You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

935 lines
30KB

  1. /*
  2. * TAK decoder
  3. * Copyright (c) 2012 Paul B Mahol
  4. *
  5. * This file is part of Libav.
  6. *
  7. * Libav is free software; you can redistribute it and/or
  8. * modify it under the terms of the GNU Lesser General Public
  9. * License as published by the Free Software Foundation; either
  10. * version 2.1 of the License, or (at your option) any later version.
  11. *
  12. * Libav is distributed in the hope that it will be useful,
  13. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  14. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  15. * Lesser General Public License for more details.
  16. *
  17. * You should have received a copy of the GNU Lesser General Public
  18. * License along with Libav; if not, write to the Free Software
  19. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  20. */
  21. /**
  22. * @file
  23. * TAK (Tom's lossless Audio Kompressor) decoder
  24. * @author Paul B Mahol
  25. */
  26. #include "libavutil/internal.h"
  27. #include "libavutil/samplefmt.h"
  28. #include "tak.h"
  29. #include "avcodec.h"
  30. #include "dsputil.h"
  31. #include "internal.h"
  32. #include "unary.h"
  33. #define MAX_SUBFRAMES 8 // max number of subframes per channel
  34. #define MAX_PREDICTORS 256
  35. typedef struct MCDParam {
  36. int8_t present; // decorrelation parameter availability for this channel
  37. int8_t index; // index into array of decorrelation types
  38. int8_t chan1;
  39. int8_t chan2;
  40. } MCDParam;
  41. typedef struct TAKDecContext {
  42. AVCodecContext *avctx; // parent AVCodecContext
  43. AVFrame frame; // AVFrame for decoded output
  44. DSPContext dsp;
  45. TAKStreamInfo ti;
  46. GetBitContext gb; // bitstream reader initialized to start at the current frame
  47. int uval;
  48. int nb_samples; // number of samples in the current frame
  49. uint8_t *decode_buffer;
  50. unsigned int decode_buffer_size;
  51. int32_t *decoded[TAK_MAX_CHANNELS]; // decoded samples for each channel
  52. int8_t lpc_mode[TAK_MAX_CHANNELS];
  53. int8_t sample_shift[TAK_MAX_CHANNELS]; // shift applied to every sample in the channel
  54. int subframe_scale;
  55. int8_t dmode; // channel decorrelation type in the current frame
  56. MCDParam mcdparams[TAK_MAX_CHANNELS]; // multichannel decorrelation parameters
  57. int16_t *residues;
  58. unsigned int residues_buf_size;
  59. } TAKDecContext;
  60. static const int8_t mc_dmodes[] = { 1, 3, 4, 6, };
  61. static const uint16_t predictor_sizes[] = {
  62. 4, 8, 12, 16, 24, 32, 48, 64, 80, 96, 128, 160, 192, 224, 256, 0,
  63. };
  64. static const struct CParam {
  65. int init;
  66. int escape;
  67. int scale;
  68. int aescape;
  69. int bias;
  70. } xcodes[50] = {
  71. { 0x01, 0x0000001, 0x0000001, 0x0000003, 0x0000008 },
  72. { 0x02, 0x0000003, 0x0000001, 0x0000007, 0x0000006 },
  73. { 0x03, 0x0000005, 0x0000002, 0x000000E, 0x000000D },
  74. { 0x03, 0x0000003, 0x0000003, 0x000000D, 0x0000018 },
  75. { 0x04, 0x000000B, 0x0000004, 0x000001C, 0x0000019 },
  76. { 0x04, 0x0000006, 0x0000006, 0x000001A, 0x0000030 },
  77. { 0x05, 0x0000016, 0x0000008, 0x0000038, 0x0000032 },
  78. { 0x05, 0x000000C, 0x000000C, 0x0000034, 0x0000060 },
  79. { 0x06, 0x000002C, 0x0000010, 0x0000070, 0x0000064 },
  80. { 0x06, 0x0000018, 0x0000018, 0x0000068, 0x00000C0 },
  81. { 0x07, 0x0000058, 0x0000020, 0x00000E0, 0x00000C8 },
  82. { 0x07, 0x0000030, 0x0000030, 0x00000D0, 0x0000180 },
