You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

4365 lines
176KB

  1. /*
  2. * VP9 compatible video decoder
  3. *
  4. * Copyright (C) 2013 Ronald S. Bultje <rsbultje gmail com>
  5. * Copyright (C) 2013 Clément Bœsch <u pkh me>
  6. *
  7. * This file is part of FFmpeg.
  8. *
  9. * FFmpeg is free software; you can redistribute it and/or
  10. * modify it under the terms of the GNU Lesser General Public
  11. * License as published by the Free Software Foundation; either
  12. * version 2.1 of the License, or (at your option) any later version.
  13. *
  14. * FFmpeg is distributed in the hope that it will be useful,
  15. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  16. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  17. * Lesser General Public License for more details.
  18. *
  19. * You should have received a copy of the GNU Lesser General Public
  20. * License along with FFmpeg; if not, write to the Free Software
  21. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  22. */
  23. #include "avcodec.h"
  24. #include "get_bits.h"
  25. #include "internal.h"
  26. #include "profiles.h"
  27. #include "thread.h"
  28. #include "videodsp.h"
  29. #include "vp56.h"
  30. #include "vp9.h"
  31. #include "vp9data.h"
  32. #include "vp9dsp.h"
  33. #include "libavutil/avassert.h"
  34. #include "libavutil/pixdesc.h"
  35. #define VP9_SYNCCODE 0x498342
  36. struct VP9Filter {
  37. uint8_t level[8 * 8];
  38. uint8_t /* bit=col */ mask[2 /* 0=y, 1=uv */][2 /* 0=col, 1=row */]
  39. [8 /* rows */][4 /* 0=16, 1=8, 2=4, 3=inner4 */];
  40. };
  41. typedef struct VP9Block {
  42. uint8_t seg_id, intra, comp, ref[2], mode[4], uvmode, skip;
  43. enum FilterMode filter;
  44. VP56mv mv[4 /* b_idx */][2 /* ref */];
  45. enum BlockSize bs;
  46. enum TxfmMode tx, uvtx;
  47. enum BlockLevel bl;
  48. enum BlockPartition bp;
  49. } VP9Block;
  50. typedef struct VP9Context {
  51. VP9SharedContext s;
  52. VP9DSPContext dsp;
  53. VideoDSPContext vdsp;
  54. GetBitContext gb;
  55. VP56RangeCoder c;
  56. VP56RangeCoder *c_b;
  57. unsigned c_b_size;
  58. VP9Block *b_base, *b;
  59. int pass;
  60. int row, row7, col, col7;
  61. uint8_t *dst[3];
  62. ptrdiff_t y_stride, uv_stride;
  63. uint8_t ss_h, ss_v;
  64. uint8_t last_bpp, bpp, bpp_index, bytesperpixel;
  65. uint8_t last_keyframe;
  66. // sb_cols/rows, rows/cols and last_fmt are used for allocating all internal
  67. // arrays, and are thus per-thread. w/h and gf_fmt are synced between threads
  68. // and are therefore per-stream. pix_fmt represents the value in the header
  69. // of the currently processed frame.
  70. int w, h;
  71. enum AVPixelFormat pix_fmt, last_fmt, gf_fmt;
  72. unsigned sb_cols, sb_rows, rows, cols;
  73. ThreadFrame next_refs[8];
  74. struct {
  75. uint8_t lim_lut[64];
  76. uint8_t mblim_lut[64];
  77. } filter_lut;
  78. unsigned tile_row_start, tile_row_end, tile_col_start, tile_col_end;
  79. struct {
  80. prob_context p;
  81. uint8_t coef[4][2][2][6][6][3];
  82. } prob_ctx[4];
  83. struct {
  84. prob_context p;
  85. uint8_t coef[4][2][2][6][6][11];
  86. } prob;
  87. struct {
  88. unsigned y_mode[4][10];
  89. unsigned uv_mode[10][10];
  90. unsigned filter[4][3];
  91. unsigned mv_mode[7][4];
  92. unsigned intra[4][2];
  93. unsigned comp[5][2];
  94. unsigned single_ref[5][2][2];
  95. unsigned comp_ref[5][2];
  96. unsigned tx32p[2][4];
  97. unsigned tx16p[2][3];
  98. unsigned tx8p[2][2];
  99. unsigned skip[3][2];
  100. unsigned mv_joint[4];
  101. struct {
  102. unsigned sign[2];
  103. unsigned classes[11];
  104. unsigned class0[2];
  105. unsigned bits[10][2];
  106. unsigned class0_fp[2][4];
  107. unsigned fp[4];
  108. unsigned class0_hp[2];
  109. unsigned hp[2];
  110. } mv_comp[2];
  111. unsigned partition[4][4][4];
  112. unsigned coef[4][2][2][6][6][3];
  113. unsigned eob[4][2][2][6][6][2];
  114. } counts;
  115. // contextual (left/above) cache
  116. DECLARE_ALIGNED(16, uint8_t, left_y_nnz_ctx)[16];
  117. DECLARE_ALIGNED(16, uint8_t, left_mode_ctx)[16];
  118. DECLARE_ALIGNED(16, VP56mv, left_mv_ctx)[16][2];
  119. DECLARE_ALIGNED(16, uint8_t, left_uv_nnz_ctx)[2][16];
  120. DECLARE_ALIGNED(8, uint8_t, left_partition_ctx)[8];
  121. DECLARE_ALIGNED(8, uint8_t, left_skip_ctx)[8];
  122. DECLARE_ALIGNED(8, uint8_t, left_txfm_ctx)[8];
  123. DECLARE_ALIGNED(8, uint8_t, left_segpred_ctx)[8];
  124. DECLARE_ALIGNED(8, uint8_t, left_intra_ctx)[8];
  125. DECLARE_ALIGNED(8, uint8_t, left_comp_ctx)[8];
  126. DECLARE_ALIGNED(8, uint8_t, left_ref_ctx)[8];
  127. DECLARE_ALIGNED(8, uint8_t, left_filter_ctx)[8];
  128. uint8_t *above_partition_ctx;
  129. uint8_t *above_mode_ctx;
  130. // FIXME maybe merge some of the below in a flags field?
  131. uint8_t *above_y_nnz_ctx;
  132. uint8_t *above_uv_nnz_ctx[2];
  133. uint8_t *above_skip_ctx; // 1bit
  134. uint8_t *above_txfm_ctx; // 2bit
  135. uint8_t *above_segpred_ctx; // 1bit
  136. uint8_t *above_intra_ctx; // 1bit
  137. uint8_t *above_comp_ctx; // 1bit
  138. uint8_t *above_ref_ctx; // 2bit
  139. uint8_t *above_filter_ctx;
  140. VP56mv (*above_mv_ctx)[2];
  141. // whole-frame cache
  142. uint8_t *intra_pred_data[3];
  143. struct VP9Filter *lflvl;
  144. DECLARE_ALIGNED(32, uint8_t, edge_emu_buffer)[135 * 144 * 2];
  145. // block reconstruction intermediates
  146. int block_alloc_using_2pass;
  147. int16_t *block_base, *block, *uvblock_base[2], *uvblock[2];
  148. uint8_t *eob_base, *uveob_base[2], *eob, *uveob[2];
  149. struct { int x, y; } min_mv, max_mv;
  150. DECLARE_ALIGNED(32, uint8_t, tmp_y)[64 * 64 * 2];
  151. DECLARE_ALIGNED(32, uint8_t, tmp_uv)[2][64 * 64 * 2];
  152. uint16_t mvscale[3][2];
  153. uint8_t mvstep[3][2];
  154. } VP9Context;
  155. static const uint8_t bwh_tab[2][N_BS_SIZES][2] = {
  156. {
  157. { 16, 16 }, { 16, 8 }, { 8, 16 }, { 8, 8 }, { 8, 4 }, { 4, 8 },
  158. { 4, 4 }, { 4, 2 }, { 2, 4 }, { 2, 2 }, { 2, 1 }, { 1, 2 }, { 1, 1 },
  159. }, {
  160. { 8, 8 }, { 8, 4 }, { 4, 8 }, { 4, 4 }, { 4, 2 }, { 2, 4 },
  161. { 2, 2 }, { 2, 1 }, { 1, 2 }, { 1, 1 }, { 1, 1 }, { 1, 1 }, { 1, 1 },
  162. }
  163. };
  164. static void vp9_unref_frame(AVCodecContext *ctx, VP9Frame *f)
  165. {
  166. ff_thread_release_buffer(ctx, &f->tf);
  167. av_buffer_unref(&f->extradata);
  168. av_buffer_unref(&f->hwaccel_priv_buf);
  169. f->segmentation_map = NULL;
  170. f->hwaccel_picture_private = NULL;
  171. }
  172. static int vp9_alloc_frame(AVCodecContext *ctx, VP9Frame *f)
  173. {
  174. VP9Context *s = ctx->priv_data;
  175. int ret, sz;
  176. if ((ret = ff_thread_get_buffer(ctx, &f->tf, AV_GET_BUFFER_FLAG_REF)) < 0)
  177. return ret;
  178. sz = 64 * s->sb_cols * s->sb_rows;
  179. if (!(f->extradata = av_buffer_allocz(sz * (1 + sizeof(struct VP9mvrefPair))))) {
  180. goto fail;
  181. }
  182. f->segmentation_map = f->extradata->data;
  183. f->mv = (struct VP9mvrefPair *) (f->extradata->data + sz);
  184. if (ctx->hwaccel) {
  185. const AVHWAccel *hwaccel = ctx->hwaccel;
  186. av_assert0(!f->hwaccel_picture_private);
  187. if (hwaccel->frame_priv_data_size) {
  188. f->hwaccel_priv_buf = av_buffer_allocz(hwaccel->frame_priv_data_size);
  189. if (!f->hwaccel_priv_buf)
  190. goto fail;
  191. f->hwaccel_picture_private = f->hwaccel_priv_buf->data;
  192. }
  193. }
  194. return 0;
  195. fail:
  196. vp9_unref_frame(ctx, f);
  197. return AVERROR(ENOMEM);
  198. }
  199. static int vp9_ref_frame(AVCodecContext *ctx, VP9Frame *dst, VP9Frame *src)
  200. {
  201. int res;
  202. if ((res = ff_thread_ref_frame(&dst->tf, &src->tf)) < 0) {
  203. return res;
  204. } else if (!(dst->extradata = av_buffer_ref(src->extradata))) {
  205. goto fail;
  206. }
  207. dst->segmentation_map = src->segmentation_map;
  208. dst->mv = src->mv;
  209. dst->uses_2pass = src->uses_2pass;
  210. if (src->hwaccel_picture_private) {
  211. dst->hwaccel_priv_buf = av_buffer_ref(src->hwaccel_priv_buf);
  212. if (!dst->hwaccel_priv_buf)
  213. goto fail;
  214. dst->hwaccel_picture_private = dst->hwaccel_priv_buf->data;
  215. }
  216. return 0;
  217. fail:
  218. vp9_unref_frame(ctx, dst);
  219. return AVERROR(ENOMEM);
  220. }
  221. static int update_size(AVCodecContext *ctx, int w, int h)
  222. {
  223. #define HWACCEL_MAX (CONFIG_VP9_DXVA2_HWACCEL + CONFIG_VP9_D3D11VA_HWACCEL + CONFIG_VP9_VAAPI_HWACCEL)
  224. enum AVPixelFormat pix_fmts[HWACCEL_MAX + 2], *fmtp = pix_fmts;
  225. VP9Context *s = ctx->priv_data;
  226. uint8_t *p;
  227. int bytesperpixel = s->bytesperpixel, res, cols, rows;
  228. av_assert0(w > 0 && h > 0);
  229. if (!(s->pix_fmt == s->gf_fmt && w == s->w && h == s->h)) {
  230. if ((res = ff_set_dimensions(ctx, w, h)) < 0)
  231. return res;
  232. if (s->pix_fmt == AV_PIX_FMT_YUV420P) {
  233. #if CONFIG_VP9_DXVA2_HWACCEL
  234. *fmtp++ = AV_PIX_FMT_DXVA2_VLD;
  235. #endif
  236. #if CONFIG_VP9_D3D11VA_HWACCEL
  237. *fmtp++ = AV_PIX_FMT_D3D11VA_VLD;
  238. #endif
  239. #if CONFIG_VP9_VAAPI_HWACCEL
  240. *fmtp++ = AV_PIX_FMT_VAAPI;
  241. #endif
  242. }
  243. *fmtp++ = s->pix_fmt;
  244. *fmtp = AV_PIX_FMT_NONE;
  245. res = ff_thread_get_format(ctx, pix_fmts);
  246. if (res < 0)
  247. return res;
  248. ctx->pix_fmt = res;
  249. s->gf_fmt = s->pix_fmt;
  250. s->w = w;
  251. s->h = h;
  252. }
  253. cols = (w + 7) >> 3;
  254. rows = (h + 7) >> 3;
  255. if (s->intra_pred_data[0] && cols == s->cols && rows == s->rows && s->pix_fmt == s->last_fmt)
  256. return 0;
  257. s->last_fmt = s->pix_fmt;
  258. s->sb_cols = (w + 63) >> 6;
  259. s->sb_rows = (h + 63) >> 6;
  260. s->cols = (w + 7) >> 3;
  261. s->rows = (h + 7) >> 3;
  262. #define assign(var, type, n) var = (type) p; p += s->sb_cols * (n) * sizeof(*var)
  263. av_freep(&s->intra_pred_data[0]);
  264. // FIXME we slightly over-allocate here for subsampled chroma, but a little
  265. // bit of padding shouldn't affect performance...
  266. p = av_malloc(s->sb_cols * (128 + 192 * bytesperpixel +
  267. sizeof(*s->lflvl) + 16 * sizeof(*s->above_mv_ctx)));
  268. if (!p)
  269. return AVERROR(ENOMEM);
  270. assign(s->intra_pred_data[0], uint8_t *, 64 * bytesperpixel);
  271. assign(s->intra_pred_data[1], uint8_t *, 64 * bytesperpixel);
  272. assign(s->intra_pred_data[2], uint8_t *, 64 * bytesperpixel);
  273. assign(s->above_y_nnz_ctx, uint8_t *, 16);
  274. assign(s->above_mode_ctx, uint8_t *, 16);
  275. assign(s->above_mv_ctx, VP56mv(*)[2], 16);
  276. assign(s->above_uv_nnz_ctx[0], uint8_t *, 16);
  277. assign(s->above_uv_nnz_ctx[1], uint8_t *, 16);
  278. assign(s->above_partition_ctx, uint8_t *, 8);
  279. assign(s->above_skip_ctx, uint8_t *, 8);
  280. assign(s->above_txfm_ctx, uint8_t *, 8);
  281. assign(s->above_segpred_ctx, uint8_t *, 8);
  282. assign(s->above_intra_ctx, uint8_t *, 8);
  283. assign(s->above_comp_ctx, uint8_t *, 8);
  284. assign(s->above_ref_ctx, uint8_t *, 8);
  285. assign(s->above_filter_ctx, uint8_t *, 8);
  286. assign(s->lflvl, struct VP9Filter *, 1);
  287. #undef assign
  288. // these will be re-allocated a little later
  289. av_freep(&s->b_base);
  290. av_freep(&s->block_base);
  291. if (s->bpp != s->last_bpp) {
  292. ff_vp9dsp_init(&s->dsp, s->bpp, ctx->flags & AV_CODEC_FLAG_BITEXACT);
  293. ff_videodsp_init(&s->vdsp, s->bpp);
  294. s->last_bpp = s->bpp;
  295. }
  296. return 0;
  297. }
  298. static int update_block_buffers(AVCodecContext *ctx)
  299. {
  300. VP9Context *s = ctx->priv_data;
  301. int chroma_blocks, chroma_eobs, bytesperpixel = s->bytesperpixel;
  302. if (s->b_base && s->block_base && s->block_alloc_using_2pass == s->s.frames[CUR_FRAME].uses_2pass)
  303. return 0;
  304. av_free(s->b_base);
  305. av_free(s->block_base);
  306. chroma_blocks = 64 * 64 >> (s->ss_h + s->ss_v);
  307. chroma_eobs = 16 * 16 >> (s->ss_h + s->ss_v);
  308. if (s->s.frames[CUR_FRAME].uses_2pass) {
  309. int sbs = s->sb_cols * s->sb_rows;
  310. s->b_base = av_malloc_array(s->cols * s->rows, sizeof(VP9Block));
  311. s->block_base = av_mallocz(((64 * 64 + 2 * chroma_blocks) * bytesperpixel * sizeof(int16_t) +
  312. 16 * 16 + 2 * chroma_eobs) * sbs);
  313. if (!s->b_base || !s->block_base)
  314. return AVERROR(ENOMEM);
  315. s->uvblock_base[0] = s->block_base + sbs * 64 * 64 * bytesperpixel;
  316. s->uvblock_base[1] = s->uvblock_base[0] + sbs * chroma_blocks * bytesperpixel;
  317. s->eob_base = (uint8_t *) (s->uvblock_base[1] + sbs * chroma_blocks * bytesperpixel);
  318. s->uveob_base[0] = s->eob_base + 16 * 16 * sbs;
  319. s->uveob_base[1] = s->uveob_base[0] + chroma_eobs * sbs;
  320. } else {
  321. s->b_base = av_malloc(sizeof(VP9Block));
  322. s->block_base = av_mallocz((64 * 64 + 2 * chroma_blocks) * bytesperpixel * sizeof(int16_t) +
  323. 16 * 16 + 2 * chroma_eobs);
  324. if (!s->b_base || !s->block_base)
  325. return AVERROR(ENOMEM);
  326. s->uvblock_base[0] = s->block_base + 64 * 64 * bytesperpixel;
  327. s->uvblock_base[1] = s->uvblock_base[0] + chroma_blocks * bytesperpixel;
  328. s->eob_base = (uint8_t *) (s->uvblock_base[1] + chroma_blocks * bytesperpixel);
  329. s->uveob_base[0] = s->eob_base + 16 * 16;
  330. s->uveob_base[1] = s->uveob_base[0] + chroma_eobs;
  331. }
  332. s->block_alloc_using_2pass = s->s.frames[CUR_FRAME].uses_2pass;
  333. return 0;
  334. }
  335. // for some reason the sign bit is at the end, not the start, of a bit sequence
  336. static av_always_inline int get_sbits_inv(GetBitContext *gb, int n)
  337. {
  338. int v = get_bits(gb, n);
  339. return get_bits1(gb) ? -v : v;
  340. }
  341. static av_always_inline int inv_recenter_nonneg(int v, int m)
  342. {
  343. return v > 2 * m ? v : v & 1 ? m - ((v + 1) >> 1) : m + (v >> 1);
  344. }
  345. // differential forward probability updates
  346. static int update_prob(VP56RangeCoder *c, int p)
  347. {
  348. static const int inv_map_table[255] = {
  349. 7, 20, 33, 46, 59, 72, 85, 98, 111, 124, 137, 150, 163, 176,
  350. 189, 202, 215, 228, 241, 254, 1, 2, 3, 4, 5, 6, 8, 9,
  351. 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 21, 22, 23, 24,
  352. 25, 26, 27, 28, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39,
  353. 40, 41, 42, 43, 44, 45, 47, 48, 49, 50, 51, 52, 53, 54,
  354. 55, 56, 57, 58, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69,
  355. 70, 71, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84,
  356. 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 99, 100,
  357. 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 112, 113, 114, 115,
  358. 116, 117, 118, 119, 120, 121, 122, 123, 125, 126, 127, 128, 129, 130,
  359. 131, 132, 133, 134, 135, 136, 138, 139, 140, 141, 142, 143, 144, 145,
  360. 146, 147, 148, 149, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160,
  361. 161, 162, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175,
  362. 177, 178, 179, 180, 181, 182, 183, 184, 185, 186, 187, 188, 190, 191,
  363. 192, 193, 194, 195, 196, 197, 198, 199, 200, 201, 203, 204, 205, 206,
  364. 207, 208, 209, 210, 211, 212, 213, 214, 216, 217, 218, 219, 220, 221,
  365. 222, 223, 224, 225, 226, 227, 229, 230, 231, 232, 233, 234, 235, 236,
  366. 237, 238, 239, 240, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251,
  367. 252, 253, 253,
  368. };
  369. int d;
  370. /* This code is trying to do a differential probability update. For a
  371. * current probability A in the range [1, 255], the difference to a new
  372. * probability of any value can be expressed differentially as 1-A,255-A
  373. * where some part of this (absolute range) exists both in positive as
  374. * well as the negative part, whereas another part only exists in one
  375. * half. We're trying to code this shared part differentially, i.e.
