You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

1574 lines
51KB

  1. /*
  2. * DSP utils
  3. * Copyright (c) 2000, 2001 Fabrice Bellard
  4. * Copyright (c) 2002-2004 Michael Niedermayer <michaelni@gmx.at>
  5. *
  6. * gmc & q-pel & 32/64 bit based MC by Michael Niedermayer <michaelni@gmx.at>
  7. *
  8. * This file is part of Libav.
  9. *
  10. * Libav is free software; you can redistribute it and/or
  11. * modify it under the terms of the GNU Lesser General Public
  12. * License as published by the Free Software Foundation; either
  13. * version 2.1 of the License, or (at your option) any later version.
  14. *
  15. * Libav is distributed in the hope that it will be useful,
  16. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  17. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  18. * Lesser General Public License for more details.
  19. *
  20. * You should have received a copy of the GNU Lesser General Public
  21. * License along with Libav; if not, write to the Free Software
  22. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  23. */
  24. /**
  25. * @file
  26. * DSP utils
  27. */
  28. #include "libavutil/attributes.h"
  29. #include "libavutil/imgutils.h"
  30. #include "avcodec.h"
  31. #include "copy_block.h"
  32. #include "dct.h"
  33. #include "dsputil.h"
  34. #include "simple_idct.h"
  35. #include "faandct.h"
  36. #include "faanidct.h"
  37. #include "imgconvert.h"
  38. #include "mathops.h"
  39. #include "mpegvideo.h"
  40. #include "config.h"
  41. uint32_t ff_square_tab[512] = { 0, };
  42. #define BIT_DEPTH 16
  43. #include "dsputilenc_template.c"
  44. #undef BIT_DEPTH
  45. #define BIT_DEPTH 8
  46. #include "dsputilenc_template.c"
  47. /* Input permutation for the simple_idct_mmx */
  48. static const uint8_t simple_mmx_permutation[64] = {
  49. 0x00, 0x08, 0x04, 0x09, 0x01, 0x0C, 0x05, 0x0D,
  50. 0x10, 0x18, 0x14, 0x19, 0x11, 0x1C, 0x15, 0x1D,
  51. 0x20, 0x28, 0x24, 0x29, 0x21, 0x2C, 0x25, 0x2D,
  52. 0x12, 0x1A, 0x16, 0x1B, 0x13, 0x1E, 0x17, 0x1F,
  53. 0x02, 0x0A, 0x06, 0x0B, 0x03, 0x0E, 0x07, 0x0F,
  54. 0x30, 0x38, 0x34, 0x39, 0x31, 0x3C, 0x35, 0x3D,
  55. 0x22, 0x2A, 0x26, 0x2B, 0x23, 0x2E, 0x27, 0x2F,
  56. 0x32, 0x3A, 0x36, 0x3B, 0x33, 0x3E, 0x37, 0x3F,
  57. };
  58. static const uint8_t idct_sse2_row_perm[8] = { 0, 4, 1, 5, 2, 6, 3, 7 };
  59. av_cold void ff_init_scantable(uint8_t *permutation, ScanTable *st,
  60. const uint8_t *src_scantable)
  61. {
  62. int i, end;
  63. st->scantable = src_scantable;
  64. for (i = 0; i < 64; i++) {
  65. int j = src_scantable[i];
  66. st->permutated[i] = permutation[j];
  67. }
  68. end = -1;
  69. for (i = 0; i < 64; i++) {
  70. int j = st->permutated[i];
  71. if (j > end)
  72. end = j;
  73. st->raster_end[i] = end;
  74. }
  75. }
  76. av_cold void ff_init_scantable_permutation(uint8_t *idct_permutation,
  77. int idct_permutation_type)
  78. {
  79. int i;
  80. switch (idct_permutation_type) {
  81. case FF_NO_IDCT_PERM:
  82. for (i = 0; i < 64; i++)
  83. idct_permutation[i] = i;
  84. break;
  85. case FF_LIBMPEG2_IDCT_PERM:
  86. for (i = 0; i < 64; i++)
  87. idct_permutation[i] = (i & 0x38) | ((i & 6) >> 1) | ((i & 1) << 2);
  88. break;
  89. case FF_SIMPLE_IDCT_PERM:
  90. for (i = 0; i < 64; i++)
  91. idct_permutation[i] = simple_mmx_permutation[i];
  92. break;
  93. case FF_TRANSPOSE_IDCT_PERM:
  94. for (i = 0; i < 64; i++)
  95. idct_permutation[i] = ((i & 7) << 3) | (i >> 3);
  96. break;
  97. case FF_PARTTRANS_IDCT_PERM:
  98. for (i = 0; i < 64; i++)
  99. idct_permutation[i] = (i & 0x24) | ((i & 3) << 3) | ((i >> 3) & 3);
  100. break;
  101. case FF_SSE2_IDCT_PERM:
  102. for (i = 0; i < 64; i++)
  103. idct_permutation[i] = (i & 0x38) | idct_sse2_row_perm[i & 7];
  104. break;
  105. default:
  106. av_log(NULL, AV_LOG_ERROR,
  107. "Internal error, IDCT permutation not set\n");
  108. }
  109. }
  110. static int pix_sum_c(uint8_t *pix, int line_size)
  111. {
  112. int s = 0, i, j;
  113. for (i = 0; i < 16; i++) {
  114. for (j = 0; j < 16; j += 8) {
  115. s += pix[0];
  116. s += pix[1];
  117. s += pix[2];
  118. s += pix[3];
  119. s += pix[4];
  120. s += pix[5];
  121. s += pix[6];
  122. s += pix[7];
  123. pix += 8;
  124. }
  125. pix += line_size - 16;
  126. }
  127. return s;
  128. }
  129. static int pix_norm1_c(uint8_t *pix, int line_size)
  130. {
  131. int s = 0, i, j;
  132. uint32_t *sq = ff_square_tab + 256;
  133. for (i = 0; i < 16; i++) {
  134. for (j = 0; j < 16; j += 8) {
  135. #if 0
  136. s += sq[pix[0]];
  137. s += sq[pix[1]];
  138. s += sq[pix[2]];
  139. s += sq[pix[3]];
  140. s += sq[pix[4]];
  141. s += sq[pix[5]];
  142. s += sq[pix[6]];
  143. s += sq[pix[7]];
  144. #else
  145. #if HAVE_FAST_64BIT
  146. register uint64_t x = *(uint64_t *) pix;
  147. s += sq[x & 0xff];
  148. s += sq[(x >> 8) & 0xff];
  149. s += sq[(x >> 16) & 0xff];
  150. s += sq[(x >> 24) & 0xff];
  151. s += sq[(x >> 32) & 0xff];
  152. s += sq[(x >> 40) & 0xff];
  153. s += sq[(x >> 48) & 0xff];
  154. s += sq[(x >> 56) & 0xff];
  155. #else
  156. register uint32_t x = *(uint32_t *) pix;
  157. s += sq[x & 0xff];
  158. s += sq[(x >> 8) & 0xff];
  159. s += sq[(x >> 16) & 0xff];
  160. s += sq[(x >> 24) & 0xff];
  161. x = *(uint32_t *) (pix + 4);
  162. s += sq[x & 0xff];
  163. s += sq[(x >> 8) & 0xff];
  164. s += sq[(x >> 16) & 0xff];
  165. s += sq[(x >> 24) & 0xff];
  166. #endif
  167. #endif
  168. pix += 8;
  169. }
  170. pix += line_size - 16;
  171. }
  172. return s;
  173. }
  174. static void bswap_buf(uint32_t *dst, const uint32_t *src, int w)
  175. {
  176. int i;
  177. for (i = 0; i + 8 <= w; i += 8) {
  178. dst[i + 0] = av_bswap32(src[i + 0]);
  179. dst[i + 1] = av_bswap32(src[i + 1]);
  180. dst[i + 2] = av_bswap32(src[i + 2]);
  181. dst[i + 3] = av_bswap32(src[i + 3]);
  182. dst[i + 4] = av_bswap32(src[i + 4]);
  183. dst[i + 5] = av_bswap32(src[i + 5]);
  184. dst[i + 6] = av_bswap32(src[i + 6]);
