,
  874. int width, int height, int linesize,
  875. vp8_mc_func mc_func[3][3])
  876. {
  877. if (AV_RN32A(mv)) {
  878. static const uint8_t idx[8] = { 0, 1, 2, 1, 2, 1, 2, 1 };
  879. int mx = (mv->x << luma)&7, mx_idx = idx[mx];
  880. int my = (mv->y << luma)&7, my_idx = idx[my];
  881. x_off += mv->x >> (3 - luma);
  882. y_off += mv->y >> (3 - luma);
  883. // edge emulation
  884. src += y_off * linesize + x_off;
  885. if (x_off < 2 || x_off >= width - block_w - 3 ||
  886. y_off < 2 || y_off >= height - block_h - 3) {
  887. ff_emulated_edge_mc(s->edge_emu_buffer, src - 2 * linesize - 2, linesize,
  888. block_w + 5, block_h + 5,
  889. x_off - 2, y_off - 2, width, height);
  890. src = s->edge_emu_buffer + 2 + linesize * 2;
  891. }
  892. mc_func[my_idx][mx_idx](dst, linesize, src, linesize, block_h, mx, my);
  893. } else
  894. mc_func[0][0](dst, linesize, src + y_off * linesize + x_off, linesize, block_h, 0, 0);
  895. }
  896. static inline void vp8_mc_part(VP8Context *s, uint8_t *dst[3],
  897. AVFrame *ref_frame, int x_off, int y_off,
  898. int bx_off, int by_off,
  899. int block_w, int block_h,
  900. int width, int height, VP56mv *mv)
  901. {
  902. VP56mv uvmv = *mv;
  903. /* Y */
  904. vp8_mc(s, 1, dst[0] + by_off * s->linesize + bx_off,
  905. ref_frame->data[0], mv, x_off + bx_off, y_off + by_off,
  906. block_w, block_h, width, height, s->linesize,
  907. s->put_pixels_tab[block_w == 8]);
  908. /* U/V */
  909. if (s->profile == 3) {
  910. uvmv.x &= ~7;
  911. uvmv.y &= ~7;
  912. }
  913. x_off >>= 1; y_off >>= 1;
  914. bx_off >>= 1; by_off >>= 1;
  915. width >>= 1; height >>= 1;
  916. block_w >>= 1; block_h >>= 1;
  917. vp8_mc(s, 0, dst[1] + by_off * s->uvlinesize + bx_off,
  918. ref_frame->data[1], &uvmv, x_off + bx_off, y_off + by_off,
  919. block_w, block_h, width, height, s->uvlinesize,
  920. s->put_pixels_tab[1 + (block_w == 4)]);
  921. vp8_mc(s, 0, dst[2] + by_off * s->uvlinesize + bx_off,
  922. ref_frame->data[2], &uvmv, x_off + bx_off, y_off + by_off,
  923. block_w, block_h, width, height, s->uvlinesize,
  924. s->put_pixels_tab[1 + (block_w == 4)]);
  925. }
  926. /* Fetch pixels for estimated mv 4 macroblocks ahead.
  927. * Optimized for 64-byte cache lines. Inspired by ffh264 prefetch_motion. */
  928. static inline void prefetch_motion(VP8Context *s, VP8Macroblock *mb, int mb_x, int mb_y, int x_off, int y_off, int ref)
  929. {
  930. if (mb->ref_frame != VP56_FRAME_CURRENT) {
  931. int mx = mb->mv.x + x_off + 8;
  932. int my = mb->mv.y + y_off;
  933. uint8_t **src= s->framep[mb->ref_frame]->data;
  934. int off= mx + (my + (mb_x&3)*4)*s->linesize + 64;
  935. s->dsp.prefetch(src[0]+off, s->linesize, 4);
  936. off= (mx>>1) + ((my>>1) + (mb_x&7))*s->uvlinesize + 64;
  937. s->dsp.prefetch(src[1]+off, src[2]-src[1], 2);
  938. }
  939. }
  940. /**
  941. * Apply motion vectors to prediction buffer, chapter 18.