  83. { 0x08, 0x00000B0, 0x0000040, 0x00001C0, 0x0000190 },
  84. { 0x08, 0x0000060, 0x0000060, 0x00001A0, 0x0000300 },
  85. { 0x09, 0x0000160, 0x0000080, 0x0000380, 0x0000320 },
  86. { 0x09, 0x00000C0, 0x00000C0, 0x0000340, 0x0000600 },
  87. { 0x0A, 0x00002C0, 0x0000100, 0x0000700, 0x0000640 },
  88. { 0x0A, 0x0000180, 0x0000180, 0x0000680, 0x0000C00 },
  89. { 0x0B, 0x0000580, 0x0000200, 0x0000E00, 0x0000C80 },
  90. { 0x0B, 0x0000300, 0x0000300, 0x0000D00, 0x0001800 },
  91. { 0x0C, 0x0000B00, 0x0000400, 0x0001C00, 0x0001900 },
  92. { 0x0C, 0x0000600, 0x0000600, 0x0001A00, 0x0003000 },
  93. { 0x0D, 0x0001600, 0x0000800, 0x0003800, 0x0003200 },
  94. { 0x0D, 0x0000C00, 0x0000C00, 0x0003400, 0x0006000 },
  95. { 0x0E, 0x0002C00, 0x0001000, 0x0007000, 0x0006400 },
  96. { 0x0E, 0x0001800, 0x0001800, 0x0006800, 0x000C000 },
  97. { 0x0F, 0x0005800, 0x0002000, 0x000E000, 0x000C800 },
  98. { 0x0F, 0x0003000, 0x0003000, 0x000D000, 0x0018000 },
  99. { 0x10, 0x000B000, 0x0004000, 0x001C000, 0x0019000 },
  100. { 0x10, 0x0006000, 0x0006000, 0x001A000, 0x0030000 },
  101. { 0x11, 0x0016000, 0x0008000, 0x0038000, 0x0032000 },
  102. { 0x11, 0x000C000, 0x000C000, 0x0034000, 0x0060000 },
  103. { 0x12, 0x002C000, 0x0010000, 0x0070000, 0x0064000 },
  104. { 0x12, 0x0018000, 0x0018000, 0x0068000, 0x00C0000 },
  105. { 0x13, 0x0058000, 0x0020000, 0x00E0000, 0x00C8000 },
  106. { 0x13, 0x0030000, 0x0030000, 0x00D0000, 0x0180000 },
  107. { 0x14, 0x00B0000, 0x0040000, 0x01C0000, 0x0190000 },
  108. { 0x14, 0x0060000, 0x0060000, 0x01A0000, 0x0300000 },
  109. { 0x15, 0x0160000, 0x0080000, 0x0380000, 0x0320000 },
  110. { 0x15, 0x00C0000, 0x00C0000, 0x0340000, 0x0600000 },
  111. { 0x16, 0x02C0000, 0x0100000, 0x0700000, 0x0640000 },
  112. { 0x16, 0x0180000, 0x0180000, 0x0680000, 0x0C00000 },
  113. { 0x17, 0x0580000, 0x0200000, 0x0E00000, 0x0C80000 },
  114. { 0x17, 0x0300000, 0x0300000, 0x0D00000, 0x1800000 },
  115. { 0x18, 0x0B00000, 0x0400000, 0x1C00000, 0x1900000 },
  116. { 0x18, 0x0600000, 0x0600000, 0x1A00000, 0x3000000 },
  117. { 0x19, 0x1600000, 0x0800000, 0x3800000, 0x3200000 },
  118. { 0x19, 0x0C00000, 0x0C00000, 0x3400000, 0x6000000 },
  119. { 0x1A, 0x2C00000, 0x1000000, 0x7000000, 0x6400000 },
  120. { 0x1A, 0x1800000, 0x1800000, 0x6800000, 0xC000000 },
  121. };
  122. static av_cold void tak_init_static_data(AVCodec *codec)
  123. {
  124. ff_tak_init_crc();
  125. }
  126. static int set_bps_params(AVCodecContext *avctx)
  127. {
  128. switch (avctx->bits_per_coded_sample) {
  129. case 8:
  130. avctx->sample_fmt = AV_SAMPLE_FMT_U8P;
  131. break;
  132. case 16:
  133. avctx->sample_fmt = AV_SAMPLE_FMT_S16P;
  134. break;
  135. case 24:
  136. avctx->sample_fmt = AV_SAMPLE_FMT_S32P;
  137. break;
  138. default:
  139. av_log(avctx, AV_LOG_ERROR, "unsupported bits per sample: %d\n",
  140. avctx->bits_per_coded_sample);
  141. return AVERROR_INVALIDDATA;
  142. }
  143. avctx->bits_per_raw_sample = avctx->bits_per_coded_sample;
  144. return 0;
  145. }
  146. static void set_sample_rate_params(AVCodecContext *avctx)
  147. {
  148. TAKDecContext *s = avctx->priv_data;
  149. int shift = 3 - (avctx->sample_rate / 11025);
  150. shift = FFMAX(0, shift);
  151. s->uval = FFALIGN(avctx->sample_rate + 511 >> 9, 4) << shift;
  152. s->subframe_scale = FFALIGN(avctx->sample_rate + 511 >> 9, 4) << 1;
  153. }
  154. static av_cold int tak_decode_init(AVCodecContext *avctx)
  155. {
  156. TAKDecContext *s = avctx->priv_data;
