You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

3426 lines
95KB

  1. @chapter Filtergraph description
  2. @c man begin FILTERGRAPH DESCRIPTION
  3. A filtergraph is a directed graph of connected filters. It can contain
  4. cycles, and there can be multiple links between a pair of
  5. filters. Each link has one input pad on one side connecting it to one
  6. filter from which it takes its input, and one output pad on the other
  7. side connecting it to the one filter accepting its output.
  8. Each filter in a filtergraph is an instance of a filter class
  9. registered in the application, which defines the features and the
  10. number of input and output pads of the filter.
  11. A filter with no input pads is called a "source", a filter with no
  12. output pads is called a "sink".
  13. @section Filtergraph syntax
  14. A filtergraph can be represented using a textual representation, which
  15. is recognized by the @code{-vf} option of the ff*
  16. tools, and by the @code{avfilter_graph_parse()} function defined in
  17. @file{libavfilter/avfiltergraph.h}.
  18. A filterchain consists of a sequence of connected filters, each one
  19. connected to the previous one in the sequence. A filterchain is
  20. represented by a list of ","-separated filter descriptions.
  21. A filtergraph consists of a sequence of filterchains. A sequence of
  22. filterchains is represented by a list of ";"-separated filterchain
  23. descriptions.
  24. A filter is represented by a string of the form:
  25. [@var{in_link_1}]...[@var{in_link_N}]@var{filter_name}=@var{arguments}[@var{out_link_1}]...[@var{out_link_M}]
  26. @var{filter_name} is the name of the filter class of which the
  27. described filter is an instance of, and has to be the name of one of
  28. the filter classes registered in the program.
  29. The name of the filter class is optionally followed by a string
  30. "=@var{arguments}".
  31. @var{arguments} is a string which contains the parameters used to
  32. initialize the filter instance, and are described in the filter
  33. descriptions below.
  34. The list of arguments can be quoted using the character "'" as initial
  35. and ending mark, and the character '\' for escaping the characters
  36. within the quoted text; otherwise the argument string is considered
  37. terminated when the next special character (belonging to the set
  38. "[]=;,") is encountered.
  39. The name and arguments of the filter are optionally preceded and
  40. followed by a list of link labels.
  41. A link label allows to name a link and associate it to a filter output
  42. or input pad. The preceding labels @var{in_link_1}
  43. ... @var{in_link_N}, are associated to the filter input pads,
  44. the following labels @var{out_link_1} ... @var{out_link_M}, are
  45. associated to the output pads.
  46. When two link labels with the same name are found in the
  47. filtergraph, a link between the corresponding input and output pad is
  48. created.
  49. If an output pad is not labelled, it is linked by default to the first
  50. unlabelled input pad of the next filter in the filterchain.
  51. For example in the filterchain:
  52. @example
  53. nullsrc, split[L1], [L2]overlay, nullsink
  54. @end example
  55. the split filter instance has two output pads, and the overlay filter
  56. instance two input pads. The first output pad of split is labelled
  57. "L1", the first input pad of overlay is labelled "L2", and the second
  58. output pad of split is linked to the second input pad of overlay,
  59. which are both unlabelled.
  60. In a complete filterchain all the unlabelled filter input and output
  61. pads must be connected. A filtergraph is considered valid if all the
  62. filter input and output pads of all the filterchains are connected.
  63. Follows a BNF description for the filtergraph syntax:
  64. @example
  65. @var{NAME} ::= sequence of alphanumeric characters and '_'
  66. @var{LINKLABEL} ::= "[" @var{NAME} "]"
  67. @var{LINKLABELS} ::= @var{LINKLABEL} [@var{LINKLABELS}]
  68. @var{FILTER_ARGUMENTS} ::= sequence of chars (eventually quoted)
  69. @var{FILTER} ::= [@var{LINKNAMES}] @var{NAME} ["=" @var{ARGUMENTS}] [@var{LINKNAMES}]
  70. @var{FILTERCHAIN} ::= @var{FILTER} [,@var{FILTERCHAIN}]
  71. @var{FILTERGRAPH} ::= @var{FILTERCHAIN} [;@var{FILTERGRAPH}]
  72. @end example
  73. @c man end FILTERGRAPH DESCRIPTION
  74. @chapter Audio Filters
  75. @c man begin AUDIO FILTERS
  76. When you configure your FFmpeg build, you can disable any of the
  77. existing filters using @code{--disable-filters}.
  78. The configure output will show the audio filters included in your
  79. build.
  80. Below is a description of the currently available audio filters.
  81. @section aconvert
  82. Convert the input audio format to the specified formats.
  83. The filter accepts a string of the form:
  84. "@var{sample_format}:@var{channel_layout}".
  85. @var{sample_format} specifies the sample format, and can be a string or the
  86. corresponding numeric value defined in @file{libavutil/samplefmt.h}. Use 'p'
  87. suffix for a planar sample format.
  88. @var{channel_layout} specifies the channel layout, and can be a string
  89. or the corresponding number value defined in @file{libavutil/audioconvert.h}.
  90. The special parameter "auto", signifies that the filter will
  91. automatically select the output format depending on the output filter.
  92. Some examples follow.
  93. @itemize
  94. @item
  95. Convert input to float, planar, stereo:
  96. @example
  97. aconvert=fltp:stereo
  98. @end example
  99. @item
  100. Convert input to unsigned 8-bit, automatically select out channel layout:
  101. @example
  102. aconvert=u8:auto
  103. @end example
  104. @end itemize
  105. @section aformat
  106. Convert the input audio to one of the specified formats. The framework will
  107. negotiate the most appropriate format to minimize conversions.
  108. The filter accepts three lists of formats, separated by ":", in the form:
  109. "@var{sample_formats}:@var{channel_layouts}:@var{packing_formats}".
  110. Elements in each list are separated by "," which has to be escaped in the
  111. filtergraph specification.
  112. The special parameter "all", in place of a list of elements, signifies all
  113. supported formats.
  114. Some examples follow:
  115. @example
  116. aformat=u8\\,s16:mono:packed
  117. aformat=s16:mono\\,stereo:all
  118. @end example
  119. @section amerge
  120. Merge two audio streams into a single multi-channel stream.
  121. This filter does not need any argument.
  122. If the channel layouts of the inputs are disjoint, and therefore compatible,
  123. the channel layout of the output will be set accordingly and the channels
  124. will be reordered as necessary. If the channel layouts of the inputs are not
  125. disjoint, the output will have all the channels of the first input then all
  126. the channels of the second input, in that order, and the channel layout of
  127. the output will be the default value corresponding to the total number of
  128. channels.
  129. For example, if the first input is in 2.1 (FL+FR+LF) and the second input
  130. is FC+BL+BR, then the output will be in 5.1, with the channels in the
  131. following order: a1, a2, b1, a3, b2, b3 (a1 is the first channel of the
  132. first input, b1 is the first channel of the second input).
  133. On the other hand, if both input are in stereo, the output channels will be
  134. in the default order: a1, a2, b1, b2, and the channel layout will be
  135. arbitrarily set to 4.0, which may or may not be the expected value.
  136. Both inputs must have the same sample rate, format and packing.
  137. If inputs do not have the same duration, the output will stop with the
  138. shortest.
  139. Example: merge two mono files into a stereo stream:
  140. @example
  141. amovie=left.wav [l] ; amovie=right.mp3 [r] ; [l] [r] amerge
  142. @end example
  143. If you need to do multiple merges (for instance multiple mono audio streams in
  144. a single video media), you can do:
  145. @example
  146. ffmpeg -f lavfi -i "
  147. amovie=input.mkv:si=0 [a0];
  148. amovie=input.mkv:si=1 [a1];
  149. amovie=input.mkv:si=2 [a2];
  150. amovie=input.mkv:si=3 [a3];
  151. amovie=input.mkv:si=4 [a4];
  152. amovie=input.mkv:si=5 [a5];
  153. [a0][a1] amerge [x0];
  154. [x0][a2] amerge [x1];
  155. [x1][a3] amerge [x2];
  156. [x2][a4] amerge [x3];
  157. [x3][a5] amerge" -c:a pcm_s16le output.mkv
  158. @end example
  159. @section anull
  160. Pass the audio source unchanged to the output.
  161. @section aresample
  162. Resample the input audio to the specified sample rate.
  163. The filter accepts exactly one parameter, the output sample rate. If not
  164. specified then the filter will automatically convert between its input
  165. and output sample rates.
  166. For example, to resample the input audio to 44100Hz:
  167. @example
  168. aresample=44100
  169. @end example
  170. @section ashowinfo
  171. Show a line containing various information for each input audio frame.
  172. The input audio is not modified.
  173. The shown line contains a sequence of key/value pairs of the form
  174. @var{key}:@var{value}.
  175. A description of each shown parameter follows:
  176. @table @option
  177. @item n
  178. sequential number of the input frame, starting from 0
  179. @item pts
  180. presentation TimeStamp of the input frame, expressed as a number of
  181. time base units. The time base unit depends on the filter input pad, and
  182. is usually 1/@var{sample_rate}.
  183. @item pts_time
  184. presentation TimeStamp of the input frame, expressed as a number of
  185. seconds
  186. @item pos
  187. position of the frame in the input stream, -1 if this information in
  188. unavailable and/or meaningless (for example in case of synthetic audio)
  189. @item fmt
  190. sample format name
  191. @item chlayout
  192. channel layout description
  193. @item nb_samples
  194. number of samples (per each channel) contained in the filtered frame
  195. @item rate
  196. sample rate for the audio frame
  197. @item planar
  198. if the packing format is planar, 0 if packed
  199. @item checksum
  200. Adler-32 checksum (printed in hexadecimal) of all the planes of the input frame
  201. @item plane_checksum
  202. Adler-32 checksum (printed in hexadecimal) for each input frame plane,
  203. expressed in the form "[@var{c0} @var{c1} @var{c2} @var{c3} @var{c4} @var{c5}
  204. @var{c6} @var{c7}]"
  205. @end table
  206. @section asplit
  207. Pass on the input audio to two outputs. Both outputs are identical to
  208. the input audio.
  209. For example:
  210. @example
  211. [in] asplit[out0], showaudio[out1]
  212. @end example
  213. will create two separate outputs from the same input, one cropped and
  214. one padded.
  215. @section astreamsync
  216. Forward two audio streams and control the order the buffers are forwarded.
  217. The argument to the filter is an expression deciding which stream should be
  218. forwarded next: if the result is negative, the first stream is forwarded; if
  219. the result is positive or zero, the second stream is forwarded. It can use
  220. the following variables:
  221. @table @var
  222. @item b1 b2
  223. number of buffers forwarded so far on each stream
  224. @item s1 s2
  225. number of samples forwarded so far on each stream
  226. @item t1 t2
  227. current timestamp of each stream
  228. @end table
  229. The default value is @code{t1-t2}, which means to always forward the stream
  230. that has a smaller timestamp.
  231. Example: stress-test @code{amerge} by randomly sending buffers on the wrong
  232. input, while avoiding too much of a desynchronization:
  233. @example
  234. amovie=file.ogg [a] ; amovie=file.mp3 [b] ;
  235. [a] [b] astreamsync=(2*random(1))-1+tanh(5*(t1-t2)) [a2] [b2] ;
  236. [a2] [b2] amerge
  237. @end example
  238. @section earwax
  239. Make audio easier to listen to on headphones.
  240. This filter adds `cues' to 44.1kHz stereo (i.e. audio CD format) audio
  241. so that when listened to on headphones the stereo image is moved from
  242. inside your head (standard for headphones) to outside and in front of
  243. the listener (standard for speakers).
  244. Ported from SoX.
  245. @section pan
  246. Mix channels with specific gain levels. The filter accepts the output
  247. channel layout followed by a set of channels definitions.
  248. This filter is also designed to remap efficiently the channels of an audio
  249. stream.
  250. The filter accepts parameters of the form:
  251. "@var{l}:@var{outdef}:@var{outdef}:..."
  252. @table @option
  253. @item l
  254. output channel layout or number of channels
  255. @item outdef
  256. output channel specification, of the form:
  257. "@var{out_name}=[@var{gain}*]@var{in_name}[+[@var{gain}*]@var{in_name}...]"
  258. @item out_name
  259. output channel to define, either a channel name (FL, FR, etc.) or a channel
  260. number (c0, c1, etc.)
  261. @item gain
  262. multiplicative coefficient for the channel, 1 leaving the volume unchanged
  263. @item in_name
  264. input channel to use, see out_name for details; it is not possible to mix
  265. named and numbered input channels
  266. @end table
  267. If the `=' in a channel specification is replaced by `<', then the gains for
  268. that specification will be renormalized so that the total is 1, thus
  269. avoiding clipping noise.
  270. @subsection Mixing examples
  271. For example, if you want to down-mix from stereo to mono, but with a bigger
  272. factor for the left channel:
  273. @example
  274. pan=1:c0=0.9*c0+0.1*c1
  275. @end example
  276. A customized down-mix to stereo that works automatically for 3-, 4-, 5- and
  277. 7-channels surround:
  278. @example
  279. pan=stereo: FL < FL + 0.5*FC + 0.6*BL + 0.6*SL : FR < FR + 0.5*FC + 0.6*BR + 0.6*SR
  280. @end example
  281. Note that @command{ffmpeg} integrates a default down-mix (and up-mix) system
  282. that should be preferred (see "-ac" option) unless you have very specific
  283. needs.
  284. @subsection Remapping examples
  285. The channel remapping will be effective if, and only if:
  286. @itemize
  287. @item gain coefficients are zeroes or ones,
  288. @item only one input per channel output,
  289. @end itemize
  290. If all these conditions are satisfied, the filter will notify the user ("Pure
  291. channel mapping detected"), and use an optimized and lossless method to do the
  292. remapping.