  376. * times two where the value of the lowest bit specifies the sign, and
  377. * the single part is then coded on top of this. This absolute difference
  378. * then again has a value of [0,254], but a bigger value in this range
  379. * indicates that we're further away from the original value A, so we
  380. * can code this as a VLC code, since higher values are increasingly
  381. * unlikely. The first 20 values in inv_map_table[] allow 'cheap, rough'
  382. * updates vs. the 'fine, exact' updates further down the range, which
  383. * adds one extra dimension to this differential update model. */
  384. if (!vp8_rac_get(c)) {
  385. d = vp8_rac_get_uint(c, 4) + 0;
  386. } else if (!vp8_rac_get(c)) {
  387. d = vp8_rac_get_uint(c, 4) + 16;
  388. } else if (!vp8_rac_get(c)) {
  389. d = vp8_rac_get_uint(c, 5) + 32;
  390. } else {
  391. d = vp8_rac_get_uint(c, 7);
  392. if (d >= 65)
  393. d = (d << 1) - 65 + vp8_rac_get(c);
  394. d += 64;
  395. av_assert2(d < FF_ARRAY_ELEMS(inv_map_table));
  396. }
  397. return p <= 128 ? 1 + inv_recenter_nonneg(inv_map_table[d], p - 1) :
  398. 255 - inv_recenter_nonneg(inv_map_table[d], 255 - p);
  399. }
  400. static int read_colorspace_details(AVCodecContext *ctx)
  401. {
  402. static const enum AVColorSpace colorspaces[8] = {
  403. AVCOL_SPC_UNSPECIFIED, AVCOL_SPC_BT470BG, AVCOL_SPC_BT709, AVCOL_SPC_SMPTE170M,
  404. AVCOL_SPC_SMPTE240M, AVCOL_SPC_BT2020_NCL, AVCOL_SPC_RESERVED, AVCOL_SPC_RGB,
  405. };
  406. VP9Context *s = ctx->priv_data;
  407. int bits = ctx->profile <= 1 ? 0 : 1 + get_bits1(&s->gb); // 0:8, 1:10, 2:12
  408. s->bpp_index = bits;
  409. s->bpp = 8 + bits * 2;
  410. s->bytesperpixel = (7 + s->bpp) >> 3;
  411. ctx->colorspace = colorspaces[get_bits(&s->gb, 3)];
  412. if (ctx->colorspace == AVCOL_SPC_RGB) { // RGB = profile 1
  413. static const enum AVPixelFormat pix_fmt_rgb[3] = {
  414. AV_PIX_FMT_GBRP, AV_PIX_FMT_GBRP10, AV_PIX_FMT_GBRP12
  415. };
  416. s->ss_h = s->ss_v = 0;
  417. ctx->color_range = AVCOL_RANGE_JPEG;
  418. s->pix_fmt = pix_fmt_rgb[bits];
  419. if (ctx->profile & 1) {
  420. if (get_bits1(&s->gb)) {
  421. av_log(ctx, AV_LOG_ERROR, "Reserved bit set in RGB\n");
  422. return AVERROR_INVALIDDATA;
  423. }
  424. } else {
  425. av_log(ctx, AV_LOG_ERROR, "RGB not supported in profile %d\n",
  426. ctx->profile);
  427. return AVERROR_INVALIDDATA;
  428. }
  429. } else {
  430. static const enum AVPixelFormat pix_fmt_for_ss[3][2 /* v */][2 /* h */] = {
  431. { { AV_PIX_FMT_YUV444P, AV_PIX_FMT_YUV422P },
  432. { AV_PIX_FMT_YUV440P, AV_PIX_FMT_YUV420P } },
  433. { { AV_PIX_FMT_YUV444P10, AV_PIX_FMT_YUV422P10 },
  434. { AV_PIX_FMT_YUV440P10, AV_PIX_FMT_YUV420P10 } },
  435. { { AV_PIX_FMT_YUV444P12, AV_PIX_FMT_YUV422P12 },
  436. { AV_PIX_FMT_YUV440P12, AV_PIX_FMT_YUV420P12 } }
  437. };
  438. ctx->color_range = get_bits1(&s->gb) ? AVCOL_RANGE_JPEG : AVCOL_RANGE_MPEG;
  439. if (ctx->profile & 1) {
  440. s->ss_h = get_bits1(&s->gb);
  441. s->ss_v = get_bits1(&s->gb);
  442. s->pix_fmt = pix_fmt_for_ss[bits][s->ss_v][s->ss_h];
  443. if (s->pix_fmt == AV_PIX_FMT_YUV420P) {
  444. av_log(ctx, AV_LOG_ERROR, "YUV 4:2:0 not supported in profile %d\n",
  445. ctx->profile);
  446. return AVERROR_INVALIDDATA;
  447. } else if (get_bits1(&s->gb)) {
  448. av_log(ctx, AV_LOG_ERROR, "Profile %d color details reserved bit set\n",
  449. ctx->profile);
  450. return AVERROR_INVALIDDATA;
  451. }
  452. } else {
  453. s->ss_h = s->ss_v = 1;
  454. s->pix_fmt = pix_fmt_for_ss[bits][1][1];
  455. }
  456. }
  457. return 0;
  458. }
  459. static int decode_frame_header(AVCodecContext *ctx,
  460. const uint8_t *data, int size, int *ref)
  461. {
  462. VP9Context *s = ctx->priv_data;
  463. int c, i, j, k, l, m, n, w, h, max, size2, res, sharp;
  464. int last_invisible;
  465. const uint8_t *data2;
  466. /* general header */
  467. if ((res = init_get_bits8(&s->gb, data, size)) < 0) {
  468. av_log(ctx, AV_LOG_ERROR, "Failed to initialize bitstream reader\n");
  469. return res;
  470. }
  471. if (get_bits(&s->gb, 2) != 0x2) { // frame marker
  472. av_log(ctx, AV_LOG_ERROR, "Invalid frame marker\n");
  473. return AVERROR_INVALIDDATA;
  474. }
  475. ctx->profile = get_bits1(&s->gb);
  476. ctx->profile |= get_bits1(&s->gb) << 1;
  477. if (ctx->profile == 3) ctx->profile += get_bits1(&s->gb);
  478. if (ctx->profile > 3) {
  479. av_log(ctx, AV_LOG_ERROR, "Profile %d is not yet supported\n", ctx->profile);
  480. return AVERROR_INVALIDDATA;
  481. }
  482. s->s.h.profile = ctx->profile;
  483. if (get_bits1(&s->gb)) {
  484. *ref = get_bits(&s->gb, 3);
  485. return 0;
  486. }
  487. s->last_keyframe = s->s.h.keyframe;
  488. s->s.h.keyframe = !get_bits1(&s->gb);
  489. last_invisible = s->s.h.invisible;
  490. s->s.h.invisible = !get_bits1(&s->gb);
  491. s->s.h.errorres = get_bits1(&s->gb);
  492. s->s.h.use_last_frame_mvs = !s->s.h.errorres && !last_invisible;
  493. if (s->s.h.keyframe) {
  494. if (get_bits_long(&s->gb, 24) != VP9_SYNCCODE) { // synccode
  495. av_log(ctx, AV_LOG_ERROR, "Invalid sync code\n");
  496. return AVERROR_INVALIDDATA;
  497. }
  498. if ((res = read_colorspace_details(ctx)) < 0)
  499. return res;
  500. // for profile 1, here follows the subsampling bits
  501. s->s.h.refreshrefmask = 0xff;
  502. w = get_bits(&s->gb, 16) + 1;
  503. h = get_bits(&s->gb, 16) + 1;
  504. if (get_bits1(&s->gb)) // display size
  505. skip_bits(&s->gb, 32);
  506. } else {
  507. s->s.h.intraonly = s->s.h.invisible ? get_bits1(&s->gb) : 0;
  508. s->s.h.resetctx = s->s.h.errorres ? 0 : get_bits(&s->gb, 2);
  509. if (s->s.h.intraonly) {
  510. if (get_bits_long(&s->gb, 24) != VP9_SYNCCODE) { // synccode
  511. av_log(ctx, AV_LOG_ERROR, "Invalid sync code\n");
  512. return AVERROR_INVALIDDATA;
  513. }
  514. if (ctx->profile >= 1) {
  515. if ((res = read_colorspace_details(ctx)) < 0)
  516. return res;
  517. } else {
  518. s->ss_h = s->ss_v = 1;
  519. s->bpp = 8;
  520. s->bpp_index = 0;
  521. s->bytesperpixel = 1;
  522. s->pix_fmt = AV_PIX_FMT_YUV420P;
  523. ctx->colorspace = AVCOL_SPC_BT470BG;
  524. ctx->color_range = AVCOL_RANGE_JPEG;
  525. }
  526. s->s.h.refreshrefmask = get_bits(&s->gb, 8);
  527. w = get_bits(&s->gb, 16) + 1;
  528. h = get_bits(&s->gb, 16) + 1;
  529. if (get_bits1(&s->gb)) // display size
  530. skip_bits(&s->gb, 32);
  531. } else {
  532. s->s.h.refreshrefmask = get_bits(&s->gb, 8);
  533. s->s.h.refidx[0] = get_bits(&s->gb, 3);
  534. s->s.h.signbias[0] = get_bits1(&s->gb) && !s->s.h.errorres;
  535. s->s.h.refidx[1] = get_bits(&s->gb, 3);
  536. s->s.h.signbias[1] = get_bits1(&s->gb) && !s->s.h.errorres;
  537. s->s.h.refidx[2] = get_bits(&s->gb, 3);
  538. s->s.h.signbias[2] = get_bits1(&s->gb) && !s->s.h.errorres;
  539. if (!s->s.refs[s->s.h.refidx[0]].f->buf[0] ||
  540. !s->s.refs[s->s.h.refidx[1]].f->buf[0] ||
  541. !s->s.refs[s->s.h.refidx[2]].f->buf[0]) {
  542. av_log(ctx, AV_LOG_ERROR, "Not all references are available\n");
  543. return AVERROR_INVALIDDATA;
  544. }
  545. if (get_bits1(&s->gb)) {
  546. w = s->s.refs[s->s.h.refidx[0]].f->width;
  547. h = s->s.refs[s->s.h.refidx[0]].f->height;
  548. } else if (get_bits1(&s->gb)) {
  549. w = s->s.refs[s->s.h.refidx[1]].f->width;
  550. h = s->s.refs[s->s.h.refidx[1]].f->height;
  551. } else if (get_bits1(&s->gb)) {
  552. w = s->s.refs[s->s.h.refidx[2]].f->width;
  553. h = s->s.refs[s->s.h.refidx[2]].f->height;
  554. } else {
  555. w = get_bits(&s->gb, 16) + 1;
  556. h = get_bits(&s->gb, 16) + 1;
  557. }
  558. // Note that in this code, "CUR_FRAME" is actually before we
  559. // have formally allocated a frame, and thus actually represents
  560. // the _last_ frame
  561. s->s.h.use_last_frame_mvs &= s->s.frames[CUR_FRAME].tf.f->width == w &&
  562. s->s.frames[CUR_FRAME].tf.f->height == h;
  563. if (get_bits1(&s->gb)) // display size
  564. skip_bits(&s->gb, 32);
  565. s->s.h.highprecisionmvs = get_bits1(&s->gb);
  566. s->s.h.filtermode = get_bits1(&s->gb) ? FILTER_SWITCHABLE :
  567. get_bits(&s->gb, 2);
  568. s->s.h.allowcompinter = s->s.h.signbias[0] != s->s.h.signbias[1] ||
  569. s->s.h.signbias[0] != s->s.h.signbias[2];
  570. if (s->s.h.allowcompinter) {
  571. if (s->s.h.signbias[0] == s->s.h.signbias[1]) {
  572. s->s.h.fixcompref = 2;
  573. s->s.h.varcompref[0] = 0;
  574. s->s.h.varcompref[1] = 1;
  575. } else if (s->s.h.signbias[0] == s->s.h.signbias[2]) {
  576. s->s.h.fixcompref = 1;
  577. s->s.h.varcompref[0] = 0;
  578. s->s.h.varcompref[1] = 2;
  579. } else {
  580. s->s.h.fixcompref = 0;
  581. s->s.h.varcompref[0] = 1;
  582. s->s.h.varcompref[1] = 2;
  583. }
  584. }
  585. }
  586. }
  587. s->s.h.refreshctx = s->s.h.errorres ? 0 : get_bits1(&s->gb);
  588. s->s.h.parallelmode = s->s.h.errorres ? 1 : get_bits1(&s->gb);
  589. s->s.h.framectxid = c = get_bits(&s->gb, 2);
  590. /* loopfilter header data */
  591. if (s->s.h.keyframe || s->s.h.errorres || s->s.h.intraonly) {
  592. // reset loopfilter defaults
  593. s->s.h.lf_delta.ref[0] = 1;
  594. s->s.h.lf_delta.ref[1] = 0;
  595. s->s.h.lf_delta.ref[2] = -1;
  596. s->s.h.lf_delta.ref[3] = -1;
  597. s->s.h.lf_delta.mode[0] = 0;
  598. s->s.h.lf_delta.mode[1] = 0;
  599. memset(s->s.h.segmentation.feat, 0, sizeof(s->s.h.segmentation.feat));
  600. }
  601. s->s.h.filter.level = get_bits(&s->gb, 6);
  602. sharp = get_bits(&s->gb, 3);
  603. // if sharpness changed, reinit lim/mblim LUTs. if it didn't change, keep
  604. // the old cache values since they are still valid
  605. if (s->s.h.filter.sharpness != sharp)
  606. memset(s->filter_lut.lim_lut, 0, sizeof(s->filter_lut.lim_lut));
  607. s->s.h.filter.sharpness = sharp;
  608. if ((s->s.h.lf_delta.enabled = get_bits1(&s->gb))) {
  609. if ((s->s.h.lf_delta.updated = get_bits1(&s->gb))) {
  610. for (i = 0; i < 4; i++)
  611. if (get_bits1(&s->gb))
  612. s->s.h.lf_delta.ref[i] = get_sbits_inv(&s->gb, 6);
  613. for (i = 0; i < 2; i++)
  614. if (get_bits1(&s->gb))
  615. s->s.h.lf_delta.mode[i] = get_sbits_inv(&s->gb, 6);
  616. }
  617. }
  618. /* quantization header data */
  619. s->s.h.yac_qi = get_bits(&s->gb, 8);
  620. s->s.h.ydc_qdelta = get_bits1(&s->gb) ? get_sbits_inv(&s->gb, 4) : 0;
  621. s->s.h.uvdc_qdelta = get_bits1(&s->gb) ? get_sbits_inv(&s->gb, 4) : 0;
  622. s->s.h.uvac_qdelta = get_bits1(&s->gb) ? get_sbits_inv(&s->gb, 4) : 0;
  623. s->s.h.lossless = s->s.h.yac_qi == 0 && s->s.h.ydc_qdelta == 0 &&
  624. s->s.h.uvdc_qdelta == 0 && s->s.h.uvac_qdelta == 0;
  625. if (s->s.h.lossless)
  626. ctx->properties |= FF_CODEC_PROPERTY_LOSSLESS;
  627. /* segmentation header info */
  628. if ((s->s.h.segmentation.enabled = get_bits1(&s->gb))) {
  629. if ((s->s.h.segmentation.update_map = get_bits1(&s->gb))) {
  630. for (i = 0; i < 7; i++)
  631. s->s.h.segmentation.prob[i] = get_bits1(&s->gb) ?
  632. get_bits(&s->gb, 8) : 255;
  633. if ((s->s.h.segmentation.temporal = get_bits1(&s->gb))) {
  634. for (i = 0; i < 3; i++)
  635. s->s.h.segmentation.pred_prob[i] = get_bits1(&s->gb) ?
  636. get_bits(&s->gb, 8) : 255;
  637. }
  638. }
  639. if (get_bits1(&s->gb)) {
  640. s->s.h.segmentation.absolute_vals = get_bits1(&s->gb);
  641. for (i = 0; i < 8; i++) {
  642. if ((s->s.h.segmentation.feat[i].q_enabled = get_bits1(&s->gb)))
  643. s->s.h.segmentation.feat[i].q_val = get_sbits_inv(&s->gb, 8);
  644. if ((s->s.h.segmentation.feat[i].lf_enabled = get_bits1(&s->gb)))
  645. s->s.h.segmentation.feat[i].lf_val = get_sbits_inv(&s->gb, 6);
  646. if ((s->s.h.segmentation.feat[i].ref_enabled = get_bits1(&s->gb)))
  647. s->s.h.segmentation.feat[i].ref_val = get_bits(&s->gb, 2);
  648. s->s.h.segmentation.feat[i].skip_enabled = get_bits1(&s->gb);
  649. }
  650. }
  651. }
  652. // set qmul[] based on Y/UV, AC/DC and segmentation Q idx deltas
  653. for (i = 0; i < (s->s.h.segmentation.enabled ? 8 : 1); i++) {
  654. int qyac, qydc, quvac, quvdc, lflvl, sh;
  655. if (s->s.h.segmentation.enabled && s->s.h.segmentation.feat[i].q_enabled) {
  656. if (s->s.h.segmentation.absolute_vals)
  657. qyac = av_clip_uintp2(s->s.h.segmentation.feat[i].q_val, 8);
  658. else
  659. qyac = av_clip_uintp2(s->s.h.yac_qi + s->s.h.segmentation.feat[i].q_val, 8);
  660. } else {
  661. qyac = s->s.h.yac_qi;
  662. }
  663. qydc = av_clip_uintp2(qyac + s->s.h.ydc_qdelta, 8);
  664. quvdc = av_clip_uintp2(qyac + s->s.h.uvdc_qdelta, 8);
  665. quvac = av_clip_uintp2(qyac + s->s.h.uvac_qdelta, 8);
  666. qyac = av_clip_uintp2(qyac, 8);
  667. s->s.h.segmentation.feat[i].qmul[0][0] = vp9_dc_qlookup[s->bpp_index][qydc];
  668. s->s.h.segmentation.feat[i].qmul[0][1] = vp9_ac_qlookup[s->bpp_index][qyac];
  669. s->s.h.segmentation.feat[i].qmul[1][0] = vp9_dc_qlookup[s->bpp_index][quvdc];
  670. s->s.h.segmentation.feat[i].qmul[1][1] = vp9_ac_qlookup[s->bpp_index][quvac];
  671. sh = s->s.h.filter.level >= 32;
  672. if (s->s.h.segmentation.enabled && s->s.h.segmentation.feat[i].lf_enabled) {
  673. if (s->s.h.segmentation.absolute_vals)
  674. lflvl = av_clip_uintp2(s->s.h.segmentation.feat[i].lf_val, 6);
  675. else
  676. lflvl = av_clip_uintp2(s->s.h.filter.level + s->s.h.segmentation.feat[i].lf_val, 6);
  677. } else {
  678. lflvl = s->s.h.filter.level;
  679. }
  680. if (s->s.h.lf_delta.enabled) {
  681. s->s.h.segmentation.feat[i].lflvl[0][0] =
  682. s->s.h.segmentation.feat[i].lflvl[0][1] =
  683. av_clip_uintp2(lflvl + (s->s.h.lf_delta.ref[0] * (1 << sh)), 6);
  684. for (j = 1; j < 4; j++) {
  685. s->s.h.segmentation.feat[i].lflvl[j][0] =
  686. av_clip_uintp2(lflvl + ((s->s.h.lf_delta.ref[j] +
  687. s->s.h.lf_delta.mode[0]) * (1 << sh)), 6);
  688. s->s.h.segmentation.feat[i].lflvl[j][1] =
  689. av_clip_uintp2(lflvl + ((s->s.h.lf_delta.ref[j] +
  690. s->s.h.lf_delta.mode[1]) * (1 << sh)), 6);
  691. }
  692. } else {
  693. memset(s->s.h.segmentation.feat[i].lflvl, lflvl,
  694. sizeof(s->s.h.segmentation.feat[i].lflvl));
  695. }
  696. }
  697. /* tiling info */
  698. if ((res = update_size(ctx, w, h)) < 0) {
  699. av_log(ctx, AV_LOG_ERROR, "Failed to initialize decoder for %dx%d @ %d\n",
  700. w, h, s->pix_fmt);
  701. return res;
  702. }
  703. for (s->s.h.tiling.log2_tile_cols = 0;
  704. s->sb_cols > (64 << s->s.h.tiling.log2_tile_cols);
  705. s->s.h.tiling.log2_tile_cols++) ;
  706. for (max = 0; (s->sb_cols >> max) >= 4; max++) ;
  707. max = FFMAX(0, max - 1);
  708. while (max > s->s.h.tiling.log2_tile_cols) {
  709. if (get_bits1(&s->gb))
  710. s->s.h.tiling.log2_tile_cols++;
  711. else
  712. break;
  713. }
  714. s->s.h.tiling.log2_tile_rows = decode012(&s->gb);
  715. s->s.h.tiling.tile_rows = 1 << s->s.h.tiling.log2_tile_rows;
  716. if (s->s.h.tiling.tile_cols != (1 << s->s.h.tiling.log2_tile_cols)) {
  717. s->s.h.tiling.tile_cols = 1 << s->s.h.tiling.log2_tile_cols;
  718. s->c_b = av_fast_realloc(s->c_b, &s->c_b_size,
  719. sizeof(VP56RangeCoder) * s->s.h.tiling.tile_cols);
  720. if (!s->c_b) {
  721. av_log(ctx, AV_LOG_ERROR, "Ran out of memory during range coder init\n");
  722. return AVERROR(ENOMEM);
  723. }
  724. }
  725. /* check reference frames */
  726. if (!s->s.h.keyframe && !s->s.h.intraonly) {
  727. for (i = 0; i < 3; i++) {
  728. AVFrame *ref = s->s.refs[s->s.h.refidx[i]].f;
  729. int refw = ref->width, refh = ref->height;
  730. if (ref->format != ctx->pix_fmt) {
  731. av_log(ctx, AV_LOG_ERROR,
  732. "Ref pixfmt (%s) did not match current frame (%s)",
  733. av_get_pix_fmt_name(ref->format),
  734. av_get_pix_fmt_name(ctx->pix_fmt));
  735. return AVERROR_INVALIDDATA;
  736. } else if (refw == w && refh == h) {
  737. s->mvscale[i][0] = s->mvscale[i][1] = 0;
  738. } else {
  739. if (w * 2 < refw || h * 2 < refh || w > 16 * refw || h > 16 * refh) {
  740. av_log(ctx, AV_LOG_ERROR,
  741. "Invalid ref frame dimensions %dx%d for frame size %dx%d\n",
  742. refw, refh, w, h);
  743. return AVERROR_INVALIDDATA;
  744. }
  745. s->mvscale[i][0] = (refw << 14) / w;
  746. s->mvscale[i][1] = (refh << 14) / h;
  747. s->mvstep[i][0] = 16 * s->mvscale[i][0] >> 14;
  748. s->mvstep[i][1] = 16 * s->mvscale[i][1] >> 14;
  749. }
  750. }
  751. }
  752. if (s->s.h.keyframe || s->s.h.errorres || (s->s.h.intraonly && s->s.h.resetctx == 3)) {
  753. s->prob_ctx[0].p = s->prob_ctx[1].p = s->prob_ctx[2].p =
  754. s->prob_ctx[3].p = vp9_default_probs;
  755. memcpy(s->prob_ctx[0].coef, vp9_default_coef_probs,
  756. sizeof(vp9_default_coef_probs));
  757. memcpy(s->prob_ctx[1].coef, vp9_default_coef_probs,
  758. sizeof(vp9_default_coef_probs));
  759. memcpy(s->prob_ctx[2].coef, vp9_default_coef_probs,
  760. sizeof(vp9_default_coef_probs));
  761. memcpy(s->prob_ctx[3].coef, vp9_default_coef_probs,
  762. sizeof(vp9_default_coef_probs));
  763. } else if (s->s.h.intraonly && s->s.h.resetctx == 2) {
  764. s->prob_ctx[c].p = vp9_default_probs;
  765. memcpy(s->prob_ctx[c].coef, vp9_default_coef_probs,
  766. sizeof(vp9_default_coef_probs));
  767. }
  768. // next 16 bits is size of the rest of the header (arith-coded)
  769. s->s.h.compressed_header_size = size2 = get_bits(&s->gb, 16);
  770. s->s.h.uncompressed_header_size = (get_bits_count(&s->gb) + 7) / 8;
  771. data2 = align_get_bits(&s->gb);
  772. if (size2 > size - (data2 - data)) {
  773. av_log(ctx, AV_LOG_ERROR, "Invalid compressed header size\n");
  774. return AVERROR_INVALIDDATA;
  775. }
  776. ff_vp56_init_range_decoder(&s->c, data2, size2);
  777. if (vp56_rac_get_prob_branchy(&s->c, 128)) { // marker bit
  778. av_log(ctx, AV_LOG_ERROR, "Marker bit was set\n");
  779. return AVERROR_INVALIDDATA;
  780. }
  781. if (s->s.h.keyframe || s->s.h.intraonly) {
  782. memset(s->counts.coef, 0, sizeof(s->counts.coef));
  783. memset(s->counts.eob, 0, sizeof(s->counts.eob));
  784. } else {
  785. memset(&s->counts, 0, sizeof(s->counts));
  786. }
  787. // FIXME is it faster to not copy here, but do it down in the fw updates
  788. // as explicit copies if the fw update is missing (and skip the copy upon
  789. // fw update)?