  157. ff_dsputil_init(&s->dsp, avctx);
  158. s->avctx = avctx;
  159. avcodec_get_frame_defaults(&s->frame);
  160. avctx->coded_frame = &s->frame;
  161. set_sample_rate_params(avctx);
  162. return set_bps_params(avctx);
  163. }
  164. static void decode_lpc(int32_t *coeffs, int mode, int length)
  165. {
  166. int i;
  167. if (length < 2)
  168. return;
  169. if (mode == 1) {
  170. int a1 = *coeffs++;
  171. for (i = 0; i < length - 1 >> 1; i++) {
  172. *coeffs += a1;
  173. coeffs[1] += *coeffs;
  174. a1 = coeffs[1];
  175. coeffs += 2;
  176. }
  177. if (length - 1 & 1)
  178. *coeffs += a1;
  179. } else if (mode == 2) {
  180. int a1 = coeffs[1];
  181. int a2 = a1 + *coeffs;
  182. coeffs[1] = a2;
  183. if (length > 2) {
  184. coeffs += 2;
  185. for (i = 0; i < length - 2 >> 1; i++) {
  186. int a3 = *coeffs + a1;
  187. int a4 = a3 + a2;
  188. *coeffs = a4;
  189. a1 = coeffs[1] + a3;
  190. a2 = a1 + a4;
  191. coeffs[1] = a2;
  192. coeffs += 2;
  193. }
  194. if (length & 1)
  195. *coeffs += a1 + a2;
  196. }
  197. } else if (mode == 3) {
  198. int a1 = coeffs[1];
  199. int a2 = a1 + *coeffs;
  200. coeffs[1] = a2;
  201. if (length > 2) {
  202. int a3 = coeffs[2];
  203. int a4 = a3 + a1;
  204. int a5 = a4 + a2;
  205. coeffs += 3;
  206. for (i = 0; i < length - 3; i++) {
  207. a3 += *coeffs;
  208. a4 += a3;
  209. a5 += a4;
  210. *coeffs = a5;
  211. coeffs++;
  212. }
  213. }
  214. }
  215. }
  216. static int decode_segment(GetBitContext *gb, int mode, int32_t *decoded,
  217. int len)
  218. {
  219. struct CParam code;
  220. int i;
  221. if (!mode) {
  222. memset(decoded, 0, len * sizeof(*decoded));
  223. return 0;
  224. }
  225. if (mode > FF_ARRAY_ELEMS(xcodes))
  226. return AVERROR_INVALIDDATA;
  227. code = xcodes[mode - 1];
  228. for (i = 0; i < len; i++) {
  229. int x = get_bits_long(gb, code.init);
  230. if (x >= code.escape && get_bits1(gb)) {
  231. x |= 1 << code.init;
  232. if (x >= code.aescape) {
  233. int scale = get_unary(gb, 1, 9);
  234. if (scale == 9) {
  235. int scale_bits = get_bits(gb, 3);
  236. if (scale_bits > 0) {
  237. if (scale_bits == 7) {
  238. scale_bits += get_bits(gb, 5);
  239. if (scale_bits > 29)
  240. return AVERROR_INVALIDDATA;
  241. }
  242. scale = get_bits_long(gb, scale_bits) + 1;
  243. x += code.scale * scale;
  244. }
  245. x += code.bias;
  246. } else
  247. x += code.scale * scale - code.escape;
  248. } else
  249. x -= code.escape;
  250. }
  251. decoded[i] = (x >> 1) ^ -(x & 1);
  252. }
  253. return 0;
  254. }
  255. static int decode_residues(TAKDecContext *s, int32_t *decoded, int length)
  256. {
  257. GetBitContext *gb = &s->gb;
  258. int i, mode, ret;
  259. if (length > s->nb_samples)
  260. return AVERROR_INVALIDDATA;
  261. if (get_bits1(gb)) {
  262. int wlength, rval;
  263. int coding_mode[128];
  264. wlength = length / s->uval;
  265. rval = length - (wlength * s->uval);
  266. if (rval < s->uval / 2)
  267. rval += s->uval;
  268. else
  269. wlength++;
  270. if (wlength <= 1 || wlength > 128)
  271. return AVERROR_INVALIDDATA;
  272. coding_mode[0] = mode = get_bits(gb, 6);
  273. for (i = 1; i < wlength; i++) {
  274. int c = get_unary(gb, 1, 6);
  275. switch (c) {
  276. case 6:
  277. mode = get_bits(gb, 6);
  278. break;
  279. case 5:
  280. case 4:
  281. case 3: {
  282. /* mode += sign ? (1 - c) : (c - 1) */
  283. int sign = get_bits1(gb);
  284. mode += (-sign ^ (c - 1)) + sign;
  285. break;
  286. }
  287. case 2:
  288. mode++;
  289. break;
  290. case 1:
  291. mode--;
  292. break;
  293. }
  294. coding_mode[i] = mode;
  295. }
  296. i = 0;
  297. while (i < wlength) {
  298. int len = 0;
  299. mode = coding_mode[i];
  300. do {
  301. if (i >= wlength - 1)
  302. len += rval;
  303. else
  304. len += s->uval;
  305. i++;
  306. if (i == wlength)
  307. break;
  308. } while (coding_mode[i] == mode);
  309. if ((ret = decode_segment(gb, mode, decoded, len)) < 0)
  310. return ret;
  311. decoded += len;
  312. }
  313. } else {
  314. mode = get_bits(gb, 6);
  315. if ((ret = decode_segment(gb, mode, decoded, length)) < 0)
  316. return ret;
  317. }
  318. return 0;
  319. }
  320. static int get_bits_esc4(GetBitContext *gb)
  321. {
  322. if (get_bits1(gb))
  323. return get_bits(gb, 4) + 1;
  324. else
  325. return 0;
  326. }
  327. static void decode_filter_coeffs(TAKDecContext *s, int filter_order, int size,
  328. int filter_quant, int16_t *filter)
  329. {
  330. GetBitContext *gb = &s->gb;
  331. int i, j, a, b;
  332. int filter_tmp[MAX_PREDICTORS];
  333. int16_t predictors[MAX_PREDICTORS];
  334. predictors[0] = get_sbits(gb, 10);
  335. predictors[1] = get_sbits(gb, 10);
  336. predictors[2] = get_sbits(gb, size) << (10 - size);
  337. predictors[3] = get_sbits(gb, size) << (10 - size);
  338. if (filter_order > 4) {
  339. int av_uninit(code_size);
  340. int code_size_base = size - get_bits1(gb);
  341. for (i = 4; i < filter_order; i++) {
  342. if (!(i & 3))
  343. code_size = code_size_base - get_bits(gb, 2);
  344. predictors[i] = get_sbits(gb, code_size) << (10 - size);
  345. }
  346. }
  347. filter_tmp[0] = predictors[0] << 6;
  348. for (i = 1; i < filter_order; i++) {
  349. int *p1 = &filter_tmp[0];
  350. int *p2 = &filter_tmp[i - 1];
  351. for (j = 0; j < (i + 1) / 2; j++) {
  352. int tmp = *p1 + (predictors[i] * *p2 + 256 >> 9);
  353. *p2 = *p2 + (predictors[i] * *p1 + 256 >> 9);
  354. *p1 = tmp;
  355. p1++;
  356. p2--;
  357. }
  358. filter_tmp[i] = predictors[i] << 6;
  359. }
  360. a = 1 << (32 - (15 - filter_quant));
  361. b = 1 << ((15 - filter_quant) - 1);
  362. for (i = 0, j = filter_order - 1; i < filter_order / 2; i++, j--) {
  363. filter[j] = a - ((filter_tmp[i] + b) >> (15 - filter_quant));
  364. filter[i] = a - ((filter_tmp[j] + b) >> (15 - filter_quant));
  365. }
  366. }
  367. static int decode_subframe(TAKDecContext *s, int32_t *decoded,
  368. int subframe_size, int prev_subframe_size)
  369. {
  370. LOCAL_ALIGNED_16(int16_t, filter, [MAX_PREDICTORS]);
  371. GetBitContext *gb = &s->gb;
  372. int i, ret;
  373. int dshift, size, filter_quant, filter_order;
  374. memset(filter, 0, MAX_PREDICTORS * sizeof(*filter));
  375. if (!get_bits1(gb))
  376. return decode_residues(s, decoded, subframe_size);
  377. filter_order = predictor_sizes[get_bits(gb, 4)];
  378. if (prev_subframe_size > 0 && get_bits1(gb)) {
  379. if (filter_order > prev_subframe_size)
  380. return AVERROR_INVALIDDATA;
  381. decoded -= filter_order;
  382. subframe_size += filter_order;
  383. if (filter_order > subframe_size)
  384. return AVERROR_INVALIDDATA;
  385. } else {
  386. int lpc_mode;
  387. if (filter_order > subframe_size)
  388. return AVERROR_INVALIDDATA;
  389. lpc_mode = get_bits(gb, 2);
  390. if (lpc_mode > 2)
  391. return AVERROR_INVALIDDATA;
  392. if ((ret = decode_residues(s, decoded, filter_order)) < 0)
  393. return ret;
  394. if (lpc_mode)
  395. decode_lpc(decoded, lpc_mode, filter_order);