  185. dst[i + 7] = av_bswap32(src[i + 7]);
  186. }
  187. for (; i < w; i++)
  188. dst[i + 0] = av_bswap32(src[i + 0]);
  189. }
  190. static void bswap16_buf(uint16_t *dst, const uint16_t *src, int len)
  191. {
  192. while (len--)
  193. *dst++ = av_bswap16(*src++);
  194. }
  195. static int sse4_c(MpegEncContext *v, uint8_t *pix1, uint8_t *pix2,
  196. int line_size, int h)
  197. {
  198. int s = 0, i;
  199. uint32_t *sq = ff_square_tab + 256;
  200. for (i = 0; i < h; i++) {
  201. s += sq[pix1[0] - pix2[0]];
  202. s += sq[pix1[1] - pix2[1]];
  203. s += sq[pix1[2] - pix2[2]];
  204. s += sq[pix1[3] - pix2[3]];
  205. pix1 += line_size;
  206. pix2 += line_size;
  207. }
  208. return s;
  209. }
  210. static int sse8_c(MpegEncContext *v, uint8_t *pix1, uint8_t *pix2,
  211. int line_size, int h)
  212. {
  213. int s = 0, i;
  214. uint32_t *sq = ff_square_tab + 256;
  215. for (i = 0; i < h; i++) {
  216. s += sq[pix1[0] - pix2[0]];
  217. s += sq[pix1[1] - pix2[1]];
  218. s += sq[pix1[2] - pix2[2]];
  219. s += sq[pix1[3] - pix2[3]];
  220. s += sq[pix1[4] - pix2[4]];
  221. s += sq[pix1[5] - pix2[5]];
  222. s += sq[pix1[6] - pix2[6]];
  223. s += sq[pix1[7] - pix2[7]];
  224. pix1 += line_size;
  225. pix2 += line_size;
  226. }
  227. return s;
  228. }
  229. static int sse16_c(MpegEncContext *v, uint8_t *pix1, uint8_t *pix2,
  230. int line_size, int h)
  231. {
  232. int s = 0, i;
  233. uint32_t *sq = ff_square_tab + 256;
  234. for (i = 0; i < h; i++) {
  235. s += sq[pix1[0] - pix2[0]];
  236. s += sq[pix1[1] - pix2[1]];
  237. s += sq[pix1[2] - pix2[2]];
  238. s += sq[pix1[3] - pix2[3]];
  239. s += sq[pix1[4] - pix2[4]];
  240. s += sq[pix1[5] - pix2[5]];
  241. s += sq[pix1[6] - pix2[6]];
  242. s += sq[pix1[7] - pix2[7]];
  243. s += sq[pix1[8] - pix2[8]];
  244. s += sq[pix1[9] - pix2[9]];
  245. s += sq[pix1[10] - pix2[10]];
  246. s += sq[pix1[11] - pix2[11]];
  247. s += sq[pix1[12] - pix2[12]];
  248. s += sq[pix1[13] - pix2[13]];
  249. s += sq[pix1[14] - pix2[14]];
  250. s += sq[pix1[15] - pix2[15]];
  251. pix1 += line_size;
  252. pix2 += line_size;
  253. }
  254. return s;
  255. }
  256. static void diff_pixels_c(int16_t *restrict block, const uint8_t *s1,
  257. const uint8_t *s2, int stride)
  258. {
  259. int i;
  260. /* read the pixels */
  261. for (i = 0; i < 8; i++) {
  262. block[0] = s1[0] - s2[0];
  263. block[1] = s1[1] - s2[1];
  264. block[2] = s1[2] - s2[2];
  265. block[3] = s1[3] - s2[3];
  266. block[4] = s1[4] - s2[4];
  267. block[5] = s1[5] - s2[5];
  268. block[6] = s1[6] - s2[6];
  269. block[7] = s1[7] - s2[7];
  270. s1 += stride;
  271. s2 += stride;
  272. block += 8;
  273. }
  274. }
  275. static void put_pixels_clamped_c(const int16_t *block, uint8_t *restrict pixels,
  276. int line_size)
  277. {
  278. int i;
  279. /* read the pixels */
  280. for (i = 0; i < 8; i++) {
  281. pixels[0] = av_clip_uint8(block[0]);
  282. pixels[1] = av_clip_uint8(block[1]);
  283. pixels[2] = av_clip_uint8(block[2]);
  284. pixels[3] = av_clip_uint8(block[3]);
  285. pixels[4] = av_clip_uint8(block[4]);
  286. pixels[5] = av_clip_uint8(block[5]);
  287. pixels[6] = av_clip_uint8(block[6]);
  288. pixels[7] = av_clip_uint8(block[7]);
  289. pixels += line_size;
  290. block += 8;
  291. }
  292. }
  293. static void put_signed_pixels_clamped_c(const int16_t *block,
  294. uint8_t *restrict pixels,
  295. int line_size)
  296. {
  297. int i, j;
  298. for (i = 0; i < 8; i++) {
  299. for (j = 0; j < 8; j++) {
  300. if (*block < -128)
  301. *pixels = 0;
  302. else if (*block > 127)
  303. *pixels = 255;
  304. else
  305. *pixels = (uint8_t) (*block + 128);
  306. block++;
  307. pixels++;
  308. }
  309. pixels += (line_size - 8);
  310. }
  311. }
  312. static void add_pixels_clamped_c(const int16_t *block, uint8_t *restrict pixels,
  313. int line_size)
  314. {
  315. int i;
  316. /* read the pixels */
  317. for (i = 0; i < 8; i++) {
  318. pixels[0] = av_clip_uint8(pixels[0] + block[0]);
  319. pixels[1] = av_clip_uint8(pixels[1] + block[1]);
  320. pixels[2] = av_clip_uint8(pixels[2] + block[2]);
  321. pixels[3] = av_clip_uint8(pixels[3] + block[3]);
  322. pixels[4] = av_clip_uint8(pixels[4] + block[4]);
  323. pixels[5] = av_clip_uint8(pixels[5] + block[5]);
  324. pixels[6] = av_clip_uint8(pixels[6] + block[6]);
  325. pixels[7] = av_clip_uint8(pixels[7] + block[7]);
  326. pixels += line_size;
  327. block += 8;
  328. }
  329. }
  330. static int sum_abs_dctelem_c(int16_t *block)
  331. {
  332. int sum = 0, i;
  333. for (i = 0; i < 64; i++)
  334. sum += FFABS(block[i]);
  335. return sum;
  336. }
  337. static void fill_block16_c(uint8_t *block, uint8_t value, int line_size, int h)
  338. {
  339. int i;
  340. for (i = 0; i < h; i++) {
  341. memset(block, value, 16);
  342. block += line_size;
  343. }
  344. }
  345. static void fill_block8_c(uint8_t *block, uint8_t value, int line_size, int h)
  346. {
  347. int i;
  348. for (i = 0; i < h; i++) {
  349. memset(block, value, 8);
  350. block += line_size;
  351. }
  352. }
  353. #define avg2(a, b) ((a + b + 1) >> 1)
  354. #define avg4(a, b, c, d) ((a + b + c + d + 2) >> 2)
  355. static void gmc1_c(uint8_t *dst, uint8_t *src, int stride, int h,
  356. int x16, int y16, int rounder)
  357. {
  358. const int A = (16 - x16) * (16 - y16);
  359. const int B = (x16) * (16 - y16);
  360. const int C = (16 - x16) * (y16);
  361. const int D = (x16) * (y16);
  362. int i;
  363. for (i = 0; i < h; i++) {
  364. dst[0] = (A * src[0] + B * src[1] + C * src[stride + 0] + D * src[stride + 1] + rounder) >> 8;
  365. dst[1] = (A * src[1] + B * src[2] + C * src[stride + 1] + D * src[stride + 2] + rounder) >> 8;
  366. dst[2] = (A * src[2] + B * src[3] + C * src[stride + 2] + D * src[stride + 3] + rounder) >> 8;
  367. dst[3] = (A * src[3] + B * src[4] + C * src[stride + 3] + D * src[stride + 4] + rounder) >> 8;
  368. dst[4] = (A * src[4] + B * src[5] + C * src[stride + 4] + D * src[stride + 5] + rounder) >> 8;
