You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

3150 lines
114KB

  1. /*
  2. * H.26L/H.264/AVC/JVT/14496-10/... encoder/decoder
  3. * Copyright (c) 2003 Michael Niedermayer <michaelni@gmx.at>
  4. *
  5. * This file is part of FFmpeg.
  6. *
  7. * FFmpeg is free software; you can redistribute it and/or
  8. * modify it under the terms of the GNU Lesser General Public
  9. * License as published by the Free Software Foundation; either
  10. * version 2.1 of the License, or (at your option) any later version.
  11. *
  12. * FFmpeg is distributed in the hope that it will be useful,
  13. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  14. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  15. * Lesser General Public License for more details.
  16. *
  17. * You should have received a copy of the GNU Lesser General Public
  18. * License along with FFmpeg; if not, write to the Free Software
  19. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  20. */
  21. /**
  22. * @file libavcodec/h264.c
  23. * H.264 / AVC / MPEG4 part10 codec.
  24. * @author Michael Niedermayer <michaelni@gmx.at>
  25. */
  26. #include "internal.h"
  27. #include "dsputil.h"
  28. #include "avcodec.h"
  29. #include "mpegvideo.h"
  30. #include "h264.h"
  31. #include "h264data.h"
  32. #include "h264_mvpred.h"
  33. #include "h264_parser.h"
  34. #include "golomb.h"
  35. #include "mathops.h"
  36. #include "rectangle.h"
  37. #include "vdpau_internal.h"
  38. #include "cabac.h"
  39. //#undef NDEBUG
  40. #include <assert.h>
  41. static const uint8_t rem6[52]={
  42. 0, 1, 2, 3, 4, 5, 0, 1, 2, 3, 4, 5, 0, 1, 2, 3, 4, 5, 0, 1, 2, 3, 4, 5, 0, 1, 2, 3, 4, 5, 0, 1, 2, 3, 4, 5, 0, 1, 2, 3, 4, 5, 0, 1, 2, 3, 4, 5, 0, 1, 2, 3,
  43. };
  44. static const uint8_t div6[52]={
  45. 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 6, 6, 6, 6, 6, 6, 7, 7, 7, 7, 7, 7, 8, 8, 8, 8,
  46. };
  47. void ff_h264_write_back_intra_pred_mode(H264Context *h){
  48. int8_t *mode= h->intra4x4_pred_mode + h->mb2br_xy[h->mb_xy];
  49. AV_COPY32(mode, h->intra4x4_pred_mode_cache + 4 + 8*4);
  50. mode[4]= h->intra4x4_pred_mode_cache[7+8*3];
  51. mode[5]= h->intra4x4_pred_mode_cache[7+8*2];
  52. mode[6]= h->intra4x4_pred_mode_cache[7+8*1];
  53. }
  54. /**
  55. * checks if the top & left blocks are available if needed & changes the dc mode so it only uses the available blocks.
  56. */
  57. int ff_h264_check_intra4x4_pred_mode(H264Context *h){
  58. MpegEncContext * const s = &h->s;
  59. static const int8_t top [12]= {-1, 0,LEFT_DC_PRED,-1,-1,-1,-1,-1, 0};
  60. static const int8_t left[12]= { 0,-1, TOP_DC_PRED, 0,-1,-1,-1, 0,-1,DC_128_PRED};
  61. int i;
  62. if(!(h->top_samples_available&0x8000)){
  63. for(i=0; i<4; i++){
  64. int status= top[ h->intra4x4_pred_mode_cache[scan8[0] + i] ];
  65. if(status<0){
  66. av_log(h->s.avctx, AV_LOG_ERROR, "top block unavailable for requested intra4x4 mode %d at %d %d\n", status, s->mb_x, s->mb_y);
  67. return -1;
  68. } else if(status){
  69. h->intra4x4_pred_mode_cache[scan8[0] + i]= status;
  70. }
  71. }
  72. }
  73. if((h->left_samples_available&0x8888)!=0x8888){
  74. static const int mask[4]={0x8000,0x2000,0x80,0x20};
  75. for(i=0; i<4; i++){
  76. if(!(h->left_samples_available&mask[i])){
  77. int status= left[ h->intra4x4_pred_mode_cache[scan8[0] + 8*i] ];
  78. if(status<0){
  79. av_log(h->s.avctx, AV_LOG_ERROR, "left block unavailable for requested intra4x4 mode %d at %d %d\n", status, s->mb_x, s->mb_y);
  80. return -1;
  81. } else if(status){
  82. h->intra4x4_pred_mode_cache[scan8[0] + 8*i]= status;
  83. }
  84. }
  85. }
  86. }
  87. return 0;
  88. } //FIXME cleanup like ff_h264_check_intra_pred_mode
  89. /**
  90. * checks if the top & left blocks are available if needed & changes the dc mode so it only uses the available blocks.
  91. */
  92. int ff_h264_check_intra_pred_mode(H264Context *h, int mode){
  93. MpegEncContext * const s = &h->s;
  94. static const int8_t top [7]= {LEFT_DC_PRED8x8, 1,-1,-1};
  95. static const int8_t left[7]= { TOP_DC_PRED8x8,-1, 2,-1,DC_128_PRED8x8};
  96. if(mode > 6U) {
  97. av_log(h->s.avctx, AV_LOG_ERROR, "out of range intra chroma pred mode at %d %d\n", s->mb_x, s->mb_y);
  98. return -1;
  99. }
  100. if(!(h->top_samples_available&0x8000)){
  101. mode= top[ mode ];
  102. if(mode<0){
  103. av_log(h->s.avctx, AV_LOG_ERROR, "top block unavailable for requested intra mode at %d %d\n", s->mb_x, s->mb_y);
  104. return -1;
  105. }
  106. }
  107. if((h->left_samples_available&0x8080) != 0x8080){
  108. mode= left[ mode ];
  109. if(h->left_samples_available&0x8080){ //mad cow disease mode, aka MBAFF + constrained_intra_pred
  110. mode= ALZHEIMER_DC_L0T_PRED8x8 + (!(h->left_samples_available&0x8000)) + 2*(mode == DC_128_PRED8x8);
  111. }
  112. if(mode<0){
  113. av_log(h->s.avctx, AV_LOG_ERROR, "left block unavailable for requested intra mode at %d %d\n", s->mb_x, s->mb_y);
  114. return -1;
  115. }
  116. }
  117. return mode;
  118. }
  119. const uint8_t *ff_h264_decode_nal(H264Context *h, const uint8_t *src, int *dst_length, int *consumed, int length){
  120. int i, si, di;
  121. uint8_t *dst;
  122. int bufidx;
  123. // src[0]&0x80; //forbidden bit
  124. h->nal_ref_idc= src[0]>>5;
  125. h->nal_unit_type= src[0]&0x1F;
  126. src++; length--;
  127. #if 0
  128. for(i=0; i<length; i++)
  129. printf("%2X ", src[i]);
  130. #endif
  131. #if HAVE_FAST_UNALIGNED
  132. # if HAVE_FAST_64BIT
  133. # define RS 7
  134. for(i=0; i+1<length; i+=9){
  135. if(!((~AV_RN64A(src+i) & (AV_RN64A(src+i) - 0x0100010001000101ULL)) & 0x8000800080008080ULL))
  136. # else
  137. # define RS 3
  138. for(i=0; i+1<length; i+=5){
  139. if(!((~AV_RN32A(src+i) & (AV_RN32A(src+i) - 0x01000101U)) & 0x80008080U))
  140. # endif
  141. continue;
  142. if(i>0 && !src[i]) i--;
  143. while(src[i]) i++;
  144. #else
  145. # define RS 0
  146. for(i=0; i+1<length; i+=2){
  147. if(src[i]) continue;
  148. if(i>0 && src[i-1]==0) i--;
  149. #endif
  150. if(i+2<length && src[i+1]==0 && src[i+2]<=3){
  151. if(src[i+2]!=3){
  152. /* startcode, so we must be past the end */
  153. length=i;
  154. }
  155. break;
  156. }
  157. i-= RS;
  158. }
  159. if(i>=length-1){ //no escaped 0
  160. *dst_length= length;
  161. *consumed= length+1; //+1 for the header
  162. return src;
  163. }
  164. bufidx = h->nal_unit_type == NAL_DPC ? 1 : 0; // use second escape buffer for inter data
  165. av_fast_malloc(&h->rbsp_buffer[bufidx], &h->rbsp_buffer_size[bufidx], length+FF_INPUT_BUFFER_PADDING_SIZE);
  166. dst= h->rbsp_buffer[bufidx];
  167. if (dst == NULL){
  168. return NULL;
  169. }
  170. //printf("decoding esc\n");
  171. memcpy(dst, src, i);
  172. si=di=i;
  173. while(si+2<length){
  174. //remove escapes (very rare 1:2^22)
  175. if(src[si+2]>3){
  176. dst[di++]= src[si++];
  177. dst[di++]= src[si++];
  178. }else if(src[si]==0 && src[si+1]==0){
  179. if(src[si+2]==3){ //escape
  180. dst[di++]= 0;
  181. dst[di++]= 0;
  182. si+=3;
  183. continue;
  184. }else //next start code
  185. goto nsc;
  186. }
  187. dst[di++]= src[si++];
  188. }
  189. while(si<length)
  190. dst[di++]= src[si++];
  191. nsc:
  192. memset(dst+di, 0, FF_INPUT_BUFFER_PADDING_SIZE);
  193. *dst_length= di;
  194. *consumed= si + 1;//+1 for the header
  195. //FIXME store exact number of bits in the getbitcontext (it is needed for decoding)
  196. return dst;
  197. }
  198. int ff_h264_decode_rbsp_trailing(H264Context *h, const uint8_t *src){
  199. int v= *src;
  200. int r;
  201. tprintf(h->s.avctx, "rbsp trailing %X\n", v);
  202. for(r=1; r<9; r++){
  203. if(v&1) return r;
  204. v>>=1;
  205. }
  206. return 0;
  207. }
  208. /**
  209. * IDCT transforms the 16 dc values and dequantizes them.
  210. * @param qp quantization parameter
  211. */
  212. static void h264_luma_dc_dequant_idct_c(DCTELEM *block, int qp, int qmul){
  213. #define stride 16
  214. int i;
  215. int temp[16]; //FIXME check if this is a good idea
  216. static const int x_offset[4]={0, 1*stride, 4* stride, 5*stride};
  217. static const int y_offset[4]={0, 2*stride, 8* stride, 10*stride};
  218. //memset(block, 64, 2*256);
  219. //return;
  220. for(i=0; i<4; i++){
  221. const int offset= y_offset[i];
  222. const int z0= block[offset+stride*0] + block[offset+stride*4];
  223. const int z1= block[offset+stride*0] - block[offset+stride*4];
  224. const int z2= block[offset+stride*1] - block[offset+stride*5];
  225. const int z3= block[offset+stride*1] + block[offset+stride*5];
  226. temp[4*i+0]= z0+z3;
  227. temp[4*i+1]= z1+z2;
  228. temp[4*i+2]= z1-z2;
  229. temp[4*i+3]= z0-z3;
  230. }
  231. for(i=0; i<4; i++){
  232. const int offset= x_offset[i];
  233. const int z0= temp[4*0+i] + temp[4*2+i];
  234. const int z1= temp[4*0+i] - temp[4*2+i];
  235. const int z2= temp[4*1+i] - temp[4*3+i];
  236. const int z3= temp[4*1+i] + temp[4*3+i];
  237. block[stride*0 +offset]= ((((z0 + z3)*qmul + 128 ) >> 8)); //FIXME think about merging this into decode_residual
  238. block[stride*2 +offset]= ((((z1 + z2)*qmul + 128 ) >> 8));
  239. block[stride*8 +offset]= ((((z1 - z2)*qmul + 128 ) >> 8));
  240. block[stride*10+offset]= ((((z0 - z3)*qmul + 128 ) >> 8));
  241. }
  242. }
  243. #if 0
  244. /**
  245. * DCT transforms the 16 dc values.
  246. * @param qp quantization parameter ??? FIXME
  247. */
  248. static void h264_luma_dc_dct_c(DCTELEM *block/*, int qp*/){
  249. // const int qmul= dequant_coeff[qp][0];
  250. int i;
  251. int temp[16]; //FIXME check if this is a good idea
  252. static const int x_offset[4]={0, 1*stride, 4* stride, 5*stride};
  253. static const int y_offset[4]={0, 2*stride, 8* stride, 10*stride};
  254. for(i=0; i<4; i++){
  255. const int offset= y_offset[i];
  256. const int z0= block[offset+stride*0] + block[offset+stride*4];
  257. const int z1= block[offset+stride*0] - block[offset+stride*4];
  258. const int z2= block[offset+stride*1] - block[offset+stride*5];
  259. const int z3= block[offset+stride*1] + block[offset+stride*5];
  260. temp[4*i+0]= z0+z3;
  261. temp[4*i+1]= z1+z2;
  262. temp[4*i+2]= z1-z2;
  263. temp[4*i+3]= z0-z3;
  264. }
  265. for(i=0; i<4; i++){
  266. const int offset= x_offset[i];
  267. const int z0= temp[4*0+i] + temp[4*2+i];
  268. const int z1= temp[4*0+i] - temp[4*2+i];
  269. const int z2= temp[4*1+i] - temp[4*3+i];
  270. const int z3= temp[4*1+i] + temp[4*3+i];
  271. block[stride*0 +offset]= (z0 + z3)>>1;
  272. block[stride*2 +offset]= (z1 + z2)>>1;
  273. block[stride*8 +offset]= (z1 - z2)>>1;
  274. block[stride*10+offset]= (z0 - z3)>>1;
  275. }
  276. }
  277. #endif
  278. #undef xStride
  279. #undef stride
  280. static void chroma_dc_dequant_idct_c(DCTELEM *block, int qp, int qmul){
  281. const int stride= 16*2;
  282. const int xStride= 16;
  283. int a,b,c,d,e;
  284. a= block[stride*0 + xStride*0];
  285. b= block[stride*0 + xStride*1];
  286. c= block[stride*1 + xStride*0];
  287. d= block[stride*1 + xStride*1];
  288. e= a-b;
  289. a= a+b;
  290. b= c-d;
  291. c= c+d;
  292. block[stride*0 + xStride*0]= ((a+c)*qmul) >> 7;
  293. block[stride*0 + xStride*1]= ((e+b)*qmul) >> 7;
  294. block[stride*1 + xStride*0]= ((a-c)*qmul) >> 7;
  295. block[stride*1 + xStride*1]= ((e-b)*qmul) >> 7;
  296. }
  297. #if 0
  298. static void chroma_dc_dct_c(DCTELEM *block){
  299. const int stride= 16*2;
  300. const int xStride= 16;
  301. int a,b,c,d,e;
  302. a= block[stride*0 + xStride*0];
  303. b= block[stride*0 + xStride*1];
  304. c= block[stride*1 + xStride*0];
  305. d= block[stride*1 + xStride*1];
  306. e= a-b;
  307. a= a+b;
  308. b= c-d;
  309. c= c+d;
  310. block[stride*0 + xStride*0]= (a+c);
  311. block[stride*0 + xStride*1]= (e+b);
  312. block[stride*1 + xStride*0]= (a-c);
  313. block[stride*1 + xStride*1]= (e-b);
  314. }
  315. #endif
  316. static inline void mc_dir_part(H264Context *h, Picture *pic, int n, int square, int chroma_height, int delta, int list,
  317. uint8_t *dest_y, uint8_t *dest_cb, uint8_t *dest_cr,
  318. int src_x_offset, int src_y_offset,
  319. qpel_mc_func *qpix_op, h264_chroma_mc_func chroma_op){
  320. MpegEncContext * const s = &h->s;
  321. const int mx= h->mv_cache[list][ scan8[n] ][0] + src_x_offset*8;
  322. int my= h->mv_cache[list][ scan8[n] ][1] + src_y_offset*8;
  323. const int luma_xy= (mx&3) + ((my&3)<<2);
  324. uint8_t * src_y = pic->data[0] + (mx>>2) + (my>>2)*h->mb_linesize;
  325. uint8_t * src_cb, * src_cr;
  326. int extra_width= h->emu_edge_width;
  327. int extra_height= h->emu_edge_height;
  328. int emu=0;
  329. const int full_mx= mx>>2;
  330. const int full_my= my>>2;
  331. const int pic_width = 16*s->mb_width;
  332. const int pic_height = 16*s->mb_height >> MB_FIELD;
  333. if(mx&7) extra_width -= 3;
  334. if(my&7) extra_height -= 3;
  335. if( full_mx < 0-extra_width
  336. || full_my < 0-extra_height
  337. || full_mx + 16/*FIXME*/ > pic_width + extra_width
  338. || full_my + 16/*FIXME*/ > pic_height + extra_height){
  339. ff_emulated_edge_mc(s->edge_emu_buffer, src_y - 2 - 2*h->mb_linesize, h->mb_linesize, 16+5, 16+5/*FIXME*/, full_mx-2, full_my-2, pic_width, pic_height);
  340. src_y= s->edge_emu_buffer + 2 + 2*h->mb_linesize;
  341. emu=1;
  342. }
  343. qpix_op[luma_xy](dest_y, src_y, h->mb_linesize); //FIXME try variable height perhaps?