  293. For example, if you have a 5.1 source and want a stereo audio stream by
  294. dropping the extra channels:
  295. @example
  296. pan="stereo: c0=FL : c1=FR"
  297. @end example
  298. Given the same source, you can also switch front left and front right channels
  299. and keep the input channel layout:
  300. @example
  301. pan="5.1: c0=c1 : c1=c0 : c2=c2 : c3=c3 : c4=c4 : c5=c5"
  302. @end example
  303. If the input is a stereo audio stream, you can mute the front left channel (and
  304. still keep the stereo channel layout) with:
  305. @example
  306. pan="stereo:c1=c1"
  307. @end example
  308. Still with a stereo audio stream input, you can copy the right channel in both
  309. front left and right:
  310. @example
  311. pan="stereo: c0=FR : c1=FR"
  312. @end example
  313. @section silencedetect
  314. Detect silence in an audio stream.
  315. This filter logs a message when it detects that the input audio volume is less
  316. or equal to a noise tolerance value for a duration greater or equal to the
  317. minimum detected noise duration.
  318. The printed times and duration are expressed in seconds.
  319. @table @option
  320. @item duration, d
  321. Set silence duration until notification (default is 2 seconds).
  322. @item noise, n
  323. Set noise tolerance. Can be specified in dB (in case "dB" is appended to the
  324. specified value) or amplitude ratio. Default is -60dB, or 0.001.
  325. @end table
  326. Detect 5 seconds of silence with -50dB noise tolerance:
  327. @example
  328. silencedetect=n=-50dB:d=5
  329. @end example
  330. Complete example with @command{ffmpeg} to detect silence with 0.0001 noise
  331. tolerance in @file{silence.mp3}:
  332. @example
  333. ffmpeg -f lavfi -i amovie=silence.mp3,silencedetect=noise=0.0001 -f null -
  334. @end example
  335. @section volume
  336. Adjust the input audio volume.
  337. The filter accepts exactly one parameter @var{vol}, which expresses
  338. how the audio volume will be increased or decreased.
  339. Output values are clipped to the maximum value.
  340. If @var{vol} is expressed as a decimal number, the output audio
  341. volume is given by the relation:
  342. @example
  343. @var{output_volume} = @var{vol} * @var{input_volume}
  344. @end example
  345. If @var{vol} is expressed as a decimal number followed by the string
  346. "dB", the value represents the requested change in decibels of the
  347. input audio power, and the output audio volume is given by the
  348. relation:
  349. @example
  350. @var{output_volume} = 10^(@var{vol}/20) * @var{input_volume}
  351. @end example
  352. Otherwise @var{vol} is considered an expression and its evaluated
  353. value is used for computing the output audio volume according to the
  354. first relation.
  355. Default value for @var{vol} is 1.0.
  356. @subsection Examples
  357. @itemize
  358. @item
  359. Half the input audio volume:
  360. @example
  361. volume=0.5
  362. @end example
  363. The above example is equivalent to:
  364. @example
  365. volume=1/2
  366. @end example
  367. @item
  368. Decrease input audio power by 12 decibels:
  369. @example
  370. volume=-12dB
  371. @end example
  372. @end itemize
  373. @c man end AUDIO FILTERS
  374. @chapter Audio Sources
  375. @c man begin AUDIO SOURCES
  376. Below is a description of the currently available audio sources.
  377. @section abuffer
  378. Buffer audio frames, and make them available to the filter chain.
  379. This source is mainly intended for a programmatic use, in particular
  380. through the interface defined in @file{libavfilter/asrc_abuffer.h}.
  381. It accepts the following mandatory parameters:
  382. @var{sample_rate}:@var{sample_fmt}:@var{channel_layout}:@var{packing}
  383. @table @option
  384. @item sample_rate
  385. The sample rate of the incoming audio buffers.
  386. @item sample_fmt
  387. The sample format of the incoming audio buffers.
  388. Either a sample format name or its corresponging integer representation from
  389. the enum AVSampleFormat in @file{libavutil/samplefmt.h}
  390. @item channel_layout
  391. The channel layout of the incoming audio buffers.
  392. Either a channel layout name from channel_layout_map in
  393. @file{libavutil/audioconvert.c} or its corresponding integer representation
  394. from the AV_CH_LAYOUT_* macros in @file{libavutil/audioconvert.h}
  395. @item packing
  396. Either "packed" or "planar", or their integer representation: 0 or 1
  397. respectively.
  398. @end table
  399. For example:
  400. @example
  401. abuffer=44100:s16:stereo:planar
  402. @end example
  403. will instruct the source to accept planar 16bit signed stereo at 44100Hz.
  404. Since the sample format with name "s16" corresponds to the number
  405. 1 and the "stereo" channel layout corresponds to the value 0x3, this is
  406. equivalent to:
  407. @example
  408. abuffer=44100:1:0x3:1
  409. @end example
  410. @section aevalsrc
  411. Generate an audio signal specified by an expression.
  412. This source accepts in input one or more expressions (one for each
  413. channel), which are evaluated and used to generate a corresponding
  414. audio signal.
  415. It accepts the syntax: @var{exprs}[::@var{options}].
  416. @var{exprs} is a list of expressions separated by ":", one for each
  417. separate channel. The output channel layout depends on the number of
  418. provided expressions, up to 8 channels are supported.
  419. @var{options} is an optional sequence of @var{key}=@var{value} pairs,
  420. separated by ":".
  421. The description of the accepted options follows.
  422. @table @option
  423. @item duration, d
  424. Set the minimum duration of the sourced audio. See the function
  425. @code{av_parse_time()} for the accepted format.
  426. Note that the resulting duration may be greater than the specified
  427. duration, as the generated audio is always cut at the end of a
  428. complete frame.
  429. If not specified, or the expressed duration is negative, the audio is
  430. supposed to be generated forever.
  431. @item nb_samples, n
  432. Set the number of samples per channel per each output frame,
  433. default to 1024.
  434. @item sample_rate, s
  435. Specify the sample rate, default to 44100.
  436. @end table
  437. Each expression in @var{exprs} can contain the following constants:
  438. @table @option
  439. @item n
  440. number of the evaluated sample, starting from 0
  441. @item t
  442. time of the evaluated sample expressed in seconds, starting from 0
  443. @item s
  444. sample rate
  445. @end table
  446. @subsection Examples
  447. @itemize
  448. @item
  449. Generate silence:
  450. @example
  451. aevalsrc=0
  452. @end example
  453. @item
  454. Generate a sin signal with frequency of 440 Hz, set sample rate to
  455. 8000 Hz:
  456. @example
  457. aevalsrc="sin(440*2*PI*t)::s=8000"
  458. @end example
  459. @item
  460. Generate white noise:
  461. @example
  462. aevalsrc="-2+random(0)"
  463. @end example
  464. @item
  465. Generate an amplitude modulated signal:
  466. @example
  467. aevalsrc="sin(10*2*PI*t)*sin(880*2*PI*t)"
  468. @end example
  469. @item
  470. Generate 2.5 Hz binaural beats on a 360 Hz carrier:
  471. @example
  472. aevalsrc="0.1*sin(2*PI*(360-2.5/2)*t) : 0.1*sin(2*PI*(360+2.5/2)*t)"
  473. @end example
  474. @end itemize
  475. @section amovie
  476. Read an audio stream from a movie container.
  477. It accepts the syntax: @var{movie_name}[:@var{options}] where
  478. @var{movie_name} is the name of the resource to read (not necessarily
  479. a file but also a device or a stream accessed through some protocol),
  480. and @var{options} is an optional sequence of @var{key}=@var{value}
  481. pairs, separated by ":".
  482. The description of the accepted options follows.
  483. @table @option
  484. @item format_name, f
  485. Specify the format assumed for the movie to read, and can be either
  486. the name of a container or an input device. If not specified the
  487. format is guessed from @var{movie_name} or by probing.
  488. @item seek_point, sp
  489. Specify the seek point in seconds, the frames will be output
  490. starting from this seek point, the parameter is evaluated with
  491. @code{av_strtod} so the numerical value may be suffixed by an IS
  492. postfix. Default value is "0".
  493. @item stream_index, si
  494. Specify the index of the audio stream to read. If the value is -1,
  495. the best suited audio stream will be automatically selected. Default
  496. value is "-1".
  497. @end table
  498. @section anullsrc
  499. Null audio source, return unprocessed audio frames. It is mainly useful
  500. as a template and to be employed in analysis / debugging tools, or as
  501. the source for filters which ignore the input data (for example the sox
  502. synth filter).
  503. It accepts an optional sequence of @var{key}=@var{value} pairs,
  504. separated by ":".
  505. The description of the accepted options follows.
  506. @table @option
  507. @item sample_rate, s
  508. Specify the sample rate, and defaults to 44100.
  509. @item channel_layout, cl
  510. Specify the channel layout, and can be either an integer or a string
  511. representing a channel layout. The default value of @var{channel_layout}
  512. is "stereo".
  513. Check the channel_layout_map definition in
  514. @file{libavcodec/audioconvert.c} for the mapping between strings and
  515. channel layout values.
  516. @item nb_samples, n
  517. Set the number of samples per requested frames.
  518. @end table
  519. Follow some examples:
  520. @example
  521. # set the sample rate to 48000 Hz and the channel layout to AV_CH_LAYOUT_MONO.
  522. anullsrc=r=48000:cl=4
  523. # same as
  524. anullsrc=r=48000:cl=mono
  525. @end example
  526. @c man end AUDIO SOURCES
  527. @chapter Audio Sinks
  528. @c man begin AUDIO SINKS
  529. Below is a description of the currently available audio sinks.
  530. @section abuffersink
  531. Buffer audio frames, and make them available to the end of filter chain.
  532. This sink is mainly intended for programmatic use, in particular
  533. through the interface defined in @file{libavfilter/buffersink.h}.
  534. It requires a pointer to an AVABufferSinkContext structure, which
  535. defines the incoming buffers' formats, to be passed as the opaque
  536. parameter to @code{avfilter_init_filter} for initialization.
  537. @section anullsink
  538. Null audio sink, do absolutely nothing with the input audio. It is
  539. mainly useful as a template and to be employed in analysis / debugging
  540. tools.
  541. @c man end AUDIO SINKS
  542. @chapter Video Filters
  543. @c man begin VIDEO FILTERS
  544. When you configure your FFmpeg build, you can disable any of the
  545. existing filters using @code{--disable-filters}.
  546. The configure output will show the video filters included in your
  547. build.
  548. Below is a description of the currently available video filters.
  549. @section ass
  550. Draw ASS (Advanced Substation Alpha) subtitles on top of input video
  551. using the libass library.
  552. To enable compilation of this filter you need to configure FFmpeg with
  553. @code{--enable-libass}.
  554. This filter accepts in input the name of the ass file to render.
  555. For example, to render the file @file{sub.ass} on top of the input
  556. video, use the command:
  557. @example
  558. ass=sub.ass
  559. @end example
  560. @section blackdetect
  561. Detect video intervals that are (almost) completely black. Can be
  562. useful to detect chapter transitions, commercials, or invalid
  563. recordings. Output lines contains the time for the start, end and
  564. duration of the detected black interval expressed in seconds.
  565. In order to display the output lines, you need to set the loglevel at
  566. least to the AV_LOG_INFO value.
  567. This filter accepts a list of options in the form of
  568. @var{key}=@var{value} pairs separated by ":". A description of the
  569. accepted options follows.
  570. @table @option
  571. @item black_min_duration, d
  572. Set the minimum detected black duration expressed in seconds. It must
  573. be a non-negative floating point number.
  574. Default value is 2.0.
  575. @item picture_black_ratio_th, pic_th
  576. Set the threshold for considering a picture "black".
  577. Express the minimum value for the ratio:
  578. @example
  579. @var{nb_black_pixels} / @var{nb_pixels}
  580. @end example
  581. for which a picture is considered black.
  582. Default value is 0.98.
  583. @item pixel_black_th, pix_th
  584. Set the threshold for considering a pixel "black".
  585. The threshold expresses the maximum pixel luminance value for which a
  586. pixel is considered "black". The provided value is scaled according to
  587. the following equation:
  588. @example
  589. @var{absolute_threshold} = @var{luminance_minimum_value} + @var{pixel_black_th} * @var{luminance_range_size}
  590. @end example
  591. @var{luminance_range_size} and @var{luminance_minimum_value} depend on
  592. the input video format, the range is [0-255] for YUV full-range
  593. formats and [16-235] for YUV non full-range formats.
  594. Default value is 0.10.
  595. @end table
  596. The following example sets the maximum pixel threshold to the minimum
  597. value, and detects only black intervals of 2 or more seconds:
  598. @example
  599. blackdetect=d=2:pix_th=0.00
  600. @end example
  601. @section blackframe
  602. Detect frames that are (almost) completely black. Can be useful to
  603. detect chapter transitions or commercials. Output lines consist of
  604. the frame number of the detected frame, the percentage of blackness,
  605. the position in the file if known or -1 and the timestamp in seconds.
  606. In order to display the output lines, you need to set the loglevel at
  607. least to the AV_LOG_INFO value.
  608. The filter accepts the syntax:
  609. @example
  610. blackframe[=@var{amount}:[@var{threshold}]]
  611. @end example
  612. @var{amount} is the percentage of the pixels that have to be below the
  613. threshold, and defaults to 98.
  614. @var{threshold} is the threshold below which a pixel value is
  615. considered black, and defaults to 32.
  616. @section boxblur
  617. Apply boxblur algorithm to the input video.
  618. This filter accepts the parameters:
  619. @var{luma_radius}:@var{luma_power}:@var{chroma_radius}:@var{chroma_power}:@var{alpha_radius}:@var{alpha_power}
  620. Chroma and alpha parameters are optional, if not specified they default
  621. to the corresponding values set for @var{luma_radius} and
  622. @var{luma_power}.
  623. @var{luma_radius}, @var{chroma_radius}, and @var{alpha_radius} represent
  624. the radius in pixels of the box used for blurring the corresponding
  625. input plane. They are expressions, and can contain the following
  626. constants:
  627. @table @option
  628. @item w, h
  629. the input width and height in pixels
  630. @item cw, ch
  631. the input chroma image width and height in pixels
  632. @item hsub, vsub
  633. horizontal and vertical chroma subsample values. For example for the
  634. pixel format "yuv422p" @var{hsub} is 2 and @var{vsub} is 1.