  369. dst[5] = (A * src[5] + B * src[6] + C * src[stride + 5] + D * src[stride + 6] + rounder) >> 8;
  370. dst[6] = (A * src[6] + B * src[7] + C * src[stride + 6] + D * src[stride + 7] + rounder) >> 8;
  371. dst[7] = (A * src[7] + B * src[8] + C * src[stride + 7] + D * src[stride + 8] + rounder) >> 8;
  372. dst += stride;
  373. src += stride;
  374. }
  375. }
  376. void ff_gmc_c(uint8_t *dst, uint8_t *src, int stride, int h, int ox, int oy,
  377. int dxx, int dxy, int dyx, int dyy, int shift, int r,
  378. int width, int height)
  379. {
  380. int y, vx, vy;
  381. const int s = 1 << shift;
  382. width--;
  383. height--;
  384. for (y = 0; y < h; y++) {
  385. int x;
  386. vx = ox;
  387. vy = oy;
  388. for (x = 0; x < 8; x++) { // FIXME: optimize
  389. int index;
  390. int src_x = vx >> 16;
  391. int src_y = vy >> 16;
  392. int frac_x = src_x & (s - 1);
  393. int frac_y = src_y & (s - 1);
  394. src_x >>= shift;
  395. src_y >>= shift;
  396. if ((unsigned) src_x < width) {
  397. if ((unsigned) src_y < height) {
  398. index = src_x + src_y * stride;
  399. dst[y * stride + x] =
  400. ((src[index] * (s - frac_x) +
  401. src[index + 1] * frac_x) * (s - frac_y) +
  402. (src[index + stride] * (s - frac_x) +
  403. src[index + stride + 1] * frac_x) * frac_y +
  404. r) >> (shift * 2);
  405. } else {
  406. index = src_x + av_clip(src_y, 0, height) * stride;
  407. dst[y * stride + x] =
  408. ((src[index] * (s - frac_x) +
  409. src[index + 1] * frac_x) * s +
  410. r) >> (shift * 2);
  411. }
  412. } else {
  413. if ((unsigned) src_y < height) {
  414. index = av_clip(src_x, 0, width) + src_y * stride;
  415. dst[y * stride + x] =
  416. ((src[index] * (s - frac_y) +
  417. src[index + stride] * frac_y) * s +
  418. r) >> (shift * 2);
  419. } else {
  420. index = av_clip(src_x, 0, width) +
  421. av_clip(src_y, 0, height) * stride;
  422. dst[y * stride + x] = src[index];
  423. }
  424. }
  425. vx += dxx;
  426. vy += dyx;
  427. }
  428. ox += dxy;
  429. oy += dyy;
  430. }
  431. }
  432. static inline int pix_abs16_c(MpegEncContext *v, uint8_t *pix1, uint8_t *pix2,
  433. int line_size, int h)
  434. {
  435. int s = 0, i;
  436. for (i = 0; i < h; i++) {
  437. s += abs(pix1[0] - pix2[0]);
  438. s += abs(pix1[1] - pix2[1]);
  439. s += abs(pix1[2] - pix2[2]);
  440. s += abs(pix1[3] - pix2[3]);
  441. s += abs(pix1[4] - pix2[4]);
  442. s += abs(pix1[5] - pix2[5]);
  443. s += abs(pix1[6] - pix2[6]);
  444. s += abs(pix1[7] - pix2[7]);
  445. s += abs(pix1[8] - pix2[8]);
  446. s += abs(pix1[9] - pix2[9]);
  447. s += abs(pix1[10] - pix2[10]);
  448. s += abs(pix1[11] - pix2[11]);
  449. s += abs(pix1[12] - pix2[12]);
  450. s += abs(pix1[13] - pix2[13]);
  451. s += abs(pix1[14] - pix2[14]);
  452. s += abs(pix1[15] - pix2[15]);
  453. pix1 += line_size;
  454. pix2 += line_size;
  455. }
  456. return s;
  457. }
  458. static int pix_abs16_x2_c(MpegEncContext *v, uint8_t *pix1, uint8_t *pix2,
  459. int line_size, int h)
  460. {
  461. int s = 0, i;
  462. for (i = 0; i < h; i++) {
  463. s += abs(pix1[0] - avg2(pix2[0], pix2[1]));
  464. s += abs(pix1[1] - avg2(pix2[1], pix2[2]));
  465. s += abs(pix1[2] - avg2(pix2[2], pix2[3]));
  466. s += abs(pix1[3] - avg2(pix2[3], pix2[4]));
  467. s += abs(pix1[4] - avg2(pix2[4], pix2[5]));
  468. s += abs(pix1[5] - avg2(pix2[5], pix2[6]));
  469. s += abs(pix1[6] - avg2(pix2[6], pix2[7]));
  470. s += abs(pix1[7] - avg2(pix2[7], pix2[8]));
  471. s += abs(pix1[8] - avg2(pix2[8], pix2[9]));
  472. s += abs(pix1[9] - avg2(pix2[9], pix2[10]));
  473. s += abs(pix1[10] - avg2(pix2[10], pix2[11]));
  474. s += abs(pix1[11] - avg2(pix2[11], pix2[12]));
  475. s += abs(pix1[12] - avg2(pix2[12], pix2[13]));
  476. s += abs(pix1[13] - avg2(pix2[13], pix2[14]));
  477. s += abs(pix1[14] - avg2(pix2[14], pix2[15]));
  478. s += abs(pix1[15] - avg2(pix2[15], pix2[16]));
  479. pix1 += line_size;
  480. pix2 += line_size;
  481. }
  482. return s;
  483. }
  484. static int pix_abs16_y2_c(MpegEncContext *v, uint8_t *pix1, uint8_t *pix2,
  485. int line_size, int h)
  486. {
  487. int s = 0, i;
  488. uint8_t *pix3 = pix2 + line_size;
  489. for (i = 0; i < h; i++) {
  490. s += abs(pix1[0] - avg2(pix2[0], pix3[0]));
  491. s += abs(pix1[1] - avg2(pix2[1], pix3[1]));
  492. s += abs(pix1[2] - avg2(pix2[2], pix3[2]));
  493. s += abs(pix1[3] - avg2(pix2[3], pix3[3]));
  494. s += abs(pix1[4] - avg2(pix2[4], pix3[4]));
  495. s += abs(pix1[5] - avg2(pix2[5], pix3[5]));
  496. s += abs(pix1[6] - avg2(pix2[6], pix3[6]));
  497. s += abs(pix1[7] - avg2(pix2[7], pix3[7]));
  498. s += abs(pix1[8] - avg2(pix2[8], pix3[8]));
  499. s += abs(pix1[9] - avg2(pix2[9], pix3[9]));
  500. s += abs(pix1[10] - avg2(pix2[10], pix3[10]));
  501. s += abs(pix1[11] - avg2(pix2[11], pix3[11]));
  502. s += abs(pix1[12] - avg2(pix2[12], pix3[12]));
  503. s += abs(pix1[13] - avg2(pix2[13], pix3[13]));
  504. s += abs(pix1[14] - avg2(pix2[14], pix3[14]));
  505. s += abs(pix1[15] - avg2(pix2[15], pix3[15]));
  506. pix1 += line_size;
  507. pix2 += line_size;
  508. pix3 += line_size;
  509. }
  510. return s;
  511. }
  512. static int pix_abs16_xy2_c(MpegEncContext *v, uint8_t *pix1, uint8_t *pix2,
  513. int line_size, int h)
  514. {
  515. int s = 0, i;
  516. uint8_t *pix3 = pix2 + line_size;
  517. for (i = 0; i < h; i++) {
  518. s += abs(pix1[0] - avg4(pix2[0], pix2[1], pix3[0], pix3[1]));
  519. s += abs(pix1[1] - avg4(pix2[1], pix2[2], pix3[1], pix3[2]));
  520. s += abs(pix1[2] - avg4(pix2[2], pix2[3], pix3[2], pix3[3]));
  521. s += abs(pix1[3] - avg4(pix2[3], pix2[4], pix3[3], pix3[4]));
  522. s += abs(pix1[4] - avg4(pix2[4], pix2[5], pix3[4], pix3[5]));
  523. s += abs(pix1[5] - avg4(pix2[5], pix2[6], pix3[5], pix3[6]));
  524. s += abs(pix1[6] - avg4(pix2[6], pix2[7], pix3[6], pix3[7]));
  525. s += abs(pix1[7] - avg4(pix2[7], pix2[8], pix3[7], pix3[8]));
  526. s += abs(pix1[8] - avg4(pix2[8], pix2[9], pix3[8], pix3[9]));