  344. if(!square){
  345. qpix_op[luma_xy](dest_y + delta, src_y + delta, h->mb_linesize);
  346. }
  347. if(CONFIG_GRAY && s->flags&CODEC_FLAG_GRAY) return;
  348. if(MB_FIELD){
  349. // chroma offset when predicting from a field of opposite parity
  350. my += 2 * ((s->mb_y & 1) - (pic->reference - 1));
  351. emu |= (my>>3) < 0 || (my>>3) + 8 >= (pic_height>>1);
  352. }
  353. src_cb= pic->data[1] + (mx>>3) + (my>>3)*h->mb_uvlinesize;
  354. src_cr= pic->data[2] + (mx>>3) + (my>>3)*h->mb_uvlinesize;
  355. if(emu){
  356. ff_emulated_edge_mc(s->edge_emu_buffer, src_cb, h->mb_uvlinesize, 9, 9/*FIXME*/, (mx>>3), (my>>3), pic_width>>1, pic_height>>1);
  357. src_cb= s->edge_emu_buffer;
  358. }
  359. chroma_op(dest_cb, src_cb, h->mb_uvlinesize, chroma_height, mx&7, my&7);
  360. if(emu){
  361. ff_emulated_edge_mc(s->edge_emu_buffer, src_cr, h->mb_uvlinesize, 9, 9/*FIXME*/, (mx>>3), (my>>3), pic_width>>1, pic_height>>1);
  362. src_cr= s->edge_emu_buffer;
  363. }
  364. chroma_op(dest_cr, src_cr, h->mb_uvlinesize, chroma_height, mx&7, my&7);
  365. }
  366. static inline void mc_part_std(H264Context *h, int n, int square, int chroma_height, int delta,
  367. uint8_t *dest_y, uint8_t *dest_cb, uint8_t *dest_cr,
  368. int x_offset, int y_offset,
  369. qpel_mc_func *qpix_put, h264_chroma_mc_func chroma_put,
  370. qpel_mc_func *qpix_avg, h264_chroma_mc_func chroma_avg,
  371. int list0, int list1){
  372. MpegEncContext * const s = &h->s;
  373. qpel_mc_func *qpix_op= qpix_put;
  374. h264_chroma_mc_func chroma_op= chroma_put;
  375. dest_y += 2*x_offset + 2*y_offset*h-> mb_linesize;
  376. dest_cb += x_offset + y_offset*h->mb_uvlinesize;
  377. dest_cr += x_offset + y_offset*h->mb_uvlinesize;
  378. x_offset += 8*s->mb_x;
  379. y_offset += 8*(s->mb_y >> MB_FIELD);
  380. if(list0){
  381. Picture *ref= &h->ref_list[0][ h->ref_cache[0][ scan8[n] ] ];
  382. mc_dir_part(h, ref, n, square, chroma_height, delta, 0,
  383. dest_y, dest_cb, dest_cr, x_offset, y_offset,
  384. qpix_op, chroma_op);
  385. qpix_op= qpix_avg;
  386. chroma_op= chroma_avg;
  387. }
  388. if(list1){
  389. Picture *ref= &h->ref_list[1][ h->ref_cache[1][ scan8[n] ] ];
  390. mc_dir_part(h, ref, n, square, chroma_height, delta, 1,
  391. dest_y, dest_cb, dest_cr, x_offset, y_offset,
  392. qpix_op, chroma_op);
  393. }
  394. }
  395. static inline void mc_part_weighted(H264Context *h, int n, int square, int chroma_height, int delta,
  396. uint8_t *dest_y, uint8_t *dest_cb, uint8_t *dest_cr,
  397. int x_offset, int y_offset,
  398. qpel_mc_func *qpix_put, h264_chroma_mc_func chroma_put,
  399. h264_weight_func luma_weight_op, h264_weight_func chroma_weight_op,
  400. h264_biweight_func luma_weight_avg, h264_biweight_func chroma_weight_avg,
  401. int list0, int list1){
  402. MpegEncContext * const s = &h->s;
  403. dest_y += 2*x_offset + 2*y_offset*h-> mb_linesize;
  404. dest_cb += x_offset + y_offset*h->mb_uvlinesize;
  405. dest_cr += x_offset + y_offset*h->mb_uvlinesize;
  406. x_offset += 8*s->mb_x;
  407. y_offset += 8*(s->mb_y >> MB_FIELD);
  408. if(list0 && list1){
  409. /* don't optimize for luma-only case, since B-frames usually
  410. * use implicit weights => chroma too. */
  411. uint8_t *tmp_cb = s->obmc_scratchpad;
  412. uint8_t *tmp_cr = s->obmc_scratchpad + 8;
  413. uint8_t *tmp_y = s->obmc_scratchpad + 8*h->mb_uvlinesize;
  414. int refn0 = h->ref_cache[0][ scan8[n] ];
  415. int refn1 = h->ref_cache[1][ scan8[n] ];
  416. mc_dir_part(h, &h->ref_list[0][refn0], n, square, chroma_height, delta, 0,
  417. dest_y, dest_cb, dest_cr,
  418. x_offset, y_offset, qpix_put, chroma_put);
  419. mc_dir_part(h, &h->ref_list[1][refn1], n, square, chroma_height, delta, 1,
  420. tmp_y, tmp_cb, tmp_cr,
  421. x_offset, y_offset, qpix_put, chroma_put);
  422. if(h->use_weight == 2){
  423. int weight0 = h->implicit_weight[refn0][refn1];
  424. int weight1 = 64 - weight0;
  425. luma_weight_avg( dest_y, tmp_y, h-> mb_linesize, 5, weight0, weight1, 0);
  426. chroma_weight_avg(dest_cb, tmp_cb, h->mb_uvlinesize, 5, weight0, weight1, 0);
  427. chroma_weight_avg(dest_cr, tmp_cr, h->mb_uvlinesize, 5, weight0, weight1, 0);
  428. }else{
  429. luma_weight_avg(dest_y, tmp_y, h->mb_linesize, h->luma_log2_weight_denom,
  430. h->luma_weight[refn0][0][0] , h->luma_weight[refn1][1][0],
  431. h->luma_weight[refn0][0][1] + h->luma_weight[refn1][1][1]);
  432. chroma_weight_avg(dest_cb, tmp_cb, h->mb_uvlinesize, h->chroma_log2_weight_denom,
  433. h->chroma_weight[refn0][0][0][0] , h->chroma_weight[refn1][1][0][0],
  434. h->chroma_weight[refn0][0][0][1] + h->chroma_weight[refn1][1][0][1]);
  435. chroma_weight_avg(dest_cr, tmp_cr, h->mb_uvlinesize, h->chroma_log2_weight_denom,
  436. h->chroma_weight[refn0][0][1][0] , h->chroma_weight[refn1][1][1][0],
  437. h->chroma_weight[refn0][0][1][1] + h->chroma_weight[refn1][1][1][1]);
  438. }
  439. }else{
  440. int list = list1 ? 1 : 0;
  441. int refn = h->ref_cache[list][ scan8[n] ];
  442. Picture *ref= &h->ref_list[list][refn];
  443. mc_dir_part(h, ref, n, square, chroma_height, delta, list,
  444. dest_y, dest_cb, dest_cr, x_offset, y_offset,
  445. qpix_put, chroma_put);
  446. luma_weight_op(dest_y, h->mb_linesize, h->luma_log2_weight_denom,
  447. h->luma_weight[refn][list][0], h->luma_weight[refn][list][1]);
  448. if(h->use_weight_chroma){
  449. chroma_weight_op(dest_cb, h->mb_uvlinesize, h->chroma_log2_weight_denom,
  450. h->chroma_weight[refn][list][0][0], h->chroma_weight[refn][list][0][1]);
  451. chroma_weight_op(dest_cr, h->mb_uvlinesize, h->chroma_log2_weight_denom,
  452. h->chroma_weight[refn][list][1][0], h->chroma_weight[refn][list][1][1]);
  453. }
  454. }
  455. }
  456. static inline void mc_part(H264Context *h, int n, int square, int chroma_height, int delta,
  457. uint8_t *dest_y, uint8_t *dest_cb, uint8_t *dest_cr,
  458. int x_offset, int y_offset,
  459. qpel_mc_func *qpix_put, h264_chroma_mc_func chroma_put,
  460. qpel_mc_func *qpix_avg, h264_chroma_mc_func chroma_avg,
  461. h264_weight_func *weight_op, h264_biweight_func *weight_avg,
  462. int list0, int list1){
  463. if((h->use_weight==2 && list0 && list1
  464. && (h->implicit_weight[ h->ref_cache[0][scan8[n]] ][ h->ref_cache[1][scan8[n]] ] != 32))
  465. || h->use_weight==1)
  466. mc_part_weighted(h, n, square, chroma_height, delta, dest_y, dest_cb, dest_cr,
  467. x_offset, y_offset, qpix_put, chroma_put,
  468. weight_op[0], weight_op[3], weight_avg[0], weight_avg[3], list0, list1);
  469. else
  470. mc_part_std(h, n, square, chroma_height, delta, dest_y, dest_cb, dest_cr,
  471. x_offset, y_offset, qpix_put, chroma_put, qpix_avg, chroma_avg, list0, list1);
  472. }
  473. static inline void prefetch_motion(H264Context *h, int list){
  474. /* fetch pixels for estimated mv 4 macroblocks ahead
  475. * optimized for 64byte cache lines */
  476. MpegEncContext * const s = &h->s;
  477. const int refn = h->ref_cache[list][scan8[0]];
  478. if(refn >= 0){
  479. const int mx= (h->mv_cache[list][scan8[0]][0]>>2) + 16*s->mb_x + 8;
  480. const int my= (h->mv_cache[list][scan8[0]][1]>>2) + 16*s->mb_y;
  481. uint8_t **src= h->ref_list[list][refn].data;
  482. int off= mx + (my + (s->mb_x&3)*4)*h->mb_linesize + 64;
  483. s->dsp.prefetch(src[0]+off, s->linesize, 4);
  484. off= (mx>>1) + ((my>>1) + (s->mb_x&7))*s->uvlinesize + 64;
  485. s->dsp.prefetch(src[1]+off, src[2]-src[1], 2);
  486. }
  487. }
  488. static void hl_motion(H264Context *h, uint8_t *dest_y, uint8_t *dest_cb, uint8_t *dest_cr,
  489. qpel_mc_func (*qpix_put)[16], h264_chroma_mc_func (*chroma_put),
  490. qpel_mc_func (*qpix_avg)[16], h264_chroma_mc_func (*chroma_avg),
  491. h264_weight_func *weight_op, h264_biweight_func *weight_avg){
  492. MpegEncContext * const s = &h->s;
  493. const int mb_xy= h->mb_xy;
  494. const int mb_type= s->current_picture.mb_type[mb_xy];
  495. assert(IS_INTER(mb_type));
  496. prefetch_motion(h, 0);
  497. if(IS_16X16(mb_type)){
  498. mc_part(h, 0, 1, 8, 0, dest_y, dest_cb, dest_cr, 0, 0,
  499. qpix_put[0], chroma_put[0], qpix_avg[0], chroma_avg[0],
  500. weight_op, weight_avg,
  501. IS_DIR(mb_type, 0, 0), IS_DIR(mb_type, 0, 1));
  502. }else if(IS_16X8(mb_type)){
  503. mc_part(h, 0, 0, 4, 8, dest_y, dest_cb, dest_cr, 0, 0,
  504. qpix_put[1], chroma_put[0], qpix_avg[1], chroma_avg[0],
  505. &weight_op[1], &weight_avg[1],
  506. IS_DIR(mb_type, 0, 0), IS_DIR(mb_type, 0, 1));
  507. mc_part(h, 8, 0, 4, 8, dest_y, dest_cb, dest_cr, 0, 4,
  508. qpix_put[1], chroma_put[0], qpix_avg[1], chroma_avg[0],
  509. &weight_op[1], &weight_avg[1],
  510. IS_DIR(mb_type, 1, 0), IS_DIR(mb_type, 1, 1));
  511. }else if(IS_8X16(mb_type)){
  512. mc_part(h, 0, 0, 8, 8*h->mb_linesize, dest_y, dest_cb, dest_cr, 0, 0,
  513. qpix_put[1], chroma_put[1], qpix_avg[1], chroma_avg[1],
  514. &weight_op[2], &weight_avg[2],
  515. IS_DIR(mb_type, 0, 0), IS_DIR(mb_type, 0, 1));
  516. mc_part(h, 4, 0, 8, 8*h->mb_linesize, dest_y, dest_cb, dest_cr, 4, 0,
  517. qpix_put[1], chroma_put[1], qpix_avg[1], chroma_avg[1],
  518. &weight_op[2], &weight_avg[2],
  519. IS_DIR(mb_type, 1, 0), IS_DIR(mb_type, 1, 1));
  520. }else{
  521. int i;
  522. assert(IS_8X8(mb_type));
  523. for(i=0; i<4; i++){
  524. const int sub_mb_type= h->sub_mb_type[i];
  525. const int n= 4*i;
  526. int x_offset= (i&1)<<2;
  527. int y_offset= (i&2)<<1;
  528. if(IS_SUB_8X8(sub_mb_type)){
  529. mc_part(h, n, 1, 4, 0, dest_y, dest_cb, dest_cr, x_offset, y_offset,
  530. qpix_put[1], chroma_put[1], qpix_avg[1], chroma_avg[1],
  531. &weight_op[3], &weight_avg[3],
  532. IS_DIR(sub_mb_type, 0, 0), IS_DIR(sub_mb_type, 0, 1));
  533. }else if(IS_SUB_8X4(sub_mb_type)){
  534. mc_part(h, n , 0, 2, 4, dest_y, dest_cb, dest_cr, x_offset, y_offset,
  535. qpix_put[2], chroma_put[1], qpix_avg[2], chroma_avg[1],
  536. &weight_op[4], &weight_avg[4],
  537. IS_DIR(sub_mb_type, 0, 0), IS_DIR(sub_mb_type, 0, 1));
  538. mc_part(h, n+2, 0, 2, 4, dest_y, dest_cb, dest_cr, x_offset, y_offset+2,
  539. qpix_put[2], chroma_put[1], qpix_avg[2], chroma_avg[1],
  540. &weight_op[4], &weight_avg[4],
  541. IS_DIR(sub_mb_type, 0, 0), IS_DIR(sub_mb_type, 0, 1));
  542. }else if(IS_SUB_4X8(sub_mb_type)){
  543. mc_part(h, n , 0, 4, 4*h->mb_linesize, dest_y, dest_cb, dest_cr, x_offset, y_offset,
  544. qpix_put[2], chroma_put[2], qpix_avg[2], chroma_avg[2],
  545. &weight_op[5], &weight_avg[5],
  546. IS_DIR(sub_mb_type, 0, 0), IS_DIR(sub_mb_type, 0, 1));
  547. mc_part(h, n+1, 0, 4, 4*h->mb_linesize, dest_y, dest_cb, dest_cr, x_offset+2, y_offset,
  548. qpix_put[2], chroma_put[2], qpix_avg[2], chroma_avg[2],
  549. &weight_op[5], &weight_avg[5],
  550. IS_DIR(sub_mb_type, 0, 0), IS_DIR(sub_mb_type, 0, 1));
  551. }else{
  552. int j;
  553. assert(IS_SUB_4X4(sub_mb_type));
  554. for(j=0; j<4; j++){
  555. int sub_x_offset= x_offset + 2*(j&1);
  556. int sub_y_offset= y_offset + (j&2);
  557. mc_part(h, n+j, 1, 2, 0, dest_y, dest_cb, dest_cr, sub_x_offset, sub_y_offset,
  558. qpix_put[2], chroma_put[2], qpix_avg[2], chroma_avg[2],
  559. &weight_op[6], &weight_avg[6],
  560. IS_DIR(sub_mb_type, 0, 0), IS_DIR(sub_mb_type, 0, 1));
  561. }
  562. }
  563. }
  564. }
  565. prefetch_motion(h, 1);
  566. }
  567. static void free_tables(H264Context *h){
  568. int i;
  569. H264Context *hx;
  570. av_freep(&h->intra4x4_pred_mode);
  571. av_freep(&h->chroma_pred_mode_table);
  572. av_freep(&h->cbp_table);
  573. av_freep(&h->mvd_table[0]);
  574. av_freep(&h->mvd_table[1]);
  575. av_freep(&h->direct_table);
  576. av_freep(&h->non_zero_count);
  577. av_freep(&h->slice_table_base);
  578. h->slice_table= NULL;
  579. av_freep(&h->list_counts);
  580. av_freep(&h->mb2b_xy);
  581. av_freep(&h->mb2br_xy);
  582. for(i = 0; i < MAX_THREADS; i++) {
  583. hx = h->thread_context[i];
  584. if(!hx) continue;
  585. av_freep(&hx->top_borders[1]);
  586. av_freep(&hx->top_borders[0]);
  587. av_freep(&hx->s.obmc_scratchpad);
  588. av_freep(&hx->rbsp_buffer[1]);
  589. av_freep(&hx->rbsp_buffer[0]);
  590. hx->rbsp_buffer_size[0] = 0;
  591. hx->rbsp_buffer_size[1] = 0;
  592. if (i) av_freep(&h->thread_context[i]);
  593. }
  594. }
  595. static void init_dequant8_coeff_table(H264Context *h){
  596. int i,q,x;
  597. const int transpose = (h->s.dsp.h264_idct8_add != ff_h264_idct8_add_c); //FIXME ugly
  598. h->dequant8_coeff[0] = h->dequant8_buffer[0];
  599. h->dequant8_coeff[1] = h->dequant8_buffer[1];
  600. for(i=0; i<2; i++ ){
  601. if(i && !memcmp(h->pps.scaling_matrix8[0], h->pps.scaling_matrix8[1], 64*sizeof(uint8_t))){
  602. h->dequant8_coeff[1] = h->dequant8_buffer[0];
  603. break;
  604. }
  605. for(q=0; q<52; q++){
  606. int shift = div6[q];
  607. int idx = rem6[q];
  608. for(x=0; x<64; x++)
  609. h->dequant8_coeff[i][q][transpose ? (x>>3)|((x&7)<<3) : x] =
  610. ((uint32_t)dequant8_coeff_init[idx][ dequant8_coeff_init_scan[((x>>1)&12) | (x&3)] ] *
  611. h->pps.scaling_matrix8[i][x]) << shift;
  612. }
  613. }
  614. }
  615. static void init_dequant4_coeff_table(H264Context *h){
  616. int i,j,q,x;
  617. const int transpose = (h->s.dsp.h264_idct_add != ff_h264_idct_add_c); //FIXME ugly
  618. for(i=0; i<6; i++ ){
  619. h->dequant4_coeff[i] = h->dequant4_buffer[i];
  620. for(j=0; j<i; j++){
  621. if(!memcmp(h->pps.scaling_matrix4[j], h->pps.scaling_matrix4[i], 16*sizeof(uint8_t))){
  622. h->dequant4_coeff[i] = h->dequant4_buffer[j];
  623. break;
  624. }
  625. }
  626. if(j<i)
  627. continue;
  628. for(q=0; q<52; q++){
  629. int shift = div6[q] + 2;
  630. int idx = rem6[q];
  631. for(x=0; x<16; x++)
  632. h->dequant4_coeff[i][q][transpose ? (x>>2)|((x<<2)&0xF) : x] =
  633. ((uint32_t)dequant4_coeff_init[idx][(x&1) + ((x>>2)&1)] *
  634. h->pps.scaling_matrix4[i][x]) << shift;
  635. }
  636. }
  637. }
  638. static void init_dequant_tables(H264Context *h){
  639. int i,x;
  640. init_dequant4_coeff_table(h);
  641. if(h->pps.transform_8x8_mode)
  642. init_dequant8_coeff_table(h);
  643. if(h->sps.transform_bypass){
  644. for(i=0; i<6; i++)
  645. for(x=0; x<16; x++)
  646. h->dequant4_coeff[i][0][x] = 1<<6;
  647. if(h->pps.transform_8x8_mode)
  648. for(i=0; i<2; i++)
  649. for(x=0; x<64; x++)
  650. h->dequant8_coeff[i][0][x] = 1<<6;
  651. }
  652. }
  653. int ff_h264_alloc_tables(H264Context *h){
  654. MpegEncContext * const s = &h->s;
  655. const int big_mb_num= s->mb_stride * (s->mb_height+1);
  656. const int row_mb_num= 2*s->mb_stride*s->avctx->thread_count;
  657. int x,y;
  658. FF_ALLOCZ_OR_GOTO(h->s.avctx, h->intra4x4_pred_mode, row_mb_num * 8 * sizeof(uint8_t), fail)
  659. FF_ALLOCZ_OR_GOTO(h->s.avctx, h->non_zero_count , big_mb_num * 32 * sizeof(uint8_t), fail)
  660. FF_ALLOCZ_OR_GOTO(h->s.avctx, h->slice_table_base , (big_mb_num+s->mb_stride) * sizeof(*h->slice_table_base), fail)
  661. FF_ALLOCZ_OR_GOTO(h->s.avctx, h->cbp_table, big_mb_num * sizeof(uint16_t), fail)
  662. FF_ALLOCZ_OR_GOTO(h->s.avctx, h->chroma_pred_mode_table, big_mb_num * sizeof(uint8_t), fail)
  663. FF_ALLOCZ_OR_GOTO(h->s.avctx, h->mvd_table[0], 16*row_mb_num * sizeof(uint8_t), fail);
  664. FF_ALLOCZ_OR_GOTO(h->s.avctx, h->mvd_table[1], 16*row_mb_num * sizeof(uint8_t), fail);
  665. FF_ALLOCZ_OR_GOTO(h->s.avctx, h->direct_table, 4*big_mb_num * sizeof(uint8_t) , fail);
  666. FF_ALLOCZ_OR_GOTO(h->s.avctx, h->list_counts, big_mb_num * sizeof(uint8_t), fail)
  667. memset(h->slice_table_base, -1, (big_mb_num+s->mb_stride) * sizeof(*h->slice_table_base));
  668. h->slice_table= h->slice_table_base + s->mb_stride*2 + 1;
  669. FF_ALLOCZ_OR_GOTO(h->s.avctx, h->mb2b_xy , big_mb_num * sizeof(uint32_t), fail);
  670. FF_ALLOCZ_OR_GOTO(h->s.avctx, h->mb2br_xy , big_mb_num * sizeof(uint32_t), fail);
  671. for(y=0; y<s->mb_height; y++){
  672. for(x=0; x<s->mb_width; x++){
  673. const int mb_xy= x + y*s->mb_stride;
  674. const int b_xy = 4*x + 4*y*h->b_stride;
  675. h->mb2b_xy [mb_xy]= b_xy;
  676. h->mb2br_xy[mb_xy]= 8*(FMO ? mb_xy : (mb_xy % (2*s->mb_stride)));
  677. }
  678. }
  679. s->obmc_scratchpad = NULL;
  680. if(!h->dequant4_coeff[0])
  681. init_dequant_tables(h);
  682. return 0;
  683. fail:
  684. free_tables(h);
  685. return -1;
  686. }
  687. /**
  688. * Mimic alloc_tables(), but for every context thread.