  635. @end table
  636. The radius must be a non-negative number, and must not be greater than
  637. the value of the expression @code{min(w,h)/2} for the luma and alpha planes,
  638. and of @code{min(cw,ch)/2} for the chroma planes.
  639. @var{luma_power}, @var{chroma_power}, and @var{alpha_power} represent
  640. how many times the boxblur filter is applied to the corresponding
  641. plane.
  642. Some examples follow:
  643. @itemize
  644. @item
  645. Apply a boxblur filter with luma, chroma, and alpha radius
  646. set to 2:
  647. @example
  648. boxblur=2:1
  649. @end example
  650. @item
  651. Set luma radius to 2, alpha and chroma radius to 0
  652. @example
  653. boxblur=2:1:0:0:0:0
  654. @end example
  655. @item
  656. Set luma and chroma radius to a fraction of the video dimension
  657. @example
  658. boxblur=min(h\,w)/10:1:min(cw\,ch)/10:1
  659. @end example
  660. @end itemize
  661. @section copy
  662. Copy the input source unchanged to the output. Mainly useful for
  663. testing purposes.
  664. @section crop
  665. Crop the input video to @var{out_w}:@var{out_h}:@var{x}:@var{y}:@var{keep_aspect}
  666. The @var{keep_aspect} parameter is optional, if specified and set to a
  667. non-zero value will force the output display aspect ratio to be the
  668. same of the input, by changing the output sample aspect ratio.
  669. The @var{out_w}, @var{out_h}, @var{x}, @var{y} parameters are
  670. expressions containing the following constants:
  671. @table @option
  672. @item x, y
  673. the computed values for @var{x} and @var{y}. They are evaluated for
  674. each new frame.
  675. @item in_w, in_h
  676. the input width and height
  677. @item iw, ih
  678. same as @var{in_w} and @var{in_h}
  679. @item out_w, out_h
  680. the output (cropped) width and height
  681. @item ow, oh
  682. same as @var{out_w} and @var{out_h}
  683. @item a
  684. same as @var{iw} / @var{ih}
  685. @item sar
  686. input sample aspect ratio
  687. @item dar
  688. input display aspect ratio, it is the same as (@var{iw} / @var{ih}) * @var{sar}
  689. @item hsub, vsub
  690. horizontal and vertical chroma subsample values. For example for the
  691. pixel format "yuv422p" @var{hsub} is 2 and @var{vsub} is 1.
  692. @item n
  693. the number of input frame, starting from 0
  694. @item pos
  695. the position in the file of the input frame, NAN if unknown
  696. @item t
  697. timestamp expressed in seconds, NAN if the input timestamp is unknown
  698. @end table
  699. The @var{out_w} and @var{out_h} parameters specify the expressions for
  700. the width and height of the output (cropped) video. They are
  701. evaluated just at the configuration of the filter.
  702. The default value of @var{out_w} is "in_w", and the default value of
  703. @var{out_h} is "in_h".
  704. The expression for @var{out_w} may depend on the value of @var{out_h},
  705. and the expression for @var{out_h} may depend on @var{out_w}, but they
  706. cannot depend on @var{x} and @var{y}, as @var{x} and @var{y} are
  707. evaluated after @var{out_w} and @var{out_h}.
  708. The @var{x} and @var{y} parameters specify the expressions for the
  709. position of the top-left corner of the output (non-cropped) area. They
  710. are evaluated for each frame. If the evaluated value is not valid, it
  711. is approximated to the nearest valid value.
  712. The default value of @var{x} is "(in_w-out_w)/2", and the default
  713. value for @var{y} is "(in_h-out_h)/2", which set the cropped area at
  714. the center of the input image.
  715. The expression for @var{x} may depend on @var{y}, and the expression
  716. for @var{y} may depend on @var{x}.
  717. Follow some examples:
  718. @example
  719. # crop the central input area with size 100x100
  720. crop=100:100
  721. # crop the central input area with size 2/3 of the input video
  722. "crop=2/3*in_w:2/3*in_h"
  723. # crop the input video central square
  724. crop=in_h
  725. # delimit the rectangle with the top-left corner placed at position
  726. # 100:100 and the right-bottom corner corresponding to the right-bottom
  727. # corner of the input image.
  728. crop=in_w-100:in_h-100:100:100
  729. # crop 10 pixels from the left and right borders, and 20 pixels from
  730. # the top and bottom borders
  731. "crop=in_w-2*10:in_h-2*20"
  732. # keep only the bottom right quarter of the input image
  733. "crop=in_w/2:in_h/2:in_w/2:in_h/2"
  734. # crop height for getting Greek harmony
  735. "crop=in_w:1/PHI*in_w"
  736. # trembling effect
  737. "crop=in_w/2:in_h/2:(in_w-out_w)/2+((in_w-out_w)/2)*sin(n/10):(in_h-out_h)/2 +((in_h-out_h)/2)*sin(n/7)"
  738. # erratic camera effect depending on timestamp
  739. "crop=in_w/2:in_h/2:(in_w-out_w)/2+((in_w-out_w)/2)*sin(t*10):(in_h-out_h)/2 +((in_h-out_h)/2)*sin(t*13)"
  740. # set x depending on the value of y
  741. "crop=in_w/2:in_h/2:y:10+10*sin(n/10)"
  742. @end example
  743. @section cropdetect
  744. Auto-detect crop size.
  745. Calculate necessary cropping parameters and prints the recommended
  746. parameters through the logging system. The detected dimensions
  747. correspond to the non-black area of the input video.
  748. It accepts the syntax:
  749. @example
  750. cropdetect[=@var{limit}[:@var{round}[:@var{reset}]]]
  751. @end example
  752. @table @option
  753. @item limit
  754. Threshold, which can be optionally specified from nothing (0) to
  755. everything (255), defaults to 24.
  756. @item round
  757. Value which the width/height should be divisible by, defaults to
  758. 16. The offset is automatically adjusted to center the video. Use 2 to
  759. get only even dimensions (needed for 4:2:2 video). 16 is best when
  760. encoding to most video codecs.
  761. @item reset
  762. Counter that determines after how many frames cropdetect will reset
  763. the previously detected largest video area and start over to detect
  764. the current optimal crop area. Defaults to 0.
  765. This can be useful when channel logos distort the video area. 0
  766. indicates never reset and return the largest area encountered during
  767. playback.
  768. @end table
  769. @section delogo
  770. Suppress a TV station logo by a simple interpolation of the surrounding
  771. pixels. Just set a rectangle covering the logo and watch it disappear
  772. (and sometimes something even uglier appear - your mileage may vary).
  773. The filter accepts parameters as a string of the form
  774. "@var{x}:@var{y}:@var{w}:@var{h}:@var{band}", or as a list of
  775. @var{key}=@var{value} pairs, separated by ":".
  776. The description of the accepted parameters follows.
  777. @table @option
  778. @item x, y
  779. Specify the top left corner coordinates of the logo. They must be
  780. specified.
  781. @item w, h
  782. Specify the width and height of the logo to clear. They must be
  783. specified.
  784. @item band, t
  785. Specify the thickness of the fuzzy edge of the rectangle (added to
  786. @var{w} and @var{h}). The default value is 4.
  787. @item show
  788. When set to 1, a green rectangle is drawn on the screen to simplify
  789. finding the right @var{x}, @var{y}, @var{w}, @var{h} parameters, and
  790. @var{band} is set to 4. The default value is 0.
  791. @end table
  792. Some examples follow.
  793. @itemize
  794. @item
  795. Set a rectangle covering the area with top left corner coordinates 0,0
  796. and size 100x77, setting a band of size 10:
  797. @example
  798. delogo=0:0:100:77:10
  799. @end example
  800. @item
  801. As the previous example, but use named options:
  802. @example
  803. delogo=x=0:y=0:w=100:h=77:band=10
  804. @end example
  805. @end itemize
  806. @section deshake
  807. Attempt to fix small changes in horizontal and/or vertical shift. This
  808. filter helps remove camera shake from hand-holding a camera, bumping a
  809. tripod, moving on a vehicle, etc.
  810. The filter accepts parameters as a string of the form
  811. "@var{x}:@var{y}:@var{w}:@var{h}:@var{rx}:@var{ry}:@var{edge}:@var{blocksize}:@var{contrast}:@var{search}:@var{filename}"
  812. A description of the accepted parameters follows.
  813. @table @option
  814. @item x, y, w, h
  815. Specify a rectangular area where to limit the search for motion
  816. vectors.
  817. If desired the search for motion vectors can be limited to a
  818. rectangular area of the frame defined by its top left corner, width
  819. and height. These parameters have the same meaning as the drawbox
  820. filter which can be used to visualise the position of the bounding
  821. box.
  822. This is useful when simultaneous movement of subjects within the frame
  823. might be confused for camera motion by the motion vector search.
  824. If any or all of @var{x}, @var{y}, @var{w} and @var{h} are set to -1
  825. then the full frame is used. This allows later options to be set
  826. without specifying the bounding box for the motion vector search.
  827. Default - search the whole frame.
  828. @item rx, ry
  829. Specify the maximum extent of movement in x and y directions in the
  830. range 0-64 pixels. Default 16.
  831. @item edge
  832. Specify how to generate pixels to fill blanks at the edge of the
  833. frame. An integer from 0 to 3 as follows:
  834. @table @option
  835. @item 0
  836. Fill zeroes at blank locations
  837. @item 1
  838. Original image at blank locations
  839. @item 2
  840. Extruded edge value at blank locations
  841. @item 3
  842. Mirrored edge at blank locations
  843. @end table
  844. The default setting is mirror edge at blank locations.
  845. @item blocksize
  846. Specify the blocksize to use for motion search. Range 4-128 pixels,
  847. default 8.
  848. @item contrast
  849. Specify the contrast threshold for blocks. Only blocks with more than
  850. the specified contrast (difference between darkest and lightest
  851. pixels) will be considered. Range 1-255, default 125.
  852. @item search
  853. Specify the search strategy 0 = exhaustive search, 1 = less exhaustive
  854. search. Default - exhaustive search.
  855. @item filename
  856. If set then a detailed log of the motion search is written to the
  857. specified file.
  858. @end table
  859. @section drawbox
  860. Draw a colored box on the input image.
  861. It accepts the syntax:
  862. @example
  863. drawbox=@var{x}:@var{y}:@var{width}:@var{height}:@var{color}
  864. @end example
  865. @table @option
  866. @item x, y
  867. Specify the top left corner coordinates of the box. Default to 0.
  868. @item width, height
  869. Specify the width and height of the box, if 0 they are interpreted as
  870. the input width and height. Default to 0.
  871. @item color
  872. Specify the color of the box to write, it can be the name of a color
  873. (case insensitive match) or a 0xRRGGBB[AA] sequence.
  874. @end table
  875. Follow some examples:
  876. @example
  877. # draw a black box around the edge of the input image
  878. drawbox
  879. # draw a box with color red and an opacity of 50%
  880. drawbox=10:20:200:60:red@@0.5"
  881. @end example
  882. @section drawtext
  883. Draw text string or text from specified file on top of video using the
  884. libfreetype library.
  885. To enable compilation of this filter you need to configure FFmpeg with
  886. @code{--enable-libfreetype}.
  887. The filter also recognizes strftime() sequences in the provided text
  888. and expands them accordingly. Check the documentation of strftime().
  889. The filter accepts parameters as a list of @var{key}=@var{value} pairs,
  890. separated by ":".
  891. The description of the accepted parameters follows.
  892. @table @option
  893. @item fontfile
  894. The font file to be used for drawing text. Path must be included.
  895. This parameter is mandatory.
  896. @item text
  897. The text string to be drawn. The text must be a sequence of UTF-8
  898. encoded characters.
  899. This parameter is mandatory if no file is specified with the parameter
  900. @var{textfile}.
  901. @item textfile
  902. A text file containing text to be drawn. The text must be a sequence
  903. of UTF-8 encoded characters.
  904. This parameter is mandatory if no text string is specified with the
  905. parameter @var{text}.
  906. If both text and textfile are specified, an error is thrown.
  907. @item x, y
  908. The expressions which specify the offsets where text will be drawn
  909. within the video frame. They are relative to the top/left border of the
  910. output image.
  911. The default value of @var{x} and @var{y} is "0".
  912. See below for the list of accepted constants.
  913. @item fontsize
  914. The font size to be used for drawing text.
  915. The default value of @var{fontsize} is 16.
  916. @item fontcolor
  917. The color to be used for drawing fonts.
  918. Either a string (e.g. "red") or in 0xRRGGBB[AA] format
  919. (e.g. "0xff000033"), possibly followed by an alpha specifier.
  920. The default value of @var{fontcolor} is "black".
  921. @item boxcolor
  922. The color to be used for drawing box around text.
  923. Either a string (e.g. "yellow") or in 0xRRGGBB[AA] format
  924. (e.g. "0xff00ff"), possibly followed by an alpha specifier.
  925. The default value of @var{boxcolor} is "white".
  926. @item box
  927. Used to draw a box around text using background color.
  928. Value should be either 1 (enable) or 0 (disable).
  929. The default value of @var{box} is 0.
  930. @item shadowx, shadowy
  931. The x and y offsets for the text shadow position with respect to the
  932. position of the text. They can be either positive or negative
  933. values. Default value for both is "0".
  934. @item shadowcolor
  935. The color to be used for drawing a shadow behind the drawn text. It
  936. can be a color name (e.g. "yellow") or a string in the 0xRRGGBB[AA]
  937. form (e.g. "0xff00ff"), possibly followed by an alpha specifier.
  938. The default value of @var{shadowcolor} is "black".
  939. @item ft_load_flags
  940. Flags to be used for loading the fonts.
  941. The flags map the corresponding flags supported by libfreetype, and are
  942. a combination of the following values:
  943. @table @var
  944. @item default
  945. @item no_scale
  946. @item no_hinting
  947. @item render
  948. @item no_bitmap
  949. @item vertical_layout
  950. @item force_autohint
  951. @item crop_bitmap
  952. @item pedantic
  953. @item ignore_global_advance_width
  954. @item no_recurse
  955. @item ignore_transform
  956. @item monochrome
  957. @item linear_design
  958. @item no_autohint
  959. @item end table
  960. @end table
  961. Default value is "render".
  962. For more information consult the documentation for the FT_LOAD_*
  963. libfreetype flags.