  942. */
  943. static void inter_predict(VP8Context *s, uint8_t *dst[3], VP8Macroblock *mb,
  944. int mb_x, int mb_y)
  945. {
  946. int x_off = mb_x << 4, y_off = mb_y << 4;
  947. int width = 16*s->mb_width, height = 16*s->mb_height;
  948. prefetch_motion(s, mb, mb_x, mb_y, x_off, y_off, VP56_FRAME_PREVIOUS);
  949. if (mb->mode < VP8_MVMODE_SPLIT) {
  950. vp8_mc_part(s, dst, s->framep[mb->ref_frame], x_off, y_off,
  951. 0, 0, 16, 16, width, height, &mb->mv);
  952. } else switch (mb->partitioning) {
  953. case VP8_SPLITMVMODE_4x4: {
  954. int x, y;
  955. VP56mv uvmv;
  956. /* Y */
  957. for (y = 0; y < 4; y++) {
  958. for (x = 0; x < 4; x++) {
  959. vp8_mc(s, 1, dst[0] + 4*y*s->linesize + x*4,
  960. s->framep[mb->ref_frame]->data[0], &mb->bmv[4*y + x],
  961. 4*x + x_off, 4*y + y_off, 4, 4,
  962. width, height, s->linesize,
  963. s->put_pixels_tab[2]);
  964. }
  965. }
  966. /* U/V */
  967. x_off >>= 1; y_off >>= 1; width >>= 1; height >>= 1;
  968. for (y = 0; y < 2; y++) {
  969. for (x = 0; x < 2; x++) {
  970. uvmv.x = mb->bmv[ 2*y * 4 + 2*x ].x +
  971. mb->bmv[ 2*y * 4 + 2*x+1].x +
  972. mb->bmv[(2*y+1) * 4 + 2*x ].x +
  973. mb->bmv[(2*y+1) * 4 + 2*x+1].x;
  974. uvmv.y = mb->bmv[ 2*y * 4 + 2*x ].y +
  975. mb->bmv[ 2*y * 4 + 2*x+1].y +
  976. mb->bmv[(2*y+1) * 4 + 2*x ].y +
  977. mb->bmv[(2*y+1) * 4 + 2*x+1].y;
  978. uvmv.x = (uvmv.x + 2 + (uvmv.x >> (INT_BIT-1))) >> 2;
  979. uvmv.y = (uvmv.y + 2 + (uvmv.y >> (INT_BIT-1))) >> 2;
  980. if (s->profile == 3) {
  981. uvmv.x &= ~7;
  982. uvmv.y &= ~7;
  983. }
  984. vp8_mc(s, 0, dst[1] + 4*y*s->uvlinesize + x*4,
  985. s->framep[mb->ref_frame]->data[1], &uvmv,
  986. 4*x + x_off, 4*y + y_off, 4, 4,
  987. width, height, s->uvlinesize,
  988. s->put_pixels_tab[2]);
  989. vp8_mc(s, 0, dst[2] + 4*y*s->uvlinesize + x*4,
  990. s->framep[mb->ref_frame]->data[2], &uvmv,
  991. 4*x + x_off, 4*y + y_off, 4, 4,
  992. width, height, s->uvlinesize,
  993. s->put_pixels_tab[2]);
  994. }
  995. }
  996. break;
  997. }
  998. case VP8_SPLITMVMODE_16x8:
  999. vp8_mc_part(s, dst, s->framep[mb->ref_frame], x_off, y_off,
  1000. 0, 0, 16, 8, width, height, &mb->bmv[0]);
  1001. vp8_mc_part(s, dst, s->framep[mb->ref_frame], x_off, y_off,
  1002. 0, 8, 16, 8, width, height, &mb->bmv[1]);
  1003. break;
  1004. case VP8_SPLITMVMODE_8x16:
  1005. vp8_mc_part(s, dst, s->framep[mb->ref_frame], x_off, y_off,
  1006. 0, 0, 8, 16, width, height, &mb->bmv[0]);
  1007. vp8_mc_part(s, dst, s->framep[mb->ref_frame], x_off, y_off,
  1008. 8, 0, 8, 16, width, height, &mb->bmv[1]);
  1009. break;
  1010. case VP8_SPLITMVMODE_8x8:
  1011. vp8_mc_part(s, dst, s->framep[mb->ref_frame], x_off, y_off,
  1012. 0, 0, 8, 8, width, height, &mb->bmv[0]);
  1013. vp8_mc_part(s, dst, s->framep[mb->ref_frame], x_off, y_off,
  1014. 8, 0, 8, 8, width, height, &mb->bmv[1]);
  1015. vp8_mc_part(s, dst, s->framep[mb->ref_frame], x_off, y_off,
  1016. 0, 8, 8, 8, width, height, &mb->bmv[2]);
  1017. vp8_mc_part(s, dst, s->framep[mb->ref_frame], x_off, y_off,
  1018. 8, 8, 8, 8, width, height, &mb->bmv[3]);