  689. */
  690. static void clone_tables(H264Context *dst, H264Context *src, int i){
  691. MpegEncContext * const s = &src->s;
  692. dst->intra4x4_pred_mode = src->intra4x4_pred_mode + i*8*2*s->mb_stride;
  693. dst->non_zero_count = src->non_zero_count;
  694. dst->slice_table = src->slice_table;
  695. dst->cbp_table = src->cbp_table;
  696. dst->mb2b_xy = src->mb2b_xy;
  697. dst->mb2br_xy = src->mb2br_xy;
  698. dst->chroma_pred_mode_table = src->chroma_pred_mode_table;
  699. dst->mvd_table[0] = src->mvd_table[0] + i*8*2*s->mb_stride;
  700. dst->mvd_table[1] = src->mvd_table[1] + i*8*2*s->mb_stride;
  701. dst->direct_table = src->direct_table;
  702. dst->list_counts = src->list_counts;
  703. dst->s.obmc_scratchpad = NULL;
  704. ff_h264_pred_init(&dst->hpc, src->s.codec_id);
  705. }
  706. /**
  707. * Init context
  708. * Allocate buffers which are not shared amongst multiple threads.
  709. */
  710. static int context_init(H264Context *h){
  711. FF_ALLOCZ_OR_GOTO(h->s.avctx, h->top_borders[0], h->s.mb_width * (16+8+8) * sizeof(uint8_t), fail)
  712. FF_ALLOCZ_OR_GOTO(h->s.avctx, h->top_borders[1], h->s.mb_width * (16+8+8) * sizeof(uint8_t), fail)
  713. h->ref_cache[0][scan8[5 ]+1] = h->ref_cache[0][scan8[7 ]+1] = h->ref_cache[0][scan8[13]+1] =
  714. h->ref_cache[1][scan8[5 ]+1] = h->ref_cache[1][scan8[7 ]+1] = h->ref_cache[1][scan8[13]+1] = PART_NOT_AVAILABLE;
  715. return 0;
  716. fail:
  717. return -1; // free_tables will clean up for us
  718. }
  719. static int decode_nal_units(H264Context *h, const uint8_t *buf, int buf_size);
  720. static av_cold void common_init(H264Context *h){
  721. MpegEncContext * const s = &h->s;
  722. s->width = s->avctx->width;
  723. s->height = s->avctx->height;
  724. s->codec_id= s->avctx->codec->id;
  725. ff_h264_pred_init(&h->hpc, s->codec_id);
  726. h->dequant_coeff_pps= -1;
  727. s->unrestricted_mv=1;
  728. s->decode=1; //FIXME
  729. dsputil_init(&s->dsp, s->avctx); // needed so that idct permutation is known early
  730. memset(h->pps.scaling_matrix4, 16, 6*16*sizeof(uint8_t));
  731. memset(h->pps.scaling_matrix8, 16, 2*64*sizeof(uint8_t));
  732. }
  733. av_cold int ff_h264_decode_init(AVCodecContext *avctx){
  734. H264Context *h= avctx->priv_data;
  735. MpegEncContext * const s = &h->s;
  736. MPV_decode_defaults(s);
  737. s->avctx = avctx;
  738. common_init(h);
  739. s->out_format = FMT_H264;
  740. s->workaround_bugs= avctx->workaround_bugs;
  741. // set defaults
  742. // s->decode_mb= ff_h263_decode_mb;
  743. s->quarter_sample = 1;
  744. if(!avctx->has_b_frames)
  745. s->low_delay= 1;
  746. avctx->chroma_sample_location = AVCHROMA_LOC_LEFT;
  747. ff_h264_decode_init_vlc();
  748. h->thread_context[0] = h;
  749. h->outputed_poc = INT_MIN;
  750. h->prev_poc_msb= 1<<16;
  751. h->x264_build = -1;
  752. ff_h264_reset_sei(h);
  753. if(avctx->codec_id == CODEC_ID_H264){
  754. if(avctx->ticks_per_frame == 1){
  755. s->avctx->time_base.den *=2;
  756. }
  757. avctx->ticks_per_frame = 2;
  758. }
  759. if(avctx->extradata_size > 0 && avctx->extradata && *(char *)avctx->extradata == 1){
  760. int i, cnt, nalsize;
  761. unsigned char *p = avctx->extradata;
  762. h->is_avc = 1;
  763. if(avctx->extradata_size < 7) {
  764. av_log(avctx, AV_LOG_ERROR, "avcC too short\n");
  765. return -1;
  766. }
  767. /* sps and pps in the avcC always have length coded with 2 bytes,
  768. so put a fake nal_length_size = 2 while parsing them */
  769. h->nal_length_size = 2;
  770. // Decode sps from avcC
  771. cnt = *(p+5) & 0x1f; // Number of sps
  772. p += 6;
  773. for (i = 0; i < cnt; i++) {
  774. nalsize = AV_RB16(p) + 2;
  775. if(decode_nal_units(h, p, nalsize) < 0) {
  776. av_log(avctx, AV_LOG_ERROR, "Decoding sps %d from avcC failed\n", i);
  777. return -1;
  778. }
  779. p += nalsize;
  780. }
  781. // Decode pps from avcC
  782. cnt = *(p++); // Number of pps
  783. for (i = 0; i < cnt; i++) {
  784. nalsize = AV_RB16(p) + 2;
  785. if(decode_nal_units(h, p, nalsize) != nalsize) {
  786. av_log(avctx, AV_LOG_ERROR, "Decoding pps %d from avcC failed\n", i);
  787. return -1;
  788. }
  789. p += nalsize;
  790. }
  791. // Now store right nal length size, that will be use to parse all other nals
  792. h->nal_length_size = ((*(((char*)(avctx->extradata))+4))&0x03)+1;
  793. } else {
  794. h->is_avc = 0;
  795. if(decode_nal_units(h, s->avctx->extradata, s->avctx->extradata_size) < 0)
  796. return -1;
  797. }
  798. if(h->sps.bitstream_restriction_flag && s->avctx->has_b_frames < h->sps.num_reorder_frames){
  799. s->avctx->has_b_frames = h->sps.num_reorder_frames;
  800. s->low_delay = 0;
  801. }
  802. return 0;
  803. }
  804. int ff_h264_frame_start(H264Context *h){
  805. MpegEncContext * const s = &h->s;
  806. int i;
  807. if(MPV_frame_start(s, s->avctx) < 0)
  808. return -1;
  809. ff_er_frame_start(s);
  810. /*
  811. * MPV_frame_start uses pict_type to derive key_frame.
  812. * This is incorrect for H.264; IDR markings must be used.
  813. * Zero here; IDR markings per slice in frame or fields are ORed in later.
  814. * See decode_nal_units().
  815. */
  816. s->current_picture_ptr->key_frame= 0;
  817. s->current_picture_ptr->mmco_reset= 0;
  818. assert(s->linesize && s->uvlinesize);
  819. for(i=0; i<16; i++){
  820. h->block_offset[i]= 4*((scan8[i] - scan8[0])&7) + 4*s->linesize*((scan8[i] - scan8[0])>>3);
  821. h->block_offset[24+i]= 4*((scan8[i] - scan8[0])&7) + 8*s->linesize*((scan8[i] - scan8[0])>>3);
  822. }
  823. for(i=0; i<4; i++){
  824. h->block_offset[16+i]=
  825. h->block_offset[20+i]= 4*((scan8[i] - scan8[0])&7) + 4*s->uvlinesize*((scan8[i] - scan8[0])>>3);
  826. h->block_offset[24+16+i]=
  827. h->block_offset[24+20+i]= 4*((scan8[i] - scan8[0])&7) + 8*s->uvlinesize*((scan8[i] - scan8[0])>>3);
  828. }
  829. /* can't be in alloc_tables because linesize isn't known there.
  830. * FIXME: redo bipred weight to not require extra buffer? */
  831. for(i = 0; i < s->avctx->thread_count; i++)
  832. if(!h->thread_context[i]->s.obmc_scratchpad)
  833. h->thread_context[i]->s.obmc_scratchpad = av_malloc(16*2*s->linesize + 8*2*s->uvlinesize);
  834. /* some macroblocks can be accessed before they're available in case of lost slices, mbaff or threading*/
  835. memset(h->slice_table, -1, (s->mb_height*s->mb_stride-1) * sizeof(*h->slice_table));
  836. // s->decode= (s->flags&CODEC_FLAG_PSNR) || !s->encoding || s->current_picture.reference /*|| h->contains_intra*/ || 1;
  837. // We mark the current picture as non-reference after allocating it, so
  838. // that if we break out due to an error it can be released automatically
  839. // in the next MPV_frame_start().
  840. // SVQ3 as well as most other codecs have only last/next/current and thus
  841. // get released even with set reference, besides SVQ3 and others do not
  842. // mark frames as reference later "naturally".
  843. if(s->codec_id != CODEC_ID_SVQ3)
  844. s->current_picture_ptr->reference= 0;
  845. s->current_picture_ptr->field_poc[0]=
  846. s->current_picture_ptr->field_poc[1]= INT_MAX;
  847. assert(s->current_picture_ptr->long_ref==0);
  848. return 0;
  849. }
  850. static inline void backup_mb_border(H264Context *h, uint8_t *src_y, uint8_t *src_cb, uint8_t *src_cr, int linesize, int uvlinesize, int simple){
  851. MpegEncContext * const s = &h->s;
  852. uint8_t *top_border;
  853. int top_idx = 1;
  854. src_y -= linesize;
  855. src_cb -= uvlinesize;
  856. src_cr -= uvlinesize;
  857. if(!simple && FRAME_MBAFF){
  858. if(s->mb_y&1){
  859. if(!MB_MBAFF){
  860. top_border = h->top_borders[0][s->mb_x];
  861. AV_COPY128(top_border, src_y + 15*linesize);
  862. if(simple || !CONFIG_GRAY || !(s->flags&CODEC_FLAG_GRAY)){
  863. AV_COPY64(top_border+16, src_cb+7*uvlinesize);
  864. AV_COPY64(top_border+24, src_cr+7*uvlinesize);
  865. }
  866. }
  867. }else if(MB_MBAFF){
  868. top_idx = 0;
  869. }else
  870. return;
  871. }
  872. top_border = h->top_borders[top_idx][s->mb_x];
  873. // There are two lines saved, the line above the the top macroblock of a pair,
  874. // and the line above the bottom macroblock
  875. AV_COPY128(top_border, src_y + 16*linesize);
  876. if(simple || !CONFIG_GRAY || !(s->flags&CODEC_FLAG_GRAY)){
  877. AV_COPY64(top_border+16, src_cb+8*uvlinesize);
  878. AV_COPY64(top_border+24, src_cr+8*uvlinesize);
  879. }
  880. }
  881. static inline void xchg_mb_border(H264Context *h, uint8_t *src_y, uint8_t *src_cb, uint8_t *src_cr, int linesize, int uvlinesize, int xchg, int simple){
  882. MpegEncContext * const s = &h->s;
  883. int deblock_left;
  884. int deblock_top;
  885. int top_idx = 1;
  886. uint8_t *top_border_m1;
  887. uint8_t *top_border;
  888. if(!simple && FRAME_MBAFF){
  889. if(s->mb_y&1){
  890. if(!MB_MBAFF)
  891. return;
  892. }else{
  893. top_idx = MB_MBAFF ? 0 : 1;
  894. }
  895. }
  896. if(h->deblocking_filter == 2) {
  897. deblock_left = h->left_type[0];
  898. deblock_top = h->top_type;
  899. } else {
  900. deblock_left = (s->mb_x > 0);
  901. deblock_top = (s->mb_y > !!MB_FIELD);
  902. }
  903. src_y -= linesize + 1;
  904. src_cb -= uvlinesize + 1;
  905. src_cr -= uvlinesize + 1;
  906. top_border_m1 = h->top_borders[top_idx][s->mb_x-1];
  907. top_border = h->top_borders[top_idx][s->mb_x];
  908. #define XCHG(a,b,xchg)\
  909. if (xchg) AV_SWAP64(b,a);\
  910. else AV_COPY64(b,a);
  911. if(deblock_top){
  912. if(deblock_left){
  913. XCHG(top_border_m1+8, src_y -7, 1);
  914. }
  915. XCHG(top_border+0, src_y +1, xchg);
  916. XCHG(top_border+8, src_y +9, 1);
  917. if(s->mb_x+1 < s->mb_width){
  918. XCHG(h->top_borders[top_idx][s->mb_x+1], src_y +17, 1);
  919. }
  920. }
  921. if(simple || !CONFIG_GRAY || !(s->flags&CODEC_FLAG_GRAY)){
  922. if(deblock_top){
  923. if(deblock_left){
  924. XCHG(top_border_m1+16, src_cb -7, 1);
  925. XCHG(top_border_m1+24, src_cr -7, 1);
  926. }
  927. XCHG(top_border+16, src_cb+1, 1);
  928. XCHG(top_border+24, src_cr+1, 1);
  929. }
  930. }
  931. }
  932. static av_always_inline void hl_decode_mb_internal(H264Context *h, int simple){
  933. MpegEncContext * const s = &h->s;
  934. const int mb_x= s->mb_x;
  935. const int mb_y= s->mb_y;
  936. const int mb_xy= h->mb_xy;
  937. const int mb_type= s->current_picture.mb_type[mb_xy];
  938. uint8_t *dest_y, *dest_cb, *dest_cr;
  939. int linesize, uvlinesize /*dct_offset*/;
  940. int i;
  941. int *block_offset = &h->block_offset[0];
  942. const int transform_bypass = !simple && (s->qscale == 0 && h->sps.transform_bypass);
  943. /* is_h264 should always be true if SVQ3 is disabled. */
  944. const int is_h264 = !CONFIG_SVQ3_DECODER || simple || s->codec_id == CODEC_ID_H264;
  945. void (*idct_add)(uint8_t *dst, DCTELEM *block, int stride);
  946. void (*idct_dc_add)(uint8_t *dst, DCTELEM *block, int stride);
  947. dest_y = s->current_picture.data[0] + (mb_x + mb_y * s->linesize ) * 16;
  948. dest_cb = s->current_picture.data[1] + (mb_x + mb_y * s->uvlinesize) * 8;
  949. dest_cr = s->current_picture.data[2] + (mb_x + mb_y * s->uvlinesize) * 8;
  950. s->dsp.prefetch(dest_y + (s->mb_x&3)*4*s->linesize + 64, s->linesize, 4);
  951. s->dsp.prefetch(dest_cb + (s->mb_x&7)*s->uvlinesize + 64, dest_cr - dest_cb, 2);
  952. h->list_counts[mb_xy]= h->list_count;
  953. if (!simple && MB_FIELD) {
  954. linesize = h->mb_linesize = s->linesize * 2;
  955. uvlinesize = h->mb_uvlinesize = s->uvlinesize * 2;
  956. block_offset = &h->block_offset[24];
  957. if(mb_y&1){ //FIXME move out of this function?