  964. @item tabsize
  965. The size in number of spaces to use for rendering the tab.
  966. Default value is 4.
  967. @item fix_bounds
  968. If true, check and fix text coords to avoid clipping.
  969. @end table
  970. The parameters for @var{x} and @var{y} are expressions containing the
  971. following constants:
  972. @table @option
  973. @item W, H
  974. the input width and height
  975. @item tw, text_w
  976. the width of the rendered text
  977. @item th, text_h
  978. the height of the rendered text
  979. @item lh, line_h
  980. the height of each text line
  981. @item sar
  982. input sample aspect ratio
  983. @item dar
  984. input display aspect ratio, it is the same as (@var{w} / @var{h}) * @var{sar}
  985. @item hsub, vsub
  986. horizontal and vertical chroma subsample values. For example for the
  987. pixel format "yuv422p" @var{hsub} is 2 and @var{vsub} is 1.
  988. @item max_glyph_w
  989. maximum glyph width, that is the maximum width for all the glyphs
  990. contained in the rendered text
  991. @item max_glyph_h
  992. maximum glyph height, that is the maximum height for all the glyphs
  993. contained in the rendered text, it is equivalent to @var{ascent} -
  994. @var{descent}.
  995. @item max_glyph_a, ascent
  996. the maximum distance from the baseline to the highest/upper grid
  997. coordinate used to place a glyph outline point, for all the rendered
  998. glyphs.
  999. It is a positive value, due to the grid's orientation with the Y axis
  1000. upwards.
  1001. @item max_glyph_d, descent
  1002. the maximum distance from the baseline to the lowest grid coordinate
  1003. used to place a glyph outline point, for all the rendered glyphs.
  1004. This is a negative value, due to the grid's orientation, with the Y axis
  1005. upwards.
  1006. @item n
  1007. the number of input frame, starting from 0
  1008. @item t
  1009. timestamp expressed in seconds, NAN if the input timestamp is unknown
  1010. @item timecode
  1011. initial timecode representation in "hh:mm:ss[:;.]ff" format. It can be used
  1012. with or without text parameter. @var{rate} option must be specified.
  1013. @item r, rate
  1014. frame rate (timecode only)
  1015. @end table
  1016. Some examples follow.
  1017. @itemize
  1018. @item
  1019. Draw "Test Text" with font FreeSerif, using the default values for the
  1020. optional parameters.
  1021. @example
  1022. drawtext="fontfile=/usr/share/fonts/truetype/freefont/FreeSerif.ttf: text='Test Text'"
  1023. @end example
  1024. @item
  1025. Draw 'Test Text' with font FreeSerif of size 24 at position x=100
  1026. and y=50 (counting from the top-left corner of the screen), text is
  1027. yellow with a red box around it. Both the text and the box have an
  1028. opacity of 20%.
  1029. @example
  1030. drawtext="fontfile=/usr/share/fonts/truetype/freefont/FreeSerif.ttf: text='Test Text':\
  1031. x=100: y=50: fontsize=24: fontcolor=yellow@@0.2: box=1: boxcolor=red@@0.2"
  1032. @end example
  1033. Note that the double quotes are not necessary if spaces are not used
  1034. within the parameter list.
  1035. @item
  1036. Show the text at the center of the video frame:
  1037. @example
  1038. drawtext=fontsize=30:fontfile=FreeSerif.ttf:text='hello world':x=(w-text_w)/2:y=(h-text_h-line_h)/2"
  1039. @end example
  1040. @item
  1041. Show a text line sliding from right to left in the last row of the video
  1042. frame. The file @file{LONG_LINE} is assumed to contain a single line
  1043. with no newlines.
  1044. @example
  1045. drawtext=fontsize=15:fontfile=FreeSerif.ttf:text=LONG_LINE:y=h-line_h:x=-50*t
  1046. @end example
  1047. @item
  1048. Show the content of file @file{CREDITS} off the bottom of the frame and scroll up.
  1049. @example
  1050. drawtext=fontsize=20:fontfile=FreeSerif.ttf:textfile=CREDITS:y=h-20*t"
  1051. @end example
  1052. @item
  1053. Draw a single green letter "g", at the center of the input video.
  1054. The glyph baseline is placed at half screen height.
  1055. @example
  1056. drawtext=fontsize=60:fontfile=FreeSerif.ttf:fontcolor=green:text=g:x=(w-max_glyph_w)/2:y=h/2-ascent
  1057. @end example
  1058. @end itemize
  1059. For more information about libfreetype, check:
  1060. @url{http://www.freetype.org/}.
  1061. @section fade
  1062. Apply fade-in/out effect to input video.
  1063. It accepts the parameters:
  1064. @var{type}:@var{start_frame}:@var{nb_frames}[:@var{options}]
  1065. @var{type} specifies if the effect type, can be either "in" for
  1066. fade-in, or "out" for a fade-out effect.
  1067. @var{start_frame} specifies the number of the start frame for starting
  1068. to apply the fade effect.
  1069. @var{nb_frames} specifies the number of frames for which the fade
  1070. effect has to last. At the end of the fade-in effect the output video
  1071. will have the same intensity as the input video, at the end of the
  1072. fade-out transition the output video will be completely black.
  1073. @var{options} is an optional sequence of @var{key}=@var{value} pairs,
  1074. separated by ":". The description of the accepted options follows.
  1075. @table @option
  1076. @item type, t
  1077. See @var{type}.
  1078. @item start_frame, s
  1079. See @var{start_frame}.
  1080. @item nb_frames, n
  1081. See @var{nb_frames}.
  1082. @item alpha
  1083. If set to 1, fade only alpha channel, if one exists on the input.
  1084. Default value is 0.
  1085. @end table
  1086. A few usage examples follow, usable too as test scenarios.
  1087. @example
  1088. # fade in first 30 frames of video
  1089. fade=in:0:30
  1090. # fade out last 45 frames of a 200-frame video
  1091. fade=out:155:45
  1092. # fade in first 25 frames and fade out last 25 frames of a 1000-frame video
  1093. fade=in:0:25, fade=out:975:25
  1094. # make first 5 frames black, then fade in from frame 5-24
  1095. fade=in:5:20
  1096. # fade in alpha over first 25 frames of video
  1097. fade=in:0:25:alpha=1
  1098. @end example
  1099. @section fieldorder
  1100. Transform the field order of the input video.
  1101. It accepts one parameter which specifies the required field order that
  1102. the input interlaced video will be transformed to. The parameter can
  1103. assume one of the following values:
  1104. @table @option
  1105. @item 0 or bff
  1106. output bottom field first
  1107. @item 1 or tff
  1108. output top field first
  1109. @end table
  1110. Default value is "tff".
  1111. Transformation is achieved by shifting the picture content up or down
  1112. by one line, and filling the remaining line with appropriate picture content.
  1113. This method is consistent with most broadcast field order converters.
  1114. If the input video is not flagged as being interlaced, or it is already
  1115. flagged as being of the required output field order then this filter does
  1116. not alter the incoming video.
  1117. This filter is very useful when converting to or from PAL DV material,
  1118. which is bottom field first.
  1119. For example:
  1120. @example
  1121. ffmpeg -i in.vob -vf "fieldorder=bff" out.dv
  1122. @end example
  1123. @section fifo
  1124. Buffer input images and send them when they are requested.
  1125. This filter is mainly useful when auto-inserted by the libavfilter
  1126. framework.
  1127. The filter does not take parameters.
  1128. @section format
  1129. Convert the input video to one of the specified pixel formats.
  1130. Libavfilter will try to pick one that is supported for the input to
  1131. the next filter.
  1132. The filter accepts a list of pixel format names, separated by ":",
  1133. for example "yuv420p:monow:rgb24".
  1134. Some examples follow:
  1135. @example
  1136. # convert the input video to the format "yuv420p"
  1137. format=yuv420p
  1138. # convert the input video to any of the formats in the list
  1139. format=yuv420p:yuv444p:yuv410p
  1140. @end example
  1141. @anchor{frei0r}
  1142. @section frei0r
  1143. Apply a frei0r effect to the input video.
  1144. To enable compilation of this filter you need to install the frei0r
  1145. header and configure FFmpeg with @code{--enable-frei0r}.
  1146. The filter supports the syntax:
  1147. @example
  1148. @var{filter_name}[@{:|=@}@var{param1}:@var{param2}:...:@var{paramN}]
  1149. @end example
  1150. @var{filter_name} is the name to the frei0r effect to load. If the
  1151. environment variable @env{FREI0R_PATH} is defined, the frei0r effect
  1152. is searched in each one of the directories specified by the colon
  1153. separated list in @env{FREIOR_PATH}, otherwise in the standard frei0r
  1154. paths, which are in this order: @file{HOME/.frei0r-1/lib/},
  1155. @file{/usr/local/lib/frei0r-1/}, @file{/usr/lib/frei0r-1/}.
  1156. @var{param1}, @var{param2}, ... , @var{paramN} specify the parameters
  1157. for the frei0r effect.
  1158. A frei0r effect parameter can be a boolean (whose values are specified
  1159. with "y" and "n"), a double, a color (specified by the syntax
  1160. @var{R}/@var{G}/@var{B}, @var{R}, @var{G}, and @var{B} being float
  1161. numbers from 0.0 to 1.0) or by an @code{av_parse_color()} color
  1162. description), a position (specified by the syntax @var{X}/@var{Y},
  1163. @var{X} and @var{Y} being float numbers) and a string.
  1164. The number and kind of parameters depend on the loaded effect. If an
  1165. effect parameter is not specified the default value is set.
  1166. Some examples follow:
  1167. @example
  1168. # apply the distort0r effect, set the first two double parameters
  1169. frei0r=distort0r:0.5:0.01
  1170. # apply the colordistance effect, takes a color as first parameter
  1171. frei0r=colordistance:0.2/0.3/0.4
  1172. frei0r=colordistance:violet
  1173. frei0r=colordistance:0x112233
  1174. # apply the perspective effect, specify the top left and top right
  1175. # image positions
  1176. frei0r=perspective:0.2/0.2:0.8/0.2
  1177. @end example
  1178. For more information see:
  1179. @url{http://piksel.org/frei0r}
  1180. @section gradfun
  1181. Fix the banding artifacts that are sometimes introduced into nearly flat
  1182. regions by truncation to 8bit color depth.
  1183. Interpolate the gradients that should go where the bands are, and
  1184. dither them.
  1185. This filter is designed for playback only. Do not use it prior to
  1186. lossy compression, because compression tends to lose the dither and
  1187. bring back the bands.
  1188. The filter takes two optional parameters, separated by ':':
  1189. @var{strength}:@var{radius}
  1190. @var{strength} is the maximum amount by which the filter will change
  1191. any one pixel. Also the threshold for detecting nearly flat
  1192. regions. Acceptable values range from .51 to 255, default value is
  1193. 1.2, out-of-range values will be clipped to the valid range.
  1194. @var{radius} is the neighborhood to fit the gradient to. A larger
  1195. radius makes for smoother gradients, but also prevents the filter from
  1196. modifying the pixels near detailed regions. Acceptable values are
  1197. 8-32, default value is 16, out-of-range values will be clipped to the
  1198. valid range.
  1199. @example
  1200. # default parameters
  1201. gradfun=1.2:16
  1202. # omitting radius
  1203. gradfun=1.2
  1204. @end example
  1205. @section hflip
  1206. Flip the input video horizontally.
  1207. For example to horizontally flip the input video with @command{ffmpeg}:
  1208. @example
  1209. ffmpeg -i in.avi -vf "hflip" out.avi
  1210. @end example
  1211. @section hqdn3d
  1212. High precision/quality 3d denoise filter. This filter aims to reduce
  1213. image noise producing smooth images and making still images really
  1214. still. It should enhance compressibility.
  1215. It accepts the following optional parameters:
  1216. @var{luma_spatial}:@var{chroma_spatial}:@var{luma_tmp}:@var{chroma_tmp}
  1217. @table @option
  1218. @item luma_spatial
  1219. a non-negative float number which specifies spatial luma strength,
  1220. defaults to 4.0
  1221. @item chroma_spatial
  1222. a non-negative float number which specifies spatial chroma strength,
  1223. defaults to 3.0*@var{luma_spatial}/4.0
  1224. @item luma_tmp
  1225. a float number which specifies luma temporal strength, defaults to
  1226. 6.0*@var{luma_spatial}/4.0
  1227. @item chroma_tmp
  1228. a float number which specifies chroma temporal strength, defaults to
  1229. @var{luma_tmp}*@var{chroma_spatial}/@var{luma_spatial}
  1230. @end table
  1231. @section lut, lutrgb, lutyuv
  1232. Compute a look-up table for binding each pixel component input value
  1233. to an output value, and apply it to input video.
  1234. @var{lutyuv} applies a lookup table to a YUV input video, @var{lutrgb}
  1235. to an RGB input video.
  1236. These filters accept in input a ":"-separated list of options, which
  1237. specify the expressions used for computing the lookup table for the
  1238. corresponding pixel component values.
  1239. The @var{lut} filter requires either YUV or RGB pixel formats in
  1240. input, and accepts the options:
  1241. @table @option
  1242. @item c0
  1243. first pixel component
  1244. @item c1
  1245. second pixel component
  1246. @item c2
  1247. third pixel component
  1248. @item c3
  1249. fourth pixel component, corresponds to the alpha component
  1250. @end table
  1251. The exact component associated to each option depends on the format in
  1252. input.