  396. }
  397. dshift = get_bits_esc4(gb);
  398. size = get_bits1(gb) + 6;
  399. filter_quant = 10;
  400. if (get_bits1(gb)) {
  401. filter_quant -= get_bits(gb, 3) + 1;
  402. if (filter_quant < 3)
  403. return AVERROR_INVALIDDATA;
  404. }
  405. decode_filter_coeffs(s, filter_order, size, filter_quant, filter);
  406. if ((ret = decode_residues(s, &decoded[filter_order],
  407. subframe_size - filter_order)) < 0)
  408. return ret;
  409. av_fast_malloc(&s->residues, &s->residues_buf_size,
  410. FFALIGN(subframe_size + 16, 16) * sizeof(*s->residues));
  411. if (!s->residues)
  412. return AVERROR(ENOMEM);
  413. memset(s->residues, 0, s->residues_buf_size);
  414. for (i = 0; i < filter_order; i++)
  415. s->residues[i] = *decoded++ >> dshift;
  416. for (i = 0; i < subframe_size - filter_order; i++) {
  417. int v = 1 << (filter_quant - 1);
  418. v += s->dsp.scalarproduct_int16(&s->residues[i], filter,
  419. FFALIGN(filter_order, 16));
  420. v = (av_clip(v >> filter_quant, -8192, 8191) << dshift) - *decoded;
  421. *decoded++ = v;
  422. s->residues[filter_order + i] = v >> dshift;
  423. }
  424. emms_c();
  425. return 0;
  426. }
  427. static int decode_channel(TAKDecContext *s, int chan)
  428. {
  429. AVCodecContext *avctx = s->avctx;
  430. GetBitContext *gb = &s->gb;
  431. int32_t *decoded = s->decoded[chan];
  432. int left = s->nb_samples - 1;
  433. int i, prev, ret, nb_subframes;
  434. int subframe_len[MAX_SUBFRAMES];
  435. s->sample_shift[chan] = get_bits_esc4(gb);
  436. if (s->sample_shift[chan] >= avctx->bits_per_coded_sample)
  437. return AVERROR_INVALIDDATA;
  438. /* NOTE: TAK 2.2.0 appears to set the sample value to 0 if
  439. * bits_per_coded_sample - sample_shift is 1, but this produces
  440. * non-bit-exact output. Reading the 1 bit using get_sbits() instead
  441. * of skipping it produces bit-exact output. This has been reported
  442. * to the TAK author. */
  443. *decoded++ = get_sbits(gb,
  444. avctx->bits_per_coded_sample -
  445. s->sample_shift[chan]);
  446. s->lpc_mode[chan] = get_bits(gb, 2);
  447. nb_subframes = get_bits(gb, 3) + 1;
  448. i = 0;
  449. if (nb_subframes > 1) {
  450. if (get_bits_left(gb) < (nb_subframes - 1) * 6)
  451. return AVERROR_INVALIDDATA;
  452. prev = 0;
  453. for (; i < nb_subframes - 1; i++) {
  454. int subframe_end = get_bits(gb, 6) * s->subframe_scale;
  455. if (subframe_end <= prev)
  456. return AVERROR_INVALIDDATA;
  457. subframe_len[i] = subframe_end - prev;
  458. left -= subframe_len[i];
  459. prev = subframe_end;
  460. }
  461. if (left <= 0)
  462. return AVERROR_INVALIDDATA;
  463. }
  464. subframe_len[i] = left;
  465. prev = 0;
  466. for (i = 0; i < nb_subframes; i++) {
  467. if ((ret = decode_subframe(s, decoded, subframe_len[i], prev)) < 0)
  468. return ret;
  469. decoded += subframe_len[i];
  470. prev = subframe_len[i];
  471. }
  472. return 0;
  473. }
  474. static int decorrelate(TAKDecContext *s, int c1, int c2, int length)
  475. {
  476. GetBitContext *gb = &s->gb;
  477. int32_t *p1 = s->decoded[c1] + 1;
  478. int32_t *p2 = s->decoded[c2] + 1;
  479. int i;
  480. int dshift, dfactor;
  481. switch (s->dmode) {
  482. case 1: /* left/side */
  483. for (i = 0; i < length; i++) {
  484. int32_t a = p1[i];
  485. int32_t b = p2[i];
  486. p2[i] = a + b;
  487. }
  488. break;
  489. case 2: /* side/right */
  490. for (i = 0; i < length; i++) {
  491. int32_t a = p1[i];
  492. int32_t b = p2[i];
  493. p1[i] = b - a;
  494. }
  495. break;