  527. s += abs(pix1[9] - avg4(pix2[9], pix2[10], pix3[9], pix3[10]));
  528. s += abs(pix1[10] - avg4(pix2[10], pix2[11], pix3[10], pix3[11]));
  529. s += abs(pix1[11] - avg4(pix2[11], pix2[12], pix3[11], pix3[12]));
  530. s += abs(pix1[12] - avg4(pix2[12], pix2[13], pix3[12], pix3[13]));
  531. s += abs(pix1[13] - avg4(pix2[13], pix2[14], pix3[13], pix3[14]));
  532. s += abs(pix1[14] - avg4(pix2[14], pix2[15], pix3[14], pix3[15]));
  533. s += abs(pix1[15] - avg4(pix2[15], pix2[16], pix3[15], pix3[16]));
  534. pix1 += line_size;
  535. pix2 += line_size;
  536. pix3 += line_size;
  537. }
  538. return s;
  539. }
  540. static inline int pix_abs8_c(MpegEncContext *v, uint8_t *pix1, uint8_t *pix2,
  541. int line_size, int h)
  542. {
  543. int s = 0, i;
  544. for (i = 0; i < h; i++) {
  545. s += abs(pix1[0] - pix2[0]);
  546. s += abs(pix1[1] - pix2[1]);
  547. s += abs(pix1[2] - pix2[2]);
  548. s += abs(pix1[3] - pix2[3]);
  549. s += abs(pix1[4] - pix2[4]);
  550. s += abs(pix1[5] - pix2[5]);
  551. s += abs(pix1[6] - pix2[6]);
  552. s += abs(pix1[7] - pix2[7]);
  553. pix1 += line_size;
  554. pix2 += line_size;
  555. }
  556. return s;
  557. }
  558. static int pix_abs8_x2_c(MpegEncContext *v, uint8_t *pix1, uint8_t *pix2,
  559. int line_size, int h)
  560. {
  561. int s = 0, i;
  562. for (i = 0; i < h; i++) {
  563. s += abs(pix1[0] - avg2(pix2[0], pix2[1]));
  564. s += abs(pix1[1] - avg2(pix2[1], pix2[2]));
  565. s += abs(pix1[2] - avg2(pix2[2], pix2[3]));
  566. s += abs(pix1[3] - avg2(pix2[3], pix2[4]));
  567. s += abs(pix1[4] - avg2(pix2[4], pix2[5]));
  568. s += abs(pix1[5] - avg2(pix2[5], pix2[6]));
  569. s += abs(pix1[6] - avg2(pix2[6], pix2[7]));
  570. s += abs(pix1[7] - avg2(pix2[7], pix2[8]));
  571. pix1 += line_size;
  572. pix2 += line_size;
  573. }
  574. return s;
  575. }
  576. static int pix_abs8_y2_c(MpegEncContext *v, uint8_t *pix1, uint8_t *pix2,
  577. int line_size, int h)
  578. {
  579. int s = 0, i;
  580. uint8_t *pix3 = pix2 + line_size;
  581. for (i = 0; i < h; i++) {
  582. s += abs(pix1[0] - avg2(pix2[0], pix3[0]));
  583. s += abs(pix1[1] - avg2(pix2[1], pix3[1]));
  584. s += abs(pix1[2] - avg2(pix2[2], pix3[2]));
  585. s += abs(pix1[3] - avg2(pix2[3], pix3[3]));
  586. s += abs(pix1[4] - avg2(pix2[4], pix3[4]));
  587. s += abs(pix1[5] - avg2(pix2[5], pix3[5]));
  588. s += abs(pix1[6] - avg2(pix2[6], pix3[6]));
  589. s += abs(pix1[7] - avg2(pix2[7], pix3[7]));
  590. pix1 += line_size;
  591. pix2 += line_size;
  592. pix3 += line_size;
  593. }
  594. return s;
  595. }
  596. static int pix_abs8_xy2_c(MpegEncContext *v, uint8_t *pix1, uint8_t *pix2,
  597. int line_size, int h)
  598. {
  599. int s = 0, i;
  600. uint8_t *pix3 = pix2 + line_size;
  601. for (i = 0; i < h; i++) {
  602. s += abs(pix1[0] - avg4(pix2[0], pix2[1], pix3[0], pix3[1]));
  603. s += abs(pix1[1] - avg4(pix2[1], pix2[2], pix3[1], pix3[2]));
  604. s += abs(pix1[2] - avg4(pix2[2], pix2[3], pix3[2], pix3[3]));
  605. s += abs(pix1[3] - avg4(pix2[3], pix2[4], pix3[3], pix3[4]));
  606. s += abs(pix1[4] - avg4(pix2[4], pix2[5], pix3[4], pix3[5]));
  607. s += abs(pix1[5] - avg4(pix2[5], pix2[6], pix3[5], pix3[6]));
  608. s += abs(pix1[6] - avg4(pix2[6], pix2[7], pix3[6], pix3[7]));
  609. s += abs(pix1[7] - avg4(pix2[7], pix2[8], pix3[7], pix3[8]));
  610. pix1 += line_size;
  611. pix2 += line_size;
  612. pix3 += line_size;
  613. }
  614. return s;
  615. }
  616. static int nsse16_c(MpegEncContext *c, uint8_t *s1, uint8_t *s2, int stride, int h)
  617. {
  618. int score1 = 0, score2 = 0, x, y;
  619. for (y = 0; y < h; y++) {
  620. for (x = 0; x < 16; x++)
  621. score1 += (s1[x] - s2[x]) * (s1[x] - s2[x]);
  622. if (y + 1 < h) {
  623. for (x = 0; x < 15; x++)
  624. score2 += FFABS(s1[x] - s1[x + stride] -
  625. s1[x + 1] + s1[x + stride + 1]) -
  626. FFABS(s2[x] - s2[x + stride] -
  627. s2[x + 1] + s2[x + stride + 1]);
  628. }
  629. s1 += stride;
  630. s2 += stride;
  631. }
  632. if (c)
  633. return score1 + FFABS(score2) * c->avctx->nsse_weight;
  634. else
  635. return score1 + FFABS(score2) * 8;
  636. }
  637. static int nsse8_c(MpegEncContext *c, uint8_t *s1, uint8_t *s2, int stride, int h)
  638. {
  639. int score1 = 0, score2 = 0, x, y;
  640. for (y = 0; y < h; y++) {
  641. for (x = 0; x < 8; x++)
  642. score1 += (s1[x] - s2[x]) * (s1[x] - s2[x]);
  643. if (y + 1 < h) {
  644. for (x = 0; x < 7; x++)
  645. score2 += FFABS(s1[x] - s1[x + stride] -
  646. s1[x + 1] + s1[x + stride + 1]) -
  647. FFABS(s2[x] - s2[x + stride] -
  648. s2[x + 1] + s2[x + stride + 1]);
  649. }
  650. s1 += stride;
  651. s2 += stride;
  652. }
  653. if (c)
  654. return score1 + FFABS(score2) * c->avctx->nsse_weight;
  655. else
  656. return score1 + FFABS(score2) * 8;
  657. }
  658. static int try_8x8basis_c(int16_t rem[64], int16_t weight[64],
  659. int16_t basis[64], int scale)
  660. {
  661. int i;
  662. unsigned int sum = 0;
  663. for (i = 0; i < 8 * 8; i++) {
  664. int b = rem[i] + ((basis[i] * scale +
  665. (1 << (BASIS_SHIFT - RECON_SHIFT - 1))) >>
  666. (BASIS_SHIFT - RECON_SHIFT));
  667. int w = weight[i];
  668. b >>= RECON_SHIFT;
  669. assert(-512 < b && b < 512);
  670. sum += (w * b) * (w * b) >> 4;
  671. }
  672. return sum >> 2;
  673. }
  674. static void add_8x8basis_c(int16_t rem[64], int16_t basis[64], int scale)
  675. {
  676. int i;
  677. for (i = 0; i < 8 * 8; i++)
  678. rem[i] += (basis[i] * scale +
  679. (1 << (BASIS_SHIFT - RECON_SHIFT - 1))) >>
  680. (BASIS_SHIFT - RECON_SHIFT);
  681. }
  682. static int zero_cmp(MpegEncContext *s, uint8_t *a, uint8_t *b,
  683. int stride, int h)
  684. {
  685. return 0;
  686. }
  687. void ff_set_cmp(DSPContext *c, me_cmp_func *cmp, int type)
  688. {
  689. int i;
  690. memset(cmp, 0, sizeof(void *) * 6);
  691. for (i = 0; i < 6; i++) {
  692. switch (type & 0xFF) {
  693. case FF_CMP_SAD:
  694. cmp[i] = c->sad[i];
  695. break;