  790. s->prob.p = s->prob_ctx[c].p;
  791. // txfm updates
  792. if (s->s.h.lossless) {
  793. s->s.h.txfmmode = TX_4X4;
  794. } else {
  795. s->s.h.txfmmode = vp8_rac_get_uint(&s->c, 2);
  796. if (s->s.h.txfmmode == 3)
  797. s->s.h.txfmmode += vp8_rac_get(&s->c);
  798. if (s->s.h.txfmmode == TX_SWITCHABLE) {
  799. for (i = 0; i < 2; i++)
  800. if (vp56_rac_get_prob_branchy(&s->c, 252))
  801. s->prob.p.tx8p[i] = update_prob(&s->c, s->prob.p.tx8p[i]);
  802. for (i = 0; i < 2; i++)
  803. for (j = 0; j < 2; j++)
  804. if (vp56_rac_get_prob_branchy(&s->c, 252))
  805. s->prob.p.tx16p[i][j] =
  806. update_prob(&s->c, s->prob.p.tx16p[i][j]);
  807. for (i = 0; i < 2; i++)
  808. for (j = 0; j < 3; j++)
  809. if (vp56_rac_get_prob_branchy(&s->c, 252))
  810. s->prob.p.tx32p[i][j] =
  811. update_prob(&s->c, s->prob.p.tx32p[i][j]);
  812. }
  813. }
  814. // coef updates
  815. for (i = 0; i < 4; i++) {
  816. uint8_t (*ref)[2][6][6][3] = s->prob_ctx[c].coef[i];
  817. if (vp8_rac_get(&s->c)) {
  818. for (j = 0; j < 2; j++)
  819. for (k = 0; k < 2; k++)
  820. for (l = 0; l < 6; l++)
  821. for (m = 0; m < 6; m++) {
  822. uint8_t *p = s->prob.coef[i][j][k][l][m];
  823. uint8_t *r = ref[j][k][l][m];
  824. if (m >= 3 && l == 0) // dc only has 3 pt
  825. break;
  826. for (n = 0; n < 3; n++) {
  827. if (vp56_rac_get_prob_branchy(&s->c, 252)) {
  828. p[n] = update_prob(&s->c, r[n]);
  829. } else {
  830. p[n] = r[n];
  831. }
  832. }
  833. p[3] = 0;
  834. }
  835. } else {
  836. for (j = 0; j < 2; j++)
  837. for (k = 0; k < 2; k++)
  838. for (l = 0; l < 6; l++)
  839. for (m = 0; m < 6; m++) {
  840. uint8_t *p = s->prob.coef[i][j][k][l][m];
  841. uint8_t *r = ref[j][k][l][m];
  842. if (m > 3 && l == 0) // dc only has 3 pt
  843. break;
  844. memcpy(p, r, 3);
  845. p[3] = 0;
  846. }
  847. }
  848. if (s->s.h.txfmmode == i)
  849. break;
  850. }
  851. // mode updates
  852. for (i = 0; i < 3; i++)
  853. if (vp56_rac_get_prob_branchy(&s->c, 252))
  854. s->prob.p.skip[i] = update_prob(&s->c, s->prob.p.skip[i]);
  855. if (!s->s.h.keyframe && !s->s.h.intraonly) {
  856. for (i = 0; i < 7; i++)
  857. for (j = 0; j < 3; j++)
  858. if (vp56_rac_get_prob_branchy(&s->c, 252))
  859. s->prob.p.mv_mode[i][j] =
  860. update_prob(&s->c, s->prob.p.mv_mode[i][j]);
  861. if (s->s.h.filtermode == FILTER_SWITCHABLE)
  862. for (i = 0; i < 4; i++)
  863. for (j = 0; j < 2; j++)
  864. if (vp56_rac_get_prob_branchy(&s->c, 252))
  865. s->prob.p.filter[i][j] =
  866. update_prob(&s->c, s->prob.p.filter[i][j]);
  867. for (i = 0; i < 4; i++)
  868. if (vp56_rac_get_prob_branchy(&s->c, 252))
  869. s->prob.p.intra[i] = update_prob(&s->c, s->prob.p.intra[i]);
  870. if (s->s.h.allowcompinter) {
  871. s->s.h.comppredmode = vp8_rac_get(&s->c);
  872. if (s->s.h.comppredmode)
  873. s->s.h.comppredmode += vp8_rac_get(&s->c);
  874. if (s->s.h.comppredmode == PRED_SWITCHABLE)
  875. for (i = 0; i < 5; i++)
  876. if (vp56_rac_get_prob_branchy(&s->c, 252))
  877. s->prob.p.comp[i] =
  878. update_prob(&s->c, s->prob.p.comp[i]);
  879. } else {
  880. s->s.h.comppredmode = PRED_SINGLEREF;
  881. }
  882. if (s->s.h.comppredmode != PRED_COMPREF) {
  883. for (i = 0; i < 5; i++) {
  884. if (vp56_rac_get_prob_branchy(&s->c, 252))
  885. s->prob.p.single_ref[i][0] =
  886. update_prob(&s->c, s->prob.p.single_ref[i][0]);
  887. if (vp56_rac_get_prob_branchy(&s->c, 252))
  888. s->prob.p.single_ref[i][1] =
  889. update_prob(&s->c, s->prob.p.single_ref[i][1]);
  890. }
  891. }
  892. if (s->s.h.comppredmode != PRED_SINGLEREF) {
  893. for (i = 0; i < 5; i++)
  894. if (vp56_rac_get_prob_branchy(&s->c, 252))
  895. s->prob.p.comp_ref[i] =
  896. update_prob(&s->c, s->prob.p.comp_ref[i]);
  897. }
  898. for (i = 0; i < 4; i++)
  899. for (j = 0; j < 9; j++)
  900. if (vp56_rac_get_prob_branchy(&s->c, 252))
  901. s->prob.p.y_mode[i][j] =
  902. update_prob(&s->c, s->prob.p.y_mode[i][j]);
  903. for (i = 0; i < 4; i++)
  904. for (j = 0; j < 4; j++)
  905. for (k = 0; k < 3; k++)
  906. if (vp56_rac_get_prob_branchy(&s->c, 252))
  907. s->prob.p.partition[3 - i][j][k] =
  908. update_prob(&s->c, s->prob.p.partition[3 - i][j][k]);
  909. // mv fields don't use the update_prob subexp model for some reason
  910. for (i = 0; i < 3; i++)
  911. if (vp56_rac_get_prob_branchy(&s->c, 252))
  912. s->prob.p.mv_joint[i] = (vp8_rac_get_uint(&s->c, 7) << 1) | 1;
  913. for (i = 0; i < 2; i++) {
  914. if (vp56_rac_get_prob_branchy(&s->c, 252))
  915. s->prob.p.mv_comp[i].sign = (vp8_rac_get_uint(&s->c, 7) << 1) | 1;
  916. for (j = 0; j < 10; j++)
  917. if (vp56_rac_get_prob_branchy(&s->c, 252))
  918. s->prob.p.mv_comp[i].classes[j] =
  919. (vp8_rac_get_uint(&s->c, 7) << 1) | 1;
  920. if (vp56_rac_get_prob_branchy(&s->c, 252))
  921. s->prob.p.mv_comp[i].class0 = (vp8_rac_get_uint(&s->c, 7) << 1) | 1;
  922. for (j = 0; j < 10; j++)
  923. if (vp56_rac_get_prob_branchy(&s->c, 252))
  924. s->prob.p.mv_comp[i].bits[j] =
  925. (vp8_rac_get_uint(&s->c, 7) << 1) | 1;
  926. }
  927. for (i = 0; i < 2; i++) {
  928. for (j = 0; j < 2; j++)
  929. for (k = 0; k < 3; k++)
  930. if (vp56_rac_get_prob_branchy(&s->c, 252))
  931. s->prob.p.mv_comp[i].class0_fp[j][k] =
  932. (vp8_rac_get_uint(&s->c, 7) << 1) | 1;
  933. for (j = 0; j < 3; j++)
  934. if (vp56_rac_get_prob_branchy(&s->c, 252))
  935. s->prob.p.mv_comp[i].fp[j] =
  936. (vp8_rac_get_uint(&s->c, 7) << 1) | 1;
  937. }
  938. if (s->s.h.highprecisionmvs) {
  939. for (i = 0; i < 2; i++) {
  940. if (vp56_rac_get_prob_branchy(&s->c, 252))
  941. s->prob.p.mv_comp[i].class0_hp =
  942. (vp8_rac_get_uint(&s->c, 7) << 1) | 1;
  943. if (vp56_rac_get_prob_branchy(&s->c, 252))
  944. s->prob.p.mv_comp[i].hp =
  945. (vp8_rac_get_uint(&s->c, 7) << 1) | 1;
  946. }
  947. }
  948. }
  949. return (data2 - data) + size2;
  950. }
  951. static av_always_inline void clamp_mv(VP56mv *dst, const VP56mv *src,
  952. VP9Context *s)
  953. {
  954. dst->x = av_clip(src->x, s->min_mv.x, s->max_mv.x);
  955. dst->y = av_clip(src->y, s->min_mv.y, s->max_mv.y);
  956. }
  957. static void find_ref_mvs(VP9Context *s,
  958. VP56mv *pmv, int ref, int z, int idx, int sb)
  959. {
  960. static const int8_t mv_ref_blk_off[N_BS_SIZES][8][2] = {
  961. [BS_64x64] = {{ 3, -1 }, { -1, 3 }, { 4, -1 }, { -1, 4 },
  962. { -1, -1 }, { 0, -1 }, { -1, 0 }, { 6, -1 }},
  963. [BS_64x32] = {{ 0, -1 }, { -1, 0 }, { 4, -1 }, { -1, 2 },
  964. { -1, -1 }, { 0, -3 }, { -3, 0 }, { 2, -1 }},
  965. [BS_32x64] = {{ -1, 0 }, { 0, -1 }, { -1, 4 }, { 2, -1 },
  966. { -1, -1 }, { -3, 0 }, { 0, -3 }, { -1, 2 }},
  967. [BS_32x32] = {{ 1, -1 }, { -1, 1 }, { 2, -1 }, { -1, 2 },
  968. { -1, -1 }, { 0, -3 }, { -3, 0 }, { -3, -3 }},
  969. [BS_32x16] = {{ 0, -1 }, { -1, 0 }, { 2, -1 }, { -1, -1 },
  970. { -1, 1 }, { 0, -3 }, { -3, 0 }, { -3, -3 }},
  971. [BS_16x32] = {{ -1, 0 }, { 0, -1 }, { -1, 2 }, { -1, -1 },
  972. { 1, -1 }, { -3, 0 }, { 0, -3 }, { -3, -3 }},
  973. [BS_16x16] = {{ 0, -1 }, { -1, 0 }, { 1, -1 }, { -1, 1 },
  974. { -1, -1 }, { 0, -3 }, { -3, 0 }, { -3, -3 }},
  975. [BS_16x8] = {{ 0, -1 }, { -1, 0 }, { 1, -1 }, { -1, -1 },
  976. { 0, -2 }, { -2, 0 }, { -2, -1 }, { -1, -2 }},
  977. [BS_8x16] = {{ -1, 0 }, { 0, -1 }, { -1, 1 }, { -1, -1 },
  978. { -2, 0 }, { 0, -2 }, { -1, -2 }, { -2, -1 }},
  979. [BS_8x8] = {{ 0, -1 }, { -1, 0 }, { -1, -1 }, { 0, -2 },
  980. { -2, 0 }, { -1, -2 }, { -2, -1 }, { -2, -2 }},
  981. [BS_8x4] = {{ 0, -1 }, { -1, 0 }, { -1, -1 }, { 0, -2 },
  982. { -2, 0 }, { -1, -2 }, { -2, -1 }, { -2, -2 }},
  983. [BS_4x8] = {{ 0, -1 }, { -1, 0 }, { -1, -1 }, { 0, -2 },
  984. { -2, 0 }, { -1, -2 }, { -2, -1 }, { -2, -2 }},
  985. [BS_4x4] = {{ 0, -1 }, { -1, 0 }, { -1, -1 }, { 0, -2 },
  986. { -2, 0 }, { -1, -2 }, { -2, -1 }, { -2, -2 }},
  987. };
  988. VP9Block *b = s->b;
  989. int row = s->row, col = s->col, row7 = s->row7;
  990. const int8_t (*p)[2] = mv_ref_blk_off[b->bs];
  991. #define INVALID_MV 0x80008000U
  992. uint32_t mem = INVALID_MV, mem_sub8x8 = INVALID_MV;
  993. int i;
  994. #define RETURN_DIRECT_MV(mv) \
  995. do { \
  996. uint32_t m = AV_RN32A(&mv); \
  997. if (!idx) { \
  998. AV_WN32A(pmv, m); \
  999. return; \
  1000. } else if (mem == INVALID_MV) { \
  1001. mem = m; \
  1002. } else if (m != mem) { \
  1003. AV_WN32A(pmv, m); \
  1004. return; \
  1005. } \
  1006. } while (0)
  1007. if (sb >= 0) {
  1008. if (sb == 2 || sb == 1) {
  1009. RETURN_DIRECT_MV(b->mv[0][z]);
  1010. } else if (sb == 3) {
  1011. RETURN_DIRECT_MV(b->mv[2][z]);
  1012. RETURN_DIRECT_MV(b->mv[1][z]);
  1013. RETURN_DIRECT_MV(b->mv[0][z]);
  1014. }
  1015. #define RETURN_MV(mv) \
  1016. do { \
  1017. if (sb > 0) { \
  1018. VP56mv tmp; \
  1019. uint32_t m; \
  1020. av_assert2(idx == 1); \
  1021. av_assert2(mem != INVALID_MV); \
  1022. if (mem_sub8x8 == INVALID_MV) { \
  1023. clamp_mv(&tmp, &mv, s); \
  1024. m = AV_RN32A(&tmp); \
  1025. if (m != mem) { \
  1026. AV_WN32A(pmv, m); \
  1027. return; \
  1028. } \
  1029. mem_sub8x8 = AV_RN32A(&mv); \
  1030. } else if (mem_sub8x8 != AV_RN32A(&mv)) { \
  1031. clamp_mv(&tmp, &mv, s); \
  1032. m = AV_RN32A(&tmp); \
  1033. if (m != mem) { \
  1034. AV_WN32A(pmv, m); \
  1035. } else { \
  1036. /* BUG I'm pretty sure this isn't the intention */ \
  1037. AV_WN32A(pmv, 0); \
  1038. } \
  1039. return; \
  1040. } \
  1041. } else { \
  1042. uint32_t m = AV_RN32A(&mv); \
  1043. if (!idx) { \
  1044. clamp_mv(pmv, &mv, s); \
  1045. return; \
  1046. } else if (mem == INVALID_MV) { \
  1047. mem = m; \
  1048. } else if (m != mem) { \
  1049. clamp_mv(pmv, &mv, s); \
  1050. return; \
  1051. } \
  1052. } \
  1053. } while (0)
  1054. if (row > 0) {
  1055. struct VP9mvrefPair *mv = &s->s.frames[CUR_FRAME].mv[(row - 1) * s->sb_cols * 8 + col];
  1056. if (mv->ref[0] == ref) {
  1057. RETURN_MV(s->above_mv_ctx[2 * col + (sb & 1)][0]);
  1058. } else if (mv->ref[1] == ref) {
  1059. RETURN_MV(s->above_mv_ctx[2 * col + (sb & 1)][1]);
  1060. }
  1061. }
  1062. if (col > s->tile_col_start) {
  1063. struct VP9mvrefPair *mv = &s->s.frames[CUR_FRAME].mv[row * s->sb_cols * 8 + col - 1];
  1064. if (mv->ref[0] == ref) {
  1065. RETURN_MV(s->left_mv_ctx[2 * row7 + (sb >> 1)][0]);
  1066. } else if (mv->ref[1] == ref) {
  1067. RETURN_MV(s->left_mv_ctx[2 * row7 + (sb >> 1)][1]);
  1068. }
  1069. }
  1070. i = 2;
  1071. } else {
  1072. i = 0;
  1073. }
  1074. // previously coded MVs in this neighbourhood, using same reference frame
  1075. for (; i < 8; i++) {
  1076. int c = p[i][0] + col, r = p[i][1] + row;
  1077. if (c >= s->tile_col_start && c < s->cols && r >= 0 && r < s->rows) {
  1078. struct VP9mvrefPair *mv = &s->s.frames[CUR_FRAME].mv[r * s->sb_cols * 8 + c];
  1079. if (mv->ref[0] == ref) {
  1080. RETURN_MV(mv->mv[0]);
  1081. } else if (mv->ref[1] == ref) {
  1082. RETURN_MV(mv->mv[1]);
  1083. }
  1084. }
  1085. }
  1086. // MV at this position in previous frame, using same reference frame
  1087. if (s->s.h.use_last_frame_mvs) {
  1088. struct VP9mvrefPair *mv = &s->s.frames[REF_FRAME_MVPAIR].mv[row * s->sb_cols * 8 + col];
  1089. if (!s->s.frames[REF_FRAME_MVPAIR].uses_2pass)
  1090. ff_thread_await_progress(&s->s.frames[REF_FRAME_MVPAIR].tf, row >> 3, 0);
  1091. if (mv->ref[0] == ref) {
  1092. RETURN_MV(mv->mv[0]);
  1093. } else if (mv->ref[1] == ref) {
  1094. RETURN_MV(mv->mv[1]);
  1095. }
  1096. }
  1097. #define RETURN_SCALE_MV(mv, scale) \
  1098. do { \
  1099. if (scale) { \
  1100. VP56mv mv_temp = { -mv.x, -mv.y }; \
  1101. RETURN_MV(mv_temp); \
  1102. } else { \
  1103. RETURN_MV(mv); \
  1104. } \
  1105. } while (0)
  1106. // previously coded MVs in this neighbourhood, using different reference frame
  1107. for (i = 0; i < 8; i++) {
  1108. int c = p[i][0] + col, r = p[i][1] + row;
  1109. if (c >= s->tile_col_start && c < s->cols && r >= 0 && r < s->rows) {
  1110. struct VP9mvrefPair *mv = &s->s.frames[CUR_FRAME].mv[r * s->sb_cols * 8 + c];
  1111. if (mv->ref[0] != ref && mv->ref[0] >= 0) {
  1112. RETURN_SCALE_MV(mv->mv[0], s->s.h.signbias[mv->ref[0]] != s->s.h.signbias[ref]);
  1113. }
  1114. if (mv->ref[1] != ref && mv->ref[1] >= 0 &&
  1115. // BUG - libvpx has this condition regardless of whether
  1116. // we used the first ref MV and pre-scaling
  1117. AV_RN32A(&mv->mv[0]) != AV_RN32A(&mv->mv[1])) {
  1118. RETURN_SCALE_MV(mv->mv[1], s->s.h.signbias[mv->ref[1]] != s->s.h.signbias[ref]);
  1119. }
  1120. }
  1121. }
  1122. // MV at this position in previous frame, using different reference frame
  1123. if (s->s.h.use_last_frame_mvs) {
  1124. struct VP9mvrefPair *mv = &s->s.frames[REF_FRAME_MVPAIR].mv[row * s->sb_cols * 8 + col];
  1125. // no need to await_progress, because we already did that above
  1126. if (mv->ref[0] != ref && mv->ref[0] >= 0) {
  1127. RETURN_SCALE_MV(mv->mv[0], s->s.h.signbias[mv->ref[0]] != s->s.h.signbias[ref]);
  1128. }
  1129. if (mv->ref[1] != ref && mv->ref[1] >= 0 &&
  1130. // BUG - libvpx has this condition regardless of whether
  1131. // we used the first ref MV and pre-scaling
  1132. AV_RN32A(&mv->mv[0]) != AV_RN32A(&mv->mv[1])) {
  1133. RETURN_SCALE_MV(mv->mv[1], s->s.h.signbias[mv->ref[1]] != s->s.h.signbias[ref]);
  1134. }
  1135. }
  1136. AV_ZERO32(pmv);
  1137. clamp_mv(pmv, pmv, s);
  1138. #undef INVALID_MV
  1139. #undef RETURN_MV
  1140. #undef RETURN_SCALE_MV
  1141. }
  1142. static av_always_inline int read_mv_component(VP9Context *s, int idx, int hp)
  1143. {
  1144. int bit, sign = vp56_rac_get_prob(&s->c, s->prob.p.mv_comp[idx].sign);
  1145. int n, c = vp8_rac_get_tree(&s->c, vp9_mv_class_tree,
  1146. s->prob.p.mv_comp[idx].classes);
  1147. s->counts.mv_comp[idx].sign[sign]++;
  1148. s->counts.mv_comp[idx].classes[c]++;
  1149. if (c) {
  1150. int m;
  1151. for (n = 0, m = 0; m < c; m++) {
  1152. bit = vp56_rac_get_prob(&s->c, s->prob.p.mv_comp[idx].bits[m]);
  1153. n |= bit << m;
  1154. s->counts.mv_comp[idx].bits[m][bit]++;
  1155. }
  1156. n <<= 3;
  1157. bit = vp8_rac_get_tree(&s->c, vp9_mv_fp_tree, s->prob.p.mv_comp[idx].fp);