  496. case 3: /* side/mid */
  497. for (i = 0; i < length; i++) {
  498. int32_t a = p1[i];
  499. int32_t b = p2[i];
  500. a -= b >> 1;
  501. p1[i] = a;
  502. p2[i] = a + b;
  503. }
  504. break;
  505. case 4: /* side/left with scale factor */
  506. FFSWAP(int32_t*, p1, p2);
  507. case 5: /* side/right with scale factor */
  508. dshift = get_bits_esc4(gb);
  509. dfactor = get_sbits(gb, 10);
  510. for (i = 0; i < length; i++) {
  511. int32_t a = p1[i];
  512. int32_t b = p2[i];
  513. b = dfactor * (b >> dshift) + 128 >> 8 << dshift;
  514. p1[i] = b - a;
  515. }
  516. break;
  517. case 6:
  518. FFSWAP(int32_t*, p1, p2);
  519. case 7: {
  520. LOCAL_ALIGNED_16(int16_t, filter, [MAX_PREDICTORS]);
  521. int length2, order_half, filter_order, dval1, dval2;
  522. int av_uninit(code_size);
  523. memset(filter, 0, MAX_PREDICTORS * sizeof(*filter));
  524. if (length < 256)
  525. return AVERROR_INVALIDDATA;
  526. dshift = get_bits_esc4(gb);
  527. filter_order = 8 << get_bits1(gb);
  528. dval1 = get_bits1(gb);
  529. dval2 = get_bits1(gb);
  530. for (i = 0; i < filter_order; i++) {
  531. if (!(i & 3))
  532. code_size = 14 - get_bits(gb, 3);
  533. filter[i] = get_sbits(gb, code_size);
  534. }
  535. order_half = filter_order / 2;
  536. length2 = length - (filter_order - 1);
  537. /* decorrelate beginning samples */
  538. if (dval1) {
  539. for (i = 0; i < order_half; i++) {
  540. int32_t a = p1[i];
  541. int32_t b = p2[i];
  542. p1[i] = a + b;
  543. }
  544. }
  545. /* decorrelate ending samples */
  546. if (dval2) {
  547. for (i = length2 + order_half; i < length; i++) {
  548. int32_t a = p1[i];
  549. int32_t b = p2[i];
  550. p1[i] = a + b;
  551. }
  552. }
  553. av_fast_malloc(&s->residues, &s->residues_buf_size,
  554. FFALIGN(length + 16, 16) * sizeof(*s->residues));
  555. if (!s->residues)
  556. return AVERROR(ENOMEM);
  557. memset(s->residues, 0, s->residues_buf_size);
  558. for (i = 0; i < length; i++)
  559. s->residues[i] = p2[i] >> dshift;
  560. p1 += order_half;
  561. for (i = 0; i < length2; i++) {
  562. int v = 1 << 9;
  563. v += s->dsp.scalarproduct_int16(&s->residues[i], filter,
  564. FFALIGN(filter_order, 16));
  565. p1[i] = (av_clip(v >> 10, -8192, 8191) << dshift) - p1[i];
  566. }
  567. emms_c();
  568. break;
  569. }
  570. }
  571. return 0;
  572. }
  573. static int tak_decode_frame(AVCodecContext *avctx, void *data,
  574. int *got_frame_ptr, AVPacket *pkt)
  575. {
  576. TAKDecContext *s = avctx->priv_data;
  577. GetBitContext *gb = &s->gb;
  578. int chan, i, ret, hsize;
  579. if (pkt->size < TAK_MIN_FRAME_HEADER_BYTES)
  580. return AVERROR_INVALIDDATA;
  581. init_get_bits(gb, pkt->data, pkt->size * 8);
  582. if ((ret = ff_tak_decode_frame_header(avctx, gb, &s->ti, 0)) < 0)
  583. return ret;
  584. if (s->ti.flags & TAK_FRAME_FLAG_HAS_METADATA) {
  585. av_log_missing_feature(avctx, "frame metadata", 1);
  586. return AVERROR_PATCHWELCOME;
  587. }
  588. hsize = get_bits_count(gb) / 8;
  589. if (avctx->err_recognition & AV_EF_CRCCHECK) {
  590. if (ff_tak_check_crc(pkt->data, hsize)) {
  591. av_log(avctx, AV_LOG_ERROR, "CRC error\n");
  592. return AVERROR_INVALIDDATA;
  593. }
  594. }
  595. if (s->ti.codec != TAK_CODEC_MONO_STEREO &&
  596. s->ti.codec != TAK_CODEC_MULTICHANNEL) {
  597. av_log(avctx, AV_LOG_ERROR, "unsupported codec: %d\n", s->ti.codec);
  598. return AVERROR_PATCHWELCOME;
  599. }
  600. if (s->ti.data_type) {
  601. av_log(avctx, AV_LOG_ERROR,