  696. case FF_CMP_SATD:
  697. cmp[i] = c->hadamard8_diff[i];
  698. break;
  699. case FF_CMP_SSE:
  700. cmp[i] = c->sse[i];
  701. break;
  702. case FF_CMP_DCT:
  703. cmp[i] = c->dct_sad[i];
  704. break;
  705. case FF_CMP_DCT264:
  706. cmp[i] = c->dct264_sad[i];
  707. break;
  708. case FF_CMP_DCTMAX:
  709. cmp[i] = c->dct_max[i];
  710. break;
  711. case FF_CMP_PSNR:
  712. cmp[i] = c->quant_psnr[i];
  713. break;
  714. case FF_CMP_BIT:
  715. cmp[i] = c->bit[i];
  716. break;
  717. case FF_CMP_RD:
  718. cmp[i] = c->rd[i];
  719. break;
  720. case FF_CMP_VSAD:
  721. cmp[i] = c->vsad[i];
  722. break;
  723. case FF_CMP_VSSE:
  724. cmp[i] = c->vsse[i];
  725. break;
  726. case FF_CMP_ZERO:
  727. cmp[i] = zero_cmp;
  728. break;
  729. case FF_CMP_NSSE:
  730. cmp[i] = c->nsse[i];
  731. break;
  732. default:
  733. av_log(NULL, AV_LOG_ERROR,
  734. "internal error in cmp function selection\n");
  735. }
  736. }
  737. }
  738. #define BUTTERFLY2(o1, o2, i1, i2) \
  739. o1 = (i1) + (i2); \
  740. o2 = (i1) - (i2);
  741. #define BUTTERFLY1(x, y) \
  742. { \
  743. int a, b; \
  744. a = x; \
  745. b = y; \
  746. x = a + b; \
  747. y = a - b; \
  748. }
  749. #define BUTTERFLYA(x, y) (FFABS((x) + (y)) + FFABS((x) - (y)))
  750. static int hadamard8_diff8x8_c(MpegEncContext *s, uint8_t *dst,
  751. uint8_t *src, int stride, int h)
  752. {
  753. int i, temp[64], sum = 0;
  754. assert(h == 8);
  755. for (i = 0; i < 8; i++) {
  756. // FIXME: try pointer walks
  757. BUTTERFLY2(temp[8 * i + 0], temp[8 * i + 1],
  758. src[stride * i + 0] - dst[stride * i + 0],
  759. src[stride * i + 1] - dst[stride * i + 1]);
  760. BUTTERFLY2(temp[8 * i + 2], temp[8 * i + 3],
  761. src[stride * i + 2] - dst[stride * i + 2],
  762. src[stride * i + 3] - dst[stride * i + 3]);
  763. BUTTERFLY2(temp[8 * i + 4], temp[8 * i + 5],
  764. src[stride * i + 4] - dst[stride * i + 4],
  765. src[stride * i + 5] - dst[stride * i + 5]);
  766. BUTTERFLY2(temp[8 * i + 6], temp[8 * i + 7],
  767. src[stride * i + 6] - dst[stride * i + 6],
  768. src[stride * i + 7] - dst[stride * i + 7]);
  769. BUTTERFLY1(temp[8 * i + 0], temp[8 * i + 2]);
  770. BUTTERFLY1(temp[8 * i + 1], temp[8 * i + 3]);
  771. BUTTERFLY1(temp[8 * i + 4], temp[8 * i + 6]);
  772. BUTTERFLY1(temp[8 * i + 5], temp[8 * i + 7]);
  773. BUTTERFLY1(temp[8 * i + 0], temp[8 * i + 4]);
  774. BUTTERFLY1(temp[8 * i + 1], temp[8 * i + 5]);
  775. BUTTERFLY1(temp[8 * i + 2], temp[8 * i + 6]);
  776. BUTTERFLY1(temp[8 * i + 3], temp[8 * i + 7]);
  777. }
  778. for (i = 0; i < 8; i++) {
  779. BUTTERFLY1(temp[8 * 0 + i], temp[8 * 1 + i]);
  780. BUTTERFLY1(temp[8 * 2 + i], temp[8 * 3 + i]);
  781. BUTTERFLY1(temp[8 * 4 + i], temp[8 * 5 + i]);
  782. BUTTERFLY1(temp[8 * 6 + i], temp[8 * 7 + i]);
  783. BUTTERFLY1(temp[8 * 0 + i], temp[8 * 2 + i]);
  784. BUTTERFLY1(temp[8 * 1 + i], temp[8 * 3 + i]);
  785. BUTTERFLY1(temp[8 * 4 + i], temp[8 * 6 + i]);
  786. BUTTERFLY1(temp[8 * 5 + i], temp[8 * 7 + i]);
  787. sum += BUTTERFLYA(temp[8 * 0 + i], temp[8 * 4 + i]) +
  788. BUTTERFLYA(temp[8 * 1 + i], temp[8 * 5 + i]) +
  789. BUTTERFLYA(temp[8 * 2 + i], temp[8 * 6 + i]) +
  790. BUTTERFLYA(temp[8 * 3 + i], temp[8 * 7 + i]);
  791. }
  792. return sum;
  793. }
  794. static int hadamard8_intra8x8_c(MpegEncContext *s, uint8_t *src,
  795. uint8_t *dummy, int stride, int h)
  796. {
  797. int i, temp[64], sum = 0;
  798. assert(h == 8);
  799. for (i = 0; i < 8; i++) {
  800. // FIXME: try pointer walks
  801. BUTTERFLY2(temp[8 * i + 0], temp[8 * i + 1],
  802. src[stride * i + 0], src[stride * i + 1]);
  803. BUTTERFLY2(temp[8 * i + 2], temp[8 * i + 3],
  804. src[stride * i + 2], src[stride * i + 3]);
  805. BUTTERFLY2(temp[8 * i + 4], temp[8 * i + 5],
  806. src[stride * i + 4], src[stride * i + 5]);
  807. BUTTERFLY2(temp[8 * i + 6], temp[8 * i + 7],
  808. src[stride * i + 6], src[stride * i + 7]);
  809. BUTTERFLY1(temp[8 * i + 0], temp[8 * i + 2]);
  810. BUTTERFLY1(temp[8 * i + 1], temp[8 * i + 3]);
  811. BUTTERFLY1(temp[8 * i + 4], temp[8 * i + 6]);
  812. BUTTERFLY1(temp[8 * i + 5], temp[8 * i + 7]);
  813. BUTTERFLY1(temp[8 * i + 0], temp[8 * i + 4]);
  814. BUTTERFLY1(temp[8 * i + 1], temp[8 * i + 5]);
  815. BUTTERFLY1(temp[8 * i + 2], temp[8 * i + 6]);
  816. BUTTERFLY1(temp[8 * i + 3], temp[8 * i + 7]);
  817. }
  818. for (i = 0; i < 8; i++) {
  819. BUTTERFLY1(temp[8 * 0 + i], temp[8 * 1 + i]);
  820. BUTTERFLY1(temp[8 * 2 + i], temp[8 * 3 + i]);
  821. BUTTERFLY1(temp[8 * 4 + i], temp[8 * 5 + i]);
  822. BUTTERFLY1(temp[8 * 6 + i], temp[8 * 7 + i]);
  823. BUTTERFLY1(temp[8 * 0 + i], temp[8 * 2 + i]);
  824. BUTTERFLY1(temp[8 * 1 + i], temp[8 * 3 + i]);
  825. BUTTERFLY1(temp[8 * 4 + i], temp[8 * 6 + i]);
  826. BUTTERFLY1(temp[8 * 5 + i], temp[8 * 7 + i]);
  827. sum +=
  828. BUTTERFLYA(temp[8 * 0 + i], temp[8 * 4 + i])
  829. + BUTTERFLYA(temp[8 * 1 + i], temp[8 * 5 + i])
  830. + BUTTERFLYA(temp[8 * 2 + i], temp[8 * 6 + i])
  831. + BUTTERFLYA(temp[8 * 3 + i], temp[8 * 7 + i]);
  832. }
  833. sum -= FFABS(temp[8 * 0] + temp[8 * 4]); // -mean
  834. return sum;
  835. }
  836. static int dct_sad8x8_c(MpegEncContext *s, uint8_t *src1,
  837. uint8_t *src2, int stride, int h)
  838. {
  839. LOCAL_ALIGNED_16(int16_t, temp, [64]);
  840. assert(h == 8);
  841. s->dsp.diff_pixels(temp, src1, src2, stride);
  842. s->dsp.fdct(temp);
  843. return s->dsp.sum_abs_dctelem(temp);
  844. }
  845. #if CONFIG_GPL
  846. #define DCT8_1D \
  847. { \
  848. const int s07 = SRC(0) + SRC(7); \
  849. const int s16 = SRC(1) + SRC(6); \
  850. const int s25 = SRC(2) + SRC(5); \
  851. const int s34 = SRC(3) + SRC(4); \
  852. const int a0 = s07 + s34; \
  853. const int a1 = s16 + s25; \
  854. const int a2 = s07 - s34; \
  855. const int a3 = s16 - s25; \
  856. const int d07 = SRC(0) - SRC(7); \
  857. const int d16 = SRC(1) - SRC(6); \
  858. const int d25 = SRC(2) - SRC(5); \
  859. const int d34 = SRC(3) - SRC(4); \
  860. const int a4 = d16 + d25 + (d07 + (d07 >> 1)); \