  958. dest_y -= s->linesize*15;
  959. dest_cb-= s->uvlinesize*7;
  960. dest_cr-= s->uvlinesize*7;
  961. }
  962. if(FRAME_MBAFF) {
  963. int list;
  964. for(list=0; list<h->list_count; list++){
  965. if(!USES_LIST(mb_type, list))
  966. continue;
  967. if(IS_16X16(mb_type)){
  968. int8_t *ref = &h->ref_cache[list][scan8[0]];
  969. fill_rectangle(ref, 4, 4, 8, (16+*ref)^(s->mb_y&1), 1);
  970. }else{
  971. for(i=0; i<16; i+=4){
  972. int ref = h->ref_cache[list][scan8[i]];
  973. if(ref >= 0)
  974. fill_rectangle(&h->ref_cache[list][scan8[i]], 2, 2, 8, (16+ref)^(s->mb_y&1), 1);
  975. }
  976. }
  977. }
  978. }
  979. } else {
  980. linesize = h->mb_linesize = s->linesize;
  981. uvlinesize = h->mb_uvlinesize = s->uvlinesize;
  982. // dct_offset = s->linesize * 16;
  983. }
  984. if (!simple && IS_INTRA_PCM(mb_type)) {
  985. for (i=0; i<16; i++) {
  986. memcpy(dest_y + i* linesize, h->mb + i*8, 16);
  987. }
  988. for (i=0; i<8; i++) {
  989. memcpy(dest_cb+ i*uvlinesize, h->mb + 128 + i*4, 8);
  990. memcpy(dest_cr+ i*uvlinesize, h->mb + 160 + i*4, 8);
  991. }
  992. } else {
  993. if(IS_INTRA(mb_type)){
  994. if(h->deblocking_filter)
  995. xchg_mb_border(h, dest_y, dest_cb, dest_cr, linesize, uvlinesize, 1, simple);
  996. if(simple || !CONFIG_GRAY || !(s->flags&CODEC_FLAG_GRAY)){
  997. h->hpc.pred8x8[ h->chroma_pred_mode ](dest_cb, uvlinesize);
  998. h->hpc.pred8x8[ h->chroma_pred_mode ](dest_cr, uvlinesize);
  999. }
  1000. if(IS_INTRA4x4(mb_type)){
  1001. if(simple || !s->encoding){
  1002. if(IS_8x8DCT(mb_type)){
  1003. if(transform_bypass){
  1004. idct_dc_add =
  1005. idct_add = s->dsp.add_pixels8;
  1006. }else{
  1007. idct_dc_add = s->dsp.h264_idct8_dc_add;
  1008. idct_add = s->dsp.h264_idct8_add;
  1009. }
  1010. for(i=0; i<16; i+=4){
  1011. uint8_t * const ptr= dest_y + block_offset[i];
  1012. const int dir= h->intra4x4_pred_mode_cache[ scan8[i] ];
  1013. if(transform_bypass && h->sps.profile_idc==244 && dir<=1){
  1014. h->hpc.pred8x8l_add[dir](ptr, h->mb + i*16, linesize);
  1015. }else{
  1016. const int nnz = h->non_zero_count_cache[ scan8[i] ];
  1017. h->hpc.pred8x8l[ dir ](ptr, (h->topleft_samples_available<<i)&0x8000,
  1018. (h->topright_samples_available<<i)&0x4000, linesize);
  1019. if(nnz){
  1020. if(nnz == 1 && h->mb[i*16])
  1021. idct_dc_add(ptr, h->mb + i*16, linesize);
  1022. else
  1023. idct_add (ptr, h->mb + i*16, linesize);
  1024. }
  1025. }
  1026. }
  1027. }else{
  1028. if(transform_bypass){
  1029. idct_dc_add =
  1030. idct_add = s->dsp.add_pixels4;
  1031. }else{
  1032. idct_dc_add = s->dsp.h264_idct_dc_add;
  1033. idct_add = s->dsp.h264_idct_add;
  1034. }
  1035. for(i=0; i<16; i++){
  1036. uint8_t * const ptr= dest_y + block_offset[i];
  1037. const int dir= h->intra4x4_pred_mode_cache[ scan8[i] ];
  1038. if(transform_bypass && h->sps.profile_idc==244 && dir<=1){
  1039. h->hpc.pred4x4_add[dir](ptr, h->mb + i*16, linesize);
  1040. }else{
  1041. uint8_t *topright;
  1042. int nnz, tr;
  1043. if(dir == DIAG_DOWN_LEFT_PRED || dir == VERT_LEFT_PRED){
  1044. const int topright_avail= (h->topright_samples_available<<i)&0x8000;
  1045. assert(mb_y || linesize <= block_offset[i]);
  1046. if(!topright_avail){
  1047. tr= ptr[3 - linesize]*0x01010101;
  1048. topright= (uint8_t*) &tr;
  1049. }else
  1050. topright= ptr + 4 - linesize;
  1051. }else
  1052. topright= NULL;
  1053. h->hpc.pred4x4[ dir ](ptr, topright, linesize);
  1054. nnz = h->non_zero_count_cache[ scan8[i] ];
  1055. if(nnz){
  1056. if(is_h264){
  1057. if(nnz == 1 && h->mb[i*16])
  1058. idct_dc_add(ptr, h->mb + i*16, linesize);
  1059. else
  1060. idct_add (ptr, h->mb + i*16, linesize);
  1061. }else
  1062. ff_svq3_add_idct_c(ptr, h->mb + i*16, linesize, s->qscale, 0);
  1063. }
  1064. }
  1065. }
  1066. }
  1067. }
  1068. }else{
  1069. h->hpc.pred16x16[ h->intra16x16_pred_mode ](dest_y , linesize);
  1070. if(is_h264){
  1071. if(!transform_bypass)
  1072. h264_luma_dc_dequant_idct_c(h->mb, s->qscale, h->dequant4_coeff[0][s->qscale][0]);
  1073. }else
  1074. ff_svq3_luma_dc_dequant_idct_c(h->mb, s->qscale);
  1075. }
  1076. if(h->deblocking_filter)
  1077. xchg_mb_border(h, dest_y, dest_cb, dest_cr, linesize, uvlinesize, 0, simple);
  1078. }else if(is_h264){
  1079. hl_motion(h, dest_y, dest_cb, dest_cr,
  1080. s->me.qpel_put, s->dsp.put_h264_chroma_pixels_tab,
  1081. s->me.qpel_avg, s->dsp.avg_h264_chroma_pixels_tab,
  1082. s->dsp.weight_h264_pixels_tab, s->dsp.biweight_h264_pixels_tab);
  1083. }
  1084. if(!IS_INTRA4x4(mb_type)){
  1085. if(is_h264){
  1086. if(IS_INTRA16x16(mb_type)){
  1087. if(transform_bypass){
  1088. if(h->sps.profile_idc==244 && (h->intra16x16_pred_mode==VERT_PRED8x8 || h->intra16x16_pred_mode==HOR_PRED8x8)){
  1089. h->hpc.pred16x16_add[h->intra16x16_pred_mode](dest_y, block_offset, h->mb, linesize);
  1090. }else{
  1091. for(i=0; i<16; i++){
  1092. if(h->non_zero_count_cache[ scan8[i] ] || h->mb[i*16])
  1093. s->dsp.add_pixels4(dest_y + block_offset[i], h->mb + i*16, linesize);
  1094. }
  1095. }
  1096. }else{
  1097. s->dsp.h264_idct_add16intra(dest_y, block_offset, h->mb, linesize, h->non_zero_count_cache);
  1098. }
  1099. }else if(h->cbp&15){
  1100. if(transform_bypass){
  1101. const int di = IS_8x8DCT(mb_type) ? 4 : 1;
  1102. idct_add= IS_8x8DCT(mb_type) ? s->dsp.add_pixels8 : s->dsp.add_pixels4;
  1103. for(i=0; i<16; i+=di){
  1104. if(h->non_zero_count_cache[ scan8[i] ]){
  1105. idct_add(dest_y + block_offset[i], h->mb + i*16, linesize);
  1106. }
  1107. }
  1108. }else{
  1109. if(IS_8x8DCT(mb_type)){
  1110. s->dsp.h264_idct8_add4(dest_y, block_offset, h->mb, linesize, h->non_zero_count_cache);
  1111. }else{
  1112. s->dsp.h264_idct_add16(dest_y, block_offset, h->mb, linesize, h->non_zero_count_cache);
  1113. }
  1114. }
  1115. }
  1116. }else{
  1117. for(i=0; i<16; i++){
  1118. if(h->non_zero_count_cache[ scan8[i] ] || h->mb[i*16]){ //FIXME benchmark weird rule, & below
  1119. uint8_t * const ptr= dest_y + block_offset[i];
  1120. ff_svq3_add_idct_c(ptr, h->mb + i*16, linesize, s->qscale, IS_INTRA(mb_type) ? 1 : 0);
  1121. }
  1122. }
  1123. }
  1124. }
  1125. if((simple || !CONFIG_GRAY || !(s->flags&CODEC_FLAG_GRAY)) && (h->cbp&0x30)){
  1126. uint8_t *dest[2] = {dest_cb, dest_cr};
  1127. if(transform_bypass){
  1128. if(IS_INTRA(mb_type) && h->sps.profile_idc==244 && (h->chroma_pred_mode==VERT_PRED8x8 || h->chroma_pred_mode==HOR_PRED8x8)){
  1129. h->hpc.pred8x8_add[h->chroma_pred_mode](dest[0], block_offset + 16, h->mb + 16*16, uvlinesize);
  1130. h->hpc.pred8x8_add[h->chroma_pred_mode](dest[1], block_offset + 20, h->mb + 20*16, uvlinesize);
  1131. }else{
  1132. idct_add = s->dsp.add_pixels4;
  1133. for(i=16; i<16+8; i++){
  1134. if(h->non_zero_count_cache[ scan8[i] ] || h->mb[i*16])
  1135. idct_add (dest[(i&4)>>2] + block_offset[i], h->mb + i*16, uvlinesize);
  1136. }
  1137. }
  1138. }else{
  1139. chroma_dc_dequant_idct_c(h->mb + 16*16, h->chroma_qp[0], h->dequant4_coeff[IS_INTRA(mb_type) ? 1:4][h->chroma_qp[0]][0]);
  1140. chroma_dc_dequant_idct_c(h->mb + 16*16+4*16, h->chroma_qp[1], h->dequant4_coeff[IS_INTRA(mb_type) ? 2:5][h->chroma_qp[1]][0]);
  1141. if(is_h264){
  1142. idct_add = s->dsp.h264_idct_add;
  1143. idct_dc_add = s->dsp.h264_idct_dc_add;
  1144. for(i=16; i<16+8; i++){
  1145. if(h->non_zero_count_cache[ scan8[i] ])
  1146. idct_add (dest[(i&4)>>2] + block_offset[i], h->mb + i*16, uvlinesize);
  1147. else if(h->mb[i*16])
  1148. idct_dc_add(dest[(i&4)>>2] + block_offset[i], h->mb + i*16, uvlinesize);
  1149. }
  1150. }else{
  1151. for(i=16; i<16+8; i++){
  1152. if(h->non_zero_count_cache[ scan8[i] ] || h->mb[i*16]){
  1153. uint8_t * const ptr= dest[(i&4)>>2] + block_offset[i];
  1154. ff_svq3_add_idct_c(ptr, h->mb + i*16, uvlinesize, ff_h264_chroma_qp[s->qscale + 12] - 12, 2);
  1155. }
  1156. }
  1157. }
  1158. }
  1159. }
  1160. }
  1161. if(h->cbp || IS_INTRA(mb_type))
  1162. s->dsp.clear_blocks(h->mb);
  1163. }
  1164. /**
  1165. * Process a macroblock; this case avoids checks for expensive uncommon cases.
  1166. */
  1167. static void hl_decode_mb_simple(H264Context *h){
  1168. hl_decode_mb_internal(h, 1);
  1169. }
  1170. /**
  1171. * Process a macroblock; this handles edge cases, such as interlacing.
  1172. */
  1173. static void av_noinline hl_decode_mb_complex(H264Context *h){
  1174. hl_decode_mb_internal(h, 0);
  1175. }
  1176. void ff_h264_hl_decode_mb(H264Context *h){
  1177. MpegEncContext * const s = &h->s;
  1178. const int mb_xy= h->mb_xy;
  1179. const int mb_type= s->current_picture.mb_type[mb_xy];
  1180. int is_complex = CONFIG_SMALL || h->is_complex || IS_INTRA_PCM(mb_type) || s->qscale == 0;
  1181. if (is_complex)
  1182. hl_decode_mb_complex(h);
  1183. else hl_decode_mb_simple(h);
  1184. }
  1185. static int pred_weight_table(H264Context *h){
  1186. MpegEncContext * const s = &h->s;
  1187. int list, i;
  1188. int luma_def, chroma_def;
  1189. h->use_weight= 0;
  1190. h->use_weight_chroma= 0;
  1191. h->luma_log2_weight_denom= get_ue_golomb(&s->gb);
  1192. h->chroma_log2_weight_denom= get_ue_golomb(&s->gb);
  1193. luma_def = 1<<h->luma_log2_weight_denom;
  1194. chroma_def = 1<<h->chroma_log2_weight_denom;
  1195. for(list=0; list<2; list++){
  1196. h->luma_weight_flag[list] = 0;
  1197. h->chroma_weight_flag[list] = 0;
  1198. for(i=0; i<h->ref_count[list]; i++){
  1199. int luma_weight_flag, chroma_weight_flag;
  1200. luma_weight_flag= get_bits1(&s->gb);
  1201. if(luma_weight_flag){
  1202. h->luma_weight[i][list][0]= get_se_golomb(&s->gb);
  1203. h->luma_weight[i][list][1]= get_se_golomb(&s->gb);
  1204. if( h->luma_weight[i][list][0] != luma_def
  1205. || h->luma_weight[i][list][1] != 0) {
  1206. h->use_weight= 1;
  1207. h->luma_weight_flag[list]= 1;
  1208. }
  1209. }else{
  1210. h->luma_weight[i][list][0]= luma_def;
  1211. h->luma_weight[i][list][1]= 0;
  1212. }
  1213. if(CHROMA){
  1214. chroma_weight_flag= get_bits1(&s->gb);
  1215. if(chroma_weight_flag){
  1216. int j;
  1217. for(j=0; j<2; j++){
  1218. h->chroma_weight[i][list][j][0]= get_se_golomb(&s->gb);
  1219. h->chroma_weight[i][list][j][1]= get_se_golomb(&s->gb);
  1220. if( h->chroma_weight[i][list][j][0] != chroma_def
  1221. || h->chroma_weight[i][list][j][1] != 0) {
  1222. h->use_weight_chroma= 1;
  1223. h->chroma_weight_flag[list]= 1;
  1224. }
  1225. }
  1226. }else{
  1227. int j;
  1228. for(j=0; j<2; j++){
  1229. h->chroma_weight[i][list][j][0]= chroma_def;
  1230. h->chroma_weight[i][list][j][1]= 0;
  1231. }
  1232. }
  1233. }
  1234. }
  1235. if(h->slice_type_nos != FF_B_TYPE) break;
  1236. }
  1237. h->use_weight= h->use_weight || h->use_weight_chroma;
  1238. return 0;
  1239. }
  1240. static void implicit_weight_table(H264Context *h){
  1241. MpegEncContext * const s = &h->s;
  1242. int ref0, ref1, i;
  1243. int cur_poc = s->current_picture_ptr->poc;
  1244. for (i = 0; i < 2; i++) {
  1245. h->luma_weight_flag[i] = 0;
  1246. h->chroma_weight_flag[i] = 0;
  1247. }
  1248. if( h->ref_count[0] == 1 && h->ref_count[1] == 1
  1249. && h->ref_list[0][0].poc + h->ref_list[1][0].poc == 2*cur_poc){
  1250. h->use_weight= 0;
  1251. h->use_weight_chroma= 0;
  1252. return;
  1253. }
  1254. h->use_weight= 2;
  1255. h->use_weight_chroma= 2;
  1256. h->luma_log2_weight_denom= 5;
  1257. h->chroma_log2_weight_denom= 5;
  1258. for(ref0=0; ref0 < h->ref_count[0]; ref0++){
  1259. int poc0 = h->ref_list[0][ref0].poc;
  1260. for(ref1=0; ref1 < h->ref_count[1]; ref1++){
  1261. int poc1 = h->ref_list[1][ref1].poc;
  1262. int td = av_clip(poc1 - poc0, -128, 127);
  1263. h->implicit_weight[ref0][ref1] = 32;
  1264. if(td){
  1265. int tb = av_clip(cur_poc - poc0, -128, 127);
  1266. int tx = (16384 + (FFABS(td) >> 1)) / td;
  1267. int dist_scale_factor = (tb*tx + 32) >> 8;
  1268. if(dist_scale_factor >= -64 && dist_scale_factor <= 128)
  1269. h->implicit_weight[ref0][ref1] = 64 - dist_scale_factor;
  1270. }
  1271. }
  1272. }
  1273. }
  1274. /**
  1275. * instantaneous decoder refresh.