  602. "unsupported data type: %d\n", s->ti.data_type);
  603. return AVERROR_INVALIDDATA;
  604. }
  605. if (s->ti.codec == TAK_CODEC_MONO_STEREO && s->ti.channels > 2) {
  606. av_log(avctx, AV_LOG_ERROR,
  607. "invalid number of channels: %d\n", s->ti.channels);
  608. return AVERROR_INVALIDDATA;
  609. }
  610. if (s->ti.channels > 6) {
  611. av_log(avctx, AV_LOG_ERROR,
  612. "unsupported number of channels: %d\n", s->ti.channels);
  613. return AVERROR_INVALIDDATA;
  614. }
  615. if (s->ti.frame_samples <= 0) {
  616. av_log(avctx, AV_LOG_ERROR, "unsupported/invalid number of samples\n");
  617. return AVERROR_INVALIDDATA;
  618. }
  619. if (s->ti.bps != avctx->bits_per_coded_sample) {
  620. avctx->bits_per_coded_sample = s->ti.bps;
  621. if ((ret = set_bps_params(avctx)) < 0)
  622. return ret;
  623. }
  624. if (s->ti.sample_rate != avctx->sample_rate) {
  625. avctx->sample_rate = s->ti.sample_rate;
  626. set_sample_rate_params(avctx);
  627. }
  628. if (s->ti.ch_layout)
  629. avctx->channel_layout = s->ti.ch_layout;
  630. avctx->channels = s->ti.channels;
  631. s->nb_samples = s->ti.last_frame_samples ? s->ti.last_frame_samples
  632. : s->ti.frame_samples;
  633. s->frame.nb_samples = s->nb_samples;
  634. if ((ret = ff_get_buffer(avctx, &s->frame)) < 0)
  635. return ret;
  636. if (avctx->bits_per_coded_sample <= 16) {
  637. int buf_size = av_samples_get_buffer_size(NULL, avctx->channels,
  638. s->nb_samples,
  639. AV_SAMPLE_FMT_S32P, 0);
  640. av_fast_malloc(&s->decode_buffer, &s->decode_buffer_size, buf_size);
  641. if (!s->decode_buffer)
  642. return AVERROR(ENOMEM);
  643. ret = av_samples_fill_arrays((uint8_t **)s->decoded, NULL,
  644. s->decode_buffer, avctx->channels,
  645. s->nb_samples, AV_SAMPLE_FMT_S32P, 0);
  646. if (ret < 0)
  647. return ret;
  648. } else {
  649. for (chan = 0; chan < avctx->channels; chan++)
  650. s->decoded[chan] = (int32_t *)s->frame.extended_data[chan];
  651. }
  652. if (s->nb_samples < 16) {
  653. for (chan = 0; chan < avctx->channels; chan++) {
  654. int32_t *decoded = s->decoded[chan];
  655. for (i = 0; i < s->nb_samples; i++)
  656. decoded[i] = get_sbits(gb, avctx->bits_per_coded_sample);
  657. }
  658. } else {
  659. if (s->ti.codec == TAK_CODEC_MONO_STEREO) {
  660. for (chan = 0; chan < avctx->channels; chan++)
  661. if (ret = decode_channel(s, chan))
  662. return ret;
  663. if (avctx->channels == 2) {
  664. if (get_bits1(gb)) {
  665. // some kind of subframe length, but it seems to be unused
  666. skip_bits(gb, 6);
  667. }
  668. s->dmode = get_bits(gb, 3);
  669. if (ret = decorrelate(s, 0, 1, s->nb_samples - 1))
  670. return ret;
  671. }
  672. } else if (s->ti.codec == TAK_CODEC_MULTICHANNEL) {
  673. if (get_bits1(gb)) {
  674. int ch_mask = 0;
  675. chan = get_bits(gb, 4) + 1;
  676. if (chan > avctx->channels)
  677. return AVERROR_INVALIDDATA;
  678. for (i = 0; i < chan; i++) {
  679. int nbit = get_bits(gb, 4);
  680. if (nbit >= avctx->channels)
  681. return AVERROR_INVALIDDATA;
  682. if (ch_mask & 1 << nbit)
  683. return AVERROR_INVALIDDATA;
  684. s->mcdparams[i].present = get_bits1(gb);
  685. if (s->mcdparams[i].present) {
  686. s->mcdparams[i].index = get_bits(gb, 2);
  687. s->mcdparams[i].chan2 = get_bits(gb, 4);
  688. if (s->mcdparams[i].index == 1) {
  689. if ((nbit == s->mcdparams[i].chan2) ||
  690. (ch_mask & 1 << s->mcdparams[i].chan2))
  691. return AVERROR_INVALIDDATA;
  692. ch_mask |= 1 << s->mcdparams[i].chan2;
