You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

169 lines
5.6KB

  1. /*
  2. * Delay Locked Loop based time filter
  3. * Copyright (c) 2009 Samalyse
  4. * Copyright (c) 2009 Michael Niedermayer
  5. * Author: Olivier Guilyardi <olivier samalyse com>
  6. * Michael Niedermayer <michaelni gmx at>
  7. *
  8. * This file is part of FFmpeg.
  9. *
  10. * FFmpeg is free software; you can redistribute it and/or
  11. * modify it under the terms of the GNU Lesser General Public
  12. * License as published by the Free Software Foundation; either
  13. * version 2.1 of the License, or (at your option) any later version.
  14. *
  15. * FFmpeg is distributed in the hope that it will be useful,
  16. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  17. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  18. * Lesser General Public License for more details.
  19. *
  20. * You should have received a copy of the GNU Lesser General Public
  21. * License along with FFmpeg; if not, write to the Free Software
  22. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  23. */
  24. #include "libavutil/common.h"
  25. #include "libavutil/mem.h"
  26. #include "timefilter.h"
  27. struct TimeFilter {
  28. // Delay Locked Loop data. These variables refer to mathematical
  29. // concepts described in: http://www.kokkinizita.net/papers/usingdll.pdf
  30. double cycle_time;
  31. double feedback2_factor;
  32. double feedback3_factor;
  33. double clock_period;
  34. int count;
  35. };
  36. /* 1 - exp(-x) using a 3-order power series */
  37. static double qexpneg(double x)
  38. {
  39. return 1 - 1 / (1 + x * (1 + x / 2 * (1 + x / 3)));
  40. }
  41. TimeFilter *ff_timefilter_new(double time_base,
  42. double period,
  43. double bandwidth)
  44. {
  45. TimeFilter *self = av_mallocz(sizeof(TimeFilter));
  46. double o = 2 * M_PI * bandwidth * period * time_base;
  47. if (!self)
  48. return NULL;
  49. self->clock_period = time_base;
  50. self->feedback2_factor = qexpneg(M_SQRT2 * o);
  51. self->feedback3_factor = qexpneg(o * o) / period;
  52. return self;
  53. }
  54. void ff_timefilter_destroy(TimeFilter *self)
  55. {
  56. av_freep(&self);
  57. }
  58. void ff_timefilter_reset(TimeFilter *self)
  59. {
  60. self->count = 0;
  61. }
  62. double ff_timefilter_update(TimeFilter *self, double system_time, double period)
  63. {
  64. self->count++;
  65. if (self->count == 1) {
  66. self->cycle_time = system_time;
  67. } else {
  68. double loop_error;
  69. self->cycle_time += self->clock_period * period;
  70. loop_error = system_time - self->cycle_time;
  71. self->cycle_time += FFMAX(self->feedback2_factor, 1.0 / self->count) * loop_error;
  72. self->clock_period += self->feedback3_factor * loop_error;
  73. }
  74. return self->cycle_time;
  75. }
  76. double ff_timefilter_eval(TimeFilter *self, double delta)
  77. {
  78. return self->cycle_time + self->clock_period * delta;
  79. }
  80. #ifdef TEST
  81. #include "libavutil/lfg.h"
  82. #define LFG_MAX ((1LL << 32) - 1)
  83. int main(void)
  84. {
  85. AVLFG prng;
  86. double n0, n1;
  87. #define SAMPLES 1000
  88. double ideal[SAMPLES];
  89. double samples[SAMPLES];
  90. double samplet[SAMPLES];
  91. for (n0 = 0; n0 < 40; n0 = 2 * n0 + 1) {
  92. for (n1 = 0; n1 < 10; n1 = 2 * n1 + 1) {
  93. double best_error = 1000000000;
  94. double bestpar0 = n0 ? 1 : 100000;
  95. double bestpar1 = 1;
  96. int better, i;
  97. av_lfg_init(&prng, 123);
  98. for (i = 0; i < SAMPLES; i++) {
  99. samplet[i] = 10 + i + (av_lfg_get(&prng) < LFG_MAX/2 ? 0 : 0.999);
  100. ideal[i] = samplet[i] + n1 * i / (1000);
  101. samples[i] = ideal[i] + n0 * (av_lfg_get(&prng) - LFG_MAX / 2) / (LFG_MAX * 10LL);
  102. if(i && samples[i]<samples[i-1])
  103. samples[i]=samples[i-1]+0.001;
  104. }
  105. do {
  106. double par0, par1;
  107. better = 0;
  108. for (par0 = bestpar0 * 0.8; par0 <= bestpar0 * 1.21; par0 += bestpar0 * 0.05) {
  109. for (par1 = bestpar1 * 0.8; par1 <= bestpar1 * 1.21; par1 += bestpar1 * 0.05) {
  110. double error = 0;
  111. TimeFilter *tf = ff_timefilter_new(1, par0, par1);
  112. if (!tf) {
  113. printf("Could not allocate memory for timefilter.\n");
  114. exit(1);
  115. }
  116. for (i = 0; i < SAMPLES; i++) {
  117. double filtered;
  118. filtered = ff_timefilter_update(tf, samples[i], i ? (samplet[i] - samplet[i-1]) : 1);
  119. if(filtered < 0 || filtered > 1000000000)
  120. printf("filter is unstable\n");
  121. error += (filtered - ideal[i]) * (filtered - ideal[i]);
  122. }
  123. ff_timefilter_destroy(tf);
  124. if (error < best_error) {
  125. best_error = error;
  126. bestpar0 = par0;
  127. bestpar1 = par1;
  128. better = 1;
  129. }
  130. }
  131. }
  132. } while (better);
  133. #if 0
  134. double lastfil = 9;
  135. TimeFilter *tf = ff_timefilter_new(1, bestpar0, bestpar1);
  136. for (i = 0; i < SAMPLES; i++) {
  137. double filtered;
  138. filtered = ff_timefilter_update(tf, samples[i], 1);
  139. printf("%f %f %f %f\n", i - samples[i] + 10, filtered - samples[i],
  140. samples[FFMAX(i, 1)] - samples[FFMAX(i - 1, 0)], filtered - lastfil);
  141. lastfil = filtered;
  142. }
  143. ff_timefilter_destroy(tf);
  144. #else
  145. printf(" [%12f %11f %9f]", bestpar0, bestpar1, best_error);
  146. #endif
  147. }
  148. printf("\n");
  149. }
  150. return 0;
  151. }
  152. #endif