  1158. n |= bit << 1;
  1159. s->counts.mv_comp[idx].fp[bit]++;
  1160. if (hp) {
  1161. bit = vp56_rac_get_prob(&s->c, s->prob.p.mv_comp[idx].hp);
  1162. s->counts.mv_comp[idx].hp[bit]++;
  1163. n |= bit;
  1164. } else {
  1165. n |= 1;
  1166. // bug in libvpx - we count for bw entropy purposes even if the
  1167. // bit wasn't coded
  1168. s->counts.mv_comp[idx].hp[1]++;
  1169. }
  1170. n += 8 << c;
  1171. } else {
  1172. n = vp56_rac_get_prob(&s->c, s->prob.p.mv_comp[idx].class0);
  1173. s->counts.mv_comp[idx].class0[n]++;
  1174. bit = vp8_rac_get_tree(&s->c, vp9_mv_fp_tree,
  1175. s->prob.p.mv_comp[idx].class0_fp[n]);
  1176. s->counts.mv_comp[idx].class0_fp[n][bit]++;
  1177. n = (n << 3) | (bit << 1);
  1178. if (hp) {
  1179. bit = vp56_rac_get_prob(&s->c, s->prob.p.mv_comp[idx].class0_hp);
  1180. s->counts.mv_comp[idx].class0_hp[bit]++;
  1181. n |= bit;
  1182. } else {
  1183. n |= 1;
  1184. // bug in libvpx - we count for bw entropy purposes even if the
  1185. // bit wasn't coded
  1186. s->counts.mv_comp[idx].class0_hp[1]++;
  1187. }
  1188. }
  1189. return sign ? -(n + 1) : (n + 1);
  1190. }
  1191. static void fill_mv(VP9Context *s,
  1192. VP56mv *mv, int mode, int sb)
  1193. {
  1194. VP9Block *b = s->b;
  1195. if (mode == ZEROMV) {
  1196. AV_ZERO64(mv);
  1197. } else {
  1198. int hp;
  1199. // FIXME cache this value and reuse for other subblocks
  1200. find_ref_mvs(s, &mv[0], b->ref[0], 0, mode == NEARMV,
  1201. mode == NEWMV ? -1 : sb);
  1202. // FIXME maybe move this code into find_ref_mvs()
  1203. if ((mode == NEWMV || sb == -1) &&
  1204. !(hp = s->s.h.highprecisionmvs && abs(mv[0].x) < 64 && abs(mv[0].y) < 64)) {
  1205. if (mv[0].y & 1) {
  1206. if (mv[0].y < 0)
  1207. mv[0].y++;
  1208. else
  1209. mv[0].y--;
  1210. }
  1211. if (mv[0].x & 1) {
  1212. if (mv[0].x < 0)
  1213. mv[0].x++;
  1214. else
  1215. mv[0].x--;
  1216. }
  1217. }
  1218. if (mode == NEWMV) {
  1219. enum MVJoint j = vp8_rac_get_tree(&s->c, vp9_mv_joint_tree,
  1220. s->prob.p.mv_joint);
  1221. s->counts.mv_joint[j]++;
  1222. if (j >= MV_JOINT_V)
  1223. mv[0].y += read_mv_component(s, 0, hp);
  1224. if (j & 1)
  1225. mv[0].x += read_mv_component(s, 1, hp);
  1226. }
  1227. if (b->comp) {
  1228. // FIXME cache this value and reuse for other subblocks
  1229. find_ref_mvs(s, &mv[1], b->ref[1], 1, mode == NEARMV,
  1230. mode == NEWMV ? -1 : sb);
  1231. if ((mode == NEWMV || sb == -1) &&
  1232. !(hp = s->s.h.highprecisionmvs && abs(mv[1].x) < 64 && abs(mv[1].y) < 64)) {
  1233. if (mv[1].y & 1) {
  1234. if (mv[1].y < 0)
  1235. mv[1].y++;
  1236. else
  1237. mv[1].y--;
  1238. }
  1239. if (mv[1].x & 1) {
  1240. if (mv[1].x < 0)
  1241. mv[1].x++;
  1242. else
  1243. mv[1].x--;
  1244. }
  1245. }
  1246. if (mode == NEWMV) {
  1247. enum MVJoint j = vp8_rac_get_tree(&s->c, vp9_mv_joint_tree,
  1248. s->prob.p.mv_joint);
  1249. s->counts.mv_joint[j]++;
  1250. if (j >= MV_JOINT_V)
  1251. mv[1].y += read_mv_component(s, 0, hp);
  1252. if (j & 1)
  1253. mv[1].x += read_mv_component(s, 1, hp);
  1254. }
  1255. }
  1256. }
  1257. }
  1258. static av_always_inline void setctx_2d(uint8_t *ptr, int w, int h,
  1259. ptrdiff_t stride, int v)
  1260. {
  1261. switch (w) {
  1262. case 1:
  1263. do {
  1264. *ptr = v;
  1265. ptr += stride;
  1266. } while (--h);
  1267. break;
  1268. case 2: {
  1269. int v16 = v * 0x0101;
  1270. do {
  1271. AV_WN16A(ptr, v16);
  1272. ptr += stride;
  1273. } while (--h);
  1274. break;
  1275. }
  1276. case 4: {
  1277. uint32_t v32 = v * 0x01010101;
  1278. do {
  1279. AV_WN32A(ptr, v32);
  1280. ptr += stride;
  1281. } while (--h);
  1282. break;
  1283. }
  1284. case 8: {
  1285. #if HAVE_FAST_64BIT
  1286. uint64_t v64 = v * 0x0101010101010101ULL;
  1287. do {
  1288. AV_WN64A(ptr, v64);
  1289. ptr += stride;
  1290. } while (--h);
  1291. #else
  1292. uint32_t v32 = v * 0x01010101;
  1293. do {
  1294. AV_WN32A(ptr, v32);
  1295. AV_WN32A(ptr + 4, v32);
  1296. ptr += stride;
  1297. } while (--h);
  1298. #endif
  1299. break;
  1300. }
  1301. }
  1302. }
  1303. static void decode_mode(AVCodecContext *ctx)
  1304. {
  1305. static const uint8_t left_ctx[N_BS_SIZES] = {
  1306. 0x0, 0x8, 0x0, 0x8, 0xc, 0x8, 0xc, 0xe, 0xc, 0xe, 0xf, 0xe, 0xf
  1307. };
  1308. static const uint8_t above_ctx[N_BS_SIZES] = {
  1309. 0x0, 0x0, 0x8, 0x8, 0x8, 0xc, 0xc, 0xc, 0xe, 0xe, 0xe, 0xf, 0xf
  1310. };
  1311. static const uint8_t max_tx_for_bl_bp[N_BS_SIZES] = {
  1312. TX_32X32, TX_32X32, TX_32X32, TX_32X32, TX_16X16, TX_16X16,
  1313. TX_16X16, TX_8X8, TX_8X8, TX_8X8, TX_4X4, TX_4X4, TX_4X4
  1314. };
  1315. VP9Context *s = ctx->priv_data;
  1316. VP9Block *b = s->b;
  1317. int row = s->row, col = s->col, row7 = s->row7;
  1318. enum TxfmMode max_tx = max_tx_for_bl_bp[b->bs];
  1319. int bw4 = bwh_tab[1][b->bs][0], w4 = FFMIN(s->cols - col, bw4);
  1320. int bh4 = bwh_tab[1][b->bs][1], h4 = FFMIN(s->rows - row, bh4), y;
  1321. int have_a = row > 0, have_l = col > s->tile_col_start;
  1322. int vref, filter_id;
  1323. if (!s->s.h.segmentation.enabled) {
  1324. b->seg_id = 0;
  1325. } else if (s->s.h.keyframe || s->s.h.intraonly) {
  1326. b->seg_id = !s->s.h.segmentation.update_map ? 0 :
  1327. vp8_rac_get_tree(&s->c, vp9_segmentation_tree, s->s.h.segmentation.prob);
  1328. } else if (!s->s.h.segmentation.update_map ||
  1329. (s->s.h.segmentation.temporal &&
  1330. vp56_rac_get_prob_branchy(&s->c,
  1331. s->s.h.segmentation.pred_prob[s->above_segpred_ctx[col] +
  1332. s->left_segpred_ctx[row7]]))) {
  1333. if (!s->s.h.errorres && s->s.frames[REF_FRAME_SEGMAP].segmentation_map) {
  1334. int pred = 8, x;
  1335. uint8_t *refsegmap = s->s.frames[REF_FRAME_SEGMAP].segmentation_map;
  1336. if (!s->s.frames[REF_FRAME_SEGMAP].uses_2pass)
  1337. ff_thread_await_progress(&s->s.frames[REF_FRAME_SEGMAP].tf, row >> 3, 0);
  1338. for (y = 0; y < h4; y++) {
  1339. int idx_base = (y + row) * 8 * s->sb_cols + col;
  1340. for (x = 0; x < w4; x++)
  1341. pred = FFMIN(pred, refsegmap[idx_base + x]);
  1342. }
  1343. av_assert1(pred < 8);
  1344. b->seg_id = pred;
  1345. } else {
  1346. b->seg_id = 0;
  1347. }
  1348. memset(&s->above_segpred_ctx[col], 1, w4);
  1349. memset(&s->left_segpred_ctx[row7], 1, h4);
  1350. } else {
  1351. b->seg_id = vp8_rac_get_tree(&s->c, vp9_segmentation_tree,
  1352. s->s.h.segmentation.prob);
  1353. memset(&s->above_segpred_ctx[col], 0, w4);
  1354. memset(&s->left_segpred_ctx[row7], 0, h4);
  1355. }
  1356. if (s->s.h.segmentation.enabled &&
  1357. (s->s.h.segmentation.update_map || s->s.h.keyframe || s->s.h.intraonly)) {
  1358. setctx_2d(&s->s.frames[CUR_FRAME].segmentation_map[row * 8 * s->sb_cols + col],
  1359. bw4, bh4, 8 * s->sb_cols, b->seg_id);
  1360. }
  1361. b->skip = s->s.h.segmentation.enabled &&
  1362. s->s.h.segmentation.feat[b->seg_id].skip_enabled;
  1363. if (!b->skip) {
  1364. int c = s->left_skip_ctx[row7] + s->above_skip_ctx[col];
  1365. b->skip = vp56_rac_get_prob(&s->c, s->prob.p.skip[c]);
  1366. s->counts.skip[c][b->skip]++;
  1367. }
  1368. if (s->s.h.keyframe || s->s.h.intraonly) {
  1369. b->intra = 1;
  1370. } else if (s->s.h.segmentation.enabled && s->s.h.segmentation.feat[b->seg_id].ref_enabled) {
  1371. b->intra = !s->s.h.segmentation.feat[b->seg_id].ref_val;
  1372. } else {
  1373. int c, bit;
  1374. if (have_a && have_l) {
  1375. c = s->above_intra_ctx[col] + s->left_intra_ctx[row7];
  1376. c += (c == 2);
  1377. } else {
  1378. c = have_a ? 2 * s->above_intra_ctx[col] :
  1379. have_l ? 2 * s->left_intra_ctx[row7] : 0;
  1380. }
  1381. bit = vp56_rac_get_prob(&s->c, s->prob.p.intra[c]);
  1382. s->counts.intra[c][bit]++;
  1383. b->intra = !bit;
  1384. }
  1385. if ((b->intra || !b->skip) && s->s.h.txfmmode == TX_SWITCHABLE) {
  1386. int c;
  1387. if (have_a) {
  1388. if (have_l) {
  1389. c = (s->above_skip_ctx[col] ? max_tx :
  1390. s->above_txfm_ctx[col]) +
  1391. (s->left_skip_ctx[row7] ? max_tx :
  1392. s->left_txfm_ctx[row7]) > max_tx;
  1393. } else {
  1394. c = s->above_skip_ctx[col] ? 1 :
  1395. (s->above_txfm_ctx[col] * 2 > max_tx);
  1396. }
  1397. } else if (have_l) {
  1398. c = s->left_skip_ctx[row7] ? 1 :
  1399. (s->left_txfm_ctx[row7] * 2 > max_tx);
  1400. } else {
  1401. c = 1;
  1402. }
  1403. switch (max_tx) {
  1404. case TX_32X32:
  1405. b->tx = vp56_rac_get_prob(&s->c, s->prob.p.tx32p[c][0]);
  1406. if (b->tx) {
  1407. b->tx += vp56_rac_get_prob(&s->c, s->prob.p.tx32p[c][1]);
  1408. if (b->tx == 2)
  1409. b->tx += vp56_rac_get_prob(&s->c, s->prob.p.tx32p[c][2]);
  1410. }
  1411. s->counts.tx32p[c][b->tx]++;
  1412. break;
  1413. case TX_16X16:
  1414. b->tx = vp56_rac_get_prob(&s->c, s->prob.p.tx16p[c][0]);
  1415. if (b->tx)
  1416. b->tx += vp56_rac_get_prob(&s->c, s->prob.p.tx16p[c][1]);
  1417. s->counts.tx16p[c][b->tx]++;
  1418. break;
  1419. case TX_8X8:
  1420. b->tx = vp56_rac_get_prob(&s->c, s->prob.p.tx8p[c]);
  1421. s->counts.tx8p[c][b->tx]++;
  1422. break;
  1423. case TX_4X4:
  1424. b->tx = TX_4X4;
  1425. break;
  1426. }
  1427. } else {
  1428. b->tx = FFMIN(max_tx, s->s.h.txfmmode);
  1429. }
  1430. if (s->s.h.keyframe || s->s.h.intraonly) {
  1431. uint8_t *a = &s->above_mode_ctx[col * 2];
  1432. uint8_t *l = &s->left_mode_ctx[(row7) << 1];
  1433. b->comp = 0;
  1434. if (b->bs > BS_8x8) {
  1435. // FIXME the memory storage intermediates here aren't really
  1436. // necessary, they're just there to make the code slightly
  1437. // simpler for now
  1438. b->mode[0] = a[0] = vp8_rac_get_tree(&s->c, vp9_intramode_tree,
  1439. vp9_default_kf_ymode_probs[a[0]][l[0]]);
  1440. if (b->bs != BS_8x4) {
  1441. b->mode[1] = vp8_rac_get_tree(&s->c, vp9_intramode_tree,
  1442. vp9_default_kf_ymode_probs[a[1]][b->mode[0]]);
  1443. l[0] = a[1] = b->mode[1];
  1444. } else {
  1445. l[0] = a[1] = b->mode[1] = b->mode[0];
  1446. }
  1447. if (b->bs != BS_4x8) {
  1448. b->mode[2] = a[0] = vp8_rac_get_tree(&s->c, vp9_intramode_tree,
  1449. vp9_default_kf_ymode_probs[a[0]][l[1]]);
  1450. if (b->bs != BS_8x4) {
  1451. b->mode[3] = vp8_rac_get_tree(&s->c, vp9_intramode_tree,
  1452. vp9_default_kf_ymode_probs[a[1]][b->mode[2]]);
  1453. l[1] = a[1] = b->mode[3];
  1454. } else {
  1455. l[1] = a[1] = b->mode[3] = b->mode[2];
  1456. }
  1457. } else {
  1458. b->mode[2] = b->mode[0];
  1459. l[1] = a[1] = b->mode[3] = b->mode[1];
  1460. }
  1461. } else {
  1462. b->mode[0] = vp8_rac_get_tree(&s->c, vp9_intramode_tree,
  1463. vp9_default_kf_ymode_probs[*a][*l]);
  1464. b->mode[3] = b->mode[2] = b->mode[1] = b->mode[0];
  1465. // FIXME this can probably be optimized
  1466. memset(a, b->mode[0], bwh_tab[0][b->bs][0]);
  1467. memset(l, b->mode[0], bwh_tab[0][b->bs][1]);
  1468. }
  1469. b->uvmode = vp8_rac_get_tree(&s->c, vp9_intramode_tree,
  1470. vp9_default_kf_uvmode_probs[b->mode[3]]);
  1471. } else if (b->intra) {
  1472. b->comp = 0;
  1473. if (b->bs > BS_8x8) {
  1474. b->mode[0] = vp8_rac_get_tree(&s->c, vp9_intramode_tree,
  1475. s->prob.p.y_mode[0]);
  1476. s->counts.y_mode[0][b->mode[0]]++;
  1477. if (b->bs != BS_8x4) {
  1478. b->mode[1] = vp8_rac_get_tree(&s->c, vp9_intramode_tree,
  1479. s->prob.p.y_mode[0]);
  1480. s->counts.y_mode[0][b->mode[1]]++;
  1481. } else {
  1482. b->mode[1] = b->mode[0];
  1483. }
  1484. if (b->bs != BS_4x8) {
  1485. b->mode[2] = vp8_rac_get_tree(&s->c, vp9_intramode_tree,
  1486. s->prob.p.y_mode[0]);
  1487. s->counts.y_mode[0][b->mode[2]]++;
  1488. if (b->bs != BS_8x4) {
  1489. b->mode[3] = vp8_rac_get_tree(&s->c, vp9_intramode_tree,
  1490. s->prob.p.y_mode[0]);
  1491. s->counts.y_mode[0][b->mode[3]]++;
  1492. } else {
  1493. b->mode[3] = b->mode[2];
  1494. }
  1495. } else {
  1496. b->mode[2] = b->mode[0];
  1497. b->mode[3] = b->mode[1];
  1498. }
  1499. } else {
  1500. static const uint8_t size_group[10] = {
  1501. 3, 3, 3, 3, 2, 2, 2, 1, 1, 1
  1502. };
  1503. int sz = size_group[b->bs];
  1504. b->mode[0] = vp8_rac_get_tree(&s->c, vp9_intramode_tree,
  1505. s->prob.p.y_mode[sz]);
  1506. b->mode[1] = b->mode[2] = b->mode[3] = b->mode[0];
  1507. s->counts.y_mode[sz][b->mode[3]]++;
  1508. }
  1509. b->uvmode = vp8_rac_get_tree(&s->c, vp9_intramode_tree,
  1510. s->prob.p.uv_mode[b->mode[3]]);
  1511. s->counts.uv_mode[b->mode[3]][b->uvmode]++;
  1512. } else {
  1513. static const uint8_t inter_mode_ctx_lut[14][14] = {
  1514. { 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 5, 5, 5, 5 },
  1515. { 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 5, 5, 5, 5 },
  1516. { 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 5, 5, 5, 5 },
  1517. { 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 5, 5, 5, 5 },
  1518. { 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 5, 5, 5, 5 },
  1519. { 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 5, 5, 5, 5 },
  1520. { 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 5, 5, 5, 5 },
  1521. { 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 5, 5, 5, 5 },
  1522. { 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 5, 5, 5, 5 },
  1523. { 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 5, 5, 5, 5 },
  1524. { 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 2, 2, 1, 3 },
  1525. { 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 2, 2, 1, 3 },
  1526. { 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 1, 1, 0, 3 },
  1527. { 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 3, 3, 3, 4 },
  1528. };
  1529. if (s->s.h.segmentation.enabled && s->s.h.segmentation.feat[b->seg_id].ref_enabled) {
  1530. av_assert2(s->s.h.segmentation.feat[b->seg_id].ref_val != 0);
  1531. b->comp = 0;
  1532. b->ref[0] = s->s.h.segmentation.feat[b->seg_id].ref_val - 1;
  1533. } else {
  1534. // read comp_pred flag
  1535. if (s->s.h.comppredmode != PRED_SWITCHABLE) {
  1536. b->comp = s->s.h.comppredmode == PRED_COMPREF;
  1537. } else {
  1538. int c;
  1539. // FIXME add intra as ref=0xff (or -1) to make these easier?