  1253. The @var{lutrgb} filter requires RGB pixel formats in input, and
  1254. accepts the options:
  1255. @table @option
  1256. @item r
  1257. red component
  1258. @item g
  1259. green component
  1260. @item b
  1261. blue component
  1262. @item a
  1263. alpha component
  1264. @end table
  1265. The @var{lutyuv} filter requires YUV pixel formats in input, and
  1266. accepts the options:
  1267. @table @option
  1268. @item y
  1269. Y/luminance component
  1270. @item u
  1271. U/Cb component
  1272. @item v
  1273. V/Cr component
  1274. @item a
  1275. alpha component
  1276. @end table
  1277. The expressions can contain the following constants and functions:
  1278. @table @option
  1279. @item w, h
  1280. the input width and height
  1281. @item val
  1282. input value for the pixel component
  1283. @item clipval
  1284. the input value clipped in the @var{minval}-@var{maxval} range
  1285. @item maxval
  1286. maximum value for the pixel component
  1287. @item minval
  1288. minimum value for the pixel component
  1289. @item negval
  1290. the negated value for the pixel component value clipped in the
  1291. @var{minval}-@var{maxval} range , it corresponds to the expression
  1292. "maxval-clipval+minval"
  1293. @item clip(val)
  1294. the computed value in @var{val} clipped in the
  1295. @var{minval}-@var{maxval} range
  1296. @item gammaval(gamma)
  1297. the computed gamma correction value of the pixel component value
  1298. clipped in the @var{minval}-@var{maxval} range, corresponds to the
  1299. expression
  1300. "pow((clipval-minval)/(maxval-minval)\,@var{gamma})*(maxval-minval)+minval"
  1301. @end table
  1302. All expressions default to "val".
  1303. Some examples follow:
  1304. @example
  1305. # negate input video
  1306. lutrgb="r=maxval+minval-val:g=maxval+minval-val:b=maxval+minval-val"
  1307. lutyuv="y=maxval+minval-val:u=maxval+minval-val:v=maxval+minval-val"
  1308. # the above is the same as
  1309. lutrgb="r=negval:g=negval:b=negval"
  1310. lutyuv="y=negval:u=negval:v=negval"
  1311. # negate luminance
  1312. lutyuv=y=negval
  1313. # remove chroma components, turns the video into a graytone image
  1314. lutyuv="u=128:v=128"
  1315. # apply a luma burning effect
  1316. lutyuv="y=2*val"
  1317. # remove green and blue components
  1318. lutrgb="g=0:b=0"
  1319. # set a constant alpha channel value on input
  1320. format=rgba,lutrgb=a="maxval-minval/2"
  1321. # correct luminance gamma by a 0.5 factor
  1322. lutyuv=y=gammaval(0.5)
  1323. @end example
  1324. @section mp
  1325. Apply an MPlayer filter to the input video.
  1326. This filter provides a wrapper around most of the filters of
  1327. MPlayer/MEncoder.
  1328. This wrapper is considered experimental. Some of the wrapped filters
  1329. may not work properly and we may drop support for them, as they will
  1330. be implemented natively into FFmpeg. Thus you should avoid
  1331. depending on them when writing portable scripts.
  1332. The filters accepts the parameters:
  1333. @var{filter_name}[:=]@var{filter_params}
  1334. @var{filter_name} is the name of a supported MPlayer filter,
  1335. @var{filter_params} is a string containing the parameters accepted by
  1336. the named filter.
  1337. The list of the currently supported filters follows:
  1338. @table @var
  1339. @item 2xsai
  1340. @item decimate
  1341. @item denoise3d
  1342. @item detc
  1343. @item dint
  1344. @item divtc
  1345. @item down3dright
  1346. @item dsize
  1347. @item eq2
  1348. @item eq
  1349. @item field
  1350. @item fil
  1351. @item fixpts
  1352. @item framestep
  1353. @item fspp
  1354. @item geq
  1355. @item harddup
  1356. @item hqdn3d
  1357. @item hue
  1358. @item il
  1359. @item ilpack
  1360. @item ivtc
  1361. @item kerndeint
  1362. @item mcdeint
  1363. @item mirror
  1364. @item noise
  1365. @item ow
  1366. @item palette
  1367. @item perspective
  1368. @item phase
  1369. @item pp7
  1370. @item pullup
  1371. @item qp
  1372. @item rectangle
  1373. @item remove-logo
  1374. @item rotate
  1375. @item sab
  1376. @item screenshot
  1377. @item smartblur
  1378. @item softpulldown
  1379. @item softskip
  1380. @item spp
  1381. @item telecine
  1382. @item tile
  1383. @item tinterlace
  1384. @item unsharp
  1385. @item uspp
  1386. @item yuvcsp
  1387. @item yvu9
  1388. @end table
  1389. The parameter syntax and behavior for the listed filters are the same
  1390. of the corresponding MPlayer filters. For detailed instructions check
  1391. the "VIDEO FILTERS" section in the MPlayer manual.
  1392. Some examples follow:
  1393. @example
  1394. # remove a logo by interpolating the surrounding pixels
  1395. mp=delogo=200:200:80:20:1
  1396. # adjust gamma, brightness, contrast
  1397. mp=eq2=1.0:2:0.5
  1398. # tweak hue and saturation
  1399. mp=hue=100:-10
  1400. @end example
  1401. See also mplayer(1), @url{http://www.mplayerhq.hu/}.
  1402. @section negate
  1403. Negate input video.
  1404. This filter accepts an integer in input, if non-zero it negates the
  1405. alpha component (if available). The default value in input is 0.
  1406. @section noformat
  1407. Force libavfilter not to use any of the specified pixel formats for the
  1408. input to the next filter.
  1409. The filter accepts a list of pixel format names, separated by ":",
  1410. for example "yuv420p:monow:rgb24".
  1411. Some examples follow:
  1412. @example
  1413. # force libavfilter to use a format different from "yuv420p" for the
  1414. # input to the vflip filter
  1415. noformat=yuv420p,vflip
  1416. # convert the input video to any of the formats not contained in the list
  1417. noformat=yuv420p:yuv444p:yuv410p
  1418. @end example
  1419. @section null
  1420. Pass the video source unchanged to the output.
  1421. @section ocv
  1422. Apply video transform using libopencv.
  1423. To enable this filter install libopencv library and headers and
  1424. configure FFmpeg with @code{--enable-libopencv}.
  1425. The filter takes the parameters: @var{filter_name}@{:=@}@var{filter_params}.
  1426. @var{filter_name} is the name of the libopencv filter to apply.
  1427. @var{filter_params} specifies the parameters to pass to the libopencv
  1428. filter. If not specified the default values are assumed.
  1429. Refer to the official libopencv documentation for more precise
  1430. information:
  1431. @url{http://opencv.willowgarage.com/documentation/c/image_filtering.html}
  1432. Follows the list of supported libopencv filters.
  1433. @anchor{dilate}
  1434. @subsection dilate
  1435. Dilate an image by using a specific structuring element.
  1436. This filter corresponds to the libopencv function @code{cvDilate}.
  1437. It accepts the parameters: @var{struct_el}:@var{nb_iterations}.
  1438. @var{struct_el} represents a structuring element, and has the syntax:
  1439. @var{cols}x@var{rows}+@var{anchor_x}x@var{anchor_y}/@var{shape}
  1440. @var{cols} and @var{rows} represent the number of columns and rows of
  1441. the structuring element, @var{anchor_x} and @var{anchor_y} the anchor
  1442. point, and @var{shape} the shape for the structuring element, and
  1443. can be one of the values "rect", "cross", "ellipse", "custom".
  1444. If the value for @var{shape} is "custom", it must be followed by a
  1445. string of the form "=@var{filename}". The file with name
  1446. @var{filename} is assumed to represent a binary image, with each
  1447. printable character corresponding to a bright pixel. When a custom
  1448. @var{shape} is used, @var{cols} and @var{rows} are ignored, the number
  1449. or columns and rows of the read file are assumed instead.
  1450. The default value for @var{struct_el} is "3x3+0x0/rect".
  1451. @var{nb_iterations} specifies the number of times the transform is
  1452. applied to the image, and defaults to 1.
  1453. Follow some example:
  1454. @example
  1455. # use the default values
  1456. ocv=dilate
  1457. # dilate using a structuring element with a 5x5 cross, iterate two times
  1458. ocv=dilate=5x5+2x2/cross:2
  1459. # read the shape from the file diamond.shape, iterate two times
  1460. # the file diamond.shape may contain a pattern of characters like this:
  1461. # *
  1462. # ***
  1463. # *****
  1464. # ***
  1465. # *
  1466. # the specified cols and rows are ignored (but not the anchor point coordinates)
  1467. ocv=0x0+2x2/custom=diamond.shape:2
  1468. @end example
  1469. @subsection erode
  1470. Erode an image by using a specific structuring element.
  1471. This filter corresponds to the libopencv function @code{cvErode}.
  1472. The filter accepts the parameters: @var{struct_el}:@var{nb_iterations},
  1473. with the same syntax and semantics as the @ref{dilate} filter.
  1474. @subsection smooth
  1475. Smooth the input video.
  1476. The filter takes the following parameters:
  1477. @var{type}:@var{param1}:@var{param2}:@var{param3}:@var{param4}.
  1478. @var{type} is the type of smooth filter to apply, and can be one of
  1479. the following values: "blur", "blur_no_scale", "median", "gaussian",
  1480. "bilateral". The default value is "gaussian".
  1481. @var{param1}, @var{param2}, @var{param3}, and @var{param4} are
  1482. parameters whose meanings depend on smooth type. @var{param1} and
  1483. @var{param2} accept integer positive values or 0, @var{param3} and
  1484. @var{param4} accept float values.
  1485. The default value for @var{param1} is 3, the default value for the
  1486. other parameters is 0.
  1487. These parameters correspond to the parameters assigned to the
  1488. libopencv function @code{cvSmooth}.
  1489. @anchor{overlay}
  1490. @section overlay
  1491. Overlay one video on top of another.
  1492. It takes two inputs and one output, the first input is the "main"
  1493. video on which the second input is overlayed.
  1494. It accepts the parameters: @var{x}:@var{y}[:@var{options}].
  1495. @var{x} is the x coordinate of the overlayed video on the main video,
  1496. @var{y} is the y coordinate. @var{x} and @var{y} are expressions containing
  1497. the following parameters:
  1498. @table @option
  1499. @item main_w, main_h
  1500. main input width and height
  1501. @item W, H
  1502. same as @var{main_w} and @var{main_h}
  1503. @item overlay_w, overlay_h
  1504. overlay input width and height
  1505. @item w, h
  1506. same as @var{overlay_w} and @var{overlay_h}
  1507. @end table
  1508. @var{options} is an optional list of @var{key}=@var{value} pairs,
  1509. separated by ":".
  1510. The description of the accepted options follows.
  1511. @table @option
  1512. @item rgb
  1513. If set to 1, force the filter to accept inputs in the RGB
  1514. color space. Default value is 0.
  1515. @end table
  1516. Be aware that frames are taken from each input video in timestamp
  1517. order, hence, if their initial timestamps differ, it is a a good idea
  1518. to pass the two inputs through a @var{setpts=PTS-STARTPTS} filter to
  1519. have them begin in the same zero timestamp, as it does the example for
  1520. the @var{movie} filter.
  1521. Follow some examples:
  1522. @example
  1523. # draw the overlay at 10 pixels from the bottom right
  1524. # corner of the main video.
  1525. overlay=main_w-overlay_w-10:main_h-overlay_h-10
  1526. # insert a transparent PNG logo in the bottom left corner of the input
  1527. movie=logo.png [logo];
  1528. [in][logo] overlay=10:main_h-overlay_h-10 [out]
  1529. # insert 2 different transparent PNG logos (second logo on bottom
  1530. # right corner):
  1531. movie=logo1.png [logo1];
  1532. movie=logo2.png [logo2];
  1533. [in][logo1] overlay=10:H-h-10 [in+logo1];
  1534. [in+logo1][logo2] overlay=W-w-10:H-h-10 [out]
  1535. # add a transparent color layer on top of the main video,
  1536. # WxH specifies the size of the main input to the overlay filter
  1537. color=red@.3:WxH [over]; [in][over] overlay [out]
  1538. @end example
  1539. You can chain together more overlays but the efficiency of such
  1540. approach is yet to be tested.
  1541. @section pad
  1542. Add paddings to the input image, and places the original input at the
  1543. given coordinates @var{x}, @var{y}.
  1544. It accepts the following parameters:
  1545. @var{width}:@var{height}:@var{x}:@var{y}:@var{color}.
  1546. The parameters @var{width}, @var{height}, @var{x}, and @var{y} are
  1547. expressions containing the following constants:
  1548. @table @option
  1549. @item in_w, in_h
  1550. the input video width and height
  1551. @item iw, ih
  1552. same as @var{in_w} and @var{in_h}
  1553. @item out_w, out_h
  1554. the output width and height, that is the size of the padded area as
  1555. specified by the @var{width} and @var{height} expressions
  1556. @item ow, oh
  1557. same as @var{out_w} and @var{out_h}
  1558. @item x, y
  1559. x and y offsets as specified by the @var{x} and @var{y}
  1560. expressions, or NAN if not yet specified
  1561. @item a
  1562. same as @var{iw} / @var{ih}
  1563. @item sar
  1564. input sample aspect ratio
  1565. @item dar
  1566. input display aspect ratio, it is the same as (@var{iw} / @var{ih}) * @var{sar}
  1567. @item hsub, vsub
  1568. horizontal and vertical chroma subsample values. For example for the
  1569. pixel format "yuv422p" @var{hsub} is 2 and @var{vsub} is 1.
  1570. @end table
  1571. Follows the description of the accepted parameters.
  1572. @table @option
  1573. @item width, height
  1574. Specify the size of the output image with the paddings added. If the
  1575. value for @var{width} or @var{height} is 0, the corresponding input size
  1576. is used for the output.
  1577. The @var{width} expression can reference the value set by the
  1578. @var{height} expression, and vice versa.
  1579. The default value of @var{width} and @var{height} is 0.
  1580. @item x, y
  1581. Specify the offsets where to place the input image in the padded area
  1582. with respect to the top/left border of the output image.