  1019. break;
  1020. }
  1021. prefetch_motion(s, mb, mb_x, mb_y, x_off, y_off, VP56_FRAME_GOLDEN);
  1022. }
  1023. static void idct_mb(VP8Context *s, uint8_t *y_dst, uint8_t *u_dst, uint8_t *v_dst,
  1024. VP8Macroblock *mb)
  1025. {
  1026. int x, y, nnz;
  1027. if (mb->mode != MODE_I4x4)
  1028. for (y = 0; y < 4; y++) {
  1029. for (x = 0; x < 4; x++) {
  1030. nnz = s->non_zero_count_cache[y][x];
  1031. if (nnz) {
  1032. if (nnz == 1)
  1033. s->vp8dsp.vp8_idct_dc_add(y_dst+4*x, s->block[y][x], s->linesize);
  1034. else
  1035. s->vp8dsp.vp8_idct_add(y_dst+4*x, s->block[y][x], s->linesize);
  1036. }
  1037. }
  1038. y_dst += 4*s->linesize;
  1039. }
  1040. for (y = 0; y < 2; y++) {
  1041. for (x = 0; x < 2; x++) {
  1042. nnz = s->non_zero_count_cache[4][(y<<1)+x];
  1043. if (nnz) {
  1044. if (nnz == 1)
  1045. s->vp8dsp.vp8_idct_dc_add(u_dst+4*x, s->block[4][(y<<1)+x], s->uvlinesize);
  1046. else
  1047. s->vp8dsp.vp8_idct_add(u_dst+4*x, s->block[4][(y<<1)+x], s->uvlinesize);
  1048. }
  1049. nnz = s->non_zero_count_cache[5][(y<<1)+x];
  1050. if (nnz) {
  1051. if (nnz == 1)
  1052. s->vp8dsp.vp8_idct_dc_add(v_dst+4*x, s->block[5][(y<<1)+x], s->uvlinesize);
  1053. else
  1054. s->vp8dsp.vp8_idct_add(v_dst+4*x, s->block[5][(y<<1)+x], s->uvlinesize);
  1055. }
  1056. }
  1057. u_dst += 4*s->uvlinesize;
  1058. v_dst += 4*s->uvlinesize;
  1059. }
  1060. }
  1061. static void filter_level_for_mb(VP8Context *s, VP8Macroblock *mb, VP8FilterStrength *f )
  1062. {
  1063. int interior_limit, filter_level;
  1064. if (s->segmentation.enabled) {
  1065. filter_level = s->segmentation.filter_level[s->segment];
  1066. if (!s->segmentation.absolute_vals)
  1067. filter_level += s->filter.level;
  1068. } else
  1069. filter_level = s->filter.level;
  1070. if (s->lf_delta.enabled) {
  1071. filter_level += s->lf_delta.ref[mb->ref_frame];
  1072. if (mb->ref_frame == VP56_FRAME_CURRENT) {
  1073. if (mb->mode == MODE_I4x4)
  1074. filter_level += s->lf_delta.mode[0];
  1075. } else {
  1076. if (mb->mode == VP8_MVMODE_ZERO)
  1077. filter_level += s->lf_delta.mode[1];
  1078. else if (mb->mode == VP8_MVMODE_SPLIT)
  1079. filter_level += s->lf_delta.mode[3];
  1080. else
  1081. filter_level += s->lf_delta.mode[2];
  1082. }
  1083. }
  1084. filter_level = av_clip(filter_level, 0, 63);
  1085. interior_limit = filter_level;
  1086. if (s->filter.sharpness) {
  1087. interior_limit >>= s->filter.sharpness > 4 ? 2 : 1;
  1088. interior_limit = FFMIN(interior_limit, 9 - s->filter.sharpness);
  1089. }
  1090. interior_limit = FFMAX(interior_limit, 1);
  1091. f->filter_level = filter_level;
  1092. f->inner_limit = interior_limit;
  1093. f->inner_filter = !mb->skip || mb->mode == MODE_I4x4 || mb->mode == VP8_MVMODE_SPLIT;
  1094. }
  1095. static void filter_mb(VP8Context *s, uint8_t *dst[3], VP8FilterStrength *f, int mb_x, int mb_y)
  1096. {
  1097. int mbedge_lim, bedge_lim, hev_thresh;
  1098. int filter_level = f->filter_level;
  1099. int inner_limit = f->inner_limit;
  1100. int inner_filter = f->inner_filter;