  1276. */
  1277. static void idr(H264Context *h){
  1278. ff_h264_remove_all_refs(h);
  1279. h->prev_frame_num= 0;
  1280. h->prev_frame_num_offset= 0;
  1281. h->prev_poc_msb=
  1282. h->prev_poc_lsb= 0;
  1283. }
  1284. /* forget old pics after a seek */
  1285. static void flush_dpb(AVCodecContext *avctx){
  1286. H264Context *h= avctx->priv_data;
  1287. int i;
  1288. for(i=0; i<MAX_DELAYED_PIC_COUNT; i++) {
  1289. if(h->delayed_pic[i])
  1290. h->delayed_pic[i]->reference= 0;
  1291. h->delayed_pic[i]= NULL;
  1292. }
  1293. h->outputed_poc= INT_MIN;
  1294. h->prev_interlaced_frame = 1;
  1295. idr(h);
  1296. if(h->s.current_picture_ptr)
  1297. h->s.current_picture_ptr->reference= 0;
  1298. h->s.first_field= 0;
  1299. ff_h264_reset_sei(h);
  1300. ff_mpeg_flush(avctx);
  1301. }
  1302. static int init_poc(H264Context *h){
  1303. MpegEncContext * const s = &h->s;
  1304. const int max_frame_num= 1<<h->sps.log2_max_frame_num;
  1305. int field_poc[2];
  1306. Picture *cur = s->current_picture_ptr;
  1307. h->frame_num_offset= h->prev_frame_num_offset;
  1308. if(h->frame_num < h->prev_frame_num)
  1309. h->frame_num_offset += max_frame_num;
  1310. if(h->sps.poc_type==0){
  1311. const int max_poc_lsb= 1<<h->sps.log2_max_poc_lsb;
  1312. if (h->poc_lsb < h->prev_poc_lsb && h->prev_poc_lsb - h->poc_lsb >= max_poc_lsb/2)
  1313. h->poc_msb = h->prev_poc_msb + max_poc_lsb;
  1314. else if(h->poc_lsb > h->prev_poc_lsb && h->prev_poc_lsb - h->poc_lsb < -max_poc_lsb/2)
  1315. h->poc_msb = h->prev_poc_msb - max_poc_lsb;
  1316. else
  1317. h->poc_msb = h->prev_poc_msb;
  1318. //printf("poc: %d %d\n", h->poc_msb, h->poc_lsb);
  1319. field_poc[0] =
  1320. field_poc[1] = h->poc_msb + h->poc_lsb;
  1321. if(s->picture_structure == PICT_FRAME)
  1322. field_poc[1] += h->delta_poc_bottom;
  1323. }else if(h->sps.poc_type==1){
  1324. int abs_frame_num, expected_delta_per_poc_cycle, expectedpoc;
  1325. int i;
  1326. if(h->sps.poc_cycle_length != 0)
  1327. abs_frame_num = h->frame_num_offset + h->frame_num;
  1328. else
  1329. abs_frame_num = 0;
  1330. if(h->nal_ref_idc==0 && abs_frame_num > 0)
  1331. abs_frame_num--;
  1332. expected_delta_per_poc_cycle = 0;
  1333. for(i=0; i < h->sps.poc_cycle_length; i++)
  1334. expected_delta_per_poc_cycle += h->sps.offset_for_ref_frame[ i ]; //FIXME integrate during sps parse
  1335. if(abs_frame_num > 0){
  1336. int poc_cycle_cnt = (abs_frame_num - 1) / h->sps.poc_cycle_length;
  1337. int frame_num_in_poc_cycle = (abs_frame_num - 1) % h->sps.poc_cycle_length;
  1338. expectedpoc = poc_cycle_cnt * expected_delta_per_poc_cycle;
  1339. for(i = 0; i <= frame_num_in_poc_cycle; i++)
  1340. expectedpoc = expectedpoc + h->sps.offset_for_ref_frame[ i ];
  1341. } else
  1342. expectedpoc = 0;
  1343. if(h->nal_ref_idc == 0)
  1344. expectedpoc = expectedpoc + h->sps.offset_for_non_ref_pic;
  1345. field_poc[0] = expectedpoc + h->delta_poc[0];
  1346. field_poc[1] = field_poc[0] + h->sps.offset_for_top_to_bottom_field;
  1347. if(s->picture_structure == PICT_FRAME)
  1348. field_poc[1] += h->delta_poc[1];
  1349. }else{
  1350. int poc= 2*(h->frame_num_offset + h->frame_num);
  1351. if(!h->nal_ref_idc)
  1352. poc--;
  1353. field_poc[0]= poc;
  1354. field_poc[1]= poc;
  1355. }
  1356. if(s->picture_structure != PICT_BOTTOM_FIELD)
  1357. s->current_picture_ptr->field_poc[0]= field_poc[0];
  1358. if(s->picture_structure != PICT_TOP_FIELD)
  1359. s->current_picture_ptr->field_poc[1]= field_poc[1];
  1360. cur->poc= FFMIN(cur->field_poc[0], cur->field_poc[1]);
  1361. return 0;
  1362. }
  1363. /**
  1364. * initialize scan tables
  1365. */
  1366. static void init_scan_tables(H264Context *h){
  1367. MpegEncContext * const s = &h->s;
  1368. int i;
  1369. if(s->dsp.h264_idct_add == ff_h264_idct_add_c){ //FIXME little ugly
  1370. memcpy(h->zigzag_scan, zigzag_scan, 16*sizeof(uint8_t));
  1371. memcpy(h-> field_scan, field_scan, 16*sizeof(uint8_t));
  1372. }else{
  1373. for(i=0; i<16; i++){
  1374. #define T(x) (x>>2) | ((x<<2) & 0xF)
  1375. h->zigzag_scan[i] = T(zigzag_scan[i]);
  1376. h-> field_scan[i] = T( field_scan[i]);
  1377. #undef T
  1378. }
  1379. }
  1380. if(s->dsp.h264_idct8_add == ff_h264_idct8_add_c){
  1381. memcpy(h->zigzag_scan8x8, ff_zigzag_direct, 64*sizeof(uint8_t));
  1382. memcpy(h->zigzag_scan8x8_cavlc, zigzag_scan8x8_cavlc, 64*sizeof(uint8_t));
  1383. memcpy(h->field_scan8x8, field_scan8x8, 64*sizeof(uint8_t));
  1384. memcpy(h->field_scan8x8_cavlc, field_scan8x8_cavlc, 64*sizeof(uint8_t));
  1385. }else{
  1386. for(i=0; i<64; i++){
  1387. #define T(x) (x>>3) | ((x&7)<<3)
  1388. h->zigzag_scan8x8[i] = T(ff_zigzag_direct[i]);
  1389. h->zigzag_scan8x8_cavlc[i] = T(zigzag_scan8x8_cavlc[i]);
  1390. h->field_scan8x8[i] = T(field_scan8x8[i]);
  1391. h->field_scan8x8_cavlc[i] = T(field_scan8x8_cavlc[i]);
  1392. #undef T
  1393. }
  1394. }
  1395. if(h->sps.transform_bypass){ //FIXME same ugly
  1396. h->zigzag_scan_q0 = zigzag_scan;
  1397. h->zigzag_scan8x8_q0 = ff_zigzag_direct;
  1398. h->zigzag_scan8x8_cavlc_q0 = zigzag_scan8x8_cavlc;
  1399. h->field_scan_q0 = field_scan;
  1400. h->field_scan8x8_q0 = field_scan8x8;
  1401. h->field_scan8x8_cavlc_q0 = field_scan8x8_cavlc;
  1402. }else{
  1403. h->zigzag_scan_q0 = h->zigzag_scan;
  1404. h->zigzag_scan8x8_q0 = h->zigzag_scan8x8;
  1405. h->zigzag_scan8x8_cavlc_q0 = h->zigzag_scan8x8_cavlc;
  1406. h->field_scan_q0 = h->field_scan;
  1407. h->field_scan8x8_q0 = h->field_scan8x8;
  1408. h->field_scan8x8_cavlc_q0 = h->field_scan8x8_cavlc;
  1409. }
  1410. }
  1411. static void field_end(H264Context *h){
  1412. MpegEncContext * const s = &h->s;
  1413. AVCodecContext * const avctx= s->avctx;
  1414. s->mb_y= 0;
  1415. s->current_picture_ptr->qscale_type= FF_QSCALE_TYPE_H264;
  1416. s->current_picture_ptr->pict_type= s->pict_type;
  1417. if (CONFIG_H264_VDPAU_DECODER && s->avctx->codec->capabilities&CODEC_CAP_HWACCEL_VDPAU)
  1418. ff_vdpau_h264_set_reference_frames(s);
  1419. if(!s->dropable) {
  1420. ff_h264_execute_ref_pic_marking(h, h->mmco, h->mmco_index);
  1421. h->prev_poc_msb= h->poc_msb;
  1422. h->prev_poc_lsb= h->poc_lsb;
  1423. }
  1424. h->prev_frame_num_offset= h->frame_num_offset;
  1425. h->prev_frame_num= h->frame_num;
  1426. if (avctx->hwaccel) {
  1427. if (avctx->hwaccel->end_frame(avctx) < 0)
  1428. av_log(avctx, AV_LOG_ERROR, "hardware accelerator failed to decode picture\n");
  1429. }
  1430. if (CONFIG_H264_VDPAU_DECODER && s->avctx->codec->capabilities&CODEC_CAP_HWACCEL_VDPAU)
  1431. ff_vdpau_h264_picture_complete(s);
  1432. /*
  1433. * FIXME: Error handling code does not seem to support interlaced
  1434. * when slices span multiple rows
  1435. * The ff_er_add_slice calls don't work right for bottom
  1436. * fields; they cause massive erroneous error concealing
  1437. * Error marking covers both fields (top and bottom).
  1438. * This causes a mismatched s->error_count
  1439. * and a bad error table. Further, the error count goes to
  1440. * INT_MAX when called for bottom field, because mb_y is
  1441. * past end by one (callers fault) and resync_mb_y != 0
  1442. * causes problems for the first MB line, too.
  1443. */
  1444. if (!FIELD_PICTURE)
  1445. ff_er_frame_end(s);
  1446. MPV_frame_end(s);
  1447. h->current_slice=0;
  1448. }
  1449. /**
  1450. * Replicates H264 "master" context to thread contexts.
  1451. */
  1452. static void clone_slice(H264Context *dst, H264Context *src)
  1453. {
  1454. memcpy(dst->block_offset, src->block_offset, sizeof(dst->block_offset));
  1455. dst->s.current_picture_ptr = src->s.current_picture_ptr;
  1456. dst->s.current_picture = src->s.current_picture;
  1457. dst->s.linesize = src->s.linesize;
  1458. dst->s.uvlinesize = src->s.uvlinesize;
  1459. dst->s.first_field = src->s.first_field;
  1460. dst->prev_poc_msb = src->prev_poc_msb;
  1461. dst->prev_poc_lsb = src->prev_poc_lsb;
  1462. dst->prev_frame_num_offset = src->prev_frame_num_offset;
  1463. dst->prev_frame_num = src->prev_frame_num;
  1464. dst->short_ref_count = src->short_ref_count;
  1465. memcpy(dst->short_ref, src->short_ref, sizeof(dst->short_ref));
  1466. memcpy(dst->long_ref, src->long_ref, sizeof(dst->long_ref));
  1467. memcpy(dst->default_ref_list, src->default_ref_list, sizeof(dst->default_ref_list));
  1468. memcpy(dst->ref_list, src->ref_list, sizeof(dst->ref_list));
  1469. memcpy(dst->dequant4_coeff, src->dequant4_coeff, sizeof(src->dequant4_coeff));
  1470. memcpy(dst->dequant8_coeff, src->dequant8_coeff, sizeof(src->dequant8_coeff));
  1471. }
  1472. /**
  1473. * decodes a slice header.
  1474. * This will also call MPV_common_init() and frame_start() as needed.
  1475. *
  1476. * @param h h264context
  1477. * @param h0 h264 master context (differs from 'h' when doing sliced based parallel decoding)
  1478. *
  1479. * @return 0 if okay, <0 if an error occurred, 1 if decoding must not be multithreaded
  1480. */
  1481. static int decode_slice_header(H264Context *h, H264Context *h0){
  1482. MpegEncContext * const s = &h->s;
  1483. MpegEncContext * const s0 = &h0->s;
  1484. unsigned int first_mb_in_slice;
  1485. unsigned int pps_id;
  1486. int num_ref_idx_active_override_flag;
  1487. unsigned int slice_type, tmp, i, j;
  1488. int default_ref_list_done = 0;
  1489. int last_pic_structure;
  1490. s->dropable= h->nal_ref_idc == 0;
  1491. if((s->avctx->flags2 & CODEC_FLAG2_FAST) && !h->nal_ref_idc){
  1492. s->me.qpel_put= s->dsp.put_2tap_qpel_pixels_tab;
  1493. s->me.qpel_avg= s->dsp.avg_2tap_qpel_pixels_tab;
  1494. }else{
  1495. s->me.qpel_put= s->dsp.put_h264_qpel_pixels_tab;
  1496. s->me.qpel_avg= s->dsp.avg_h264_qpel_pixels_tab;
  1497. }
  1498. first_mb_in_slice= get_ue_golomb(&s->gb);
  1499. if(first_mb_in_slice == 0){ //FIXME better field boundary detection
  1500. if(h0->current_slice && FIELD_PICTURE){
  1501. field_end(h);
  1502. }
  1503. h0->current_slice = 0;
  1504. if (!s0->first_field)
  1505. s->current_picture_ptr= NULL;
  1506. }
  1507. slice_type= get_ue_golomb_31(&s->gb);
  1508. if(slice_type > 9){
  1509. av_log(h->s.avctx, AV_LOG_ERROR, "slice type too large (%d) at %d %d\n", h->slice_type, s->mb_x, s->mb_y);
  1510. return -1;
  1511. }
  1512. if(slice_type > 4){
  1513. slice_type -= 5;
  1514. h->slice_type_fixed=1;
  1515. }else
  1516. h->slice_type_fixed=0;
  1517. slice_type= golomb_to_pict_type[ slice_type ];
  1518. if (slice_type == FF_I_TYPE
  1519. || (h0->current_slice != 0 && slice_type == h0->last_slice_type) ) {
  1520. default_ref_list_done = 1;
  1521. }
  1522. h->slice_type= slice_type;
  1523. h->slice_type_nos= slice_type & 3;
  1524. s->pict_type= h->slice_type; // to make a few old functions happy, it's wrong though
  1525. pps_id= get_ue_golomb(&s->gb);
  1526. if(pps_id>=MAX_PPS_COUNT){
  1527. av_log(h->s.avctx, AV_LOG_ERROR, "pps_id out of range\n");
  1528. return -1;
  1529. }
  1530. if(!h0->pps_buffers[pps_id]) {
  1531. av_log(h->s.avctx, AV_LOG_ERROR, "non-existing PPS %u referenced\n", pps_id);
  1532. return -1;
  1533. }
  1534. h->pps= *h0->pps_buffers[pps_id];
  1535. if(!h0->sps_buffers[h->pps.sps_id]) {
  1536. av_log(h->s.avctx, AV_LOG_ERROR, "non-existing SPS %u referenced\n", h->pps.sps_id);
  1537. return -1;
  1538. }
  1539. h->sps = *h0->sps_buffers[h->pps.sps_id];
  1540. if(h == h0 && h->dequant_coeff_pps != pps_id){
  1541. h->dequant_coeff_pps = pps_id;
  1542. init_dequant_tables(h);
  1543. }
  1544. s->mb_width= h->sps.mb_width;
  1545. s->mb_height= h->sps.mb_height * (2 - h->sps.frame_mbs_only_flag);
  1546. h->b_stride= s->mb_width*4;
  1547. s->width = 16*s->mb_width - 2*FFMIN(h->sps.crop_right, 7);
  1548. if(h->sps.frame_mbs_only_flag)
  1549. s->height= 16*s->mb_height - 2*FFMIN(h->sps.crop_bottom, 7);
  1550. else
  1551. s->height= 16*s->mb_height - 4*FFMIN(h->sps.crop_bottom, 3);
  1552. if (s->context_initialized
  1553. && ( s->width != s->avctx->width || s->height != s->avctx->height)) {
  1554. if(h != h0)
  1555. return -1; // width / height changed during parallelized decoding
  1556. free_tables(h);
  1557. flush_dpb(s->avctx);
  1558. MPV_common_end(s);
  1559. }
  1560. if (!s->context_initialized) {
  1561. if(h != h0)
  1562. return -1; // we cant (re-)initialize context during parallel decoding
  1563. avcodec_set_dimensions(s->avctx, s->width, s->height);
  1564. s->avctx->sample_aspect_ratio= h->sps.sar;
  1565. if(!s->avctx->sample_aspect_ratio.den)
  1566. s->avctx->sample_aspect_ratio.den = 1;
  1567. if(h->sps.video_signal_type_present_flag){
  1568. s->avctx->color_range = h->sps.full_range ? AVCOL_RANGE_JPEG : AVCOL_RANGE_MPEG;
  1569. if(h->sps.colour_description_present_flag){
  1570. s->avctx->color_primaries = h->sps.color_primaries;
  1571. s->avctx->color_trc = h->sps.color_trc;
  1572. s->avctx->colorspace = h->sps.colorspace;
  1573. }
  1574. }
  1575. if(h->sps.timing_info_present_flag){
  1576. int64_t den= h->sps.time_scale;
  1577. if(h->x264_build < 44U)
  1578. den *= 2;
  1579. av_reduce(&s->avctx->time_base.num, &s->avctx->time_base.den,
  1580. h->sps.num_units_in_tick, den, 1<<30);
  1581. }
  1582. s->avctx->pix_fmt = s->avctx->get_format(s->avctx, s->avctx->codec->pix_fmts);
  1583. s->avctx->hwaccel = ff_find_hwaccel(s->avctx->codec->id, s->avctx->pix_fmt);
  1584. if (MPV_common_init(s) < 0)
  1585. return -1;
  1586. s->first_field = 0;
  1587. h->prev_interlaced_frame = 1;
  1588. init_scan_tables(h);
  1589. ff_h264_alloc_tables(h);
  1590. for(i = 1; i < s->avctx->thread_count; i++) {
  1591. H264Context *c;
  1592. c = h->thread_context[i] = av_malloc(sizeof(H264Context));
  1593. memcpy(c, h->s.thread_context[i], sizeof(MpegEncContext));
  1594. memset(&c->s + 1, 0, sizeof(H264Context) - sizeof(MpegEncContext));
  1595. c->sps = h->sps;
  1596. c->pps = h->pps;
  1597. init_scan_tables(c);
  1598. clone_tables(c, h, i);
  1599. }
  1600. for(i = 0; i < s->avctx->thread_count; i++)
  1601. if(context_init(h->thread_context[i]) < 0)
  1602. return -1;
  1603. }
  1604. h->frame_num= get_bits(&s->gb, h->sps.log2_max_frame_num);
  1605. h->mb_mbaff = 0;
  1606. h->mb_aff_frame = 0;
  1607. last_pic_structure = s0->picture_structure;
  1608. if(h->sps.frame_mbs_only_flag){
  1609. s->picture_structure= PICT_FRAME;
  1610. }else{
  1611. if(get_bits1(&s->gb)) { //field_pic_flag
  1612. s->picture_structure= PICT_TOP_FIELD + get_bits1(&s->gb); //bottom_field_flag
  1613. } else {
  1614. s->picture_structure= PICT_FRAME;
  1615. h->mb_aff_frame = h->sps.mb_aff;
  1616. }
  1617. }
  1618. h->mb_field_decoding_flag= s->picture_structure != PICT_FRAME;
  1619. if(h0->current_slice == 0){
  1620. while(h->frame_num != h->prev_frame_num &&
  1621. h->frame_num != (h->prev_frame_num+1)%(1<<h->sps.log2_max_frame_num)){
  1622. av_log(NULL, AV_LOG_DEBUG, "Frame num gap %d %d\n", h->frame_num, h->prev_frame_num);
  1623. if (ff_h264_frame_start(h) < 0)
  1624. return -1;
  1625. h->prev_frame_num++;
  1626. h->prev_frame_num %= 1<<h->sps.log2_max_frame_num;
  1627. s->current_picture_ptr->frame_num= h->prev_frame_num;
  1628. ff_h264_execute_ref_pic_marking(h, NULL, 0);
  1629. }
  1630. /* See if we have a decoded first field looking for a pair... */
  1631. if (s0->first_field) {
  1632. assert(s0->current_picture_ptr);
  1633. assert(s0->current_picture_ptr->data[0]);
  1634. assert(s0->current_picture_ptr->reference != DELAYED_PIC_REF);
  1635. /* figure out if we have a complementary field pair */
  1636. if (!FIELD_PICTURE || s->picture_structure == last_pic_structure) {
  1637. /*
  1638. * Previous field is unmatched. Don't display it, but let it
  1639. * remain for reference if marked as such.
  1640. */
  1641. s0->current_picture_ptr = NULL;
  1642. s0->first_field = FIELD_PICTURE;
  1643. } else {
  1644. if (h->nal_ref_idc &&
  1645. s0->current_picture_ptr->reference &&
  1646. s0->current_picture_ptr->frame_num != h->frame_num) {
  1647. /*
  1648. * This and previous field were reference, but had
  1649. * different frame_nums. Consider this field first in
  1650. * pair. Throw away previous field except for reference
  1651. * purposes.