  1540. if (have_a) {
  1541. if (have_l) {
  1542. if (s->above_comp_ctx[col] && s->left_comp_ctx[row7]) {
  1543. c = 4;
  1544. } else if (s->above_comp_ctx[col]) {
  1545. c = 2 + (s->left_intra_ctx[row7] ||
  1546. s->left_ref_ctx[row7] == s->s.h.fixcompref);
  1547. } else if (s->left_comp_ctx[row7]) {
  1548. c = 2 + (s->above_intra_ctx[col] ||
  1549. s->above_ref_ctx[col] == s->s.h.fixcompref);
  1550. } else {
  1551. c = (!s->above_intra_ctx[col] &&
  1552. s->above_ref_ctx[col] == s->s.h.fixcompref) ^
  1553. (!s->left_intra_ctx[row7] &&
  1554. s->left_ref_ctx[row & 7] == s->s.h.fixcompref);
  1555. }
  1556. } else {
  1557. c = s->above_comp_ctx[col] ? 3 :
  1558. (!s->above_intra_ctx[col] && s->above_ref_ctx[col] == s->s.h.fixcompref);
  1559. }
  1560. } else if (have_l) {
  1561. c = s->left_comp_ctx[row7] ? 3 :
  1562. (!s->left_intra_ctx[row7] && s->left_ref_ctx[row7] == s->s.h.fixcompref);
  1563. } else {
  1564. c = 1;
  1565. }
  1566. b->comp = vp56_rac_get_prob(&s->c, s->prob.p.comp[c]);
  1567. s->counts.comp[c][b->comp]++;
  1568. }
  1569. // read actual references
  1570. // FIXME probably cache a few variables here to prevent repetitive
  1571. // memory accesses below
  1572. if (b->comp) /* two references */ {
  1573. int fix_idx = s->s.h.signbias[s->s.h.fixcompref], var_idx = !fix_idx, c, bit;
  1574. b->ref[fix_idx] = s->s.h.fixcompref;
  1575. // FIXME can this codeblob be replaced by some sort of LUT?
  1576. if (have_a) {
  1577. if (have_l) {
  1578. if (s->above_intra_ctx[col]) {
  1579. if (s->left_intra_ctx[row7]) {
  1580. c = 2;
  1581. } else {
  1582. c = 1 + 2 * (s->left_ref_ctx[row7] != s->s.h.varcompref[1]);
  1583. }
  1584. } else if (s->left_intra_ctx[row7]) {
  1585. c = 1 + 2 * (s->above_ref_ctx[col] != s->s.h.varcompref[1]);
  1586. } else {
  1587. int refl = s->left_ref_ctx[row7], refa = s->above_ref_ctx[col];
  1588. if (refl == refa && refa == s->s.h.varcompref[1]) {
  1589. c = 0;
  1590. } else if (!s->left_comp_ctx[row7] && !s->above_comp_ctx[col]) {
  1591. if ((refa == s->s.h.fixcompref && refl == s->s.h.varcompref[0]) ||
  1592. (refl == s->s.h.fixcompref && refa == s->s.h.varcompref[0])) {
  1593. c = 4;
  1594. } else {
  1595. c = (refa == refl) ? 3 : 1;
  1596. }
  1597. } else if (!s->left_comp_ctx[row7]) {
  1598. if (refa == s->s.h.varcompref[1] && refl != s->s.h.varcompref[1]) {
  1599. c = 1;
  1600. } else {
  1601. c = (refl == s->s.h.varcompref[1] &&
  1602. refa != s->s.h.varcompref[1]) ? 2 : 4;
  1603. }
  1604. } else if (!s->above_comp_ctx[col]) {
  1605. if (refl == s->s.h.varcompref[1] && refa != s->s.h.varcompref[1]) {
  1606. c = 1;
  1607. } else {
  1608. c = (refa == s->s.h.varcompref[1] &&
  1609. refl != s->s.h.varcompref[1]) ? 2 : 4;
  1610. }
  1611. } else {
  1612. c = (refl == refa) ? 4 : 2;
  1613. }
  1614. }
  1615. } else {
  1616. if (s->above_intra_ctx[col]) {
  1617. c = 2;
  1618. } else if (s->above_comp_ctx[col]) {
  1619. c = 4 * (s->above_ref_ctx[col] != s->s.h.varcompref[1]);
  1620. } else {
  1621. c = 3 * (s->above_ref_ctx[col] != s->s.h.varcompref[1]);
  1622. }
  1623. }
  1624. } else if (have_l) {
  1625. if (s->left_intra_ctx[row7]) {
  1626. c = 2;
  1627. } else if (s->left_comp_ctx[row7]) {
  1628. c = 4 * (s->left_ref_ctx[row7] != s->s.h.varcompref[1]);
  1629. } else {
  1630. c = 3 * (s->left_ref_ctx[row7] != s->s.h.varcompref[1]);
  1631. }
  1632. } else {
  1633. c = 2;
  1634. }
  1635. bit = vp56_rac_get_prob(&s->c, s->prob.p.comp_ref[c]);
  1636. b->ref[var_idx] = s->s.h.varcompref[bit];
  1637. s->counts.comp_ref[c][bit]++;
  1638. } else /* single reference */ {
  1639. int bit, c;
  1640. if (have_a && !s->above_intra_ctx[col]) {
  1641. if (have_l && !s->left_intra_ctx[row7]) {
  1642. if (s->left_comp_ctx[row7]) {
  1643. if (s->above_comp_ctx[col]) {
  1644. c = 1 + (!s->s.h.fixcompref || !s->left_ref_ctx[row7] ||
  1645. !s->above_ref_ctx[col]);
  1646. } else {
  1647. c = (3 * !s->above_ref_ctx[col]) +
  1648. (!s->s.h.fixcompref || !s->left_ref_ctx[row7]);
  1649. }
  1650. } else if (s->above_comp_ctx[col]) {
  1651. c = (3 * !s->left_ref_ctx[row7]) +
  1652. (!s->s.h.fixcompref || !s->above_ref_ctx[col]);
  1653. } else {
  1654. c = 2 * !s->left_ref_ctx[row7] + 2 * !s->above_ref_ctx[col];
  1655. }
  1656. } else if (s->above_intra_ctx[col]) {
  1657. c = 2;
  1658. } else if (s->above_comp_ctx[col]) {
  1659. c = 1 + (!s->s.h.fixcompref || !s->above_ref_ctx[col]);
  1660. } else {
  1661. c = 4 * (!s->above_ref_ctx[col]);
  1662. }
  1663. } else if (have_l && !s->left_intra_ctx[row7]) {
  1664. if (s->left_intra_ctx[row7]) {
  1665. c = 2;
  1666. } else if (s->left_comp_ctx[row7]) {
  1667. c = 1 + (!s->s.h.fixcompref || !s->left_ref_ctx[row7]);
  1668. } else {
  1669. c = 4 * (!s->left_ref_ctx[row7]);
  1670. }
  1671. } else {
  1672. c = 2;
  1673. }
  1674. bit = vp56_rac_get_prob(&s->c, s->prob.p.single_ref[c][0]);
  1675. s->counts.single_ref[c][0][bit]++;
  1676. if (!bit) {
  1677. b->ref[0] = 0;
  1678. } else {
  1679. // FIXME can this codeblob be replaced by some sort of LUT?
  1680. if (have_a) {
  1681. if (have_l) {
  1682. if (s->left_intra_ctx[row7]) {
  1683. if (s->above_intra_ctx[col]) {
  1684. c = 2;
  1685. } else if (s->above_comp_ctx[col]) {
  1686. c = 1 + 2 * (s->s.h.fixcompref == 1 ||
  1687. s->above_ref_ctx[col] == 1);
  1688. } else if (!s->above_ref_ctx[col]) {
  1689. c = 3;
  1690. } else {
  1691. c = 4 * (s->above_ref_ctx[col] == 1);
  1692. }
  1693. } else if (s->above_intra_ctx[col]) {
  1694. if (s->left_intra_ctx[row7]) {
  1695. c = 2;
  1696. } else if (s->left_comp_ctx[row7]) {
  1697. c = 1 + 2 * (s->s.h.fixcompref == 1 ||
  1698. s->left_ref_ctx[row7] == 1);
  1699. } else if (!s->left_ref_ctx[row7]) {
  1700. c = 3;
  1701. } else {
  1702. c = 4 * (s->left_ref_ctx[row7] == 1);
  1703. }
  1704. } else if (s->above_comp_ctx[col]) {
  1705. if (s->left_comp_ctx[row7]) {
  1706. if (s->left_ref_ctx[row7] == s->above_ref_ctx[col]) {
  1707. c = 3 * (s->s.h.fixcompref == 1 ||
  1708. s->left_ref_ctx[row7] == 1);
  1709. } else {
  1710. c = 2;
  1711. }
  1712. } else if (!s->left_ref_ctx[row7]) {
  1713. c = 1 + 2 * (s->s.h.fixcompref == 1 ||
  1714. s->above_ref_ctx[col] == 1);
  1715. } else {
  1716. c = 3 * (s->left_ref_ctx[row7] == 1) +
  1717. (s->s.h.fixcompref == 1 || s->above_ref_ctx[col] == 1);
  1718. }
  1719. } else if (s->left_comp_ctx[row7]) {
  1720. if (!s->above_ref_ctx[col]) {
  1721. c = 1 + 2 * (s->s.h.fixcompref == 1 ||
  1722. s->left_ref_ctx[row7] == 1);
  1723. } else {
  1724. c = 3 * (s->above_ref_ctx[col] == 1) +
  1725. (s->s.h.fixcompref == 1 || s->left_ref_ctx[row7] == 1);
  1726. }
  1727. } else if (!s->above_ref_ctx[col]) {
  1728. if (!s->left_ref_ctx[row7]) {
  1729. c = 3;
  1730. } else {
  1731. c = 4 * (s->left_ref_ctx[row7] == 1);
  1732. }
  1733. } else if (!s->left_ref_ctx[row7]) {
  1734. c = 4 * (s->above_ref_ctx[col] == 1);
  1735. } else {
  1736. c = 2 * (s->left_ref_ctx[row7] == 1) +
  1737. 2 * (s->above_ref_ctx[col] == 1);
  1738. }
  1739. } else {
  1740. if (s->above_intra_ctx[col] ||
  1741. (!s->above_comp_ctx[col] && !s->above_ref_ctx[col])) {
  1742. c = 2;
  1743. } else if (s->above_comp_ctx[col]) {
  1744. c = 3 * (s->s.h.fixcompref == 1 || s->above_ref_ctx[col] == 1);
  1745. } else {
  1746. c = 4 * (s->above_ref_ctx[col] == 1);
  1747. }
  1748. }
  1749. } else if (have_l) {
  1750. if (s->left_intra_ctx[row7] ||
  1751. (!s->left_comp_ctx[row7] && !s->left_ref_ctx[row7])) {
  1752. c = 2;
  1753. } else if (s->left_comp_ctx[row7]) {
  1754. c = 3 * (s->s.h.fixcompref == 1 || s->left_ref_ctx[row7] == 1);
  1755. } else {
  1756. c = 4 * (s->left_ref_ctx[row7] == 1);
  1757. }
  1758. } else {
  1759. c = 2;
  1760. }
  1761. bit = vp56_rac_get_prob(&s->c, s->prob.p.single_ref[c][1]);
  1762. s->counts.single_ref[c][1][bit]++;
  1763. b->ref[0] = 1 + bit;
  1764. }
  1765. }
  1766. }
  1767. if (b->bs <= BS_8x8) {
  1768. if (s->s.h.segmentation.enabled && s->s.h.segmentation.feat[b->seg_id].skip_enabled) {
  1769. b->mode[0] = b->mode[1] = b->mode[2] = b->mode[3] = ZEROMV;
  1770. } else {
  1771. static const uint8_t off[10] = {
  1772. 3, 0, 0, 1, 0, 0, 0, 0, 0, 0
  1773. };
  1774. // FIXME this needs to use the LUT tables from find_ref_mvs
  1775. // because not all are -1,0/0,-1
  1776. int c = inter_mode_ctx_lut[s->above_mode_ctx[col + off[b->bs]]]
  1777. [s->left_mode_ctx[row7 + off[b->bs]]];
  1778. b->mode[0] = vp8_rac_get_tree(&s->c, vp9_inter_mode_tree,
  1779. s->prob.p.mv_mode[c]);
  1780. b->mode[1] = b->mode[2] = b->mode[3] = b->mode[0];
  1781. s->counts.mv_mode[c][b->mode[0] - 10]++;
  1782. }
  1783. }
  1784. if (s->s.h.filtermode == FILTER_SWITCHABLE) {
  1785. int c;
  1786. if (have_a && s->above_mode_ctx[col] >= NEARESTMV) {
  1787. if (have_l && s->left_mode_ctx[row7] >= NEARESTMV) {
  1788. c = s->above_filter_ctx[col] == s->left_filter_ctx[row7] ?
  1789. s->left_filter_ctx[row7] : 3;
  1790. } else {
  1791. c = s->above_filter_ctx[col];
  1792. }
  1793. } else if (have_l && s->left_mode_ctx[row7] >= NEARESTMV) {
  1794. c = s->left_filter_ctx[row7];
  1795. } else {
  1796. c = 3;
  1797. }
  1798. filter_id = vp8_rac_get_tree(&s->c, vp9_filter_tree,
  1799. s->prob.p.filter[c]);
  1800. s->counts.filter[c][filter_id]++;
  1801. b->filter = vp9_filter_lut[filter_id];
  1802. } else {
  1803. b->filter = s->s.h.filtermode;
  1804. }
  1805. if (b->bs > BS_8x8) {
  1806. int c = inter_mode_ctx_lut[s->above_mode_ctx[col]][s->left_mode_ctx[row7]];
  1807. b->mode[0] = vp8_rac_get_tree(&s->c, vp9_inter_mode_tree,
  1808. s->prob.p.mv_mode[c]);
  1809. s->counts.mv_mode[c][b->mode[0] - 10]++;
  1810. fill_mv(s, b->mv[0], b->mode[0], 0);
  1811. if (b->bs != BS_8x4) {
  1812. b->mode[1] = vp8_rac_get_tree(&s->c, vp9_inter_mode_tree,
  1813. s->prob.p.mv_mode[c]);
  1814. s->counts.mv_mode[c][b->mode[1] - 10]++;
  1815. fill_mv(s, b->mv[1], b->mode[1], 1);
  1816. } else {
  1817. b->mode[1] = b->mode[0];
  1818. AV_COPY32(&b->mv[1][0], &b->mv[0][0]);
  1819. AV_COPY32(&b->mv[1][1], &b->mv[0][1]);
  1820. }
  1821. if (b->bs != BS_4x8) {
  1822. b->mode[2] = vp8_rac_get_tree(&s->c, vp9_inter_mode_tree,
  1823. s->prob.p.mv_mode[c]);
  1824. s->counts.mv_mode[c][b->mode[2] - 10]++;
  1825. fill_mv(s, b->mv[2], b->mode[2], 2);
  1826. if (b->bs != BS_8x4) {
  1827. b->mode[3] = vp8_rac_get_tree(&s->c, vp9_inter_mode_tree,
  1828. s->prob.p.mv_mode[c]);
  1829. s->counts.mv_mode[c][b->mode[3] - 10]++;
  1830. fill_mv(s, b->mv[3], b->mode[3], 3);
  1831. } else {
  1832. b->mode[3] = b->mode[2];
  1833. AV_COPY32(&b->mv[3][0], &b->mv[2][0]);
  1834. AV_COPY32(&b->mv[3][1], &b->mv[2][1]);
  1835. }
  1836. } else {
  1837. b->mode[2] = b->mode[0];
  1838. AV_COPY32(&b->mv[2][0], &b->mv[0][0]);
  1839. AV_COPY32(&b->mv[2][1], &b->mv[0][1]);
  1840. b->mode[3] = b->mode[1];
  1841. AV_COPY32(&b->mv[3][0], &b->mv[1][0]);
  1842. AV_COPY32(&b->mv[3][1], &b->mv[1][1]);
  1843. }
  1844. } else {
  1845. fill_mv(s, b->mv[0], b->mode[0], -1);
  1846. AV_COPY32(&b->mv[1][0], &b->mv[0][0]);
  1847. AV_COPY32(&b->mv[2][0], &b->mv[0][0]);
  1848. AV_COPY32(&b->mv[3][0], &b->mv[0][0]);
  1849. AV_COPY32(&b->mv[1][1], &b->mv[0][1]);
  1850. AV_COPY32(&b->mv[2][1], &b->mv[0][1]);
  1851. AV_COPY32(&b->mv[3][1], &b->mv[0][1]);
  1852. }
  1853. vref = b->ref[b->comp ? s->s.h.signbias[s->s.h.varcompref[0]] : 0];
  1854. }
  1855. #if HAVE_FAST_64BIT
  1856. #define SPLAT_CTX(var, val, n) \
  1857. switch (n) { \
  1858. case 1: var = val; break; \
  1859. case 2: AV_WN16A(&var, val * 0x0101); break; \
  1860. case 4: AV_WN32A(&var, val * 0x01010101); break; \
  1861. case 8: AV_WN64A(&var, val * 0x0101010101010101ULL); break; \
  1862. case 16: { \
  1863. uint64_t v64 = val * 0x0101010101010101ULL; \
  1864. AV_WN64A( &var, v64); \
  1865. AV_WN64A(&((uint8_t *) &var)[8], v64); \
  1866. break; \
  1867. } \
  1868. }
  1869. #else
  1870. #define SPLAT_CTX(var, val, n) \
  1871. switch (n) { \
  1872. case 1: var = val; break; \
  1873. case 2: AV_WN16A(&var, val * 0x0101); break; \
  1874. case 4: AV_WN32A(&var, val * 0x01010101); break; \
  1875. case 8: { \
  1876. uint32_t v32 = val * 0x01010101; \
  1877. AV_WN32A( &var, v32); \
  1878. AV_WN32A(&((uint8_t *) &var)[4], v32); \
  1879. break; \
  1880. } \
  1881. case 16: { \
  1882. uint32_t v32 = val * 0x01010101; \
  1883. AV_WN32A( &var, v32); \
  1884. AV_WN32A(&((uint8_t *) &var)[4], v32); \
  1885. AV_WN32A(&((uint8_t *) &var)[8], v32); \
  1886. AV_WN32A(&((uint8_t *) &var)[12], v32); \
  1887. break; \
  1888. } \
  1889. }
  1890. #endif
  1891. switch (bwh_tab[1][b->bs][0]) {
  1892. #define SET_CTXS(dir, off, n) \
  1893. do { \
  1894. SPLAT_CTX(s->dir##_skip_ctx[off], b->skip, n); \
  1895. SPLAT_CTX(s->dir##_txfm_ctx[off], b->tx, n); \
  1896. SPLAT_CTX(s->dir##_partition_ctx[off], dir##_ctx[b->bs], n); \
  1897. if (!s->s.h.keyframe && !s->s.h.intraonly) { \
  1898. SPLAT_CTX(s->dir##_intra_ctx[off], b->intra, n); \
  1899. SPLAT_CTX(s->dir##_comp_ctx[off], b->comp, n); \
  1900. SPLAT_CTX(s->dir##_mode_ctx[off], b->mode[3], n); \
  1901. if (!b->intra) { \
  1902. SPLAT_CTX(s->dir##_ref_ctx[off], vref, n); \
  1903. if (s->s.h.filtermode == FILTER_SWITCHABLE) { \
  1904. SPLAT_CTX(s->dir##_filter_ctx[off], filter_id, n); \
  1905. } \
  1906. } \
  1907. } \
  1908. } while (0)
  1909. case 1: SET_CTXS(above, col, 1); break;
  1910. case 2: SET_CTXS(above, col, 2); break;
  1911. case 4: SET_CTXS(above, col, 4); break;
  1912. case 8: SET_CTXS(above, col, 8); break;
  1913. }
  1914. switch (bwh_tab[1][b->bs][1]) {
  1915. case 1: SET_CTXS(left, row7, 1); break;
  1916. case 2: SET_CTXS(left, row7, 2); break;
  1917. case 4: SET_CTXS(left, row7, 4); break;
  1918. case 8: SET_CTXS(left, row7, 8); break;
  1919. }
  1920. #undef SPLAT_CTX
  1921. #undef SET_CTXS
  1922. if (!s->s.h.keyframe && !s->s.h.intraonly) {
  1923. if (b->bs > BS_8x8) {
  1924. int mv0 = AV_RN32A(&b->mv[3][0]), mv1 = AV_RN32A(&b->mv[3][1]);
  1925. AV_COPY32(&s->left_mv_ctx[row7 * 2 + 0][0], &b->mv[1][0]);
  1926. AV_COPY32(&s->left_mv_ctx[row7 * 2 + 0][1], &b->mv[1][1]);
  1927. AV_WN32A(&s->left_mv_ctx[row7 * 2 + 1][0], mv0);
  1928. AV_WN32A(&s->left_mv_ctx[row7 * 2 + 1][1], mv1);
  1929. AV_COPY32(&s->above_mv_ctx[col * 2 + 0][0], &b->mv[2][0]);
  1930. AV_COPY32(&s->above_mv_ctx[col * 2 + 0][1], &b->mv[2][1]);
  1931. AV_WN32A(&s->above_mv_ctx[col * 2 + 1][0], mv0);
  1932. AV_WN32A(&s->above_mv_ctx[col * 2 + 1][1], mv1);
  1933. } else {
  1934. int n, mv0 = AV_RN32A(&b->mv[3][0]), mv1 = AV_RN32A(&b->mv[3][1]);
  1935. for (n = 0; n < w4 * 2; n++) {
  1936. AV_WN32A(&s->above_mv_ctx[col * 2 + n][0], mv0);
  1937. AV_WN32A(&s->above_mv_ctx[col * 2 + n][1], mv1);
  1938. }
  1939. for (n = 0; n < h4 * 2; n++) {
  1940. AV_WN32A(&s->left_mv_ctx[row7 * 2 + n][0], mv0);
  1941. AV_WN32A(&s->left_mv_ctx[row7 * 2 + n][1], mv1);
  1942. }
  1943. }
  1944. }
  1945. // FIXME kinda ugly
  1946. for (y = 0; y < h4; y++) {
  1947. int x, o = (row + y) * s->sb_cols * 8 + col;
  1948. struct VP9mvrefPair *mv = &s->s.frames[CUR_FRAME].mv[o];
  1949. if (b->intra) {
  1950. for (x = 0; x < w4; x++) {
  1951. mv[x].ref[0] =
  1952. mv[x].ref[1] = -1;
  1953. }
  1954. } else if (b->comp) {
  1955. for (x = 0; x < w4; x++) {
  1956. mv[x].ref[0] = b->ref[0];
  1957. mv[x].ref[1] = b->ref[1];
  1958. AV_COPY32(&mv[x].mv[0], &b->mv[3][0]);
  1959. AV_COPY32(&mv[x].mv[1], &b->mv[3][1]);
  1960. }
  1961. } else {
  1962. for (x = 0; x < w4; x++) {
  1963. mv[x].ref[0] = b->ref[0];
  1964. mv[x].ref[1] = -1;
  1965. AV_COPY32(&mv[x].mv[0], &b->mv[3][0]);
  1966. }
  1967. }
  1968. }
  1969. }
  1970. // FIXME merge cnt/eob arguments?