  1101. if (!filter_level)
  1102. return;
  1103. mbedge_lim = 2*(filter_level+2) + inner_limit;
  1104. bedge_lim = 2* filter_level + inner_limit;
  1105. hev_thresh = filter_level >= 15;
  1106. if (s->keyframe) {
  1107. if (filter_level >= 40)
  1108. hev_thresh = 2;
  1109. } else {
  1110. if (filter_level >= 40)
  1111. hev_thresh = 3;
  1112. else if (filter_level >= 20)
  1113. hev_thresh = 2;
  1114. }
  1115. if (mb_x) {
  1116. s->vp8dsp.vp8_h_loop_filter16y(dst[0], s->linesize,
  1117. mbedge_lim, inner_limit, hev_thresh);
  1118. s->vp8dsp.vp8_h_loop_filter8uv(dst[1], dst[2], s->uvlinesize,
  1119. mbedge_lim, inner_limit, hev_thresh);
  1120. }
  1121. if (inner_filter) {
  1122. s->vp8dsp.vp8_h_loop_filter16y_inner(dst[0]+ 4, s->linesize, bedge_lim,
  1123. inner_limit, hev_thresh);
  1124. s->vp8dsp.vp8_h_loop_filter16y_inner(dst[0]+ 8, s->linesize, bedge_lim,
  1125. inner_limit, hev_thresh);
  1126. s->vp8dsp.vp8_h_loop_filter16y_inner(dst[0]+12, s->linesize, bedge_lim,
  1127. inner_limit, hev_thresh);
  1128. s->vp8dsp.vp8_h_loop_filter8uv_inner(dst[1] + 4, dst[2] + 4,
  1129. s->uvlinesize, bedge_lim,
  1130. inner_limit, hev_thresh);
  1131. }
  1132. if (mb_y) {
  1133. s->vp8dsp.vp8_v_loop_filter16y(dst[0], s->linesize,
  1134. mbedge_lim, inner_limit, hev_thresh);
  1135. s->vp8dsp.vp8_v_loop_filter8uv(dst[1], dst[2], s->uvlinesize,
  1136. mbedge_lim, inner_limit, hev_thresh);
  1137. }
  1138. if (inner_filter) {
  1139. s->vp8dsp.vp8_v_loop_filter16y_inner(dst[0]+ 4*s->linesize,
  1140. s->linesize, bedge_lim,
  1141. inner_limit, hev_thresh);
  1142. s->vp8dsp.vp8_v_loop_filter16y_inner(dst[0]+ 8*s->linesize,
  1143. s->linesize, bedge_lim,
  1144. inner_limit, hev_thresh);
  1145. s->vp8dsp.vp8_v_loop_filter16y_inner(dst[0]+12*s->linesize,
  1146. s->linesize, bedge_lim,
  1147. inner_limit, hev_thresh);
  1148. s->vp8dsp.vp8_v_loop_filter8uv_inner(dst[1] + 4 * s->uvlinesize,
  1149. dst[2] + 4 * s->uvlinesize,
  1150. s->uvlinesize, bedge_lim,
  1151. inner_limit, hev_thresh);
  1152. }
  1153. }
  1154. static void filter_mb_simple(VP8Context *s, uint8_t *dst, VP8FilterStrength *f, int mb_x, int mb_y)
  1155. {
  1156. int mbedge_lim, bedge_lim;
  1157. int filter_level = f->filter_level;
  1158. int inner_limit = f->inner_limit;
  1159. int inner_filter = f->inner_filter;
  1160. if (!filter_level)
  1161. return;
  1162. mbedge_lim = 2*(filter_level+2) + inner_limit;
  1163. bedge_lim = 2* filter_level + inner_limit;
  1164. if (mb_x)
  1165. s->vp8dsp.vp8_h_loop_filter_simple(dst, s->linesize, mbedge_lim);
  1166. if (inner_filter) {
  1167. s->vp8dsp.vp8_h_loop_filter_simple(dst+ 4, s->linesize, bedge_lim);
  1168. s->vp8dsp.vp8_h_loop_filter_simple(dst+ 8, s->linesize, bedge_lim);
  1169. s->vp8dsp.vp8_h_loop_filter_simple(dst+12, s->linesize, bedge_lim);
  1170. }
  1171. if (mb_y)
  1172. s->vp8dsp.vp8_v_loop_filter_simple(dst, s->linesize, mbedge_lim);
  1173. if (inner_filter) {
  1174. s->vp8dsp.vp8_v_loop_filter_simple(dst+ 4*s->linesize, s->linesize, bedge_lim);