  693. } else if (!(ch_mask & 1 << s->mcdparams[i].chan2)) {
  694. return AVERROR_INVALIDDATA;
  695. }
  696. }
  697. s->mcdparams[i].chan1 = nbit;
  698. ch_mask |= 1 << nbit;
  699. }
  700. } else {
  701. chan = avctx->channels;
  702. for (i = 0; i < chan; i++) {
  703. s->mcdparams[i].present = 0;
  704. s->mcdparams[i].chan1 = i;
  705. }
  706. }
  707. for (i = 0; i < chan; i++) {
  708. if (s->mcdparams[i].present && s->mcdparams[i].index == 1)
  709. if (ret = decode_channel(s, s->mcdparams[i].chan2))
  710. return ret;
  711. if (ret = decode_channel(s, s->mcdparams[i].chan1))
  712. return ret;
  713. if (s->mcdparams[i].present) {
  714. s->dmode = mc_dmodes[s->mcdparams[i].index];
  715. if (ret = decorrelate(s,
  716. s->mcdparams[i].chan2,
  717. s->mcdparams[i].chan1,
  718. s->nb_samples - 1))
  719. return ret;
  720. }
  721. }
  722. }
  723. for (chan = 0; chan < avctx->channels; chan++) {
  724. int32_t *decoded = s->decoded[chan];
  725. if (s->lpc_mode[chan])
  726. decode_lpc(decoded, s->lpc_mode[chan], s->nb_samples);
  727. if (s->sample_shift[chan] > 0)
  728. for (i = 0; i < s->nb_samples; i++)
  729. decoded[i] <<= s->sample_shift[chan];
  730. }
  731. }
  732. align_get_bits(gb);
  733. skip_bits(gb, 24);
  734. if (get_bits_left(gb) < 0)
  735. av_log(avctx, AV_LOG_DEBUG, "overread\n");
  736. else if (get_bits_left(gb) > 0)
  737. av_log(avctx, AV_LOG_DEBUG, "underread\n");
  738. if (avctx->err_recognition & AV_EF_CRCCHECK) {
  739. if (ff_tak_check_crc(pkt->data + hsize,
  740. get_bits_count(gb) / 8 - hsize)) {
  741. av_log(avctx, AV_LOG_ERROR, "CRC error\n");
  742. return AVERROR_INVALIDDATA;
  743. }
  744. }
  745. /* convert to output buffer */
  746. switch (avctx->sample_fmt) {
  747. case AV_SAMPLE_FMT_U8P:
  748. for (chan = 0; chan < avctx->channels; chan++) {
  749. uint8_t *samples = (uint8_t *)s->frame.extended_data[chan];
  750. int32_t *decoded = s->decoded[chan];
  751. for (i = 0; i < s->nb_samples; i++)
  752. samples[i] = decoded[i] + 0x80;
  753. }
  754. break;
  755. case AV_SAMPLE_FMT_S16P:
  756. for (chan = 0; chan < avctx->channels; chan++) {
  757. int16_t *samples = (int16_t *)s->frame.extended_data[chan];
  758. int32_t *decoded = s->decoded[chan];
  759. for (i = 0; i < s->nb_samples; i++)
  760. samples[i] = decoded[i];
  761. }
  762. break;
  763. case AV_SAMPLE_FMT_S32P:
  764. for (chan = 0; chan < avctx->channels; chan++) {
  765. int32_t *samples = (int32_t *)s->frame.extended_data[chan];
  766. for (i = 0; i < s->nb_samples; i++)
  767. samples[i] <<= 8;
  768. }
  769. break;
  770. }
  771. *got_frame_ptr = 1;
  772. *(AVFrame *)data = s->frame;
  773. return pkt->size;
  774. }
  775. static av_cold int tak_decode_close(AVCodecContext *avctx)
  776. {
  777. TAKDecContext *s = avctx->priv_data;
  778. av_freep(&s->decode_buffer);
  779. av_freep(&s->residues);
  780. return 0;
  781. }
  782. AVCodec ff_tak_decoder = {
  783. .name = "tak",
  784. .type = AVMEDIA_TYPE_AUDIO,
  785. .id = AV_CODEC_ID_TAK,
  786. .priv_data_size = sizeof(TAKDecContext),
  787. .init = tak_decode_init,
  788. .init_static_data = tak_init_static_data,
  789. .close = tak_decode_close,
  790. .decode = tak_decode_frame,
  791. .capabilities = CODEC_CAP_DR1,
  792. .long_name = NULL_IF_CONFIG_SMALL("TAK (Tom's lossless Audio Kompressor)"),
  793. .sample_fmts = (const enum AVSampleFormat[]) { AV_SAMPLE_FMT_U8P,
  794. AV_SAMPLE_FMT_S16P,
  795. AV_SAMPLE_FMT_S32P,
  796. AV_SAMPLE_FMT_NONE },
  797. };