  861. const int a5 = d07 - d34 - (d25 + (d25 >> 1)); \
  862. const int a6 = d07 + d34 - (d16 + (d16 >> 1)); \
  863. const int a7 = d16 - d25 + (d34 + (d34 >> 1)); \
  864. DST(0, a0 + a1); \
  865. DST(1, a4 + (a7 >> 2)); \
  866. DST(2, a2 + (a3 >> 1)); \
  867. DST(3, a5 + (a6 >> 2)); \
  868. DST(4, a0 - a1); \
  869. DST(5, a6 - (a5 >> 2)); \
  870. DST(6, (a2 >> 1) - a3); \
  871. DST(7, (a4 >> 2) - a7); \
  872. }
  873. static int dct264_sad8x8_c(MpegEncContext *s, uint8_t *src1,
  874. uint8_t *src2, int stride, int h)
  875. {
  876. int16_t dct[8][8];
  877. int i, sum = 0;
  878. s->dsp.diff_pixels(dct[0], src1, src2, stride);
  879. #define SRC(x) dct[i][x]
  880. #define DST(x, v) dct[i][x] = v
  881. for (i = 0; i < 8; i++)
  882. DCT8_1D
  883. #undef SRC
  884. #undef DST
  885. #define SRC(x) dct[x][i]
  886. #define DST(x, v) sum += FFABS(v)
  887. for (i = 0; i < 8; i++)
  888. DCT8_1D
  889. #undef SRC
  890. #undef DST
  891. return sum;
  892. }
  893. #endif
  894. static int dct_max8x8_c(MpegEncContext *s, uint8_t *src1,
  895. uint8_t *src2, int stride, int h)
  896. {
  897. LOCAL_ALIGNED_16(int16_t, temp, [64]);
  898. int sum = 0, i;
  899. assert(h == 8);
  900. s->dsp.diff_pixels(temp, src1, src2, stride);
  901. s->dsp.fdct(temp);
  902. for (i = 0; i < 64; i++)
  903. sum = FFMAX(sum, FFABS(temp[i]));
  904. return sum;
  905. }
  906. static int quant_psnr8x8_c(MpegEncContext *s, uint8_t *src1,
  907. uint8_t *src2, int stride, int h)
  908. {
  909. LOCAL_ALIGNED_16(int16_t, temp, [64 * 2]);
  910. int16_t *const bak = temp + 64;
  911. int sum = 0, i;
  912. assert(h == 8);
  913. s->mb_intra = 0;
  914. s->dsp.diff_pixels(temp, src1, src2, stride);
  915. memcpy(bak, temp, 64 * sizeof(int16_t));
  916. s->block_last_index[0 /* FIXME */] =
  917. s->fast_dct_quantize(s, temp, 0 /* FIXME */, s->qscale, &i);
  918. s->dct_unquantize_inter(s, temp, 0, s->qscale);
  919. ff_simple_idct_8(temp); // FIXME
  920. for (i = 0; i < 64; i++)
  921. sum += (temp[i] - bak[i]) * (temp[i] - bak[i]);
  922. return sum;
  923. }
  924. static int rd8x8_c(MpegEncContext *s, uint8_t *src1, uint8_t *src2,
  925. int stride, int h)
  926. {
  927. const uint8_t *scantable = s->intra_scantable.permutated;
  928. LOCAL_ALIGNED_16(int16_t, temp, [64]);
  929. LOCAL_ALIGNED_16(uint8_t, lsrc1, [64]);
  930. LOCAL_ALIGNED_16(uint8_t, lsrc2, [64]);
  931. int i, last, run, bits, level, distortion, start_i;
  932. const int esc_length = s->ac_esc_length;
  933. uint8_t *length, *last_length;
  934. assert(h == 8);
  935. copy_block8(lsrc1, src1, 8, stride, 8);
  936. copy_block8(lsrc2, src2, 8, stride, 8);
  937. s->dsp.diff_pixels(temp, lsrc1, lsrc2, 8);
  938. s->block_last_index[0 /* FIXME */] =
  939. last =
  940. s->fast_dct_quantize(s, temp, 0 /* FIXME */, s->qscale, &i);
  941. bits = 0;
  942. if (s->mb_intra) {
  943. start_i = 1;
  944. length = s->intra_ac_vlc_length;
  945. last_length = s->intra_ac_vlc_last_length;
  946. bits += s->luma_dc_vlc_length[temp[0] + 256]; // FIXME: chroma
  947. } else {
  948. start_i = 0;
  949. length = s->inter_ac_vlc_length;
  950. last_length = s->inter_ac_vlc_last_length;
  951. }
  952. if (last >= start_i) {
  953. run = 0;
  954. for (i = start_i; i < last; i++) {
  955. int j = scantable[i];
  956. level = temp[j];
  957. if (level) {
  958. level += 64;
  959. if ((level & (~127)) == 0)
  960. bits += length[UNI_AC_ENC_INDEX(run, level)];
  961. else
  962. bits += esc_length;
  963. run = 0;
  964. } else
  965. run++;
  966. }
  967. i = scantable[last];
  968. level = temp[i] + 64;
  969. assert(level - 64);
  970. if ((level & (~127)) == 0) {
  971. bits += last_length[UNI_AC_ENC_INDEX(run, level)];
  972. } else
  973. bits += esc_length;
  974. }
  975. if (last >= 0) {
  976. if (s->mb_intra)
  977. s->dct_unquantize_intra(s, temp, 0, s->qscale);
  978. else
  979. s->dct_unquantize_inter(s, temp, 0, s->qscale);
  980. }
  981. s->dsp.idct_add(lsrc2, 8, temp);
  982. distortion = s->dsp.sse[1](NULL, lsrc2, lsrc1, 8, 8);
  983. return distortion + ((bits * s->qscale * s->qscale * 109 + 64) >> 7);
  984. }
  985. static int bit8x8_c(MpegEncContext *s, uint8_t *src1, uint8_t *src2,
  986. int stride, int h)
  987. {
  988. const uint8_t *scantable = s->intra_scantable.permutated;
  989. LOCAL_ALIGNED_16(int16_t, temp, [64]);
  990. int i, last, run, bits, level, start_i;
  991. const int esc_length = s->ac_esc_length;
  992. uint8_t *length, *last_length;
  993. assert(h == 8);
  994. s->dsp.diff_pixels(temp, src1, src2, stride);
  995. s->block_last_index[0 /* FIXME */] =
  996. last =
  997. s->fast_dct_quantize(s, temp, 0 /* FIXME */, s->qscale, &i);
  998. bits = 0;
  999. if (s->mb_intra) {
  1000. start_i = 1;
  1001. length = s->intra_ac_vlc_length;
  1002. last_length = s->intra_ac_vlc_last_length;
  1003. bits += s->luma_dc_vlc_length[temp[0] + 256]; // FIXME: chroma
  1004. } else {
  1005. start_i = 0;
  1006. length = s->inter_ac_vlc_length;
  1007. last_length = s->inter_ac_vlc_last_length;
  1008. }
  1009. if (last >= start_i) {
  1010. run = 0;
  1011. for (i = start_i; i < last; i++) {
  1012. int j = scantable[i];
  1013. level = temp[j];
  1014. if (level) {
  1015. level += 64;
  1016. if ((level & (~127)) == 0)
  1017. bits += length[UNI_AC_ENC_INDEX(run, level)];
  1018. else
  1019. bits += esc_length;
  1020. run = 0;
  1021. } else
  1022. run++;
  1023. }
  1024. i = scantable[last];
  1025. level = temp[i] + 64;
  1026. assert(level - 64);
  1027. if ((level & (~127)) == 0)
  1028. bits += last_length[UNI_AC_ENC_INDEX(run, level)];
  1029. else
  1030. bits += esc_length;
  1031. }
  1032. return bits;
  1033. }
  1034. #define VSAD_INTRA(size) \
  1035. static int vsad_intra ## size ## _c(MpegEncContext *c, \
  1036. uint8_t *s, uint8_t *dummy, \
  1037. int stride, int h) \
  1038. { \
  1039. int score = 0, x, y; \
  1040. \
  1041. for (y = 1; y < h; y++) { \