  1583. The @var{x} expression can reference the value set by the @var{y}
  1584. expression, and vice versa.
  1585. The default value of @var{x} and @var{y} is 0.
  1586. @item color
  1587. Specify the color of the padded area, it can be the name of a color
  1588. (case insensitive match) or a 0xRRGGBB[AA] sequence.
  1589. The default value of @var{color} is "black".
  1590. @end table
  1591. Some examples follow:
  1592. @example
  1593. # Add paddings with color "violet" to the input video. Output video
  1594. # size is 640x480, the top-left corner of the input video is placed at
  1595. # column 0, row 40.
  1596. pad=640:480:0:40:violet
  1597. # pad the input to get an output with dimensions increased bt 3/2,
  1598. # and put the input video at the center of the padded area
  1599. pad="3/2*iw:3/2*ih:(ow-iw)/2:(oh-ih)/2"
  1600. # pad the input to get a squared output with size equal to the maximum
  1601. # value between the input width and height, and put the input video at
  1602. # the center of the padded area
  1603. pad="max(iw\,ih):ow:(ow-iw)/2:(oh-ih)/2"
  1604. # pad the input to get a final w/h ratio of 16:9
  1605. pad="ih*16/9:ih:(ow-iw)/2:(oh-ih)/2"
  1606. # for anamorphic video, in order to set the output display aspect ratio,
  1607. # it is necessary to use sar in the expression, according to the relation:
  1608. # (ih * X / ih) * sar = output_dar
  1609. # X = output_dar / sar
  1610. pad="ih*16/9/sar:ih:(ow-iw)/2:(oh-ih)/2"
  1611. # double output size and put the input video in the bottom-right
  1612. # corner of the output padded area
  1613. pad="2*iw:2*ih:ow-iw:oh-ih"
  1614. @end example
  1615. @section pixdesctest
  1616. Pixel format descriptor test filter, mainly useful for internal
  1617. testing. The output video should be equal to the input video.
  1618. For example:
  1619. @example
  1620. format=monow, pixdesctest
  1621. @end example
  1622. can be used to test the monowhite pixel format descriptor definition.
  1623. @section scale
  1624. Scale the input video to @var{width}:@var{height}[:@var{interl}=@{1|-1@}] and/or convert the image format.
  1625. The parameters @var{width} and @var{height} are expressions containing
  1626. the following constants:
  1627. @table @option
  1628. @item in_w, in_h
  1629. the input width and height
  1630. @item iw, ih
  1631. same as @var{in_w} and @var{in_h}
  1632. @item out_w, out_h
  1633. the output (cropped) width and height
  1634. @item ow, oh
  1635. same as @var{out_w} and @var{out_h}
  1636. @item a
  1637. same as @var{iw} / @var{ih}
  1638. @item sar
  1639. input sample aspect ratio
  1640. @item dar
  1641. input display aspect ratio, it is the same as (@var{iw} / @var{ih}) * @var{sar}
  1642. @item hsub, vsub
  1643. horizontal and vertical chroma subsample values. For example for the
  1644. pixel format "yuv422p" @var{hsub} is 2 and @var{vsub} is 1.
  1645. @end table
  1646. If the input image format is different from the format requested by
  1647. the next filter, the scale filter will convert the input to the
  1648. requested format.
  1649. If the value for @var{width} or @var{height} is 0, the respective input
  1650. size is used for the output.
  1651. If the value for @var{width} or @var{height} is -1, the scale filter will
  1652. use, for the respective output size, a value that maintains the aspect
  1653. ratio of the input image.
  1654. The default value of @var{width} and @var{height} is 0.
  1655. Valid values for the optional parameter @var{interl} are:
  1656. @table @option
  1657. @item 1
  1658. force interlaced aware scaling
  1659. @item -1
  1660. select interlaced aware scaling depending on whether the source frames
  1661. are flagged as interlaced or not
  1662. @end table
  1663. Some examples follow:
  1664. @example
  1665. # scale the input video to a size of 200x100.
  1666. scale=200:100
  1667. # scale the input to 2x
  1668. scale=2*iw:2*ih
  1669. # the above is the same as
  1670. scale=2*in_w:2*in_h
  1671. # scale the input to half size
  1672. scale=iw/2:ih/2
  1673. # increase the width, and set the height to the same size
  1674. scale=3/2*iw:ow
  1675. # seek for Greek harmony
  1676. scale=iw:1/PHI*iw
  1677. scale=ih*PHI:ih
  1678. # increase the height, and set the width to 3/2 of the height
  1679. scale=3/2*oh:3/5*ih
  1680. # increase the size, but make the size a multiple of the chroma
  1681. scale="trunc(3/2*iw/hsub)*hsub:trunc(3/2*ih/vsub)*vsub"
  1682. # increase the width to a maximum of 500 pixels, keep the same input aspect ratio
  1683. scale='min(500\, iw*3/2):-1'
  1684. @end example
  1685. @section select
  1686. Select frames to pass in output.
  1687. It accepts in input an expression, which is evaluated for each input
  1688. frame. If the expression is evaluated to a non-zero value, the frame
  1689. is selected and passed to the output, otherwise it is discarded.
  1690. The expression can contain the following constants:
  1691. @table @option
  1692. @item n
  1693. the sequential number of the filtered frame, starting from 0
  1694. @item selected_n
  1695. the sequential number of the selected frame, starting from 0
  1696. @item prev_selected_n
  1697. the sequential number of the last selected frame, NAN if undefined
  1698. @item TB
  1699. timebase of the input timestamps
  1700. @item pts
  1701. the PTS (Presentation TimeStamp) of the filtered video frame,
  1702. expressed in @var{TB} units, NAN if undefined
  1703. @item t
  1704. the PTS (Presentation TimeStamp) of the filtered video frame,
  1705. expressed in seconds, NAN if undefined
  1706. @item prev_pts
  1707. the PTS of the previously filtered video frame, NAN if undefined
  1708. @item prev_selected_pts
  1709. the PTS of the last previously filtered video frame, NAN if undefined
  1710. @item prev_selected_t
  1711. the PTS of the last previously selected video frame, NAN if undefined
  1712. @item start_pts
  1713. the PTS of the first video frame in the video, NAN if undefined
  1714. @item start_t
  1715. the time of the first video frame in the video, NAN if undefined
  1716. @item pict_type
  1717. the type of the filtered frame, can assume one of the following
  1718. values:
  1719. @table @option
  1720. @item I
  1721. @item P
  1722. @item B
  1723. @item S
  1724. @item SI
  1725. @item SP
  1726. @item BI
  1727. @end table
  1728. @item interlace_type
  1729. the frame interlace type, can assume one of the following values:
  1730. @table @option
  1731. @item PROGRESSIVE
  1732. the frame is progressive (not interlaced)
  1733. @item TOPFIRST
  1734. the frame is top-field-first
  1735. @item BOTTOMFIRST
  1736. the frame is bottom-field-first
  1737. @end table
  1738. @item key
  1739. 1 if the filtered frame is a key-frame, 0 otherwise
  1740. @item pos
  1741. the position in the file of the filtered frame, -1 if the information
  1742. is not available (e.g. for synthetic video)
  1743. @end table
  1744. The default value of the select expression is "1".
  1745. Some examples follow:
  1746. @example
  1747. # select all frames in input
  1748. select
  1749. # the above is the same as:
  1750. select=1
  1751. # skip all frames:
  1752. select=0
  1753. # select only I-frames
  1754. select='eq(pict_type\,I)'
  1755. # select one frame every 100
  1756. select='not(mod(n\,100))'
  1757. # select only frames contained in the 10-20 time interval
  1758. select='gte(t\,10)*lte(t\,20)'
  1759. # select only I frames contained in the 10-20 time interval
  1760. select='gte(t\,10)*lte(t\,20)*eq(pict_type\,I)'
  1761. # select frames with a minimum distance of 10 seconds
  1762. select='isnan(prev_selected_t)+gte(t-prev_selected_t\,10)'
  1763. @end example
  1764. @section setdar, setsar
  1765. The @code{setdar} filter sets the Display Aspect Ratio for the filter
  1766. output video.
  1767. This is done by changing the specified Sample (aka Pixel) Aspect
  1768. Ratio, according to the following equation:
  1769. @example
  1770. @var{DAR} = @var{HORIZONTAL_RESOLUTION} / @var{VERTICAL_RESOLUTION} * @var{SAR}
  1771. @end example
  1772. Keep in mind that the @code{setdar} filter does not modify the pixel
  1773. dimensions of the video frame. Also the display aspect ratio set by
  1774. this filter may be changed by later filters in the filterchain,
  1775. e.g. in case of scaling or if another "setdar" or a "setsar" filter is
  1776. applied.
  1777. The @code{setsar} filter sets the Sample (aka Pixel) Aspect Ratio for
  1778. the filter output video.
  1779. Note that as a consequence of the application of this filter, the
  1780. output display aspect ratio will change according to the equation
  1781. above.
  1782. Keep in mind that the sample aspect ratio set by the @code{setsar}
  1783. filter may be changed by later filters in the filterchain, e.g. if
  1784. another "setsar" or a "setdar" filter is applied.
  1785. The @code{setdar} and @code{setsar} filters accept a parameter string
  1786. which represents the wanted aspect ratio. The parameter can
  1787. be a floating point number string, an expression, or a string of the form
  1788. @var{num}:@var{den}, where @var{num} and @var{den} are the numerator
  1789. and denominator of the aspect ratio. If the parameter is not
  1790. specified, it is assumed the value "0:1".
  1791. For example to change the display aspect ratio to 16:9, specify:
  1792. @example
  1793. setdar=16:9
  1794. @end example
  1795. The example above is equivalent to:
  1796. @example
  1797. setdar=1.77777
  1798. @end example
  1799. To change the sample aspect ratio to 10:11, specify:
  1800. @example
  1801. setsar=10:11
  1802. @end example
  1803. @section setfield
  1804. Force field for the output video frame.
  1805. The @code{setfield} filter marks the interlace type field for the
  1806. output frames. It does not change the input frame, but only sets the
  1807. corresponding property, which affects how the frame is treated by
  1808. followig filters (e.g. @code{fieldorder} or @code{yadif}).
  1809. It accepts a parameter representing an integer or a string, which can
  1810. assume the following values:
  1811. @table @samp
  1812. @item -1, auto
  1813. Keep the same field property.
  1814. @item 0, bff
  1815. Mark the frame as bottom-field-first.
  1816. @item 1, tff
  1817. Mark the frame as top-field-first.
  1818. @end table
  1819. @section setpts
  1820. Change the PTS (presentation timestamp) of the input video frames.
  1821. Accept in input an expression evaluated through the eval API, which
  1822. can contain the following constants:
  1823. @table @option
  1824. @item PTS
  1825. the presentation timestamp in input
  1826. @item N
  1827. the count of the input frame, starting from 0.
  1828. @item STARTPTS
  1829. the PTS of the first video frame
  1830. @item INTERLACED
  1831. tell if the current frame is interlaced
  1832. @item POS
  1833. original position in the file of the frame, or undefined if undefined
  1834. for the current frame
  1835. @item PREV_INPTS
  1836. previous input PTS
  1837. @item PREV_OUTPTS
  1838. previous output PTS
  1839. @end table
  1840. Some examples follow:
  1841. @example
  1842. # start counting PTS from zero
  1843. setpts=PTS-STARTPTS
  1844. # fast motion
  1845. setpts=0.5*PTS
  1846. # slow motion
  1847. setpts=2.0*PTS
  1848. # fixed rate 25 fps
  1849. setpts=N/(25*TB)
  1850. # fixed rate 25 fps with some jitter
  1851. setpts='1/(25*TB) * (N + 0.05 * sin(N*2*PI/25))'
  1852. @end example
  1853. @section settb
  1854. Set the timebase to use for the output frames timestamps.
  1855. It is mainly useful for testing timebase configuration.
  1856. It accepts in input an arithmetic expression representing a rational.
  1857. The expression can contain the constants "AVTB" (the
  1858. default timebase), and "intb" (the input timebase).
  1859. The default value for the input is "intb".
  1860. Follow some examples.
  1861. @example
  1862. # set the timebase to 1/25
  1863. settb=1/25
  1864. # set the timebase to 1/10
  1865. settb=0.1
  1866. #set the timebase to 1001/1000
  1867. settb=1+0.001
  1868. #set the timebase to 2*intb
  1869. settb=2*intb
  1870. #set the default timebase value
  1871. settb=AVTB
  1872. @end example
  1873. @section showinfo
  1874. Show a line containing various information for each input video frame.
  1875. The input video is not modified.
  1876. The shown line contains a sequence of key/value pairs of the form
  1877. @var{key}:@var{value}.
  1878. A description of each shown parameter follows:
  1879. @table @option
  1880. @item n
  1881. sequential number of the input frame, starting from 0
  1882. @item pts
  1883. Presentation TimeStamp of the input frame, expressed as a number of
  1884. time base units. The time base unit depends on the filter input pad.
  1885. @item pts_time
  1886. Presentation TimeStamp of the input frame, expressed as a number of
  1887. seconds
  1888. @item pos
  1889. position of the frame in the input stream, -1 if this information in
  1890. unavailable and/or meaningless (for example in case of synthetic video)
  1891. @item fmt
  1892. pixel format name
  1893. @item sar
  1894. sample aspect ratio of the input frame, expressed in the form
  1895. @var{num}/@var{den}
  1896. @item s
  1897. size of the input frame, expressed in the form
  1898. @var{width}x@var{height}
  1899. @item i
  1900. interlaced mode ("P" for "progressive", "T" for top field first, "B"
  1901. for bottom field first)
  1902. @item iskey
  1903. 1 if the frame is a key frame, 0 otherwise
  1904. @item type
  1905. picture type of the input frame ("I" for an I-frame, "P" for a
  1906. P-frame, "B" for a B-frame, "?" for unknown type).
  1907. Check also the documentation of the @code{AVPictureType} enum and of
  1908. the @code{av_get_picture_type_char} function defined in
  1909. @file{libavutil/avutil.h}.