  1652. */
  1653. s0->first_field = 1;
  1654. s0->current_picture_ptr = NULL;
  1655. } else {
  1656. /* Second field in complementary pair */
  1657. s0->first_field = 0;
  1658. }
  1659. }
  1660. } else {
  1661. /* Frame or first field in a potentially complementary pair */
  1662. assert(!s0->current_picture_ptr);
  1663. s0->first_field = FIELD_PICTURE;
  1664. }
  1665. if((!FIELD_PICTURE || s0->first_field) && ff_h264_frame_start(h) < 0) {
  1666. s0->first_field = 0;
  1667. return -1;
  1668. }
  1669. }
  1670. if(h != h0)
  1671. clone_slice(h, h0);
  1672. s->current_picture_ptr->frame_num= h->frame_num; //FIXME frame_num cleanup
  1673. assert(s->mb_num == s->mb_width * s->mb_height);
  1674. if(first_mb_in_slice << FIELD_OR_MBAFF_PICTURE >= s->mb_num ||
  1675. first_mb_in_slice >= s->mb_num){
  1676. av_log(h->s.avctx, AV_LOG_ERROR, "first_mb_in_slice overflow\n");
  1677. return -1;
  1678. }
  1679. s->resync_mb_x = s->mb_x = first_mb_in_slice % s->mb_width;
  1680. s->resync_mb_y = s->mb_y = (first_mb_in_slice / s->mb_width) << FIELD_OR_MBAFF_PICTURE;
  1681. if (s->picture_structure == PICT_BOTTOM_FIELD)
  1682. s->resync_mb_y = s->mb_y = s->mb_y + 1;
  1683. assert(s->mb_y < s->mb_height);
  1684. if(s->picture_structure==PICT_FRAME){
  1685. h->curr_pic_num= h->frame_num;
  1686. h->max_pic_num= 1<< h->sps.log2_max_frame_num;
  1687. }else{
  1688. h->curr_pic_num= 2*h->frame_num + 1;
  1689. h->max_pic_num= 1<<(h->sps.log2_max_frame_num + 1);
  1690. }
  1691. if(h->nal_unit_type == NAL_IDR_SLICE){
  1692. get_ue_golomb(&s->gb); /* idr_pic_id */
  1693. }
  1694. if(h->sps.poc_type==0){
  1695. h->poc_lsb= get_bits(&s->gb, h->sps.log2_max_poc_lsb);
  1696. if(h->pps.pic_order_present==1 && s->picture_structure==PICT_FRAME){
  1697. h->delta_poc_bottom= get_se_golomb(&s->gb);
  1698. }
  1699. }
  1700. if(h->sps.poc_type==1 && !h->sps.delta_pic_order_always_zero_flag){
  1701. h->delta_poc[0]= get_se_golomb(&s->gb);
  1702. if(h->pps.pic_order_present==1 && s->picture_structure==PICT_FRAME)
  1703. h->delta_poc[1]= get_se_golomb(&s->gb);
  1704. }
  1705. init_poc(h);
  1706. if(h->pps.redundant_pic_cnt_present){
  1707. h->redundant_pic_count= get_ue_golomb(&s->gb);
  1708. }
  1709. //set defaults, might be overridden a few lines later
  1710. h->ref_count[0]= h->pps.ref_count[0];
  1711. h->ref_count[1]= h->pps.ref_count[1];
  1712. if(h->slice_type_nos != FF_I_TYPE){
  1713. if(h->slice_type_nos == FF_B_TYPE){
  1714. h->direct_spatial_mv_pred= get_bits1(&s->gb);
  1715. }
  1716. num_ref_idx_active_override_flag= get_bits1(&s->gb);
  1717. if(num_ref_idx_active_override_flag){
  1718. h->ref_count[0]= get_ue_golomb(&s->gb) + 1;
  1719. if(h->slice_type_nos==FF_B_TYPE)
  1720. h->ref_count[1]= get_ue_golomb(&s->gb) + 1;
  1721. if(h->ref_count[0]-1 > 32-1 || h->ref_count[1]-1 > 32-1){
  1722. av_log(h->s.avctx, AV_LOG_ERROR, "reference overflow\n");
  1723. h->ref_count[0]= h->ref_count[1]= 1;
  1724. return -1;
  1725. }
  1726. }
  1727. if(h->slice_type_nos == FF_B_TYPE)
  1728. h->list_count= 2;
  1729. else
  1730. h->list_count= 1;
  1731. }else
  1732. h->list_count= 0;
  1733. if(!default_ref_list_done){
  1734. ff_h264_fill_default_ref_list(h);
  1735. }
  1736. if(h->slice_type_nos!=FF_I_TYPE && ff_h264_decode_ref_pic_list_reordering(h) < 0)
  1737. return -1;
  1738. if(h->slice_type_nos!=FF_I_TYPE){
  1739. s->last_picture_ptr= &h->ref_list[0][0];
  1740. ff_copy_picture(&s->last_picture, s->last_picture_ptr);
  1741. }
  1742. if(h->slice_type_nos==FF_B_TYPE){
  1743. s->next_picture_ptr= &h->ref_list[1][0];
  1744. ff_copy_picture(&s->next_picture, s->next_picture_ptr);
  1745. }
  1746. if( (h->pps.weighted_pred && h->slice_type_nos == FF_P_TYPE )
  1747. || (h->pps.weighted_bipred_idc==1 && h->slice_type_nos== FF_B_TYPE ) )
  1748. pred_weight_table(h);
  1749. else if(h->pps.weighted_bipred_idc==2 && h->slice_type_nos== FF_B_TYPE){
  1750. implicit_weight_table(h);
  1751. }else {
  1752. h->use_weight = 0;
  1753. for (i = 0; i < 2; i++) {
  1754. h->luma_weight_flag[i] = 0;
  1755. h->chroma_weight_flag[i] = 0;
  1756. }
  1757. }
  1758. if(h->nal_ref_idc)
  1759. ff_h264_decode_ref_pic_marking(h0, &s->gb);
  1760. if(FRAME_MBAFF)
  1761. ff_h264_fill_mbaff_ref_list(h);
  1762. if(h->slice_type_nos==FF_B_TYPE && !h->direct_spatial_mv_pred)
  1763. ff_h264_direct_dist_scale_factor(h);
  1764. ff_h264_direct_ref_list_init(h);
  1765. if( h->slice_type_nos != FF_I_TYPE && h->pps.cabac ){
  1766. tmp = get_ue_golomb_31(&s->gb);
  1767. if(tmp > 2){
  1768. av_log(s->avctx, AV_LOG_ERROR, "cabac_init_idc overflow\n");
  1769. return -1;
  1770. }
  1771. h->cabac_init_idc= tmp;
  1772. }
  1773. h->last_qscale_diff = 0;
  1774. tmp = h->pps.init_qp + get_se_golomb(&s->gb);
  1775. if(tmp>51){
  1776. av_log(s->avctx, AV_LOG_ERROR, "QP %u out of range\n", tmp);
  1777. return -1;
  1778. }
  1779. s->qscale= tmp;
  1780. h->chroma_qp[0] = get_chroma_qp(h, 0, s->qscale);
  1781. h->chroma_qp[1] = get_chroma_qp(h, 1, s->qscale);
  1782. //FIXME qscale / qp ... stuff
  1783. if(h->slice_type == FF_SP_TYPE){
  1784. get_bits1(&s->gb); /* sp_for_switch_flag */
  1785. }
  1786. if(h->slice_type==FF_SP_TYPE || h->slice_type == FF_SI_TYPE){
  1787. get_se_golomb(&s->gb); /* slice_qs_delta */
  1788. }
  1789. h->deblocking_filter = 1;
  1790. h->slice_alpha_c0_offset = 52;
  1791. h->slice_beta_offset = 52;
  1792. if( h->pps.deblocking_filter_parameters_present ) {
  1793. tmp= get_ue_golomb_31(&s->gb);
  1794. if(tmp > 2){
  1795. av_log(s->avctx, AV_LOG_ERROR, "deblocking_filter_idc %u out of range\n", tmp);
  1796. return -1;
  1797. }
  1798. h->deblocking_filter= tmp;
  1799. if(h->deblocking_filter < 2)
  1800. h->deblocking_filter^= 1; // 1<->0
  1801. if( h->deblocking_filter ) {
  1802. h->slice_alpha_c0_offset += get_se_golomb(&s->gb) << 1;
  1803. h->slice_beta_offset += get_se_golomb(&s->gb) << 1;
  1804. if( h->slice_alpha_c0_offset > 104U
  1805. || h->slice_beta_offset > 104U){
  1806. av_log(s->avctx, AV_LOG_ERROR, "deblocking filter parameters %d %d out of range\n", h->slice_alpha_c0_offset, h->slice_beta_offset);
  1807. return -1;
  1808. }
  1809. }
  1810. }
  1811. if( s->avctx->skip_loop_filter >= AVDISCARD_ALL
  1812. ||(s->avctx->skip_loop_filter >= AVDISCARD_NONKEY && h->slice_type_nos != FF_I_TYPE)
  1813. ||(s->avctx->skip_loop_filter >= AVDISCARD_BIDIR && h->slice_type_nos == FF_B_TYPE)
  1814. ||(s->avctx->skip_loop_filter >= AVDISCARD_NONREF && h->nal_ref_idc == 0))
  1815. h->deblocking_filter= 0;
  1816. if(h->deblocking_filter == 1 && h0->max_contexts > 1) {
  1817. if(s->avctx->flags2 & CODEC_FLAG2_FAST) {
  1818. /* Cheat slightly for speed:
  1819. Do not bother to deblock across slices. */
  1820. h->deblocking_filter = 2;
  1821. } else {
  1822. h0->max_contexts = 1;
  1823. if(!h0->single_decode_warning) {
  1824. av_log(s->avctx, AV_LOG_INFO, "Cannot parallelize deblocking type 1, decoding such frames in sequential order\n");
  1825. h0->single_decode_warning = 1;
  1826. }
  1827. if(h != h0)
  1828. return 1; // deblocking switched inside frame
  1829. }
  1830. }
  1831. h->qp_thresh= 15 + 52 - FFMIN(h->slice_alpha_c0_offset, h->slice_beta_offset) - FFMAX3(0, h->pps.chroma_qp_index_offset[0], h->pps.chroma_qp_index_offset[1]);
  1832. #if 0 //FMO
  1833. if( h->pps.num_slice_groups > 1 && h->pps.mb_slice_group_map_type >= 3 && h->pps.mb_slice_group_map_type <= 5)
  1834. slice_group_change_cycle= get_bits(&s->gb, ?);
  1835. #endif
  1836. h0->last_slice_type = slice_type;
  1837. h->slice_num = ++h0->current_slice;
  1838. if(h->slice_num >= MAX_SLICES){
  1839. av_log(s->avctx, AV_LOG_ERROR, "Too many slices, increase MAX_SLICES and recompile\n");
  1840. }
  1841. for(j=0; j<2; j++){
  1842. int id_list[16];
  1843. int *ref2frm= h->ref2frm[h->slice_num&(MAX_SLICES-1)][j];
  1844. for(i=0; i<16; i++){
  1845. id_list[i]= 60;
  1846. if(h->ref_list[j][i].data[0]){
  1847. int k;
  1848. uint8_t *base= h->ref_list[j][i].base[0];
  1849. for(k=0; k<h->short_ref_count; k++)
  1850. if(h->short_ref[k]->base[0] == base){
  1851. id_list[i]= k;
  1852. break;
  1853. }
  1854. for(k=0; k<h->long_ref_count; k++)
  1855. if(h->long_ref[k] && h->long_ref[k]->base[0] == base){
  1856. id_list[i]= h->short_ref_count + k;
  1857. break;
  1858. }
  1859. }
  1860. }
  1861. ref2frm[0]=
  1862. ref2frm[1]= -1;
  1863. for(i=0; i<16; i++)
  1864. ref2frm[i+2]= 4*id_list[i]
  1865. +(h->ref_list[j][i].reference&3);
  1866. ref2frm[18+0]=
  1867. ref2frm[18+1]= -1;
  1868. for(i=16; i<48; i++)
  1869. ref2frm[i+4]= 4*id_list[(i-16)>>1]
  1870. +(h->ref_list[j][i].reference&3);
  1871. }
  1872. h->emu_edge_width= (s->flags&CODEC_FLAG_EMU_EDGE) ? 0 : 16;
  1873. h->emu_edge_height= (FRAME_MBAFF || FIELD_PICTURE) ? 0 : h->emu_edge_width;
  1874. s->avctx->refs= h->sps.ref_frame_count;
  1875. if(s->avctx->debug&FF_DEBUG_PICT_INFO){
  1876. av_log(h->s.avctx, AV_LOG_DEBUG, "slice:%d %s mb:%d %c%s%s pps:%u frame:%d poc:%d/%d ref:%d/%d qp:%d loop:%d:%d:%d weight:%d%s %s\n",
  1877. h->slice_num,
  1878. (s->picture_structure==PICT_FRAME ? "F" : s->picture_structure==PICT_TOP_FIELD ? "T" : "B"),
  1879. first_mb_in_slice,
  1880. av_get_pict_type_char(h->slice_type), h->slice_type_fixed ? " fix" : "", h->nal_unit_type == NAL_IDR_SLICE ? " IDR" : "",
  1881. pps_id, h->frame_num,
  1882. s->current_picture_ptr->field_poc[0], s->current_picture_ptr->field_poc[1],
  1883. h->ref_count[0], h->ref_count[1],
  1884. s->qscale,
  1885. h->deblocking_filter, h->slice_alpha_c0_offset/2-26, h->slice_beta_offset/2-26,
  1886. h->use_weight,
  1887. h->use_weight==1 && h->use_weight_chroma ? "c" : "",
  1888. h->slice_type == FF_B_TYPE ? (h->direct_spatial_mv_pred ? "SPAT" : "TEMP") : ""
  1889. );
  1890. }
  1891. return 0;
  1892. }
  1893. int ff_h264_get_slice_type(const H264Context *h)
  1894. {
  1895. switch (h->slice_type) {
  1896. case FF_P_TYPE: return 0;
  1897. case FF_B_TYPE: return 1;
  1898. case FF_I_TYPE: return 2;
  1899. case FF_SP_TYPE: return 3;
  1900. case FF_SI_TYPE: return 4;
  1901. default: return -1;
  1902. }
  1903. }
  1904. static void loop_filter(H264Context *h){
  1905. MpegEncContext * const s = &h->s;
  1906. uint8_t *dest_y, *dest_cb, *dest_cr;
  1907. int linesize, uvlinesize, mb_x, mb_y;
  1908. const int end_mb_y= s->mb_y + FRAME_MBAFF;
  1909. const int old_slice_type= h->slice_type;
  1910. if(h->deblocking_filter) {
  1911. for(mb_x= 0; mb_x<s->mb_width; mb_x++){
  1912. for(mb_y=end_mb_y - FRAME_MBAFF; mb_y<= end_mb_y; mb_y++){
  1913. int mb_xy, mb_type;
  1914. mb_xy = h->mb_xy = mb_x + mb_y*s->mb_stride;
  1915. h->slice_num= h->slice_table[mb_xy];
  1916. mb_type= s->current_picture.mb_type[mb_xy];
  1917. h->list_count= h->list_counts[mb_xy];
  1918. if(FRAME_MBAFF)
  1919. h->mb_mbaff = h->mb_field_decoding_flag = !!IS_INTERLACED(mb_type);
  1920. s->mb_x= mb_x;
  1921. s->mb_y= mb_y;
  1922. dest_y = s->current_picture.data[0] + (mb_x + mb_y * s->linesize ) * 16;
  1923. dest_cb = s->current_picture.data[1] + (mb_x + mb_y * s->uvlinesize) * 8;
  1924. dest_cr = s->current_picture.data[2] + (mb_x + mb_y * s->uvlinesize) * 8;
  1925. //FIXME simplify above
  1926. if (MB_FIELD) {
  1927. linesize = h->mb_linesize = s->linesize * 2;
  1928. uvlinesize = h->mb_uvlinesize = s->uvlinesize * 2;
  1929. if(mb_y&1){ //FIXME move out of this function?
  1930. dest_y -= s->linesize*15;
  1931. dest_cb-= s->uvlinesize*7;
  1932. dest_cr-= s->uvlinesize*7;
  1933. }
  1934. } else {
  1935. linesize = h->mb_linesize = s->linesize;
  1936. uvlinesize = h->mb_uvlinesize = s->uvlinesize;
  1937. }
  1938. backup_mb_border(h, dest_y, dest_cb, dest_cr, linesize, uvlinesize, 0);
  1939. if(fill_filter_caches(h, mb_type))
  1940. continue;
  1941. h->chroma_qp[0] = get_chroma_qp(h, 0, s->current_picture.qscale_table[mb_xy]);
  1942. h->chroma_qp[1] = get_chroma_qp(h, 1, s->current_picture.qscale_table[mb_xy]);
  1943. if (FRAME_MBAFF) {
  1944. ff_h264_filter_mb (h, mb_x, mb_y, dest_y, dest_cb, dest_cr, linesize, uvlinesize);
  1945. } else {
  1946. ff_h264_filter_mb_fast(h, mb_x, mb_y, dest_y, dest_cb, dest_cr, linesize, uvlinesize);
  1947. }
  1948. }
  1949. }
  1950. }
  1951. h->slice_type= old_slice_type;
  1952. s->mb_x= 0;
  1953. s->mb_y= end_mb_y - FRAME_MBAFF;
  1954. h->chroma_qp[0] = get_chroma_qp(h, 0, s->qscale);
  1955. h->chroma_qp[1] = get_chroma_qp(h, 1, s->qscale);
  1956. }
  1957. static void predict_field_decoding_flag(H264Context *h){
  1958. MpegEncContext * const s = &h->s;
  1959. const int mb_xy= s->mb_x + s->mb_y*s->mb_stride;
  1960. int mb_type = (h->slice_table[mb_xy-1] == h->slice_num)
  1961. ? s->current_picture.mb_type[mb_xy-1]
  1962. : (h->slice_table[mb_xy-s->mb_stride] == h->slice_num)
  1963. ? s->current_picture.mb_type[mb_xy-s->mb_stride]
  1964. : 0;
  1965. h->mb_mbaff = h->mb_field_decoding_flag = IS_INTERLACED(mb_type) ? 1 : 0;
  1966. }
  1967. static int decode_slice(struct AVCodecContext *avctx, void *arg){
  1968. H264Context *h = *(void**)arg;
  1969. MpegEncContext * const s = &h->s;
  1970. const int part_mask= s->partitioned_frame ? (AC_END|AC_ERROR) : 0x7F;
  1971. s->mb_skip_run= -1;
  1972. h->is_complex = FRAME_MBAFF || s->picture_structure != PICT_FRAME || s->codec_id != CODEC_ID_H264 ||
  1973. (CONFIG_GRAY && (s->flags&CODEC_FLAG_GRAY));
  1974. if( h->pps.cabac ) {
  1975. /* realign */
  1976. align_get_bits( &s->gb );
  1977. /* init cabac */
  1978. ff_init_cabac_states( &h->cabac);
  1979. ff_init_cabac_decoder( &h->cabac,
  1980. s->gb.buffer + get_bits_count(&s->gb)/8,
  1981. (get_bits_left(&s->gb) + 7)/8);
  1982. ff_h264_init_cabac_states(h);
  1983. for(;;){
  1984. //START_TIMER
  1985. int ret = ff_h264_decode_mb_cabac(h);
  1986. int eos;
  1987. //STOP_TIMER("decode_mb_cabac")
  1988. if(ret>=0) ff_h264_hl_decode_mb(h);
  1989. if( ret >= 0 && FRAME_MBAFF ) { //FIXME optimal? or let mb_decode decode 16x32 ?