  1971. static av_always_inline int
  1972. decode_coeffs_b_generic(VP56RangeCoder *c, int16_t *coef, int n_coeffs,
  1973. int is_tx32x32, int is8bitsperpixel, int bpp, unsigned (*cnt)[6][3],
  1974. unsigned (*eob)[6][2], uint8_t (*p)[6][11],
  1975. int nnz, const int16_t *scan, const int16_t (*nb)[2],
  1976. const int16_t *band_counts, const int16_t *qmul)
  1977. {
  1978. int i = 0, band = 0, band_left = band_counts[band];
  1979. uint8_t *tp = p[0][nnz];
  1980. uint8_t cache[1024];
  1981. do {
  1982. int val, rc;
  1983. val = vp56_rac_get_prob_branchy(c, tp[0]); // eob
  1984. eob[band][nnz][val]++;
  1985. if (!val)
  1986. break;
  1987. skip_eob:
  1988. if (!vp56_rac_get_prob_branchy(c, tp[1])) { // zero
  1989. cnt[band][nnz][0]++;
  1990. if (!--band_left)
  1991. band_left = band_counts[++band];
  1992. cache[scan[i]] = 0;
  1993. nnz = (1 + cache[nb[i][0]] + cache[nb[i][1]]) >> 1;
  1994. tp = p[band][nnz];
  1995. if (++i == n_coeffs)
  1996. break; //invalid input; blocks should end with EOB
  1997. goto skip_eob;
  1998. }
  1999. rc = scan[i];
  2000. if (!vp56_rac_get_prob_branchy(c, tp[2])) { // one
  2001. cnt[band][nnz][1]++;
  2002. val = 1;
  2003. cache[rc] = 1;
  2004. } else {
  2005. // fill in p[3-10] (model fill) - only once per frame for each pos
  2006. if (!tp[3])
  2007. memcpy(&tp[3], vp9_model_pareto8[tp[2]], 8);
  2008. cnt[band][nnz][2]++;
  2009. if (!vp56_rac_get_prob_branchy(c, tp[3])) { // 2, 3, 4
  2010. if (!vp56_rac_get_prob_branchy(c, tp[4])) {
  2011. cache[rc] = val = 2;
  2012. } else {
  2013. val = 3 + vp56_rac_get_prob(c, tp[5]);
  2014. cache[rc] = 3;
  2015. }
  2016. } else if (!vp56_rac_get_prob_branchy(c, tp[6])) { // cat1/2
  2017. cache[rc] = 4;
  2018. if (!vp56_rac_get_prob_branchy(c, tp[7])) {
  2019. val = 5 + vp56_rac_get_prob(c, 159);
  2020. } else {
  2021. val = 7 + (vp56_rac_get_prob(c, 165) << 1);
  2022. val += vp56_rac_get_prob(c, 145);
  2023. }
  2024. } else { // cat 3-6
  2025. cache[rc] = 5;
  2026. if (!vp56_rac_get_prob_branchy(c, tp[8])) {
  2027. if (!vp56_rac_get_prob_branchy(c, tp[9])) {
  2028. val = 11 + (vp56_rac_get_prob(c, 173) << 2);
  2029. val += (vp56_rac_get_prob(c, 148) << 1);
  2030. val += vp56_rac_get_prob(c, 140);
  2031. } else {
  2032. val = 19 + (vp56_rac_get_prob(c, 176) << 3);
  2033. val += (vp56_rac_get_prob(c, 155) << 2);
  2034. val += (vp56_rac_get_prob(c, 140) << 1);
  2035. val += vp56_rac_get_prob(c, 135);
  2036. }
  2037. } else if (!vp56_rac_get_prob_branchy(c, tp[10])) {
  2038. val = 35 + (vp56_rac_get_prob(c, 180) << 4);
  2039. val += (vp56_rac_get_prob(c, 157) << 3);
  2040. val += (vp56_rac_get_prob(c, 141) << 2);
  2041. val += (vp56_rac_get_prob(c, 134) << 1);
  2042. val += vp56_rac_get_prob(c, 130);
  2043. } else {
  2044. val = 67;
  2045. if (!is8bitsperpixel) {
  2046. if (bpp == 12) {
  2047. val += vp56_rac_get_prob(c, 255) << 17;
  2048. val += vp56_rac_get_prob(c, 255) << 16;
  2049. }
  2050. val += (vp56_rac_get_prob(c, 255) << 15);
  2051. val += (vp56_rac_get_prob(c, 255) << 14);
  2052. }
  2053. val += (vp56_rac_get_prob(c, 254) << 13);
  2054. val += (vp56_rac_get_prob(c, 254) << 12);
  2055. val += (vp56_rac_get_prob(c, 254) << 11);
  2056. val += (vp56_rac_get_prob(c, 252) << 10);
  2057. val += (vp56_rac_get_prob(c, 249) << 9);
  2058. val += (vp56_rac_get_prob(c, 243) << 8);
  2059. val += (vp56_rac_get_prob(c, 230) << 7);
  2060. val += (vp56_rac_get_prob(c, 196) << 6);
  2061. val += (vp56_rac_get_prob(c, 177) << 5);
  2062. val += (vp56_rac_get_prob(c, 153) << 4);
  2063. val += (vp56_rac_get_prob(c, 140) << 3);
  2064. val += (vp56_rac_get_prob(c, 133) << 2);
  2065. val += (vp56_rac_get_prob(c, 130) << 1);
  2066. val += vp56_rac_get_prob(c, 129);
  2067. }
  2068. }
  2069. }
  2070. #define STORE_COEF(c, i, v) do { \
  2071. if (is8bitsperpixel) { \
  2072. c[i] = v; \
  2073. } else { \
  2074. AV_WN32A(&c[i * 2], v); \
  2075. } \
  2076. } while (0)
  2077. if (!--band_left)
  2078. band_left = band_counts[++band];
  2079. if (is_tx32x32)
  2080. STORE_COEF(coef, rc, ((vp8_rac_get(c) ? -val : val) * qmul[!!i]) / 2);
  2081. else
  2082. STORE_COEF(coef, rc, (vp8_rac_get(c) ? -val : val) * qmul[!!i]);
  2083. nnz = (1 + cache[nb[i][0]] + cache[nb[i][1]]) >> 1;
  2084. tp = p[band][nnz];
  2085. } while (++i < n_coeffs);
  2086. return i;
  2087. }
  2088. static int decode_coeffs_b_8bpp(VP9Context *s, int16_t *coef, int n_coeffs,
  2089. unsigned (*cnt)[6][3], unsigned (*eob)[6][2],
  2090. uint8_t (*p)[6][11], int nnz, const int16_t *scan,
  2091. const int16_t (*nb)[2], const int16_t *band_counts,
  2092. const int16_t *qmul)
  2093. {
  2094. return decode_coeffs_b_generic(&s->c, coef, n_coeffs, 0, 1, 8, cnt, eob, p,
  2095. nnz, scan, nb, band_counts, qmul);
  2096. }
  2097. static int decode_coeffs_b32_8bpp(VP9Context *s, int16_t *coef, int n_coeffs,
  2098. unsigned (*cnt)[6][3], unsigned (*eob)[6][2],
  2099. uint8_t (*p)[6][11], int nnz, const int16_t *scan,
  2100. const int16_t (*nb)[2], const int16_t *band_counts,
  2101. const int16_t *qmul)
  2102. {
  2103. return decode_coeffs_b_generic(&s->c, coef, n_coeffs, 1, 1, 8, cnt, eob, p,
  2104. nnz, scan, nb, band_counts, qmul);
  2105. }
  2106. static int decode_coeffs_b_16bpp(VP9Context *s, int16_t *coef, int n_coeffs,
  2107. unsigned (*cnt)[6][3], unsigned (*eob)[6][2],
  2108. uint8_t (*p)[6][11], int nnz, const int16_t *scan,
  2109. const int16_t (*nb)[2], const int16_t *band_counts,
  2110. const int16_t *qmul)
  2111. {
  2112. return decode_coeffs_b_generic(&s->c, coef, n_coeffs, 0, 0, s->bpp, cnt, eob, p,
  2113. nnz, scan, nb, band_counts, qmul);
  2114. }
  2115. static int decode_coeffs_b32_16bpp(VP9Context *s, int16_t *coef, int n_coeffs,
  2116. unsigned (*cnt)[6][3], unsigned (*eob)[6][2],
  2117. uint8_t (*p)[6][11], int nnz, const int16_t *scan,
  2118. const int16_t (*nb)[2], const int16_t *band_counts,
  2119. const int16_t *qmul)
  2120. {
  2121. return decode_coeffs_b_generic(&s->c, coef, n_coeffs, 1, 0, s->bpp, cnt, eob, p,
  2122. nnz, scan, nb, band_counts, qmul);
  2123. }
  2124. static av_always_inline int decode_coeffs(AVCodecContext *ctx, int is8bitsperpixel)
  2125. {
  2126. VP9Context *s = ctx->priv_data;
  2127. VP9Block *b = s->b;
  2128. int row = s->row, col = s->col;
  2129. uint8_t (*p)[6][11] = s->prob.coef[b->tx][0 /* y */][!b->intra];
  2130. unsigned (*c)[6][3] = s->counts.coef[b->tx][0 /* y */][!b->intra];
  2131. unsigned (*e)[6][2] = s->counts.eob[b->tx][0 /* y */][!b->intra];
  2132. int w4 = bwh_tab[1][b->bs][0] << 1, h4 = bwh_tab[1][b->bs][1] << 1;
  2133. int end_x = FFMIN(2 * (s->cols - col), w4);
  2134. int end_y = FFMIN(2 * (s->rows - row), h4);
  2135. int n, pl, x, y, res;
  2136. int16_t (*qmul)[2] = s->s.h.segmentation.feat[b->seg_id].qmul;
  2137. int tx = 4 * s->s.h.lossless + b->tx;
  2138. const int16_t * const *yscans = vp9_scans[tx];
  2139. const int16_t (* const *ynbs)[2] = vp9_scans_nb[tx];
  2140. const int16_t *uvscan = vp9_scans[b->uvtx][DCT_DCT];
  2141. const int16_t (*uvnb)[2] = vp9_scans_nb[b->uvtx][DCT_DCT];
  2142. uint8_t *a = &s->above_y_nnz_ctx[col * 2];
  2143. uint8_t *l = &s->left_y_nnz_ctx[(row & 7) << 1];
  2144. static const int16_t band_counts[4][8] = {
  2145. { 1, 2, 3, 4, 3, 16 - 13 },
  2146. { 1, 2, 3, 4, 11, 64 - 21 },
  2147. { 1, 2, 3, 4, 11, 256 - 21 },
  2148. { 1, 2, 3, 4, 11, 1024 - 21 },
  2149. };
  2150. const int16_t *y_band_counts = band_counts[b->tx];
  2151. const int16_t *uv_band_counts = band_counts[b->uvtx];
  2152. int bytesperpixel = is8bitsperpixel ? 1 : 2;
  2153. int total_coeff = 0;
  2154. #define MERGE(la, end, step, rd) \
  2155. for (n = 0; n < end; n += step) \
  2156. la[n] = !!rd(&la[n])
  2157. #define MERGE_CTX(step, rd) \
  2158. do { \
  2159. MERGE(l, end_y, step, rd); \
  2160. MERGE(a, end_x, step, rd); \
  2161. } while (0)
  2162. #define DECODE_Y_COEF_LOOP(step, mode_index, v) \
  2163. for (n = 0, y = 0; y < end_y; y += step) { \
  2164. for (x = 0; x < end_x; x += step, n += step * step) { \
  2165. enum TxfmType txtp = vp9_intra_txfm_type[b->mode[mode_index]]; \
  2166. res = (is8bitsperpixel ? decode_coeffs_b##v##_8bpp : decode_coeffs_b##v##_16bpp) \
  2167. (s, s->block + 16 * n * bytesperpixel, 16 * step * step, \
  2168. c, e, p, a[x] + l[y], yscans[txtp], \
  2169. ynbs[txtp], y_band_counts, qmul[0]); \
  2170. a[x] = l[y] = !!res; \
  2171. total_coeff |= !!res; \
  2172. if (step >= 4) { \
  2173. AV_WN16A(&s->eob[n], res); \
  2174. } else { \
  2175. s->eob[n] = res; \
  2176. } \
  2177. } \
  2178. }
  2179. #define SPLAT(la, end, step, cond) \
  2180. if (step == 2) { \
  2181. for (n = 1; n < end; n += step) \
  2182. la[n] = la[n - 1]; \
  2183. } else if (step == 4) { \
  2184. if (cond) { \
  2185. for (n = 0; n < end; n += step) \
  2186. AV_WN32A(&la[n], la[n] * 0x01010101); \
  2187. } else { \
  2188. for (n = 0; n < end; n += step) \
  2189. memset(&la[n + 1], la[n], FFMIN(end - n - 1, 3)); \
  2190. } \
  2191. } else /* step == 8 */ { \
  2192. if (cond) { \
  2193. if (HAVE_FAST_64BIT) { \
  2194. for (n = 0; n < end; n += step) \
  2195. AV_WN64A(&la[n], la[n] * 0x0101010101010101ULL); \
  2196. } else { \
  2197. for (n = 0; n < end; n += step) { \
  2198. uint32_t v32 = la[n] * 0x01010101; \
  2199. AV_WN32A(&la[n], v32); \
  2200. AV_WN32A(&la[n + 4], v32); \
  2201. } \
  2202. } \
  2203. } else { \
  2204. for (n = 0; n < end; n += step) \
  2205. memset(&la[n + 1], la[n], FFMIN(end - n - 1, 7)); \
  2206. } \
  2207. }
  2208. #define SPLAT_CTX(step) \
  2209. do { \
  2210. SPLAT(a, end_x, step, end_x == w4); \
  2211. SPLAT(l, end_y, step, end_y == h4); \
  2212. } while (0)
  2213. /* y tokens */
  2214. switch (b->tx) {
  2215. case TX_4X4:
  2216. DECODE_Y_COEF_LOOP(1, b->bs > BS_8x8 ? n : 0,);
  2217. break;
  2218. case TX_8X8:
  2219. MERGE_CTX(2, AV_RN16A);
  2220. DECODE_Y_COEF_LOOP(2, 0,);
  2221. SPLAT_CTX(2);
  2222. break;
  2223. case TX_16X16:
  2224. MERGE_CTX(4, AV_RN32A);
  2225. DECODE_Y_COEF_LOOP(4, 0,);
  2226. SPLAT_CTX(4);
  2227. break;
  2228. case TX_32X32:
  2229. MERGE_CTX(8, AV_RN64A);
  2230. DECODE_Y_COEF_LOOP(8, 0, 32);
  2231. SPLAT_CTX(8);
  2232. break;
  2233. }
  2234. #define DECODE_UV_COEF_LOOP(step, v) \
  2235. for (n = 0, y = 0; y < end_y; y += step) { \
  2236. for (x = 0; x < end_x; x += step, n += step * step) { \
  2237. res = (is8bitsperpixel ? decode_coeffs_b##v##_8bpp : decode_coeffs_b##v##_16bpp) \
  2238. (s, s->uvblock[pl] + 16 * n * bytesperpixel, \
  2239. 16 * step * step, c, e, p, a[x] + l[y], \
  2240. uvscan, uvnb, uv_band_counts, qmul[1]); \
  2241. a[x] = l[y] = !!res; \
  2242. total_coeff |= !!res; \
  2243. if (step >= 4) { \
  2244. AV_WN16A(&s->uveob[pl][n], res); \
  2245. } else { \
  2246. s->uveob[pl][n] = res; \
  2247. } \
  2248. } \
  2249. }
  2250. p = s->prob.coef[b->uvtx][1 /* uv */][!b->intra];
  2251. c = s->counts.coef[b->uvtx][1 /* uv */][!b->intra];
  2252. e = s->counts.eob[b->uvtx][1 /* uv */][!b->intra];
  2253. w4 >>= s->ss_h;
  2254. end_x >>= s->ss_h;
  2255. h4 >>= s->ss_v;
  2256. end_y >>= s->ss_v;
  2257. for (pl = 0; pl < 2; pl++) {
  2258. a = &s->above_uv_nnz_ctx[pl][col << !s->ss_h];
  2259. l = &s->left_uv_nnz_ctx[pl][(row & 7) << !s->ss_v];
  2260. switch (b->uvtx) {
  2261. case TX_4X4:
  2262. DECODE_UV_COEF_LOOP(1,);
  2263. break;
  2264. case TX_8X8:
  2265. MERGE_CTX(2, AV_RN16A);
  2266. DECODE_UV_COEF_LOOP(2,);
  2267. SPLAT_CTX(2);
  2268. break;
  2269. case TX_16X16:
  2270. MERGE_CTX(4, AV_RN32A);
  2271. DECODE_UV_COEF_LOOP(4,);
  2272. SPLAT_CTX(4);
  2273. break;
  2274. case TX_32X32:
  2275. MERGE_CTX(8, AV_RN64A);
  2276. DECODE_UV_COEF_LOOP(8, 32);
  2277. SPLAT_CTX(8);
  2278. break;
  2279. }
  2280. }
  2281. return total_coeff;
  2282. }
  2283. static int decode_coeffs_8bpp(AVCodecContext *ctx)
  2284. {
  2285. return decode_coeffs(ctx, 1);
  2286. }
  2287. static int decode_coeffs_16bpp(AVCodecContext *ctx)
  2288. {
  2289. return decode_coeffs(ctx, 0);
  2290. }
  2291. static av_always_inline int check_intra_mode(VP9Context *s, int mode, uint8_t **a,
  2292. uint8_t *dst_edge, ptrdiff_t stride_edge,
  2293. uint8_t *dst_inner, ptrdiff_t stride_inner,
  2294. uint8_t *l, int col, int x, int w,
  2295. int row, int y, enum TxfmMode tx,
  2296. int p, int ss_h, int ss_v, int bytesperpixel)
  2297. {
  2298. int have_top = row > 0 || y > 0;
  2299. int have_left = col > s->tile_col_start || x > 0;
  2300. int have_right = x < w - 1;
  2301. int bpp = s->bpp;
  2302. static const uint8_t mode_conv[10][2 /* have_left */][2 /* have_top */] = {
  2303. [VERT_PRED] = { { DC_127_PRED, VERT_PRED },
  2304. { DC_127_PRED, VERT_PRED } },
  2305. [HOR_PRED] = { { DC_129_PRED, DC_129_PRED },
  2306. { HOR_PRED, HOR_PRED } },
  2307. [DC_PRED] = { { DC_128_PRED, TOP_DC_PRED },
  2308. { LEFT_DC_PRED, DC_PRED } },
  2309. [DIAG_DOWN_LEFT_PRED] = { { DC_127_PRED, DIAG_DOWN_LEFT_PRED },
  2310. { DC_127_PRED, DIAG_DOWN_LEFT_PRED } },
  2311. [DIAG_DOWN_RIGHT_PRED] = { { DIAG_DOWN_RIGHT_PRED, DIAG_DOWN_RIGHT_PRED },
  2312. { DIAG_DOWN_RIGHT_PRED, DIAG_DOWN_RIGHT_PRED } },
  2313. [VERT_RIGHT_PRED] = { { VERT_RIGHT_PRED, VERT_RIGHT_PRED },
  2314. { VERT_RIGHT_PRED, VERT_RIGHT_PRED } },
  2315. [HOR_DOWN_PRED] = { { HOR_DOWN_PRED, HOR_DOWN_PRED },
  2316. { HOR_DOWN_PRED, HOR_DOWN_PRED } },
  2317. [VERT_LEFT_PRED] = { { DC_127_PRED, VERT_LEFT_PRED },
  2318. { DC_127_PRED, VERT_LEFT_PRED } },
  2319. [HOR_UP_PRED] = { { DC_129_PRED, DC_129_PRED },
  2320. { HOR_UP_PRED, HOR_UP_PRED } },
  2321. [TM_VP8_PRED] = { { DC_129_PRED, VERT_PRED },
  2322. { HOR_PRED, TM_VP8_PRED } },
  2323. };
  2324. static const struct {
  2325. uint8_t needs_left:1;
  2326. uint8_t needs_top:1;
  2327. uint8_t needs_topleft:1;
  2328. uint8_t needs_topright:1;
  2329. uint8_t invert_left:1;
  2330. } edges[N_INTRA_PRED_MODES] = {
  2331. [VERT_PRED] = { .needs_top = 1 },
  2332. [HOR_PRED] = { .needs_left = 1 },
  2333. [DC_PRED] = { .needs_top = 1, .needs_left = 1 },
  2334. [DIAG_DOWN_LEFT_PRED] = { .needs_top = 1, .needs_topright = 1 },
  2335. [DIAG_DOWN_RIGHT_PRED] = { .needs_left = 1, .needs_top = 1, .needs_topleft = 1 },
  2336. [VERT_RIGHT_PRED] = { .needs_left = 1, .needs_top = 1, .needs_topleft = 1 },
  2337. [HOR_DOWN_PRED] = { .needs_left = 1, .needs_top = 1, .needs_topleft = 1 },
  2338. [VERT_LEFT_PRED] = { .needs_top = 1, .needs_topright = 1 },
  2339. [HOR_UP_PRED] = { .needs_left = 1, .invert_left = 1 },
  2340. [TM_VP8_PRED] = { .needs_left = 1, .needs_top = 1, .needs_topleft = 1 },
  2341. [LEFT_DC_PRED] = { .needs_left = 1 },
  2342. [TOP_DC_PRED] = { .needs_top = 1 },
  2343. [DC_128_PRED] = { 0 },
  2344. [DC_127_PRED] = { 0 },
  2345. [DC_129_PRED] = { 0 }
  2346. };
  2347. av_assert2(mode >= 0 && mode < 10);
  2348. mode = mode_conv[mode][have_left][have_top];
  2349. if (edges[mode].needs_top) {
  2350. uint8_t *top, *topleft;
  2351. int n_px_need = 4 << tx, n_px_have = (((s->cols - col) << !ss_h) - x) * 4;
  2352. int n_px_need_tr = 0;
  2353. if (tx == TX_4X4 && edges[mode].needs_topright && have_right)
  2354. n_px_need_tr = 4;
  2355. // if top of sb64-row, use s->intra_pred_data[] instead of
  2356. // dst[-stride] for intra prediction (it contains pre- instead of
  2357. // post-loopfilter data)
  2358. if (have_top) {
  2359. top = !(row & 7) && !y ?