  1910. @item checksum
  1911. Adler-32 checksum (printed in hexadecimal) of all the planes of the input frame
  1912. @item plane_checksum
  1913. Adler-32 checksum (printed in hexadecimal) of each plane of the input frame,
  1914. expressed in the form "[@var{c0} @var{c1} @var{c2} @var{c3}]"
  1915. @end table
  1916. @section slicify
  1917. Pass the images of input video on to next video filter as multiple
  1918. slices.
  1919. @example
  1920. ffmpeg -i in.avi -vf "slicify=32" out.avi
  1921. @end example
  1922. The filter accepts the slice height as parameter. If the parameter is
  1923. not specified it will use the default value of 16.
  1924. Adding this in the beginning of filter chains should make filtering
  1925. faster due to better use of the memory cache.
  1926. @section split
  1927. Pass on the input video to two outputs. Both outputs are identical to
  1928. the input video.
  1929. For example:
  1930. @example
  1931. [in] split [splitout1][splitout2];
  1932. [splitout1] crop=100:100:0:0 [cropout];
  1933. [splitout2] pad=200:200:100:100 [padout];
  1934. @end example
  1935. will create two separate outputs from the same input, one cropped and
  1936. one padded.
  1937. @section swapuv
  1938. Swap U & V plane.
  1939. @section thumbnail
  1940. Select the most representative frame in a given sequence of consecutive frames.
  1941. It accepts as argument the frames batch size to analyze (default @var{N}=100);
  1942. in a set of @var{N} frames, the filter will pick one of them, and then handle
  1943. the next batch of @var{N} frames until the end.
  1944. Since the filter keeps track of the whole frames sequence, a bigger @var{N}
  1945. value will result in a higher memory usage, so a high value is not recommended.
  1946. The following example extract one picture each 50 frames:
  1947. @example
  1948. thumbnail=50
  1949. @end example
  1950. Complete example of a thumbnail creation with @command{ffmpeg}:
  1951. @example
  1952. ffmpeg -i in.avi -vf thumbnail,scale=300:200 -frames:v 1 out.png
  1953. @end example
  1954. @section tinterlace
  1955. Perform various types of temporal field interlacing.
  1956. Frames are counted starting from 1, so the first input frame is
  1957. considered odd.
  1958. This filter accepts a single parameter specifying the mode. Available
  1959. modes are:
  1960. @table @samp
  1961. @item 0
  1962. Move odd frames into the upper field, even into the lower field,
  1963. generating a double height frame at half framerate.
  1964. @item 1
  1965. Only output even frames, odd frames are dropped, generating a frame with
  1966. unchanged height at half framerate.
  1967. @item 2
  1968. Only output odd frames, even frames are dropped, generating a frame with
  1969. unchanged height at half framerate.
  1970. @item 3
  1971. Expand each frame to full height, but pad alternate lines with black,
  1972. generating a frame with double height at the same input framerate.
  1973. @item 4
  1974. Interleave the upper field from odd frames with the lower field from
  1975. even frames, generating a frame with unchanged height at half framerate.
  1976. @item 5
  1977. Interleave the lower field from odd frames with the upper field from
  1978. even frames, generating a frame with unchanged height at half framerate.
  1979. @end table
  1980. Default mode is 0.
  1981. @section transpose
  1982. Transpose rows with columns in the input video and optionally flip it.
  1983. It accepts a parameter representing an integer, which can assume the
  1984. values:
  1985. @table @samp
  1986. @item 0
  1987. Rotate by 90 degrees counterclockwise and vertically flip (default), that is:
  1988. @example
  1989. L.R L.l
  1990. . . -> . .
  1991. l.r R.r
  1992. @end example
  1993. @item 1
  1994. Rotate by 90 degrees clockwise, that is:
  1995. @example
  1996. L.R l.L
  1997. . . -> . .
  1998. l.r r.R
  1999. @end example
  2000. @item 2
  2001. Rotate by 90 degrees counterclockwise, that is:
  2002. @example
  2003. L.R R.r
  2004. . . -> . .
  2005. l.r L.l
  2006. @end example
  2007. @item 3
  2008. Rotate by 90 degrees clockwise and vertically flip, that is:
  2009. @example
  2010. L.R r.R
  2011. . . -> . .
  2012. l.r l.L
  2013. @end example
  2014. @end table
  2015. @section unsharp
  2016. Sharpen or blur the input video.
  2017. It accepts the following parameters:
  2018. @var{luma_msize_x}:@var{luma_msize_y}:@var{luma_amount}:@var{chroma_msize_x}:@var{chroma_msize_y}:@var{chroma_amount}
  2019. Negative values for the amount will blur the input video, while positive
  2020. values will sharpen. All parameters are optional and default to the
  2021. equivalent of the string '5:5:1.0:5:5:0.0'.
  2022. @table @option
  2023. @item luma_msize_x
  2024. Set the luma matrix horizontal size. It can be an integer between 3
  2025. and 13, default value is 5.
  2026. @item luma_msize_y
  2027. Set the luma matrix vertical size. It can be an integer between 3
  2028. and 13, default value is 5.
  2029. @item luma_amount
  2030. Set the luma effect strength. It can be a float number between -2.0
  2031. and 5.0, default value is 1.0.
  2032. @item chroma_msize_x
  2033. Set the chroma matrix horizontal size. It can be an integer between 3
  2034. and 13, default value is 5.
  2035. @item chroma_msize_y
  2036. Set the chroma matrix vertical size. It can be an integer between 3
  2037. and 13, default value is 5.
  2038. @item chroma_amount
  2039. Set the chroma effect strength. It can be a float number between -2.0
  2040. and 5.0, default value is 0.0.
  2041. @end table
  2042. @example
  2043. # Strong luma sharpen effect parameters
  2044. unsharp=7:7:2.5
  2045. # Strong blur of both luma and chroma parameters
  2046. unsharp=7:7:-2:7:7:-2
  2047. # Use the default values with @command{ffmpeg}
  2048. ffmpeg -i in.avi -vf "unsharp" out.mp4
  2049. @end example
  2050. @section vflip
  2051. Flip the input video vertically.
  2052. @example
  2053. ffmpeg -i in.avi -vf "vflip" out.avi
  2054. @end example
  2055. @section yadif
  2056. Deinterlace the input video ("yadif" means "yet another deinterlacing
  2057. filter").
  2058. It accepts the optional parameters: @var{mode}:@var{parity}:@var{auto}.
  2059. @var{mode} specifies the interlacing mode to adopt, accepts one of the
  2060. following values:
  2061. @table @option
  2062. @item 0
  2063. output 1 frame for each frame
  2064. @item 1
  2065. output 1 frame for each field
  2066. @item 2
  2067. like 0 but skips spatial interlacing check
  2068. @item 3
  2069. like 1 but skips spatial interlacing check
  2070. @end table
  2071. Default value is 0.
  2072. @var{parity} specifies the picture field parity assumed for the input
  2073. interlaced video, accepts one of the following values:
  2074. @table @option
  2075. @item 0
  2076. assume top field first
  2077. @item 1
  2078. assume bottom field first
  2079. @item -1
  2080. enable automatic detection
  2081. @end table
  2082. Default value is -1.
  2083. If interlacing is unknown or decoder does not export this information,
  2084. top field first will be assumed.
  2085. @var{auto} specifies if deinterlacer should trust the interlaced flag
  2086. and only deinterlace frames marked as interlaced
  2087. @table @option
  2088. @item 0
  2089. deinterlace all frames
  2090. @item 1
  2091. only deinterlace frames marked as interlaced
  2092. @end table
  2093. Default value is 0.
  2094. @c man end VIDEO FILTERS
  2095. @chapter Video Sources
  2096. @c man begin VIDEO SOURCES
  2097. Below is a description of the currently available video sources.
  2098. @section buffer
  2099. Buffer video frames, and make them available to the filter chain.
  2100. This source is mainly intended for a programmatic use, in particular
  2101. through the interface defined in @file{libavfilter/vsrc_buffer.h}.
  2102. It accepts the following parameters:
  2103. @var{width}:@var{height}:@var{pix_fmt_string}:@var{timebase_num}:@var{timebase_den}:@var{sample_aspect_ratio_num}:@var{sample_aspect_ratio.den}:@var{scale_params}
  2104. All the parameters but @var{scale_params} need to be explicitly
  2105. defined.
  2106. Follows the list of the accepted parameters.
  2107. @table @option
  2108. @item width, height
  2109. Specify the width and height of the buffered video frames.
  2110. @item pix_fmt_string
  2111. A string representing the pixel format of the buffered video frames.
  2112. It may be a number corresponding to a pixel format, or a pixel format
  2113. name.
  2114. @item timebase_num, timebase_den
  2115. Specify numerator and denomitor of the timebase assumed by the
  2116. timestamps of the buffered frames.
  2117. @item sample_aspect_ratio.num, sample_aspect_ratio.den
  2118. Specify numerator and denominator of the sample aspect ratio assumed
  2119. by the video frames.
  2120. @item scale_params
  2121. Specify the optional parameters to be used for the scale filter which
  2122. is automatically inserted when an input change is detected in the
  2123. input size or format.
  2124. @end table
  2125. For example:
  2126. @example
  2127. buffer=320:240:yuv410p:1:24:1:1
  2128. @end example
  2129. will instruct the source to accept video frames with size 320x240 and
  2130. with format "yuv410p", assuming 1/24 as the timestamps timebase and
  2131. square pixels (1:1 sample aspect ratio).
  2132. Since the pixel format with name "yuv410p" corresponds to the number 6
  2133. (check the enum PixelFormat definition in @file{libavutil/pixfmt.h}),
  2134. this example corresponds to:
  2135. @example
  2136. buffer=320:240:6:1:24:1:1
  2137. @end example
  2138. @section cellauto
  2139. Create a pattern generated by an elementary cellular automaton.
  2140. The initial state of the cellular automaton can be defined through the
  2141. @option{filename}, and @option{pattern} options. If such options are
  2142. not specified an initial state is created randomly.
  2143. At each new frame a new row in the video is filled with the result of
  2144. the cellular automaton next generation. The behavior when the whole
  2145. frame is filled is defined by the @option{scroll} option.
  2146. This source accepts a list of options in the form of
  2147. @var{key}=@var{value} pairs separated by ":". A description of the
  2148. accepted options follows.
  2149. @table @option
  2150. @item filename, f
  2151. Read the initial cellular automaton state, i.e. the starting row, from
  2152. the specified file.
  2153. In the file, each non-whitespace character is considered an alive
  2154. cell, a newline will terminate the row, and further characters in the
  2155. file will be ignored.
  2156. @item pattern, p
  2157. Read the initial cellular automaton state, i.e. the starting row, from
  2158. the specified string.
  2159. Each non-whitespace character in the string is considered an alive
  2160. cell, a newline will terminate the row, and further characters in the
  2161. string will be ignored.
  2162. @item rate, r
  2163. Set the video rate, that is the number of frames generated per second.
  2164. Default is 25.
  2165. @item random_fill_ratio, ratio
  2166. Set the random fill ratio for the initial cellular automaton row. It
  2167. is a floating point number value ranging from 0 to 1, defaults to
  2168. 1/PHI.
  2169. This option is ignored when a file or a pattern is specified.
  2170. @item random_seed, seed
  2171. Set the seed for filling randomly the initial row, must be an integer
  2172. included between 0 and UINT32_MAX. If not specified, or if explicitly
  2173. set to -1, the filter will try to use a good random seed on a best
  2174. effort basis.
  2175. @item rule
  2176. Set the cellular automaton rule, it is a number ranging from 0 to 255.
  2177. Default value is 110.
  2178. @item size, s
  2179. Set the size of the output video.
  2180. If @option{filename} or @option{pattern} is specified, the size is set
  2181. by default to the width of the specified initial state row, and the
  2182. height is set to @var{width} * PHI.
  2183. If @option{size} is set, it must contain the width of the specified
  2184. pattern string, and the specified pattern will be centered in the
  2185. larger row.
  2186. If a filename or a pattern string is not specified, the size value
  2187. defaults to "320x518" (used for a randomly generated initial state).
  2188. @item scroll
  2189. If set to 1, scroll the output upward when all the rows in the output
  2190. have been already filled. If set to 0, the new generated row will be
  2191. written over the top row just after the bottom row is filled.
  2192. Defaults to 1.
  2193. @item start_full, full
  2194. If set to 1, completely fill the output with generated rows before
  2195. outputting the first frame.
  2196. This is the default behavior, for disabling set the value to 0.
  2197. @item stitch
  2198. If set to 1, stitch the left and right row edges together.
  2199. This is the default behavior, for disabling set the value to 0.
  2200. @end table
  2201. @subsection Examples
  2202. @itemize
  2203. @item
  2204. Read the initial state from @file{pattern}, and specify an output of
  2205. size 200x400.
  2206. @example
  2207. cellauto=f=pattern:s=200x400
  2208. @end example
  2209. @item
  2210. Generate a random initial row with a width of 200 cells, with a fill
  2211. ratio of 2/3:
  2212. @example
  2213. cellauto=ratio=2/3:s=200x200
  2214. @end example
  2215. @item
  2216. Create a pattern generated by rule 18 starting by a single alive cell
  2217. centered on an initial row with width 100:
  2218. @example
  2219. cellauto=p=@@:s=100x400:full=0:rule=18
  2220. @end example
  2221. @item
  2222. Specify a more elaborated initial pattern:
  2223. @example
  2224. cellauto=p='@@@@ @@ @@@@':s=100x400:full=0:rule=18
  2225. @end example
  2226. @end itemize
  2227. @section color
  2228. Provide an uniformly colored input.
  2229. It accepts the following parameters:
  2230. @var{color}:@var{frame_size}:@var{frame_rate}
  2231. Follows the description of the accepted parameters.
  2232. @table @option
  2233. @item color
  2234. Specify the color of the source. It can be the name of a color (case
  2235. insensitive match) or a 0xRRGGBB[AA] sequence, possibly followed by an
  2236. alpha specifier. The default value is "black".