  1175. s->vp8dsp.vp8_v_loop_filter_simple(dst+ 8*s->linesize, s->linesize, bedge_lim);
  1176. s->vp8dsp.vp8_v_loop_filter_simple(dst+12*s->linesize, s->linesize, bedge_lim);
  1177. }
  1178. }
  1179. static void filter_mb_row(VP8Context *s, int mb_y)
  1180. {
  1181. VP8FilterStrength *f = s->filter_strength;
  1182. uint8_t *dst[3] = {
  1183. s->framep[VP56_FRAME_CURRENT]->data[0] + 16*mb_y*s->linesize,
  1184. s->framep[VP56_FRAME_CURRENT]->data[1] + 8*mb_y*s->uvlinesize,
  1185. s->framep[VP56_FRAME_CURRENT]->data[2] + 8*mb_y*s->uvlinesize
  1186. };
  1187. int mb_x;
  1188. for (mb_x = 0; mb_x < s->mb_width; mb_x++) {
  1189. backup_mb_border(s->top_border[mb_x+1], dst[0], dst[1], dst[2], s->linesize, s->uvlinesize, 0);
  1190. filter_mb(s, dst, f++, mb_x, mb_y);
  1191. dst[0] += 16;
  1192. dst[1] += 8;
  1193. dst[2] += 8;
  1194. }
  1195. }
  1196. static void filter_mb_row_simple(VP8Context *s, int mb_y)
  1197. {
  1198. VP8FilterStrength *f = s->filter_strength;
  1199. uint8_t *dst = s->framep[VP56_FRAME_CURRENT]->data[0] + 16*mb_y*s->linesize;
  1200. int mb_x;
  1201. for (mb_x = 0; mb_x < s->mb_width; mb_x++) {
  1202. backup_mb_border(s->top_border[mb_x+1], dst, NULL, NULL, s->linesize, 0, 1);
  1203. filter_mb_simple(s, dst, f++, mb_x, mb_y);
  1204. dst += 16;
  1205. }
  1206. }
  1207. static int vp8_decode_frame(AVCodecContext *avctx, void *data, int *data_size,
  1208. AVPacket *avpkt)
  1209. {
  1210. VP8Context *s = avctx->priv_data;
  1211. int ret, mb_x, mb_y, i, y, referenced;
  1212. enum AVDiscard skip_thresh;
  1213. AVFrame *curframe;
  1214. if ((ret = decode_frame_header(s, avpkt->data, avpkt->size)) < 0)
  1215. return ret;
  1216. referenced = s->update_last || s->update_golden == VP56_FRAME_CURRENT
  1217. || s->update_altref == VP56_FRAME_CURRENT;
  1218. skip_thresh = !referenced ? AVDISCARD_NONREF :
  1219. !s->keyframe ? AVDISCARD_NONKEY : AVDISCARD_ALL;
  1220. if (avctx->skip_frame >= skip_thresh) {
  1221. s->invisible = 1;
  1222. goto skip_decode;
  1223. }
  1224. s->deblock_filter = s->filter.level && avctx->skip_loop_filter < skip_thresh;
  1225. for (i = 0; i < 4; i++)
  1226. if (&s->frames[i] != s->framep[VP56_FRAME_PREVIOUS] &&
  1227. &s->frames[i] != s->framep[VP56_FRAME_GOLDEN] &&
  1228. &s->frames[i] != s->framep[VP56_FRAME_GOLDEN2]) {
  1229. curframe = s->framep[VP56_FRAME_CURRENT] = &s->frames[i];
  1230. break;
  1231. }
  1232. if (curframe->data[0])
  1233. avctx->release_buffer(avctx, curframe);
  1234. curframe->key_frame = s->keyframe;
  1235. curframe->pict_type = s->keyframe ? FF_I_TYPE : FF_P_TYPE;
  1236. curframe->reference = referenced ? 3 : 0;
  1237. if ((ret = avctx->get_buffer(avctx, curframe))) {
  1238. av_log(avctx, AV_LOG_ERROR, "get_buffer() failed!\n");
  1239. return ret;
  1240. }
  1241. // Given that arithmetic probabilities are updated every frame, it's quite likely
  1242. // that the values we have on a random interframe are complete junk if we didn't
  1243. // start decode on a keyframe. So just don't display anything rather than junk.