  1990. s->mb_y++;
  1991. ret = ff_h264_decode_mb_cabac(h);
  1992. if(ret>=0) ff_h264_hl_decode_mb(h);
  1993. s->mb_y--;
  1994. }
  1995. eos = get_cabac_terminate( &h->cabac );
  1996. if((s->workaround_bugs & FF_BUG_TRUNCATED) && h->cabac.bytestream > h->cabac.bytestream_end + 2){
  1997. ff_er_add_slice(s, s->resync_mb_x, s->resync_mb_y, s->mb_x-1, s->mb_y, (AC_END|DC_END|MV_END)&part_mask);
  1998. return 0;
  1999. }
  2000. if( ret < 0 || h->cabac.bytestream > h->cabac.bytestream_end + 2) {
  2001. av_log(h->s.avctx, AV_LOG_ERROR, "error while decoding MB %d %d, bytestream (%td)\n", s->mb_x, s->mb_y, h->cabac.bytestream_end - h->cabac.bytestream);
  2002. ff_er_add_slice(s, s->resync_mb_x, s->resync_mb_y, s->mb_x, s->mb_y, (AC_ERROR|DC_ERROR|MV_ERROR)&part_mask);
  2003. return -1;
  2004. }
  2005. if( ++s->mb_x >= s->mb_width ) {
  2006. s->mb_x = 0;
  2007. loop_filter(h);
  2008. ff_draw_horiz_band(s, 16*s->mb_y, 16);
  2009. ++s->mb_y;
  2010. if(FIELD_OR_MBAFF_PICTURE) {
  2011. ++s->mb_y;
  2012. if(FRAME_MBAFF && s->mb_y < s->mb_height)
  2013. predict_field_decoding_flag(h);
  2014. }
  2015. }
  2016. if( eos || s->mb_y >= s->mb_height ) {
  2017. tprintf(s->avctx, "slice end %d %d\n", get_bits_count(&s->gb), s->gb.size_in_bits);
  2018. ff_er_add_slice(s, s->resync_mb_x, s->resync_mb_y, s->mb_x-1, s->mb_y, (AC_END|DC_END|MV_END)&part_mask);
  2019. return 0;
  2020. }
  2021. }
  2022. } else {
  2023. for(;;){
  2024. int ret = ff_h264_decode_mb_cavlc(h);
  2025. if(ret>=0) ff_h264_hl_decode_mb(h);
  2026. if(ret>=0 && FRAME_MBAFF){ //FIXME optimal? or let mb_decode decode 16x32 ?
  2027. s->mb_y++;
  2028. ret = ff_h264_decode_mb_cavlc(h);
  2029. if(ret>=0) ff_h264_hl_decode_mb(h);
  2030. s->mb_y--;
  2031. }
  2032. if(ret<0){
  2033. av_log(h->s.avctx, AV_LOG_ERROR, "error while decoding MB %d %d\n", s->mb_x, s->mb_y);
  2034. ff_er_add_slice(s, s->resync_mb_x, s->resync_mb_y, s->mb_x, s->mb_y, (AC_ERROR|DC_ERROR|MV_ERROR)&part_mask);
  2035. return -1;
  2036. }
  2037. if(++s->mb_x >= s->mb_width){
  2038. s->mb_x=0;
  2039. loop_filter(h);
  2040. ff_draw_horiz_band(s, 16*s->mb_y, 16);
  2041. ++s->mb_y;
  2042. if(FIELD_OR_MBAFF_PICTURE) {
  2043. ++s->mb_y;
  2044. if(FRAME_MBAFF && s->mb_y < s->mb_height)
  2045. predict_field_decoding_flag(h);
  2046. }
  2047. if(s->mb_y >= s->mb_height){
  2048. tprintf(s->avctx, "slice end %d %d\n", get_bits_count(&s->gb), s->gb.size_in_bits);
  2049. if(get_bits_count(&s->gb) == s->gb.size_in_bits ) {
  2050. ff_er_add_slice(s, s->resync_mb_x, s->resync_mb_y, s->mb_x-1, s->mb_y, (AC_END|DC_END|MV_END)&part_mask);
  2051. return 0;
  2052. }else{
  2053. ff_er_add_slice(s, s->resync_mb_x, s->resync_mb_y, s->mb_x, s->mb_y, (AC_END|DC_END|MV_END)&part_mask);
  2054. return -1;
  2055. }
  2056. }
  2057. }
  2058. if(get_bits_count(&s->gb) >= s->gb.size_in_bits && s->mb_skip_run<=0){
  2059. tprintf(s->avctx, "slice end %d %d\n", get_bits_count(&s->gb), s->gb.size_in_bits);
  2060. if(get_bits_count(&s->gb) == s->gb.size_in_bits ){
  2061. ff_er_add_slice(s, s->resync_mb_x, s->resync_mb_y, s->mb_x-1, s->mb_y, (AC_END|DC_END|MV_END)&part_mask);
  2062. return 0;
  2063. }else{
  2064. ff_er_add_slice(s, s->resync_mb_x, s->resync_mb_y, s->mb_x, s->mb_y, (AC_ERROR|DC_ERROR|MV_ERROR)&part_mask);
  2065. return -1;
  2066. }
  2067. }
  2068. }
  2069. }
  2070. #if 0
  2071. for(;s->mb_y < s->mb_height; s->mb_y++){
  2072. for(;s->mb_x < s->mb_width; s->mb_x++){
  2073. int ret= decode_mb(h);
  2074. ff_h264_hl_decode_mb(h);
  2075. if(ret<0){
  2076. av_log(s->avctx, AV_LOG_ERROR, "error while decoding MB %d %d\n", s->mb_x, s->mb_y);
  2077. ff_er_add_slice(s, s->resync_mb_x, s->resync_mb_y, s->mb_x, s->mb_y, (AC_ERROR|DC_ERROR|MV_ERROR)&part_mask);
  2078. return -1;
  2079. }
  2080. if(++s->mb_x >= s->mb_width){
  2081. s->mb_x=0;
  2082. if(++s->mb_y >= s->mb_height){
  2083. if(get_bits_count(s->gb) == s->gb.size_in_bits){
  2084. ff_er_add_slice(s, s->resync_mb_x, s->resync_mb_y, s->mb_x-1, s->mb_y, (AC_END|DC_END|MV_END)&part_mask);
  2085. return 0;
  2086. }else{
  2087. ff_er_add_slice(s, s->resync_mb_x, s->resync_mb_y, s->mb_x, s->mb_y, (AC_END|DC_END|MV_END)&part_mask);
  2088. return -1;
  2089. }
  2090. }
  2091. }
  2092. if(get_bits_count(s->?gb) >= s->gb?.size_in_bits){
  2093. if(get_bits_count(s->gb) == s->gb.size_in_bits){
  2094. ff_er_add_slice(s, s->resync_mb_x, s->resync_mb_y, s->mb_x-1, s->mb_y, (AC_END|DC_END|MV_END)&part_mask);
  2095. return 0;
  2096. }else{
  2097. ff_er_add_slice(s, s->resync_mb_x, s->resync_mb_y, s->mb_x, s->mb_y, (AC_ERROR|DC_ERROR|MV_ERROR)&part_mask);
  2098. return -1;
  2099. }
  2100. }
  2101. }
  2102. s->mb_x=0;
  2103. ff_draw_horiz_band(s, 16*s->mb_y, 16);
  2104. }
  2105. #endif
  2106. return -1; //not reached
  2107. }
  2108. /**
  2109. * Call decode_slice() for each context.
  2110. *
  2111. * @param h h264 master context
  2112. * @param context_count number of contexts to execute
  2113. */
  2114. static void execute_decode_slices(H264Context *h, int context_count){
  2115. MpegEncContext * const s = &h->s;
  2116. AVCodecContext * const avctx= s->avctx;
  2117. H264Context *hx;
  2118. int i;
  2119. if (s->avctx->hwaccel)
  2120. return;
  2121. if(s->avctx->codec->capabilities&CODEC_CAP_HWACCEL_VDPAU)
  2122. return;
  2123. if(context_count == 1) {
  2124. decode_slice(avctx, &h);
  2125. } else {
  2126. for(i = 1; i < context_count; i++) {
  2127. hx = h->thread_context[i];
  2128. hx->s.error_recognition = avctx->error_recognition;
  2129. hx->s.error_count = 0;
  2130. }
  2131. avctx->execute(avctx, (void *)decode_slice,
  2132. h->thread_context, NULL, context_count, sizeof(void*));
  2133. /* pull back stuff from slices to master context */
  2134. hx = h->thread_context[context_count - 1];
  2135. s->mb_x = hx->s.mb_x;
  2136. s->mb_y = hx->s.mb_y;
  2137. s->dropable = hx->s.dropable;
  2138. s->picture_structure = hx->s.picture_structure;
  2139. for(i = 1; i < context_count; i++)
  2140. h->s.error_count += h->thread_context[i]->s.error_count;
  2141. }
  2142. }
  2143. static int decode_nal_units(H264Context *h, const uint8_t *buf, int buf_size){
  2144. MpegEncContext * const s = &h->s;
  2145. AVCodecContext * const avctx= s->avctx;
  2146. int buf_index=0;
  2147. H264Context *hx; ///< thread context
  2148. int context_count = 0;
  2149. int next_avc= h->is_avc ? 0 : buf_size;
  2150. h->max_contexts = avctx->thread_count;
  2151. #if 0
  2152. int i;
  2153. for(i=0; i<50; i++){
  2154. av_log(NULL, AV_LOG_ERROR,"%02X ", buf[i]);
  2155. }
  2156. #endif
  2157. if(!(s->flags2 & CODEC_FLAG2_CHUNKS)){
  2158. h->current_slice = 0;
  2159. if (!s->first_field)
  2160. s->current_picture_ptr= NULL;
  2161. ff_h264_reset_sei(h);
  2162. }
  2163. for(;;){
  2164. int consumed;
  2165. int dst_length;
  2166. int bit_length;
  2167. const uint8_t *ptr;
  2168. int i, nalsize = 0;
  2169. int err;
  2170. if(buf_index >= next_avc) {
  2171. if(buf_index >= buf_size) break;
  2172. nalsize = 0;
  2173. for(i = 0; i < h->nal_length_size; i++)
  2174. nalsize = (nalsize << 8) | buf[buf_index++];
  2175. if(nalsize <= 1 || nalsize > buf_size - buf_index){
  2176. if(nalsize == 1){
  2177. buf_index++;
  2178. continue;
  2179. }else{
  2180. av_log(h->s.avctx, AV_LOG_ERROR, "AVC: nal size %d\n", nalsize);
  2181. break;
  2182. }
  2183. }
  2184. next_avc= buf_index + nalsize;
  2185. } else {
  2186. // start code prefix search
  2187. for(; buf_index + 3 < next_avc; buf_index++){
  2188. // This should always succeed in the first iteration.
  2189. if(buf[buf_index] == 0 && buf[buf_index+1] == 0 && buf[buf_index+2] == 1)
  2190. break;
  2191. }
  2192. if(buf_index+3 >= buf_size) break;
  2193. buf_index+=3;
  2194. if(buf_index >= next_avc) continue;
  2195. }
  2196. hx = h->thread_context[context_count];
  2197. ptr= ff_h264_decode_nal(hx, buf + buf_index, &dst_length, &consumed, next_avc - buf_index);
  2198. if (ptr==NULL || dst_length < 0){
  2199. return -1;
  2200. }
  2201. i= buf_index + consumed;
  2202. if((s->workaround_bugs & FF_BUG_AUTODETECT) && i+3<next_avc &&
  2203. buf[i]==0x00 && buf[i+1]==0x00 && buf[i+2]==0x01 && buf[i+3]==0xE0)
  2204. s->workaround_bugs |= FF_BUG_TRUNCATED;
  2205. if(!(s->workaround_bugs & FF_BUG_TRUNCATED)){
  2206. while(ptr[dst_length - 1] == 0 && dst_length > 0)
  2207. dst_length--;
  2208. }
  2209. bit_length= !dst_length ? 0 : (8*dst_length - ff_h264_decode_rbsp_trailing(h, ptr + dst_length - 1));
  2210. if(s->avctx->debug&FF_DEBUG_STARTCODE){
  2211. av_log(h->s.avctx, AV_LOG_DEBUG, "NAL %d at %d/%d length %d\n", hx->nal_unit_type, buf_index, buf_size, dst_length);
  2212. }
  2213. if (h->is_avc && (nalsize != consumed) && nalsize){
  2214. av_log(h->s.avctx, AV_LOG_DEBUG, "AVC: Consumed only %d bytes instead of %d\n", consumed, nalsize);
  2215. }
  2216. buf_index += consumed;
  2217. if( (s->hurry_up == 1 && h->nal_ref_idc == 0) //FIXME do not discard SEI id
  2218. ||(avctx->skip_frame >= AVDISCARD_NONREF && h->nal_ref_idc == 0))
  2219. continue;
  2220. again:
  2221. err = 0;
  2222. switch(hx->nal_unit_type){
  2223. case NAL_IDR_SLICE:
  2224. if (h->nal_unit_type != NAL_IDR_SLICE) {
  2225. av_log(h->s.avctx, AV_LOG_ERROR, "Invalid mix of idr and non-idr slices");
  2226. return -1;
  2227. }
  2228. idr(h); //FIXME ensure we don't loose some frames if there is reordering
  2229. case NAL_SLICE:
  2230. init_get_bits(&hx->s.gb, ptr, bit_length);
  2231. hx->intra_gb_ptr=
  2232. hx->inter_gb_ptr= &hx->s.gb;
  2233. hx->s.data_partitioning = 0;
  2234. if((err = decode_slice_header(hx, h)))
  2235. break;
  2236. avctx->profile = hx->sps.profile_idc;
  2237. avctx->level = hx->sps.level_idc;
  2238. if (s->avctx->hwaccel && h->current_slice == 1) {
  2239. if (s->avctx->hwaccel->start_frame(s->avctx, NULL, 0) < 0)
  2240. return -1;
  2241. }
  2242. s->current_picture_ptr->key_frame |=
  2243. (hx->nal_unit_type == NAL_IDR_SLICE) ||
  2244. (h->sei_recovery_frame_cnt >= 0);
  2245. if(hx->redundant_pic_count==0 && hx->s.hurry_up < 5
  2246. && (avctx->skip_frame < AVDISCARD_NONREF || hx->nal_ref_idc)
  2247. && (avctx->skip_frame < AVDISCARD_BIDIR || hx->slice_type_nos!=FF_B_TYPE)
  2248. && (avctx->skip_frame < AVDISCARD_NONKEY || hx->slice_type_nos==FF_I_TYPE)
  2249. && avctx->skip_frame < AVDISCARD_ALL){
  2250. if(avctx->hwaccel) {
  2251. if (avctx->hwaccel->decode_slice(avctx, &buf[buf_index - consumed], consumed) < 0)
  2252. return -1;
  2253. }else
  2254. if(CONFIG_H264_VDPAU_DECODER && s->avctx->codec->capabilities&CODEC_CAP_HWACCEL_VDPAU){
  2255. static const uint8_t start_code[] = {0x00, 0x00, 0x01};
  2256. ff_vdpau_add_data_chunk(s, start_code, sizeof(start_code));
  2257. ff_vdpau_add_data_chunk(s, &buf[buf_index - consumed], consumed );
  2258. }else
  2259. context_count++;
  2260. }
  2261. break;
  2262. case NAL_DPA:
  2263. init_get_bits(&hx->s.gb, ptr, bit_length);
  2264. hx->intra_gb_ptr=
  2265. hx->inter_gb_ptr= NULL;
  2266. if ((err = decode_slice_header(hx, h)) < 0)
  2267. break;
  2268. avctx->profile = hx->sps.profile_idc;
  2269. avctx->level = hx->sps.level_idc;
  2270. hx->s.data_partitioning = 1;
  2271. break;
  2272. case NAL_DPB:
  2273. init_get_bits(&hx->intra_gb, ptr, bit_length);
  2274. hx->intra_gb_ptr= &hx->intra_gb;
  2275. break;
  2276. case NAL_DPC:
  2277. init_get_bits(&hx->inter_gb, ptr, bit_length);
  2278. hx->inter_gb_ptr= &hx->inter_gb;
  2279. if(hx->redundant_pic_count==0 && hx->intra_gb_ptr && hx->s.data_partitioning
  2280. && s->context_initialized
  2281. && s->hurry_up < 5
  2282. && (avctx->skip_frame < AVDISCARD_NONREF || hx->nal_ref_idc)
  2283. && (avctx->skip_frame < AVDISCARD_BIDIR || hx->slice_type_nos!=FF_B_TYPE)
  2284. && (avctx->skip_frame < AVDISCARD_NONKEY || hx->slice_type_nos==FF_I_TYPE)
  2285. && avctx->skip_frame < AVDISCARD_ALL)
  2286. context_count++;
  2287. break;
  2288. case NAL_SEI:
  2289. init_get_bits(&s->gb, ptr, bit_length);
  2290. ff_h264_decode_sei(h);
  2291. break;
  2292. case NAL_SPS:
  2293. init_get_bits(&s->gb, ptr, bit_length);
  2294. ff_h264_decode_seq_parameter_set(h);
  2295. if(s->flags& CODEC_FLAG_LOW_DELAY)
  2296. s->low_delay=1;
  2297. if(avctx->has_b_frames < 2)
  2298. avctx->has_b_frames= !s->low_delay;
  2299. break;
  2300. case NAL_PPS:
  2301. init_get_bits(&s->gb, ptr, bit_length);
  2302. ff_h264_decode_picture_parameter_set(h, bit_length);
  2303. break;
  2304. case NAL_AUD:
  2305. case NAL_END_SEQUENCE:
  2306. case NAL_END_STREAM:
  2307. case NAL_FILLER_DATA:
  2308. case NAL_SPS_EXT:
  2309. case NAL_AUXILIARY_SLICE:
  2310. break;
  2311. default:
  2312. av_log(avctx, AV_LOG_DEBUG, "Unknown NAL code: %d (%d bits)\n", hx->nal_unit_type, bit_length);
  2313. }
  2314. if(context_count == h->max_contexts) {
  2315. execute_decode_slices(h, context_count);
  2316. context_count = 0;
  2317. }
  2318. if (err < 0)
  2319. av_log(h->s.avctx, AV_LOG_ERROR, "decode_slice_header error\n");
  2320. else if(err == 1) {
  2321. /* Slice could not be decoded in parallel mode, copy down
  2322. * NAL unit stuff to context 0 and restart. Note that
  2323. * rbsp_buffer is not transferred, but since we no longer
  2324. * run in parallel mode this should not be an issue. */
  2325. h->nal_unit_type = hx->nal_unit_type;
  2326. h->nal_ref_idc = hx->nal_ref_idc;
  2327. hx = h;
  2328. goto again;
  2329. }
  2330. }
  2331. if(context_count)
  2332. execute_decode_slices(h, context_count);
  2333. return buf_index;
  2334. }
  2335. /**
  2336. * returns the number of bytes consumed for building the current frame
  2337. */
  2338. static int get_consumed_bytes(MpegEncContext *s, int pos, int buf_size){
  2339. if(pos==0) pos=1; //avoid infinite loops (i doubt that is needed but ...)