  1042. for (x = 0; x < size; x += 4) { \
  1043. score += FFABS(s[x] - s[x + stride]) + \
  1044. FFABS(s[x + 1] - s[x + stride + 1]) + \
  1045. FFABS(s[x + 2] - s[x + 2 + stride]) + \
  1046. FFABS(s[x + 3] - s[x + 3 + stride]); \
  1047. } \
  1048. s += stride; \
  1049. } \
  1050. \
  1051. return score; \
  1052. }
  1053. VSAD_INTRA(8)
  1054. VSAD_INTRA(16)
  1055. static int vsad16_c(MpegEncContext *c, uint8_t *s1, uint8_t *s2,
  1056. int stride, int h)
  1057. {
  1058. int score = 0, x, y;
  1059. for (y = 1; y < h; y++) {
  1060. for (x = 0; x < 16; x++)
  1061. score += FFABS(s1[x] - s2[x] - s1[x + stride] + s2[x + stride]);
  1062. s1 += stride;
  1063. s2 += stride;
  1064. }
  1065. return score;
  1066. }
  1067. #define SQ(a) ((a) * (a))
  1068. #define VSSE_INTRA(size) \
  1069. static int vsse_intra ## size ## _c(MpegEncContext *c, \
  1070. uint8_t *s, uint8_t *dummy, \
  1071. int stride, int h) \
  1072. { \
  1073. int score = 0, x, y; \
  1074. \
  1075. for (y = 1; y < h; y++) { \
  1076. for (x = 0; x < size; x += 4) { \
  1077. score += SQ(s[x] - s[x + stride]) + \
  1078. SQ(s[x + 1] - s[x + stride + 1]) + \
  1079. SQ(s[x + 2] - s[x + stride + 2]) + \
  1080. SQ(s[x + 3] - s[x + stride + 3]); \
  1081. } \
  1082. s += stride; \
  1083. } \
  1084. \
  1085. return score; \
  1086. }
  1087. VSSE_INTRA(8)
  1088. VSSE_INTRA(16)
  1089. static int vsse16_c(MpegEncContext *c, uint8_t *s1, uint8_t *s2,
  1090. int stride, int h)
  1091. {
  1092. int score = 0, x, y;
  1093. for (y = 1; y < h; y++) {
  1094. for (x = 0; x < 16; x++)
  1095. score += SQ(s1[x] - s2[x] - s1[x + stride] + s2[x + stride]);
  1096. s1 += stride;
  1097. s2 += stride;
  1098. }
  1099. return score;
  1100. }
  1101. #define WRAPPER8_16_SQ(name8, name16) \
  1102. static int name16(MpegEncContext *s, uint8_t *dst, uint8_t *src, \
  1103. int stride, int h) \
  1104. { \
  1105. int score = 0; \
  1106. \
  1107. score += name8(s, dst, src, stride, 8); \
  1108. score += name8(s, dst + 8, src + 8, stride, 8); \
  1109. if (h == 16) { \
  1110. dst += 8 * stride; \
  1111. src += 8 * stride; \
  1112. score += name8(s, dst, src, stride, 8); \
  1113. score += name8(s, dst + 8, src + 8, stride, 8); \
  1114. } \
  1115. return score; \
  1116. }
  1117. WRAPPER8_16_SQ(hadamard8_diff8x8_c, hadamard8_diff16_c)
  1118. WRAPPER8_16_SQ(hadamard8_intra8x8_c, hadamard8_intra16_c)
  1119. WRAPPER8_16_SQ(dct_sad8x8_c, dct_sad16_c)
  1120. #if CONFIG_GPL
  1121. WRAPPER8_16_SQ(dct264_sad8x8_c, dct264_sad16_c)
  1122. #endif
  1123. WRAPPER8_16_SQ(dct_max8x8_c, dct_max16_c)
  1124. WRAPPER8_16_SQ(quant_psnr8x8_c, quant_psnr16_c)
  1125. WRAPPER8_16_SQ(rd8x8_c, rd16_c)
  1126. WRAPPER8_16_SQ(bit8x8_c, bit16_c)
  1127. static inline uint32_t clipf_c_one(uint32_t a, uint32_t mini,
  1128. uint32_t maxi, uint32_t maxisign)
  1129. {
  1130. if (a > mini)
  1131. return mini;
  1132. else if ((a ^ (1U << 31)) > maxisign)
  1133. return maxi;
  1134. else
  1135. return a;
  1136. }
  1137. static void vector_clipf_c_opposite_sign(float *dst, const float *src,
  1138. float *min, float *max, int len)
  1139. {
  1140. int i;
  1141. uint32_t mini = *(uint32_t *) min;
  1142. uint32_t maxi = *(uint32_t *) max;
  1143. uint32_t maxisign = maxi ^ (1U << 31);
  1144. uint32_t *dsti = (uint32_t *) dst;
  1145. const uint32_t *srci = (const uint32_t *) src;
  1146. for (i = 0; i < len; i += 8) {
  1147. dsti[i + 0] = clipf_c_one(srci[i + 0], mini, maxi, maxisign);
  1148. dsti[i + 1] = clipf_c_one(srci[i + 1], mini, maxi, maxisign);
  1149. dsti[i + 2] = clipf_c_one(srci[i + 2], mini, maxi, maxisign);
  1150. dsti[i + 3] = clipf_c_one(srci[i + 3], mini, maxi, maxisign);
  1151. dsti[i + 4] = clipf_c_one(srci[i + 4], mini, maxi, maxisign);
  1152. dsti[i + 5] = clipf_c_one(srci[i + 5], mini, maxi, maxisign);
  1153. dsti[i + 6] = clipf_c_one(srci[i + 6], mini, maxi, maxisign);
  1154. dsti[i + 7] = clipf_c_one(srci[i + 7], mini, maxi, maxisign);
  1155. }
  1156. }
  1157. static void vector_clipf_c(float *dst, const float *src,
  1158. float min, float max, int len)
  1159. {
  1160. int i;
  1161. if (min < 0 && max > 0) {
  1162. vector_clipf_c_opposite_sign(dst, src, &min, &max, len);
  1163. } else {
  1164. for (i = 0; i < len; i += 8) {
  1165. dst[i] = av_clipf(src[i], min, max);
  1166. dst[i + 1] = av_clipf(src[i + 1], min, max);
  1167. dst[i + 2] = av_clipf(src[i + 2], min, max);
  1168. dst[i + 3] = av_clipf(src[i + 3], min, max);
  1169. dst[i + 4] = av_clipf(src[i + 4], min, max);
  1170. dst[i + 5] = av_clipf(src[i + 5], min, max);
  1171. dst[i + 6] = av_clipf(src[i + 6], min, max);
  1172. dst[i + 7] = av_clipf(src[i + 7], min, max);
  1173. }
  1174. }
  1175. }
  1176. static int32_t scalarproduct_int16_c(const int16_t *v1, const int16_t *v2,
  1177. int order)
  1178. {
  1179. int res = 0;
  1180. while (order--)
  1181. res += *v1++ **v2++;
  1182. return res;
  1183. }
  1184. static void vector_clip_int32_c(int32_t *dst, const int32_t *src, int32_t min,
  1185. int32_t max, unsigned int len)
  1186. {
  1187. do {
  1188. *dst++ = av_clip(*src++, min, max);
  1189. *dst++ = av_clip(*src++, min, max);
  1190. *dst++ = av_clip(*src++, min, max);
  1191. *dst++ = av_clip(*src++, min, max);
  1192. *dst++ = av_clip(*src++, min, max);
  1193. *dst++ = av_clip(*src++, min, max);
  1194. *dst++ = av_clip(*src++, min, max);
  1195. *dst++ = av_clip(*src++, min, max);
  1196. len -= 8;
  1197. } while (len > 0);
  1198. }
  1199. static void jref_idct_put(uint8_t *dest, int line_size, int16_t *block)
  1200. {
  1201. ff_j_rev_dct(block);
  1202. put_pixels_clamped_c(block, dest, line_size);
  1203. }
  1204. static void jref_idct_add(uint8_t *dest, int line_size, int16_t *block)
  1205. {
  1206. ff_j_rev_dct(block);
  1207. add_pixels_clamped_c(block, dest, line_size);
  1208. }
  1209. /* draw the edges of width 'w' of an image of size width, height */
  1210. // FIXME: Check that this is OK for MPEG-4 interlaced.