  1244. if (!s->keyframe && (!s->framep[VP56_FRAME_PREVIOUS] ||
  1245. !s->framep[VP56_FRAME_GOLDEN] ||
  1246. !s->framep[VP56_FRAME_GOLDEN2])) {
  1247. av_log(avctx, AV_LOG_WARNING, "Discarding interframe without a prior keyframe!\n");
  1248. return AVERROR_INVALIDDATA;
  1249. }
  1250. s->linesize = curframe->linesize[0];
  1251. s->uvlinesize = curframe->linesize[1];
  1252. if (!s->edge_emu_buffer)
  1253. s->edge_emu_buffer = av_malloc(21*s->linesize);
  1254. memset(s->top_nnz, 0, s->mb_width*sizeof(*s->top_nnz));
  1255. /* Zero macroblock structures for top/left prediction from outside the frame. */
  1256. memset(s->macroblocks, 0, (s->mb_width + s->mb_height*2)*sizeof(*s->macroblocks));
  1257. // top edge of 127 for intra prediction
  1258. memset(s->top_border, 127, (s->mb_width+1)*sizeof(*s->top_border));
  1259. for (mb_y = 0; mb_y < s->mb_height; mb_y++) {
  1260. VP56RangeCoder *c = &s->coeff_partition[mb_y & (s->num_coeff_partitions-1)];
  1261. VP8Macroblock *mb = s->macroblocks + (s->mb_height - mb_y - 1)*2;
  1262. uint8_t *intra4x4 = s->intra4x4_pred_mode + 4*mb_y*s->b4_stride;
  1263. uint8_t *segment_map = s->segmentation_map + mb_y*s->mb_stride;
  1264. uint8_t *dst[3] = {
  1265. curframe->data[0] + 16*mb_y*s->linesize,
  1266. curframe->data[1] + 8*mb_y*s->uvlinesize,
  1267. curframe->data[2] + 8*mb_y*s->uvlinesize
  1268. };
  1269. memset(s->left_nnz, 0, sizeof(s->left_nnz));
  1270. // left edge of 129 for intra prediction
  1271. if (!(avctx->flags & CODEC_FLAG_EMU_EDGE))
  1272. for (i = 0; i < 3; i++)
  1273. for (y = 0; y < 16>>!!i; y++)
  1274. dst[i][y*curframe->linesize[i]-1] = 129;
  1275. if (mb_y)
  1276. memset(s->top_border, 129, sizeof(*s->top_border));
  1277. for (mb_x = 0; mb_x < s->mb_width; mb_x++) {
  1278. uint8_t *intra4x4_mb = s->keyframe ? intra4x4 + 4*mb_x : s->intra4x4_pred_mode_mb;
  1279. uint8_t *segment_mb = segment_map+mb_x;
  1280. /* Prefetch the current frame, 4 MBs ahead */
  1281. s->dsp.prefetch(dst[0] + (mb_x&3)*4*s->linesize + 64, s->linesize, 4);
  1282. s->dsp.prefetch(dst[1] + (mb_x&7)*s->uvlinesize + 64, dst[2] - dst[1], 2);
  1283. decode_mb_mode(s, mb, mb_x, mb_y, intra4x4_mb, segment_mb);
  1284. if (!mb->skip)
  1285. decode_mb_coeffs(s, c, mb, s->top_nnz[mb_x], s->left_nnz);
  1286. else {
  1287. AV_ZERO128(s->non_zero_count_cache); // luma
  1288. AV_ZERO64(s->non_zero_count_cache[4]); // chroma
  1289. }
  1290. if (mb->mode <= MODE_I4x4) {
  1291. intra_predict(s, dst, mb, intra4x4_mb, mb_x, mb_y);
  1292. memset(mb->bmv, 0, sizeof(mb->bmv));
  1293. } else {
  1294. inter_predict(s, dst, mb, mb_x, mb_y);
  1295. }
  1296. if (!mb->skip) {
  1297. idct_mb(s, dst[0], dst[1], dst[2], mb);
  1298. } else {
  1299. AV_ZERO64(s->left_nnz);
  1300. AV_WN64(s->top_nnz[mb_x], 0); // array of 9, so unaligned
  1301. // Reset DC block predictors if they would exist if the mb had coefficients