  2237. @item frame_size
  2238. Specify the size of the sourced video, it may be a string of the form
  2239. @var{width}x@var{height}, or the name of a size abbreviation. The
  2240. default value is "320x240".
  2241. @item frame_rate
  2242. Specify the frame rate of the sourced video, as the number of frames
  2243. generated per second. It has to be a string in the format
  2244. @var{frame_rate_num}/@var{frame_rate_den}, an integer number, a float
  2245. number or a valid video frame rate abbreviation. The default value is
  2246. "25".
  2247. @end table
  2248. For example the following graph description will generate a red source
  2249. with an opacity of 0.2, with size "qcif" and a frame rate of 10
  2250. frames per second, which will be overlayed over the source connected
  2251. to the pad with identifier "in".
  2252. @example
  2253. "color=red@@0.2:qcif:10 [color]; [in][color] overlay [out]"
  2254. @end example
  2255. @section movie
  2256. Read a video stream from a movie container.
  2257. It accepts the syntax: @var{movie_name}[:@var{options}] where
  2258. @var{movie_name} is the name of the resource to read (not necessarily
  2259. a file but also a device or a stream accessed through some protocol),
  2260. and @var{options} is an optional sequence of @var{key}=@var{value}
  2261. pairs, separated by ":".
  2262. The description of the accepted options follows.
  2263. @table @option
  2264. @item format_name, f
  2265. Specifies the format assumed for the movie to read, and can be either
  2266. the name of a container or an input device. If not specified the
  2267. format is guessed from @var{movie_name} or by probing.
  2268. @item seek_point, sp
  2269. Specifies the seek point in seconds, the frames will be output
  2270. starting from this seek point, the parameter is evaluated with
  2271. @code{av_strtod} so the numerical value may be suffixed by an IS
  2272. postfix. Default value is "0".
  2273. @item stream_index, si
  2274. Specifies the index of the video stream to read. If the value is -1,
  2275. the best suited video stream will be automatically selected. Default
  2276. value is "-1".
  2277. @end table
  2278. This filter allows to overlay a second video on top of main input of
  2279. a filtergraph as shown in this graph:
  2280. @example
  2281. input -----------> deltapts0 --> overlay --> output
  2282. ^
  2283. |
  2284. movie --> scale--> deltapts1 -------+
  2285. @end example
  2286. Some examples follow:
  2287. @example
  2288. # skip 3.2 seconds from the start of the avi file in.avi, and overlay it
  2289. # on top of the input labelled as "in".
  2290. movie=in.avi:seek_point=3.2, scale=180:-1, setpts=PTS-STARTPTS [movie];
  2291. [in] setpts=PTS-STARTPTS, [movie] overlay=16:16 [out]
  2292. # read from a video4linux2 device, and overlay it on top of the input
  2293. # labelled as "in"
  2294. movie=/dev/video0:f=video4linux2, scale=180:-1, setpts=PTS-STARTPTS [movie];
  2295. [in] setpts=PTS-STARTPTS, [movie] overlay=16:16 [out]
  2296. @end example
  2297. @section mptestsrc
  2298. Generate various test patterns, as generated by the MPlayer test filter.
  2299. The size of the generated video is fixed, and is 256x256.
  2300. This source is useful in particular for testing encoding features.
  2301. This source accepts an optional sequence of @var{key}=@var{value} pairs,
  2302. separated by ":". The description of the accepted options follows.
  2303. @table @option
  2304. @item rate, r
  2305. Specify the frame rate of the sourced video, as the number of frames
  2306. generated per second. It has to be a string in the format
  2307. @var{frame_rate_num}/@var{frame_rate_den}, an integer number, a float
  2308. number or a valid video frame rate abbreviation. The default value is
  2309. "25".
  2310. @item duration, d
  2311. Set the video duration of the sourced video. The accepted syntax is:
  2312. @example
  2313. [-]HH[:MM[:SS[.m...]]]
  2314. [-]S+[.m...]
  2315. @end example
  2316. See also the function @code{av_parse_time()}.
  2317. If not specified, or the expressed duration is negative, the video is
  2318. supposed to be generated forever.
  2319. @item test, t
  2320. Set the number or the name of the test to perform. Supported tests are:
  2321. @table @option
  2322. @item dc_luma
  2323. @item dc_chroma
  2324. @item freq_luma
  2325. @item freq_chroma
  2326. @item amp_luma
  2327. @item amp_chroma
  2328. @item cbp
  2329. @item mv
  2330. @item ring1
  2331. @item ring2
  2332. @item all
  2333. @end table
  2334. Default value is "all", which will cycle through the list of all tests.
  2335. @end table
  2336. For example the following:
  2337. @example
  2338. testsrc=t=dc_luma
  2339. @end example
  2340. will generate a "dc_luma" test pattern.
  2341. @section frei0r_src
  2342. Provide a frei0r source.
  2343. To enable compilation of this filter you need to install the frei0r
  2344. header and configure FFmpeg with @code{--enable-frei0r}.
  2345. The source supports the syntax:
  2346. @example
  2347. @var{size}:@var{rate}:@var{src_name}[@{=|:@}@var{param1}:@var{param2}:...:@var{paramN}]
  2348. @end example
  2349. @var{size} is the size of the video to generate, may be a string of the
  2350. form @var{width}x@var{height} or a frame size abbreviation.
  2351. @var{rate} is the rate of the video to generate, may be a string of
  2352. the form @var{num}/@var{den} or a frame rate abbreviation.
  2353. @var{src_name} is the name to the frei0r source to load. For more
  2354. information regarding frei0r and how to set the parameters read the
  2355. section @ref{frei0r} in the description of the video filters.
  2356. Some examples follow:
  2357. @example
  2358. # generate a frei0r partik0l source with size 200x200 and frame rate 10
  2359. # which is overlayed on the overlay filter main input
  2360. frei0r_src=200x200:10:partik0l=1234 [overlay]; [in][overlay] overlay
  2361. @end example
  2362. @section life
  2363. Generate a life pattern.
  2364. This source is based on a generalization of John Conway's life game.
  2365. The sourced input represents a life grid, each pixel represents a cell
  2366. which can be in one of two possible states, alive or dead. Every cell
  2367. interacts with its eight neighbours, which are the cells that are
  2368. horizontally, vertically, or diagonally adjacent.
  2369. At each interaction the grid evolves according to the adopted rule,
  2370. which specifies the number of neighbor alive cells which will make a
  2371. cell stay alive or born. The @option{rule} option allows to specify
  2372. the rule to adopt.
  2373. This source accepts a list of options in the form of
  2374. @var{key}=@var{value} pairs separated by ":". A description of the
  2375. accepted options follows.
  2376. @table @option
  2377. @item filename, f
  2378. Set the file from which to read the initial grid state. In the file,
  2379. each non-whitespace character is considered an alive cell, and newline
  2380. is used to delimit the end of each row.
  2381. If this option is not specified, the initial grid is generated
  2382. randomly.
  2383. @item rate, r
  2384. Set the video rate, that is the number of frames generated per second.
  2385. Default is 25.
  2386. @item random_fill_ratio, ratio
  2387. Set the random fill ratio for the initial random grid. It is a
  2388. floating point number value ranging from 0 to 1, defaults to 1/PHI.
  2389. It is ignored when a file is specified.
  2390. @item random_seed, seed
  2391. Set the seed for filling the initial random grid, must be an integer
  2392. included between 0 and UINT32_MAX. If not specified, or if explicitly
  2393. set to -1, the filter will try to use a good random seed on a best
  2394. effort basis.
  2395. @item rule
  2396. Set the life rule.
  2397. A rule can be specified with a code of the kind "S@var{NS}/B@var{NB}",
  2398. where @var{NS} and @var{NB} are sequences of numbers in the range 0-8,
  2399. @var{NS} specifies the number of alive neighbor cells which make a
  2400. live cell stay alive, and @var{NB} the number of alive neighbor cells
  2401. which make a dead cell to become alive (i.e. to "born").
  2402. "s" and "b" can be used in place of "S" and "B", respectively.
  2403. Alternatively a rule can be specified by an 18-bits integer. The 9
  2404. high order bits are used to encode the next cell state if it is alive
  2405. for each number of neighbor alive cells, the low order bits specify
  2406. the rule for "borning" new cells. Higher order bits encode for an
  2407. higher number of neighbor cells.
  2408. For example the number 6153 = @code{(12<<9)+9} specifies a stay alive
  2409. rule of 12 and a born rule of 9, which corresponds to "S23/B03".
  2410. Default value is "S23/B3", which is the original Conway's game of life
  2411. rule, and will keep a cell alive if it has 2 or 3 neighbor alive
  2412. cells, and will born a new cell if there are three alive cells around
  2413. a dead cell.
  2414. @item size, s
  2415. Set the size of the output video.
  2416. If @option{filename} is specified, the size is set by default to the
  2417. same size of the input file. If @option{size} is set, it must contain
  2418. the size specified in the input file, and the initial grid defined in
  2419. that file is centered in the larger resulting area.
  2420. If a filename is not specified, the size value defaults to "320x240"
  2421. (used for a randomly generated initial grid).
  2422. @item stitch
  2423. If set to 1, stitch the left and right grid edges together, and the
  2424. top and bottom edges also. Defaults to 1.
  2425. @item mold
  2426. Set cell mold speed. If set, a dead cell will go from @option{death_color} to
  2427. @option{mold_color} with a step of @option{mold}. @option{mold} can have a
  2428. value from 0 to 255.
  2429. @item life_color
  2430. Set the color of living (or new born) cells.
  2431. @item death_color
  2432. Set the color of dead cells. If @option{mold} is set, this is the first color
  2433. used to represent a dead cell.
  2434. @item mold_color
  2435. Set mold color, for definitely dead and moldy cells.
  2436. @end table
  2437. @subsection Examples
  2438. @itemize
  2439. @item
  2440. Read a grid from @file{pattern}, and center it on a grid of size
  2441. 300x300 pixels:
  2442. @example
  2443. life=f=pattern:s=300x300
  2444. @end example
  2445. @item
  2446. Generate a random grid of size 200x200, with a fill ratio of 2/3:
  2447. @example
  2448. life=ratio=2/3:s=200x200
  2449. @end example
  2450. @item
  2451. Specify a custom rule for evolving a randomly generated grid:
  2452. @example
  2453. life=rule=S14/B34
  2454. @end example
  2455. @item
  2456. Full example with slow death effect (mold) using @command{ffplay}:
  2457. @example
  2458. ffplay -f lavfi life=s=300x200:mold=10:r=60:ratio=0.1:death_color=#C83232:life_color=#00ff00,scale=1200:800:flags=16
  2459. @end example
  2460. @end itemize
  2461. @section nullsrc, rgbtestsrc, testsrc
  2462. The @code{nullsrc} source returns unprocessed video frames. It is
  2463. mainly useful to be employed in analysis / debugging tools, or as the
  2464. source for filters which ignore the input data.
  2465. The @code{rgbtestsrc} source generates an RGB test pattern useful for
  2466. detecting RGB vs BGR issues. You should see a red, green and blue
  2467. stripe from top to bottom.
  2468. The @code{testsrc} source generates a test video pattern, showing a
  2469. color pattern, a scrolling gradient and a timestamp. This is mainly
  2470. intended for testing purposes.
  2471. These sources accept an optional sequence of @var{key}=@var{value} pairs,
  2472. separated by ":". The description of the accepted options follows.
  2473. @table @option
  2474. @item size, s
  2475. Specify the size of the sourced video, it may be a string of the form
  2476. @var{width}x@var{height}, or the name of a size abbreviation. The
  2477. default value is "320x240".
  2478. @item rate, r
  2479. Specify the frame rate of the sourced video, as the number of frames
  2480. generated per second. It has to be a string in the format
  2481. @var{frame_rate_num}/@var{frame_rate_den}, an integer number, a float
  2482. number or a valid video frame rate abbreviation. The default value is
  2483. "25".
  2484. @item sar
  2485. Set the sample aspect ratio of the sourced video.
  2486. @item duration, d
  2487. Set the video duration of the sourced video. The accepted syntax is:
  2488. @example
  2489. [-]HH[:MM[:SS[.m...]]]
  2490. [-]S+[.m...]
  2491. @end example
  2492. See also the function @code{av_parse_time()}.
  2493. If not specified, or the expressed duration is negative, the video is
  2494. supposed to be generated forever.
  2495. @item decimals, n
  2496. Set the number of decimals to show in the timestamp, only used in the
  2497. @code{testsrc} source.
  2498. The displayed timestamp value will correspond to the original
  2499. timestamp value multiplied by the power of 10 of the specified
  2500. value. Default value is 0.
  2501. @end table
  2502. For example the following:
  2503. @example
  2504. testsrc=duration=5.3:size=qcif:rate=10
  2505. @end example
  2506. will generate a video with a duration of 5.3 seconds, with size
  2507. 176x144 and a frame rate of 10 frames per second.
  2508. If the input content is to be ignored, @code{nullsrc} can be used. The
  2509. following command generates noise in the luminance plane by employing
  2510. the @code{mp=geq} filter:
  2511. @example
  2512. nullsrc=s=256x256, mp=geq=random(1)*255:128:128
  2513. @end example
  2514. @c man end VIDEO SOURCES
  2515. @chapter Video Sinks
  2516. @c man begin VIDEO SINKS
  2517. Below is a description of the currently available video sinks.
  2518. @section buffersink
  2519. Buffer video frames, and make them available to the end of the filter
  2520. graph.
  2521. This sink is mainly intended for a programmatic use, in particular
  2522. through the interface defined in @file{libavfilter/buffersink.h}.
  2523. It does not require a string parameter in input, but you need to
  2524. specify a pointer to a list of supported pixel formats terminated by
  2525. -1 in the opaque parameter provided to @code{avfilter_init_filter}
  2526. when initializing this sink.
  2527. @section nullsink
  2528. Null video sink, do absolutely nothing with the input video. It is
  2529. mainly useful as a template and to be employed in analysis / debugging
  2530. tools.
  2531. @c man end VIDEO SINKS