  1211. static void draw_edges_8_c(uint8_t *buf, int wrap, int width, int height,
  1212. int w, int h, int sides)
  1213. {
  1214. uint8_t *ptr = buf, *last_line;
  1215. int i;
  1216. /* left and right */
  1217. for (i = 0; i < height; i++) {
  1218. memset(ptr - w, ptr[0], w);
  1219. memset(ptr + width, ptr[width - 1], w);
  1220. ptr += wrap;
  1221. }
  1222. /* top and bottom + corners */
  1223. buf -= w;
  1224. last_line = buf + (height - 1) * wrap;
  1225. if (sides & EDGE_TOP)
  1226. for (i = 0; i < h; i++)
  1227. // top
  1228. memcpy(buf - (i + 1) * wrap, buf, width + w + w);
  1229. if (sides & EDGE_BOTTOM)
  1230. for (i = 0; i < h; i++)
  1231. // bottom
  1232. memcpy(last_line + (i + 1) * wrap, last_line, width + w + w);
  1233. }
  1234. static void clear_block_8_c(int16_t *block)
  1235. {
  1236. memset(block, 0, sizeof(int16_t) * 64);
  1237. }
  1238. static void clear_blocks_8_c(int16_t *blocks)
  1239. {
  1240. memset(blocks, 0, sizeof(int16_t) * 6 * 64);
  1241. }
  1242. /* init static data */
  1243. av_cold void ff_dsputil_static_init(void)
  1244. {
  1245. int i;
  1246. for (i = 0; i < 512; i++)
  1247. ff_square_tab[i] = (i - 256) * (i - 256);
  1248. }
  1249. av_cold void ff_dsputil_init(DSPContext *c, AVCodecContext *avctx)
  1250. {
  1251. const unsigned high_bit_depth = avctx->bits_per_raw_sample > 8;
  1252. #if CONFIG_ENCODERS
  1253. if (avctx->bits_per_raw_sample == 10) {
  1254. c->fdct = ff_jpeg_fdct_islow_10;
  1255. c->fdct248 = ff_fdct248_islow_10;
  1256. } else {
  1257. if (avctx->dct_algo == FF_DCT_FASTINT) {
  1258. c->fdct = ff_fdct_ifast;
  1259. c->fdct248 = ff_fdct_ifast248;
  1260. } else if (avctx->dct_algo == FF_DCT_FAAN) {
  1261. c->fdct = ff_faandct;
  1262. c->fdct248 = ff_faandct248;
  1263. } else {
  1264. c->fdct = ff_jpeg_fdct_islow_8; // slow/accurate/default
  1265. c->fdct248 = ff_fdct248_islow_8;
  1266. }
  1267. }
  1268. #endif /* CONFIG_ENCODERS */
  1269. if (avctx->bits_per_raw_sample == 10) {
  1270. c->idct_put = ff_simple_idct_put_10;
  1271. c->idct_add = ff_simple_idct_add_10;
  1272. c->idct = ff_simple_idct_10;
  1273. c->idct_permutation_type = FF_NO_IDCT_PERM;
  1274. } else {
  1275. if (avctx->idct_algo == FF_IDCT_INT) {
  1276. c->idct_put = jref_idct_put;
  1277. c->idct_add = jref_idct_add;
  1278. c->idct = ff_j_rev_dct;
  1279. c->idct_permutation_type = FF_LIBMPEG2_IDCT_PERM;
  1280. } else if (avctx->idct_algo == FF_IDCT_FAAN) {
  1281. c->idct_put = ff_faanidct_put;
  1282. c->idct_add = ff_faanidct_add;
  1283. c->idct = ff_faanidct;
  1284. c->idct_permutation_type = FF_NO_IDCT_PERM;
  1285. } else { // accurate/default
  1286. c->idct_put = ff_simple_idct_put_8;
  1287. c->idct_add = ff_simple_idct_add_8;
  1288. c->idct = ff_simple_idct_8;
  1289. c->idct_permutation_type = FF_NO_IDCT_PERM;
  1290. }
  1291. }
  1292. c->diff_pixels = diff_pixels_c;
  1293. c->put_pixels_clamped = put_pixels_clamped_c;
  1294. c->put_signed_pixels_clamped = put_signed_pixels_clamped_c;
  1295. c->add_pixels_clamped = add_pixels_clamped_c;
  1296. c->sum_abs_dctelem = sum_abs_dctelem_c;
  1297. c->gmc1 = gmc1_c;
  1298. c->gmc = ff_gmc_c;
  1299. c->pix_sum = pix_sum_c;
  1300. c->pix_norm1 = pix_norm1_c;
  1301. c->fill_block_tab[0] = fill_block16_c;
  1302. c->fill_block_tab[1] = fill_block8_c;
  1303. /* TODO [0] 16 [1] 8 */
  1304. c->pix_abs[0][0] = pix_abs16_c;
  1305. c->pix_abs[0][1] = pix_abs16_x2_c;
  1306. c->pix_abs[0][2] = pix_abs16_y2_c;
  1307. c->pix_abs[0][3] = pix_abs16_xy2_c;
  1308. c->pix_abs[1][0] = pix_abs8_c;
  1309. c->pix_abs[1][1] = pix_abs8_x2_c;
  1310. c->pix_abs[1][2] = pix_abs8_y2_c;
  1311. c->pix_abs[1][3] = pix_abs8_xy2_c;
  1312. #define SET_CMP_FUNC(name) \
  1313. c->name[0] = name ## 16_c; \
  1314. c->name[1] = name ## 8x8_c;
  1315. SET_CMP_FUNC(hadamard8_diff)
  1316. c->hadamard8_diff[4] = hadamard8_intra16_c;
  1317. c->hadamard8_diff[5] = hadamard8_intra8x8_c;
  1318. SET_CMP_FUNC(dct_sad)
  1319. SET_CMP_FUNC(dct_max)
  1320. #if CONFIG_GPL
  1321. SET_CMP_FUNC(dct264_sad)
  1322. #endif
  1323. c->sad[0] = pix_abs16_c;
  1324. c->sad[1] = pix_abs8_c;
  1325. c->sse[0] = sse16_c;
  1326. c->sse[1] = sse8_c;
  1327. c->sse[2] = sse4_c;
  1328. SET_CMP_FUNC(quant_psnr)
  1329. SET_CMP_FUNC(rd)
  1330. SET_CMP_FUNC(bit)
  1331. c->vsad[0] = vsad16_c;
  1332. c->vsad[4] = vsad_intra16_c;
  1333. c->vsad[5] = vsad_intra8_c;
  1334. c->vsse[0] = vsse16_c;
  1335. c->vsse[4] = vsse_intra16_c;
  1336. c->vsse[5] = vsse_intra8_c;
  1337. c->nsse[0] = nsse16_c;
  1338. c->nsse[1] = nsse8_c;
  1339. c->bswap_buf = bswap_buf;
  1340. c->bswap16_buf = bswap16_buf;
  1341. c->try_8x8basis = try_8x8basis_c;
  1342. c->add_8x8basis = add_8x8basis_c;
  1343. c->scalarproduct_int16 = scalarproduct_int16_c;
  1344. c->vector_clip_int32 = vector_clip_int32_c;
  1345. c->vector_clipf = vector_clipf_c;
  1346. c->shrink[0] = av_image_copy_plane;
  1347. c->shrink[1] = ff_shrink22;
  1348. c->shrink[2] = ff_shrink44;
  1349. c->shrink[3] = ff_shrink88;
  1350. c->draw_edges = draw_edges_8_c;
  1351. c->clear_block = clear_block_8_c;
  1352. c->clear_blocks = clear_blocks_8_c;
  1353. switch (avctx->bits_per_raw_sample) {
  1354. case 9:
  1355. case 10:
  1356. c->get_pixels = get_pixels_16_c;
  1357. break;
  1358. default:
  1359. c->get_pixels = get_pixels_8_c;
  1360. break;
  1361. }
  1362. if (ARCH_ARM)
  1363. ff_dsputil_init_arm(c, avctx, high_bit_depth);
  1364. if (ARCH_BFIN)
  1365. ff_dsputil_init_bfin(c, avctx, high_bit_depth);
  1366. if (ARCH_PPC)
  1367. ff_dsputil_init_ppc(c, avctx, high_bit_depth);
  1368. if (ARCH_X86)
  1369. ff_dsputil_init_x86(c, avctx, high_bit_depth);
  1370. ff_init_scantable_permutation(c->idct_permutation,
  1371. c->idct_permutation_type);
  1372. }