  1302. if (mb->mode != MODE_I4x4 && mb->mode != VP8_MVMODE_SPLIT) {
  1303. s->left_nnz[8] = 0;
  1304. s->top_nnz[mb_x][8] = 0;
  1305. }
  1306. }
  1307. if (s->deblock_filter)
  1308. filter_level_for_mb(s, mb, &s->filter_strength[mb_x]);
  1309. dst[0] += 16;
  1310. dst[1] += 8;
  1311. dst[2] += 8;
  1312. mb++;
  1313. }
  1314. if (s->deblock_filter) {
  1315. if (s->filter.simple)
  1316. filter_mb_row_simple(s, mb_y);
  1317. else
  1318. filter_mb_row(s, mb_y);
  1319. }
  1320. }
  1321. skip_decode:
  1322. // if future frames don't use the updated probabilities,
  1323. // reset them to the values we saved
  1324. if (!s->update_probabilities)
  1325. s->prob[0] = s->prob[1];
  1326. // check if golden and altref are swapped
  1327. if (s->update_altref == VP56_FRAME_GOLDEN &&
  1328. s->update_golden == VP56_FRAME_GOLDEN2)
  1329. FFSWAP(AVFrame *, s->framep[VP56_FRAME_GOLDEN], s->framep[VP56_FRAME_GOLDEN2]);
  1330. else {
  1331. if (s->update_altref != VP56_FRAME_NONE)
  1332. s->framep[VP56_FRAME_GOLDEN2] = s->framep[s->update_altref];
  1333. if (s->update_golden != VP56_FRAME_NONE)
  1334. s->framep[VP56_FRAME_GOLDEN] = s->framep[s->update_golden];
  1335. }
  1336. if (s->update_last) // move cur->prev
  1337. s->framep[VP56_FRAME_PREVIOUS] = s->framep[VP56_FRAME_CURRENT];
  1338. // release no longer referenced frames
  1339. for (i = 0; i < 4; i++)
  1340. if (s->frames[i].data[0] &&
  1341. &s->frames[i] != s->framep[VP56_FRAME_CURRENT] &&
  1342. &s->frames[i] != s->framep[VP56_FRAME_PREVIOUS] &&
  1343. &s->frames[i] != s->framep[VP56_FRAME_GOLDEN] &&
  1344. &s->frames[i] != s->framep[VP56_FRAME_GOLDEN2])
  1345. avctx->release_buffer(avctx, &s->frames[i]);
  1346. if (!s->invisible) {
  1347. *(AVFrame*)data = *s->framep[VP56_FRAME_CURRENT];
  1348. *data_size = sizeof(AVFrame);
  1349. }
  1350. return avpkt->size;
  1351. }
  1352. static av_cold int vp8_decode_init(AVCodecContext *avctx)
  1353. {
  1354. VP8Context *s = avctx->priv_data;
  1355. s->avctx = avctx;
  1356. avctx->pix_fmt = PIX_FMT_YUV420P;
  1357. dsputil_init(&s->dsp, avctx);
  1358. ff_h264_pred_init(&s->hpc, CODEC_ID_VP8);
  1359. ff_vp8dsp_init(&s->vp8dsp);
  1360. // intra pred needs edge emulation among other things
  1361. if (avctx->flags&CODEC_FLAG_EMU_EDGE) {
  1362. av_log(avctx, AV_LOG_ERROR, "Edge emulation not supported\n");
  1363. return AVERROR_PATCHWELCOME;
  1364. }
  1365. return 0;
  1366. }
  1367. static av_cold int vp8_decode_free(AVCodecContext *avctx)
  1368. {
  1369. vp8_decode_flush(avctx);
  1370. return 0;
  1371. }
  1372. AVCodec vp8_decoder = {
  1373. "vp8",
  1374. AVMEDIA_TYPE_VIDEO,
  1375. CODEC_ID_VP8,
  1376. sizeof(VP8Context),
  1377. vp8_decode_init,
  1378. NULL,
  1379. vp8_decode_free,
  1380. vp8_decode_frame,
  1381. CODEC_CAP_DR1,
  1382. .flush = vp8_decode_flush,
  1383. .long_name = NULL_IF_CONFIG_SMALL("On2 VP8"),
  1384. };