  2340. if(pos+10>buf_size) pos=buf_size; // oops ;)
  2341. return pos;
  2342. }
  2343. static int decode_frame(AVCodecContext *avctx,
  2344. void *data, int *data_size,
  2345. AVPacket *avpkt)
  2346. {
  2347. const uint8_t *buf = avpkt->data;
  2348. int buf_size = avpkt->size;
  2349. H264Context *h = avctx->priv_data;
  2350. MpegEncContext *s = &h->s;
  2351. AVFrame *pict = data;
  2352. int buf_index;
  2353. s->flags= avctx->flags;
  2354. s->flags2= avctx->flags2;
  2355. /* end of stream, output what is still in the buffers */
  2356. if (buf_size == 0) {
  2357. Picture *out;
  2358. int i, out_idx;
  2359. //FIXME factorize this with the output code below
  2360. out = h->delayed_pic[0];
  2361. out_idx = 0;
  2362. for(i=1; h->delayed_pic[i] && !h->delayed_pic[i]->key_frame && !h->delayed_pic[i]->mmco_reset; i++)
  2363. if(h->delayed_pic[i]->poc < out->poc){
  2364. out = h->delayed_pic[i];
  2365. out_idx = i;
  2366. }
  2367. for(i=out_idx; h->delayed_pic[i]; i++)
  2368. h->delayed_pic[i] = h->delayed_pic[i+1];
  2369. if(out){
  2370. *data_size = sizeof(AVFrame);
  2371. *pict= *(AVFrame*)out;
  2372. }
  2373. return 0;
  2374. }
  2375. buf_index=decode_nal_units(h, buf, buf_size);
  2376. if(buf_index < 0)
  2377. return -1;
  2378. if(!(s->flags2 & CODEC_FLAG2_CHUNKS) && !s->current_picture_ptr){
  2379. if (avctx->skip_frame >= AVDISCARD_NONREF || s->hurry_up) return 0;
  2380. av_log(avctx, AV_LOG_ERROR, "no frame!\n");
  2381. return -1;
  2382. }
  2383. if(!(s->flags2 & CODEC_FLAG2_CHUNKS) || (s->mb_y >= s->mb_height && s->mb_height)){
  2384. Picture *out = s->current_picture_ptr;
  2385. Picture *cur = s->current_picture_ptr;
  2386. int i, pics, out_of_order, out_idx;
  2387. field_end(h);
  2388. if (cur->field_poc[0]==INT_MAX || cur->field_poc[1]==INT_MAX) {
  2389. /* Wait for second field. */
  2390. *data_size = 0;
  2391. } else {
  2392. cur->interlaced_frame = 0;
  2393. cur->repeat_pict = 0;
  2394. /* Signal interlacing information externally. */
  2395. /* Prioritize picture timing SEI information over used decoding process if it exists. */
  2396. if(h->sps.pic_struct_present_flag){
  2397. switch (h->sei_pic_struct)
  2398. {
  2399. case SEI_PIC_STRUCT_FRAME:
  2400. break;
  2401. case SEI_PIC_STRUCT_TOP_FIELD:
  2402. case SEI_PIC_STRUCT_BOTTOM_FIELD:
  2403. cur->interlaced_frame = 1;
  2404. break;
  2405. case SEI_PIC_STRUCT_TOP_BOTTOM:
  2406. case SEI_PIC_STRUCT_BOTTOM_TOP:
  2407. if (FIELD_OR_MBAFF_PICTURE)
  2408. cur->interlaced_frame = 1;
  2409. else
  2410. // try to flag soft telecine progressive
  2411. cur->interlaced_frame = h->prev_interlaced_frame;
  2412. break;
  2413. case SEI_PIC_STRUCT_TOP_BOTTOM_TOP:
  2414. case SEI_PIC_STRUCT_BOTTOM_TOP_BOTTOM:
  2415. // Signal the possibility of telecined film externally (pic_struct 5,6)
  2416. // From these hints, let the applications decide if they apply deinterlacing.
  2417. cur->repeat_pict = 1;
  2418. break;
  2419. case SEI_PIC_STRUCT_FRAME_DOUBLING:
  2420. // Force progressive here, as doubling interlaced frame is a bad idea.
  2421. cur->repeat_pict = 2;
  2422. break;
  2423. case SEI_PIC_STRUCT_FRAME_TRIPLING:
  2424. cur->repeat_pict = 4;
  2425. break;
  2426. }
  2427. if ((h->sei_ct_type & 3) && h->sei_pic_struct <= SEI_PIC_STRUCT_BOTTOM_TOP)
  2428. cur->interlaced_frame = (h->sei_ct_type & (1<<1)) != 0;
  2429. }else{
  2430. /* Derive interlacing flag from used decoding process. */
  2431. cur->interlaced_frame = FIELD_OR_MBAFF_PICTURE;
  2432. }
  2433. h->prev_interlaced_frame = cur->interlaced_frame;
  2434. if (cur->field_poc[0] != cur->field_poc[1]){
  2435. /* Derive top_field_first from field pocs. */
  2436. cur->top_field_first = cur->field_poc[0] < cur->field_poc[1];
  2437. }else{
  2438. if(cur->interlaced_frame || h->sps.pic_struct_present_flag){
  2439. /* Use picture timing SEI information. Even if it is a information of a past frame, better than nothing. */
  2440. if(h->sei_pic_struct == SEI_PIC_STRUCT_TOP_BOTTOM
  2441. || h->sei_pic_struct == SEI_PIC_STRUCT_TOP_BOTTOM_TOP)
  2442. cur->top_field_first = 1;
  2443. else
  2444. cur->top_field_first = 0;
  2445. }else{
  2446. /* Most likely progressive */
  2447. cur->top_field_first = 0;
  2448. }
  2449. }
  2450. //FIXME do something with unavailable reference frames
  2451. /* Sort B-frames into display order */
  2452. if(h->sps.bitstream_restriction_flag
  2453. && s->avctx->has_b_frames < h->sps.num_reorder_frames){
  2454. s->avctx->has_b_frames = h->sps.num_reorder_frames;
  2455. s->low_delay = 0;
  2456. }
  2457. if( s->avctx->strict_std_compliance >= FF_COMPLIANCE_STRICT
  2458. && !h->sps.bitstream_restriction_flag){
  2459. s->avctx->has_b_frames= MAX_DELAYED_PIC_COUNT;
  2460. s->low_delay= 0;
  2461. }
  2462. pics = 0;
  2463. while(h->delayed_pic[pics]) pics++;
  2464. assert(pics <= MAX_DELAYED_PIC_COUNT);
  2465. h->delayed_pic[pics++] = cur;
  2466. if(cur->reference == 0)
  2467. cur->reference = DELAYED_PIC_REF;
  2468. out = h->delayed_pic[0];
  2469. out_idx = 0;
  2470. for(i=1; h->delayed_pic[i] && !h->delayed_pic[i]->key_frame && !h->delayed_pic[i]->mmco_reset; i++)
  2471. if(h->delayed_pic[i]->poc < out->poc){
  2472. out = h->delayed_pic[i];
  2473. out_idx = i;
  2474. }
  2475. if(s->avctx->has_b_frames == 0 && (h->delayed_pic[0]->key_frame || h->delayed_pic[0]->mmco_reset))
  2476. h->outputed_poc= INT_MIN;
  2477. out_of_order = out->poc < h->outputed_poc;
  2478. if(h->sps.bitstream_restriction_flag && s->avctx->has_b_frames >= h->sps.num_reorder_frames)
  2479. { }
  2480. else if((out_of_order && pics-1 == s->avctx->has_b_frames && s->avctx->has_b_frames < MAX_DELAYED_PIC_COUNT)
  2481. || (s->low_delay &&
  2482. ((h->outputed_poc != INT_MIN && out->poc > h->outputed_poc + 2)
  2483. || cur->pict_type == FF_B_TYPE)))
  2484. {
  2485. s->low_delay = 0;
  2486. s->avctx->has_b_frames++;
  2487. }
  2488. if(out_of_order || pics > s->avctx->has_b_frames){
  2489. out->reference &= ~DELAYED_PIC_REF;
  2490. for(i=out_idx; h->delayed_pic[i]; i++)
  2491. h->delayed_pic[i] = h->delayed_pic[i+1];
  2492. }
  2493. if(!out_of_order && pics > s->avctx->has_b_frames){
  2494. *data_size = sizeof(AVFrame);
  2495. if(out_idx==0 && h->delayed_pic[0] && (h->delayed_pic[0]->key_frame || h->delayed_pic[0]->mmco_reset)) {
  2496. h->outputed_poc = INT_MIN;
  2497. } else
  2498. h->outputed_poc = out->poc;
  2499. *pict= *(AVFrame*)out;
  2500. }else{
  2501. av_log(avctx, AV_LOG_DEBUG, "no picture\n");
  2502. }
  2503. }
  2504. }
  2505. assert(pict->data[0] || !*data_size);
  2506. ff_print_debug_info(s, pict);
  2507. //printf("out %d\n", (int)pict->data[0]);
  2508. return get_consumed_bytes(s, buf_index, buf_size);
  2509. }
  2510. #if 0
  2511. static inline void fill_mb_avail(H264Context *h){
  2512. MpegEncContext * const s = &h->s;
  2513. const int mb_xy= s->mb_x + s->mb_y*s->mb_stride;
  2514. if(s->mb_y){
  2515. h->mb_avail[0]= s->mb_x && h->slice_table[mb_xy - s->mb_stride - 1] == h->slice_num;
  2516. h->mb_avail[1]= h->slice_table[mb_xy - s->mb_stride ] == h->slice_num;
  2517. h->mb_avail[2]= s->mb_x+1 < s->mb_width && h->slice_table[mb_xy - s->mb_stride + 1] == h->slice_num;
  2518. }else{
  2519. h->mb_avail[0]=
  2520. h->mb_avail[1]=
  2521. h->mb_avail[2]= 0;
  2522. }
  2523. h->mb_avail[3]= s->mb_x && h->slice_table[mb_xy - 1] == h->slice_num;
  2524. h->mb_avail[4]= 1; //FIXME move out
  2525. h->mb_avail[5]= 0; //FIXME move out
  2526. }
  2527. #endif
  2528. #ifdef TEST
  2529. #undef printf
  2530. #undef random
  2531. #define COUNT 8000
  2532. #define SIZE (COUNT*40)
  2533. int main(void){
  2534. int i;
  2535. uint8_t temp[SIZE];
  2536. PutBitContext pb;
  2537. GetBitContext gb;
  2538. // int int_temp[10000];
  2539. DSPContext dsp;
  2540. AVCodecContext avctx;
  2541. dsputil_init(&dsp, &avctx);
  2542. init_put_bits(&pb, temp, SIZE);
  2543. printf("testing unsigned exp golomb\n");
  2544. for(i=0; i<COUNT; i++){
  2545. START_TIMER
  2546. set_ue_golomb(&pb, i);
  2547. STOP_TIMER("set_ue_golomb");
  2548. }
  2549. flush_put_bits(&pb);
  2550. init_get_bits(&gb, temp, 8*SIZE);
  2551. for(i=0; i<COUNT; i++){
  2552. int j, s;
  2553. s= show_bits(&gb, 24);
  2554. START_TIMER
  2555. j= get_ue_golomb(&gb);
  2556. if(j != i){
  2557. printf("mismatch! at %d (%d should be %d) bits:%6X\n", i, j, i, s);
  2558. // return -1;
  2559. }
  2560. STOP_TIMER("get_ue_golomb");
  2561. }
  2562. init_put_bits(&pb, temp, SIZE);
  2563. printf("testing signed exp golomb\n");
  2564. for(i=0; i<COUNT; i++){
  2565. START_TIMER
  2566. set_se_golomb(&pb, i - COUNT/2);
  2567. STOP_TIMER("set_se_golomb");
  2568. }
  2569. flush_put_bits(&pb);
  2570. init_get_bits(&gb, temp, 8*SIZE);
  2571. for(i=0; i<COUNT; i++){
  2572. int j, s;
  2573. s= show_bits(&gb, 24);
  2574. START_TIMER
  2575. j= get_se_golomb(&gb);
  2576. if(j != i - COUNT/2){
  2577. printf("mismatch! at %d (%d should be %d) bits:%6X\n", i, j, i, s);
  2578. // return -1;
  2579. }
  2580. STOP_TIMER("get_se_golomb");
  2581. }
  2582. #if 0
  2583. printf("testing 4x4 (I)DCT\n");
  2584. DCTELEM block[16];
  2585. uint8_t src[16], ref[16];
  2586. uint64_t error= 0, max_error=0;
  2587. for(i=0; i<COUNT; i++){
  2588. int j;
  2589. // printf("%d %d %d\n", r1, r2, (r2-r1)*16);
  2590. for(j=0; j<16; j++){
  2591. ref[j]= random()%255;
  2592. src[j]= random()%255;
  2593. }
  2594. h264_diff_dct_c(block, src, ref, 4);
  2595. //normalize
  2596. for(j=0; j<16; j++){
  2597. // printf("%d ", block[j]);
  2598. block[j]= block[j]*4;
  2599. if(j&1) block[j]= (block[j]*4 + 2)/5;
  2600. if(j&4) block[j]= (block[j]*4 + 2)/5;
  2601. }
  2602. // printf("\n");
  2603. s->dsp.h264_idct_add(ref, block, 4);
  2604. /* for(j=0; j<16; j++){
  2605. printf("%d ", ref[j]);
  2606. }
  2607. printf("\n");*/
  2608. for(j=0; j<16; j++){
  2609. int diff= FFABS(src[j] - ref[j]);
  2610. error+= diff*diff;
  2611. max_error= FFMAX(max_error, diff);
  2612. }
  2613. }
  2614. printf("error=%f max_error=%d\n", ((float)error)/COUNT/16, (int)max_error );
  2615. printf("testing quantizer\n");
  2616. for(qp=0; qp<52; qp++){
  2617. for(i=0; i<16; i++)
  2618. src1_block[i]= src2_block[i]= random()%255;
  2619. }
  2620. printf("Testing NAL layer\n");
  2621. uint8_t bitstream[COUNT];
  2622. uint8_t nal[COUNT*2];
  2623. H264Context h;
  2624. memset(&h, 0, sizeof(H264Context));
  2625. for(i=0; i<COUNT; i++){
  2626. int zeros= i;
  2627. int nal_length;
  2628. int consumed;
  2629. int out_length;
  2630. uint8_t *out;
  2631. int j;
  2632. for(j=0; j<COUNT; j++){
  2633. bitstream[j]= (random() % 255) + 1;
  2634. }
  2635. for(j=0; j<zeros; j++){
  2636. int pos= random() % COUNT;
  2637. while(bitstream[pos] == 0){
  2638. pos++;
  2639. pos %= COUNT;
  2640. }
  2641. bitstream[pos]=0;
  2642. }
  2643. START_TIMER
  2644. nal_length= encode_nal(&h, nal, bitstream, COUNT, COUNT*2);
  2645. if(nal_length<0){
  2646. printf("encoding failed\n");
  2647. return -1;
  2648. }
  2649. out= ff_h264_decode_nal(&h, nal, &out_length, &consumed, nal_length);
  2650. STOP_TIMER("NAL")
  2651. if(out_length != COUNT){
  2652. printf("incorrect length %d %d\n", out_length, COUNT);
  2653. return -1;
  2654. }
  2655. if(consumed != nal_length){
  2656. printf("incorrect consumed length %d %d\n", nal_length, consumed);
  2657. return -1;
  2658. }
  2659. if(memcmp(bitstream, out, COUNT)){
  2660. printf("mismatch\n");
  2661. return -1;
  2662. }
  2663. }
  2664. #endif
  2665. printf("Testing RBSP\n");
  2666. return 0;
  2667. }
  2668. #endif /* TEST */
  2669. av_cold void ff_h264_free_context(H264Context *h)
  2670. {
  2671. int i;
  2672. free_tables(h); //FIXME cleanup init stuff perhaps
  2673. for(i = 0; i < MAX_SPS_COUNT; i++)
  2674. av_freep(h->sps_buffers + i);
  2675. for(i = 0; i < MAX_PPS_COUNT; i++)
  2676. av_freep(h->pps_buffers + i);
  2677. }
  2678. av_cold int ff_h264_decode_end(AVCodecContext *avctx)
  2679. {
  2680. H264Context *h = avctx->priv_data;
  2681. MpegEncContext *s = &h->s;
  2682. ff_h264_free_context(h);
  2683. MPV_common_end(s);
  2684. // memset(h, 0, sizeof(H264Context));
  2685. return 0;
  2686. }
  2687. AVCodec h264_decoder = {
  2688. "h264",
  2689. CODEC_TYPE_VIDEO,
  2690. CODEC_ID_H264,
  2691. sizeof(H264Context),
  2692. ff_h264_decode_init,
  2693. NULL,
  2694. ff_h264_decode_end,
  2695. decode_frame,
  2696. /*CODEC_CAP_DRAW_HORIZ_BAND |*/ CODEC_CAP_DR1 | CODEC_CAP_DELAY,
  2697. .flush= flush_dpb,
  2698. .long_name = NULL_IF_CONFIG_SMALL("H.264 / AVC / MPEG-4 AVC / MPEG-4 part 10"),
  2699. .pix_fmts= ff_hwaccel_pixfmt_list_420,
  2700. };
  2701. #if CONFIG_H264_VDPAU_DECODER
  2702. AVCodec h264_vdpau_decoder = {
  2703. "h264_vdpau",
  2704. CODEC_TYPE_VIDEO,
  2705. CODEC_ID_H264,
  2706. sizeof(H264Context),
  2707. ff_h264_decode_init,
  2708. NULL,
  2709. ff_h264_decode_end,
  2710. decode_frame,
  2711. CODEC_CAP_DR1 | CODEC_CAP_DELAY | CODEC_CAP_HWACCEL_VDPAU,
  2712. .flush= flush_dpb,
  2713. .long_name = NULL_IF_CONFIG_SMALL("H.264 / AVC / MPEG-4 AVC / MPEG-4 part 10 (VDPAU acceleration)"),
  2714. .pix_fmts = (const enum PixelFormat[]){PIX_FMT_VDPAU_H264, PIX_FMT_NONE},
  2715. };
  2716. #endif