  2360. s->intra_pred_data[p] + (col * (8 >> ss_h) + x * 4) * bytesperpixel :
  2361. y == 0 ? &dst_edge[-stride_edge] : &dst_inner[-stride_inner];
  2362. if (have_left)
  2363. topleft = !(row & 7) && !y ?
  2364. s->intra_pred_data[p] + (col * (8 >> ss_h) + x * 4) * bytesperpixel :
  2365. y == 0 || x == 0 ? &dst_edge[-stride_edge] :
  2366. &dst_inner[-stride_inner];
  2367. }
  2368. if (have_top &&
  2369. (!edges[mode].needs_topleft || (have_left && top == topleft)) &&
  2370. (tx != TX_4X4 || !edges[mode].needs_topright || have_right) &&
  2371. n_px_need + n_px_need_tr <= n_px_have) {
  2372. *a = top;
  2373. } else {
  2374. if (have_top) {
  2375. if (n_px_need <= n_px_have) {
  2376. memcpy(*a, top, n_px_need * bytesperpixel);
  2377. } else {
  2378. #define memset_bpp(c, i1, v, i2, num) do { \
  2379. if (bytesperpixel == 1) { \
  2380. memset(&(c)[(i1)], (v)[(i2)], (num)); \
  2381. } else { \
  2382. int n, val = AV_RN16A(&(v)[(i2) * 2]); \
  2383. for (n = 0; n < (num); n++) { \
  2384. AV_WN16A(&(c)[((i1) + n) * 2], val); \
  2385. } \
  2386. } \
  2387. } while (0)
  2388. memcpy(*a, top, n_px_have * bytesperpixel);
  2389. memset_bpp(*a, n_px_have, (*a), n_px_have - 1, n_px_need - n_px_have);
  2390. }
  2391. } else {
  2392. #define memset_val(c, val, num) do { \
  2393. if (bytesperpixel == 1) { \
  2394. memset((c), (val), (num)); \
  2395. } else { \
  2396. int n; \
  2397. for (n = 0; n < (num); n++) { \
  2398. AV_WN16A(&(c)[n * 2], (val)); \
  2399. } \
  2400. } \
  2401. } while (0)
  2402. memset_val(*a, (128 << (bpp - 8)) - 1, n_px_need);
  2403. }
  2404. if (edges[mode].needs_topleft) {
  2405. if (have_left && have_top) {
  2406. #define assign_bpp(c, i1, v, i2) do { \
  2407. if (bytesperpixel == 1) { \
  2408. (c)[(i1)] = (v)[(i2)]; \
  2409. } else { \
  2410. AV_COPY16(&(c)[(i1) * 2], &(v)[(i2) * 2]); \
  2411. } \
  2412. } while (0)
  2413. assign_bpp(*a, -1, topleft, -1);
  2414. } else {
  2415. #define assign_val(c, i, v) do { \
  2416. if (bytesperpixel == 1) { \
  2417. (c)[(i)] = (v); \
  2418. } else { \
  2419. AV_WN16A(&(c)[(i) * 2], (v)); \
  2420. } \
  2421. } while (0)
  2422. assign_val((*a), -1, (128 << (bpp - 8)) + (have_top ? +1 : -1));
  2423. }
  2424. }
  2425. if (tx == TX_4X4 && edges[mode].needs_topright) {
  2426. if (have_top && have_right &&
  2427. n_px_need + n_px_need_tr <= n_px_have) {
  2428. memcpy(&(*a)[4 * bytesperpixel], &top[4 * bytesperpixel], 4 * bytesperpixel);
  2429. } else {
  2430. memset_bpp(*a, 4, *a, 3, 4);
  2431. }
  2432. }
  2433. }
  2434. }
  2435. if (edges[mode].needs_left) {
  2436. if (have_left) {
  2437. int n_px_need = 4 << tx, i, n_px_have = (((s->rows - row) << !ss_v) - y) * 4;
  2438. uint8_t *dst = x == 0 ? dst_edge : dst_inner;
  2439. ptrdiff_t stride = x == 0 ? stride_edge : stride_inner;
  2440. if (edges[mode].invert_left) {
  2441. if (n_px_need <= n_px_have) {
  2442. for (i = 0; i < n_px_need; i++)
  2443. assign_bpp(l, i, &dst[i * stride], -1);
  2444. } else {
  2445. for (i = 0; i < n_px_have; i++)
  2446. assign_bpp(l, i, &dst[i * stride], -1);
  2447. memset_bpp(l, n_px_have, l, n_px_have - 1, n_px_need - n_px_have);
  2448. }
  2449. } else {
  2450. if (n_px_need <= n_px_have) {
  2451. for (i = 0; i < n_px_need; i++)
  2452. assign_bpp(l, n_px_need - 1 - i, &dst[i * stride], -1);
  2453. } else {
  2454. for (i = 0; i < n_px_have; i++)
  2455. assign_bpp(l, n_px_need - 1 - i, &dst[i * stride], -1);
  2456. memset_bpp(l, 0, l, n_px_need - n_px_have, n_px_need - n_px_have);
  2457. }
  2458. }
  2459. } else {
  2460. memset_val(l, (128 << (bpp - 8)) + 1, 4 << tx);
  2461. }
  2462. }
  2463. return mode;
  2464. }
  2465. static av_always_inline void intra_recon(AVCodecContext *ctx, ptrdiff_t y_off,
  2466. ptrdiff_t uv_off, int bytesperpixel)
  2467. {
  2468. VP9Context *s = ctx->priv_data;
  2469. VP9Block *b = s->b;
  2470. int row = s->row, col = s->col;
  2471. int w4 = bwh_tab[1][b->bs][0] << 1, step1d = 1 << b->tx, n;
  2472. int h4 = bwh_tab[1][b->bs][1] << 1, x, y, step = 1 << (b->tx * 2);
  2473. int end_x = FFMIN(2 * (s->cols - col), w4);
  2474. int end_y = FFMIN(2 * (s->rows - row), h4);
  2475. int tx = 4 * s->s.h.lossless + b->tx, uvtx = b->uvtx + 4 * s->s.h.lossless;
  2476. int uvstep1d = 1 << b->uvtx, p;
  2477. uint8_t *dst = s->dst[0], *dst_r = s->s.frames[CUR_FRAME].tf.f->data[0] + y_off;
  2478. LOCAL_ALIGNED_32(uint8_t, a_buf, [96]);
  2479. LOCAL_ALIGNED_32(uint8_t, l, [64]);
  2480. for (n = 0, y = 0; y < end_y; y += step1d) {
  2481. uint8_t *ptr = dst, *ptr_r = dst_r;
  2482. for (x = 0; x < end_x; x += step1d, ptr += 4 * step1d * bytesperpixel,
  2483. ptr_r += 4 * step1d * bytesperpixel, n += step) {
  2484. int mode = b->mode[b->bs > BS_8x8 && b->tx == TX_4X4 ?
  2485. y * 2 + x : 0];
  2486. uint8_t *a = &a_buf[32];
  2487. enum TxfmType txtp = vp9_intra_txfm_type[mode];
  2488. int eob = b->skip ? 0 : b->tx > TX_8X8 ? AV_RN16A(&s->eob[n]) : s->eob[n];
  2489. mode = check_intra_mode(s, mode, &a, ptr_r,
  2490. s->s.frames[CUR_FRAME].tf.f->linesize[0],
  2491. ptr, s->y_stride, l,
  2492. col, x, w4, row, y, b->tx, 0, 0, 0, bytesperpixel);
  2493. s->dsp.intra_pred[b->tx][mode](ptr, s->y_stride, l, a);
  2494. if (eob)
  2495. s->dsp.itxfm_add[tx][txtp](ptr, s->y_stride,
  2496. s->block + 16 * n * bytesperpixel, eob);
  2497. }
  2498. dst_r += 4 * step1d * s->s.frames[CUR_FRAME].tf.f->linesize[0];
  2499. dst += 4 * step1d * s->y_stride;
  2500. }
  2501. // U/V
  2502. w4 >>= s->ss_h;
  2503. end_x >>= s->ss_h;
  2504. end_y >>= s->ss_v;
  2505. step = 1 << (b->uvtx * 2);
  2506. for (p = 0; p < 2; p++) {
  2507. dst = s->dst[1 + p];
  2508. dst_r = s->s.frames[CUR_FRAME].tf.f->data[1 + p] + uv_off;
  2509. for (n = 0, y = 0; y < end_y; y += uvstep1d) {
  2510. uint8_t *ptr = dst, *ptr_r = dst_r;
  2511. for (x = 0; x < end_x; x += uvstep1d, ptr += 4 * uvstep1d * bytesperpixel,
  2512. ptr_r += 4 * uvstep1d * bytesperpixel, n += step) {
  2513. int mode = b->uvmode;
  2514. uint8_t *a = &a_buf[32];
  2515. int eob = b->skip ? 0 : b->uvtx > TX_8X8 ? AV_RN16A(&s->uveob[p][n]) : s->uveob[p][n];
  2516. mode = check_intra_mode(s, mode, &a, ptr_r,
  2517. s->s.frames[CUR_FRAME].tf.f->linesize[1],
  2518. ptr, s->uv_stride, l, col, x, w4, row, y,
  2519. b->uvtx, p + 1, s->ss_h, s->ss_v, bytesperpixel);
  2520. s->dsp.intra_pred[b->uvtx][mode](ptr, s->uv_stride, l, a);
  2521. if (eob)
  2522. s->dsp.itxfm_add[uvtx][DCT_DCT](ptr, s->uv_stride,
  2523. s->uvblock[p] + 16 * n * bytesperpixel, eob);
  2524. }
  2525. dst_r += 4 * uvstep1d * s->s.frames[CUR_FRAME].tf.f->linesize[1];
  2526. dst += 4 * uvstep1d * s->uv_stride;
  2527. }
  2528. }
  2529. }
  2530. static void intra_recon_8bpp(AVCodecContext *ctx, ptrdiff_t y_off, ptrdiff_t uv_off)
  2531. {
  2532. intra_recon(ctx, y_off, uv_off, 1);
  2533. }
  2534. static void intra_recon_16bpp(AVCodecContext *ctx, ptrdiff_t y_off, ptrdiff_t uv_off)
  2535. {
  2536. intra_recon(ctx, y_off, uv_off, 2);
  2537. }
  2538. static av_always_inline void mc_luma_unscaled(VP9Context *s, vp9_mc_func (*mc)[2],
  2539. uint8_t *dst, ptrdiff_t dst_stride,
  2540. const uint8_t *ref, ptrdiff_t ref_stride,
  2541. ThreadFrame *ref_frame,
  2542. ptrdiff_t y, ptrdiff_t x, const VP56mv *mv,
  2543. int bw, int bh, int w, int h, int bytesperpixel)
  2544. {
  2545. int mx = mv->x, my = mv->y, th;
  2546. y += my >> 3;
  2547. x += mx >> 3;
  2548. ref += y * ref_stride + x * bytesperpixel;
  2549. mx &= 7;
  2550. my &= 7;
  2551. // FIXME bilinear filter only needs 0/1 pixels, not 3/4
  2552. // we use +7 because the last 7 pixels of each sbrow can be changed in
  2553. // the longest loopfilter of the next sbrow
  2554. th = (y + bh + 4 * !!my + 7) >> 6;
  2555. ff_thread_await_progress(ref_frame, FFMAX(th, 0), 0);
  2556. if (x < !!mx * 3 || y < !!my * 3 ||
  2557. x + !!mx * 4 > w - bw || y + !!my * 4 > h - bh) {
  2558. s->vdsp.emulated_edge_mc(s->edge_emu_buffer,
  2559. ref - !!my * 3 * ref_stride - !!mx * 3 * bytesperpixel,
  2560. 160, ref_stride,
  2561. bw + !!mx * 7, bh + !!my * 7,
  2562. x - !!mx * 3, y - !!my * 3, w, h);
  2563. ref = s->edge_emu_buffer + !!my * 3 * 160 + !!mx * 3 * bytesperpixel;
  2564. ref_stride = 160;
  2565. }
  2566. mc[!!mx][!!my](dst, dst_stride, ref, ref_stride, bh, mx << 1, my << 1);
  2567. }
  2568. static av_always_inline void mc_chroma_unscaled(VP9Context *s, vp9_mc_func (*mc)[2],
  2569. uint8_t *dst_u, uint8_t *dst_v,
  2570. ptrdiff_t dst_stride,
  2571. const uint8_t *ref_u, ptrdiff_t src_stride_u,
  2572. const uint8_t *ref_v, ptrdiff_t src_stride_v,
  2573. ThreadFrame *ref_frame,
  2574. ptrdiff_t y, ptrdiff_t x, const VP56mv *mv,
  2575. int bw, int bh, int w, int h, int bytesperpixel)
  2576. {
  2577. int mx = mv->x * (1 << !s->ss_h), my = mv->y * (1 << !s->ss_v), th;
  2578. y += my >> 4;
  2579. x += mx >> 4;
  2580. ref_u += y * src_stride_u + x * bytesperpixel;
  2581. ref_v += y * src_stride_v + x * bytesperpixel;
  2582. mx &= 15;
  2583. my &= 15;
  2584. // FIXME bilinear filter only needs 0/1 pixels, not 3/4
  2585. // we use +7 because the last 7 pixels of each sbrow can be changed in
  2586. // the longest loopfilter of the next sbrow
  2587. th = (y + bh + 4 * !!my + 7) >> (6 - s->ss_v);
  2588. ff_thread_await_progress(ref_frame, FFMAX(th, 0), 0);
  2589. if (x < !!mx * 3 || y < !!my * 3 ||
  2590. x + !!mx * 4 > w - bw || y + !!my * 4 > h - bh) {
  2591. s->vdsp.emulated_edge_mc(s->edge_emu_buffer,
  2592. ref_u - !!my * 3 * src_stride_u - !!mx * 3 * bytesperpixel,
  2593. 160, src_stride_u,
  2594. bw + !!mx * 7, bh + !!my * 7,
  2595. x - !!mx * 3, y - !!my * 3, w, h);
  2596. ref_u = s->edge_emu_buffer + !!my * 3 * 160 + !!mx * 3 * bytesperpixel;
  2597. mc[!!mx][!!my](dst_u, dst_stride, ref_u, 160, bh, mx, my);
  2598. s->vdsp.emulated_edge_mc(s->edge_emu_buffer,
  2599. ref_v - !!my * 3 * src_stride_v - !!mx * 3 * bytesperpixel,
  2600. 160, src_stride_v,
  2601. bw + !!mx * 7, bh + !!my * 7,
  2602. x - !!mx * 3, y - !!my * 3, w, h);
  2603. ref_v = s->edge_emu_buffer + !!my * 3 * 160 + !!mx * 3 * bytesperpixel;
  2604. mc[!!mx][!!my](dst_v, dst_stride, ref_v, 160, bh, mx, my);
  2605. } else {
  2606. mc[!!mx][!!my](dst_u, dst_stride, ref_u, src_stride_u, bh, mx, my);
  2607. mc[!!mx][!!my](dst_v, dst_stride, ref_v, src_stride_v, bh, mx, my);
  2608. }
  2609. }
  2610. #define mc_luma_dir(s, mc, dst, dst_ls, src, src_ls, tref, row, col, mv, \
  2611. px, py, pw, ph, bw, bh, w, h, i) \
  2612. mc_luma_unscaled(s, s->dsp.mc, dst, dst_ls, src, src_ls, tref, row, col, \
  2613. mv, bw, bh, w, h, bytesperpixel)
  2614. #define mc_chroma_dir(s, mc, dstu, dstv, dst_ls, srcu, srcu_ls, srcv, srcv_ls, tref, \
  2615. row, col, mv, px, py, pw, ph, bw, bh, w, h, i) \
  2616. mc_chroma_unscaled(s, s->dsp.mc, dstu, dstv, dst_ls, srcu, srcu_ls, srcv, srcv_ls, tref, \
  2617. row, col, mv, bw, bh, w, h, bytesperpixel)
  2618. #define SCALED 0
  2619. #define FN(x) x##_8bpp
  2620. #define BYTES_PER_PIXEL 1
  2621. #include "vp9_mc_template.c"
  2622. #undef FN
  2623. #undef BYTES_PER_PIXEL
  2624. #define FN(x) x##_16bpp
  2625. #define BYTES_PER_PIXEL 2
  2626. #include "vp9_mc_template.c"
  2627. #undef mc_luma_dir
  2628. #undef mc_chroma_dir
  2629. #undef FN
  2630. #undef BYTES_PER_PIXEL
  2631. #undef SCALED
  2632. static av_always_inline void mc_luma_scaled(VP9Context *s, vp9_scaled_mc_func smc,
  2633. vp9_mc_func (*mc)[2],
  2634. uint8_t *dst, ptrdiff_t dst_stride,
  2635. const uint8_t *ref, ptrdiff_t ref_stride,
  2636. ThreadFrame *ref_frame,
  2637. ptrdiff_t y, ptrdiff_t x, const VP56mv *in_mv,
  2638. int px, int py, int pw, int ph,
  2639. int bw, int bh, int w, int h, int bytesperpixel,
  2640. const uint16_t *scale, const uint8_t *step)
  2641. {
  2642. if (s->s.frames[CUR_FRAME].tf.f->width == ref_frame->f->width &&
  2643. s->s.frames[CUR_FRAME].tf.f->height == ref_frame->f->height) {
  2644. mc_luma_unscaled(s, mc, dst, dst_stride, ref, ref_stride, ref_frame,
  2645. y, x, in_mv, bw, bh, w, h, bytesperpixel);
  2646. } else {
  2647. #define scale_mv(n, dim) (((int64_t)(n) * scale[dim]) >> 14)
  2648. int mx, my;
  2649. int refbw_m1, refbh_m1;
  2650. int th;
  2651. VP56mv mv;
  2652. mv.x = av_clip(in_mv->x, -(x + pw - px + 4) * 8, (s->cols * 8 - x + px + 3) * 8);
  2653. mv.y = av_clip(in_mv->y, -(y + ph - py + 4) * 8, (s->rows * 8 - y + py + 3) * 8);
  2654. // BUG libvpx seems to scale the two components separately. This introduces
  2655. // rounding errors but we have to reproduce them to be exactly compatible
  2656. // with the output from libvpx...
  2657. mx = scale_mv(mv.x * 2, 0) + scale_mv(x * 16, 0);
  2658. my = scale_mv(mv.y * 2, 1) + scale_mv(y * 16, 1);
  2659. y = my >> 4;
  2660. x = mx >> 4;
  2661. ref += y * ref_stride + x * bytesperpixel;
  2662. mx &= 15;
  2663. my &= 15;
  2664. refbw_m1 = ((bw - 1) * step[0] + mx) >> 4;
  2665. refbh_m1 = ((bh - 1) * step[1] + my) >> 4;
  2666. // FIXME bilinear filter only needs 0/1 pixels, not 3/4
  2667. // we use +7 because the last 7 pixels of each sbrow can be changed in
  2668. // the longest loopfilter of the next sbrow
  2669. th = (y + refbh_m1 + 4 + 7) >> 6;
  2670. ff_thread_await_progress(ref_frame, FFMAX(th, 0), 0);
  2671. if (x < 3 || y < 3 || x + 4 >= w - refbw_m1 || y + 4 >= h - refbh_m1) {
  2672. s->vdsp.emulated_edge_mc(s->edge_emu_buffer,
  2673. ref - 3 * ref_stride - 3 * bytesperpixel,
  2674. 288, ref_stride,
  2675. refbw_m1 + 8, refbh_m1 + 8,
  2676. x - 3, y - 3, w, h);
  2677. ref = s->edge_emu_buffer + 3 * 288 + 3 * bytesperpixel;
  2678. ref_stride = 288;
  2679. }
  2680. smc(dst, dst_stride, ref, ref_stride, bh, mx, my, step[0], step[1]);
  2681. }
  2682. }
  2683. static av_always_inline void mc_chroma_scaled(VP9Context *s, vp9_scaled_mc_func smc,
  2684. vp9_mc_func (*mc)[2],
  2685. uint8_t *dst_u, uint8_t *dst_v,
  2686. ptrdiff_t dst_stride,
  2687. const uint8_t *ref_u, ptrdiff_t src_stride_u,
  2688. const uint8_t *ref_v, ptrdiff_t src_stride_v,
  2689. ThreadFrame *ref_frame,
  2690. ptrdiff_t y, ptrdiff_t x, const VP56mv *in_mv,
  2691. int px, int py, int pw, int ph,
  2692. int bw, int bh, int w, int h, int bytesperpixel,
  2693. const uint16_t *scale, const uint8_t *step)
  2694. {
  2695. if (s->s.frames[CUR_FRAME].tf.f->width == ref_frame->f->width &&
  2696. s->s.frames[CUR_FRAME].tf.f->height == ref_frame->f->height) {
  2697. mc_chroma_unscaled(s, mc, dst_u, dst_v, dst_stride, ref_u, src_stride_u,
  2698. ref_v, src_stride_v, ref_frame,
  2699. y, x, in_mv, bw, bh, w, h, bytesperpixel);
  2700. } else {
  2701. int mx, my;
  2702. int refbw_m1, refbh_m1;
  2703. int th;
  2704. VP56mv mv;
  2705. if (s->ss_h) {
  2706. // BUG https://code.google.com/p/webm/issues/detail?id=820
  2707. mv.x = av_clip(in_mv->x, -(x + pw - px + 4) * 16, (s->cols * 4 - x + px + 3) * 16);
  2708. mx = scale_mv(mv.x, 0) + (scale_mv(x * 16, 0) & ~15) + (scale_mv(x * 32, 0) & 15);
  2709. } else {
  2710. mv.x = av_clip(in_mv->x, -(x + pw - px + 4) * 8, (s->cols * 8 - x + px + 3) * 8);
  2711. mx = scale_mv(mv.x * 2, 0) + scale_mv(x * 16, 0);
  2712. }
  2713. if (s->ss_v) {
  2714. // BUG https://code.google.com/p/webm/issues/detail?id=820
  2715. mv.y = av_clip(in_mv->y, -(y + ph - py + 4) * 16, (s->rows * 4 - y + py + 3) * 16);
  2716. my = scale_mv(mv.y, 1) + (scale_mv(y * 16, 1) & ~15) + (scale_mv(y * 32, 1) & 15);
  2717. } else {
  2718. mv.y = av_clip(in_mv->y, -(y + ph - py + 4) * 8, (s->rows * 8 - y + py + 3) * 8);
  2719. my = scale_mv(mv.y * 2, 1) + scale_mv(y * 16, 1);
  2720. }
  2721. #undef scale_mv
  2722. y = my >> 4;
  2723. x = mx >> 4;
  2724. ref_u += y * src_stride_u + x * bytesperpixel;
  2725. ref_v += y * src_stride_v + x * bytesperpixel;
  2726. mx &= 15;
  2727. my &= 15;
  2728. refbw_m1 = ((bw - 1) * step[0] + mx) >> 4;
  2729. refbh_m1 = ((bh - 1) * step[1] + my) >> 4;
  2730. // FIXME bilinear filter only needs 0/1 pixels, not 3/4
  2731. // we use +7 because the last 7 pixels of each sbrow can be changed in
  2732. // the longest loopfilter of the next sbrow
  2733. th = (y + refbh_m1 + 4 + 7) >> (6 - s->ss_v);
  2734. ff_thread_await_progress(ref_frame, FFMAX(th, 0), 0);
  2735. if (x < 3 || y < 3 || x + 4 >= w - refbw_m1 || y + 4 >= h - refbh_m1) {
  2736. s->vdsp.emulated_edge_mc(s->edge_emu_buffer,
  2737. ref_u - 3 * src_stride_u - 3 * bytesperpixel,
  2738. 288, src_stride_u,
  2739. refbw_m1 + 8, refbh_m1 + 8,
  2740. x - 3, y - 3, w, h);
  2741. ref_u = s->edge_emu_buffer + 3 * 288 + 3 * bytesperpixel;
  2742. smc(dst_u, dst_stride, ref_u, 288, bh, mx, my, step[0], step[1]);
  2743. s->vdsp.emulated_edge_mc(s->edge_emu_buffer,
  2744. ref_v - 3 * src_stride_v - 3 * bytesperpixel,
  2745. 288, src_stride_v,
  2746. refbw_m1 + 8, refbh_m1 + 8,
  2747. x - 3, y - 3, w, h);
  2748. ref_v = s->edge_emu_buffer + 3 * 288 + 3 * bytesperpixel;
  2749. smc(dst_v, dst_stride, ref_v, 288, bh, mx, my, step[0], step[1]);
  2750. } else {
  2751. smc(dst_u, dst_stride, ref_u, src_stride_u, bh, mx, my, step[0], step[1]);
  2752. smc(dst_v, dst_stride, ref_v, src_stride_v, bh, mx, my, step[0], step[1]);
  2753. }
  2754. }
  2755. }
  2756. #define mc_luma_dir(s, mc, dst, dst_ls, src, src_ls, tref, row, col, mv, \
  2757. px, py, pw, ph, bw, bh, w, h, i) \
  2758. mc_luma_scaled(s, s->dsp.s##mc, s->dsp.mc, dst, dst_ls, src, src_ls, tref, row, col, \
  2759. mv, px, py, pw, ph, bw, bh, w, h, bytesperpixel, \
  2760. s->mvscale[b->ref[i]], s->mvstep[b->ref[i]])
  2761. #define mc_chroma_dir(s, mc, dstu, dstv, dst_ls, srcu, srcu_ls, srcv, srcv_ls, tref, \
  2762. row, col, mv, px, py, pw, ph, bw, bh, w, h, i) \
  2763. mc_chroma_scaled(s, s->dsp.s##mc, s->dsp.mc, dstu, dstv, dst_ls, srcu, srcu_ls, srcv, srcv_ls, tref, \
  2764. row, col, mv, px, py, pw, ph, bw, bh, w, h, bytesperpixel, \
  2765. s->mvscale[b->ref[i]], s->mvstep[b->ref[i]])
  2766. #define SCALED 1
  2767. #define FN(x) x##_scaled_8bpp
  2768. #define BYTES_PER_PIXEL 1
  2769. #include "vp9_mc_template.c"
  2770. #undef FN
  2771. #undef BYTES_PER_PIXEL
  2772. #define FN(x) x##_scaled_16bpp
  2773. #define BYTES_PER_PIXEL 2
  2774. #include "vp9_mc_template.c"
  2775. #undef mc_luma_dir
  2776. #undef mc_chroma_dir
  2777. #undef FN
  2778. #undef BYTES_PER_PIXEL
  2779. #undef SCALED
  2780. static av_always_inline void inter_recon(AVCodecContext *ctx, int bytesperpixel)
  2781. {
  2782. VP9Context *s = ctx->priv_data;
  2783. VP9Block *b = s->b;
  2784. int row = s->row, col = s->col;
  2785. if (s->mvscale[b->ref[0]][0] || (b->comp && s->mvscale[b->ref[1]][0])) {
  2786. if (bytesperpixel == 1) {
  2787. inter_pred_scaled_8bpp(ctx);
  2788. } else {
  2789. inter_pred_scaled_16bpp(ctx);
  2790. }
  2791. } else {
  2792. if (bytesperpixel == 1) {
  2793. inter_pred_8bpp(ctx);
  2794. } else {
  2795. inter_pred_16bpp(ctx);
  2796. }
  2797. }
  2798. if (!b->skip) {
  2799. /* mostly copied intra_recon() */
  2800. int w4 = bwh_tab[1][b->bs][0] << 1, step1d = 1 << b->tx, n;
  2801. int h4 = bwh_tab[1][b->bs][1] << 1, x, y, step = 1 << (b->tx * 2);
  2802. int end_x = FFMIN(2 * (s->cols - col), w4);
  2803. int end_y = FFMIN(2 * (s->rows - row), h4);
  2804. int tx = 4 * s->s.h.lossless + b->tx, uvtx = b->uvtx + 4 * s->s.h.lossless;
  2805. int uvstep1d = 1 << b->uvtx, p;
  2806. uint8_t *dst = s->dst[0];
  2807. // y itxfm add
  2808. for (n = 0, y = 0; y < end_y; y += step1d) {
  2809. uint8_t *ptr = dst;
  2810. for (x = 0; x < end_x; x += step1d,
  2811. ptr += 4 * step1d * bytesperpixel, n += step) {
  2812. int eob = b->tx > TX_8X8 ? AV_RN16A(&s->eob[n]) : s->eob[n];
  2813. if (eob)
  2814. s->dsp.itxfm_add[tx][DCT_DCT](ptr, s->y_stride,
  2815. s->block + 16 * n * bytesperpixel, eob);
  2816. }
  2817. dst += 4 * s->y_stride * step1d;
  2818. }
  2819. // uv itxfm add
  2820. end_x >>= s->ss_h;
  2821. end_y >>= s->ss_v;
  2822. step = 1 << (b->uvtx * 2);
  2823. for (p = 0; p < 2; p++) {
  2824. dst = s->dst[p + 1];
  2825. for (n = 0, y = 0; y < end_y; y += uvstep1d) {
  2826. uint8_t *ptr = dst;
  2827. for (x = 0; x < end_x; x += uvstep1d,
  2828. ptr += 4 * uvstep1d * bytesperpixel, n += step) {
  2829. int eob = b->uvtx > TX_8X8 ? AV_RN16A(&s->uveob[p][n]) : s->uveob[p][n];
  2830. if (eob)
  2831. s->dsp.itxfm_add[uvtx][DCT_DCT](ptr, s->uv_stride,
  2832. s->uvblock[p] + 16 * n * bytesperpixel, eob);
  2833. }
  2834. dst += 4 * uvstep1d * s->uv_stride;
  2835. }
  2836. }
  2837. }
  2838. }
  2839. static void inter_recon_8bpp(AVCodecContext *ctx)
  2840. {
  2841. inter_recon(ctx, 1);
  2842. }
  2843. static void inter_recon_16bpp(AVCodecContext *ctx)
  2844. {
  2845. inter_recon(ctx, 2);
  2846. }
  2847. static av_always_inline void mask_edges(uint8_t (*mask)[8][4], int ss_h, int ss_v,
  2848. int row_and_7, int col_and_7,
  2849. int w, int h, int col_end, int row_end,
  2850. enum TxfmMode tx, int skip_inter)
  2851. {
  2852. static const unsigned wide_filter_col_mask[2] = { 0x11, 0x01 };
  2853. static const unsigned wide_filter_row_mask[2] = { 0x03, 0x07 };
  2854. // FIXME I'm pretty sure all loops can be replaced by a single LUT if
  2855. // we make VP9Filter.mask uint64_t (i.e. row/col all single variable)
  2856. // and make the LUT 5-indexed (bl, bp, is_uv, tx and row/col), and then
  2857. // use row_and_7/col_and_7 as shifts (1*col_and_7+8*row_and_7)
  2858. // the intended behaviour of the vp9 loopfilter is to work on 8-pixel
  2859. // edges. This means that for UV, we work on two subsampled blocks at
  2860. // a time, and we only use the topleft block's mode information to set
  2861. // things like block strength. Thus, for any block size smaller than
  2862. // 16x16, ignore the odd portion of the block.
  2863. if (tx == TX_4X4 && (ss_v | ss_h)) {
  2864. if (h == ss_v) {
  2865. if (row_and_7 & 1)
  2866. return;
  2867. if (!row_end)
  2868. h += 1;
  2869. }
  2870. if (w == ss_h) {
  2871. if (col_and_7 & 1)
  2872. return;
  2873. if (!col_end)
  2874. w += 1;
  2875. }
  2876. }
  2877. if (tx == TX_4X4 && !skip_inter) {
  2878. int t = 1 << col_and_7, m_col = (t << w) - t, y;
  2879. // on 32-px edges, use the 8-px wide loopfilter; else, use 4-px wide
  2880. int m_row_8 = m_col & wide_filter_col_mask[ss_h], m_row_4 = m_col - m_row_8;
  2881. for (y = row_and_7; y < h + row_and_7; y++) {
  2882. int col_mask_id = 2 - !(y & wide_filter_row_mask[ss_v]);
  2883. mask[0][y][1] |= m_row_8;
  2884. mask[0][y][2] |= m_row_4;
  2885. // for odd lines, if the odd col is not being filtered,
  2886. // skip odd row also:
  2887. // .---. <-- a
  2888. // | |
  2889. // |___| <-- b
  2890. // ^ ^
  2891. // c d
  2892. //
  2893. // if a/c are even row/col and b/d are odd, and d is skipped,
  2894. // e.g. right edge of size-66x66.webm, then skip b also (bug)
  2895. if ((ss_h & ss_v) && (col_end & 1) && (y & 1)) {
  2896. mask[1][y][col_mask_id] |= (t << (w - 1)) - t;
  2897. } else {
  2898. mask[1][y][col_mask_id] |= m_col;
  2899. }
  2900. if (!ss_h)
  2901. mask[0][y][3] |= m_col;
  2902. if (!ss_v) {
  2903. if (ss_h && (col_end & 1))
  2904. mask[1][y][3] |= (t << (w - 1)) - t;
  2905. else
  2906. mask[1][y][3] |= m_col;
  2907. }
  2908. }
  2909. } else {
  2910. int y, t = 1 << col_and_7, m_col = (t << w) - t;
  2911. if (!skip_inter) {
  2912. int mask_id = (tx == TX_8X8);
  2913. static const unsigned masks[4] = { 0xff, 0x55, 0x11, 0x01 };
  2914. int l2 = tx + ss_h - 1, step1d;
  2915. int m_row = m_col & masks[l2];
  2916. // at odd UV col/row edges tx16/tx32 loopfilter edges, force
  2917. // 8wd loopfilter to prevent going off the visible edge.
  2918. if (ss_h && tx > TX_8X8 && (w ^ (w - 1)) == 1) {
  2919. int m_row_16 = ((t << (w - 1)) - t) & masks[l2];
  2920. int m_row_8 = m_row - m_row_16;
  2921. for (y = row_and_7; y < h + row_and_7; y++) {
  2922. mask[0][y][0] |= m_row_16;
  2923. mask[0][y][1] |= m_row_8;
  2924. }
  2925. } else {
  2926. for (y = row_and_7; y < h + row_and_7; y++)
  2927. mask[0][y][mask_id] |= m_row;
  2928. }
  2929. l2 = tx + ss_v - 1;
  2930. step1d = 1 << l2;
  2931. if (ss_v && tx > TX_8X8 && (h ^ (h - 1)) == 1) {
  2932. for (y = row_and_7; y < h + row_and_7 - 1; y += step1d)
  2933. mask[1][y][0] |= m_col;
  2934. if (y - row_and_7 == h - 1)
  2935. mask[1][y][1] |= m_col;
  2936. } else {
  2937. for (y = row_and_7; y < h + row_and_7; y += step1d)
  2938. mask[1][y][mask_id] |= m_col;
  2939. }
  2940. } else if (tx != TX_4X4) {
  2941. int mask_id;
  2942. mask_id = (tx == TX_8X8) || (h == ss_v);
  2943. mask[1][row_and_7][mask_id] |= m_col;
  2944. mask_id = (tx == TX_8X8) || (w == ss_h);
  2945. for (y = row_and_7; y < h + row_and_7; y++)
  2946. mask[0][y][mask_id] |= t;
  2947. } else {
  2948. int t8 = t & wide_filter_col_mask[ss_h], t4 = t - t8;
  2949. for (y = row_and_7; y < h + row_and_7; y++) {
  2950. mask[0][y][2] |= t4;
  2951. mask[0][y][1] |= t8;
  2952. }
  2953. mask[1][row_and_7][2 - !(row_and_7 & wide_filter_row_mask[ss_v])] |= m_col;
  2954. }
  2955. }
  2956. }
  2957. static void decode_b(AVCodecContext *ctx, int row, int col,
  2958. struct VP9Filter *lflvl, ptrdiff_t yoff, ptrdiff_t uvoff,
  2959. enum BlockLevel bl, enum BlockPartition bp)
  2960. {
  2961. VP9Context *s = ctx->priv_data;
  2962. VP9Block *b = s->b;
  2963. enum BlockSize bs = bl * 3 + bp;
  2964. int bytesperpixel = s->bytesperpixel;
  2965. int w4 = bwh_tab[1][bs][0], h4 = bwh_tab[1][bs][1], lvl;
  2966. int emu[2];
  2967. AVFrame *f = s->s.frames[CUR_FRAME].tf.f;
  2968. s->row = row;
  2969. s->row7 = row & 7;
  2970. s->col = col;
  2971. s->col7 = col & 7;
  2972. s->min_mv.x = -(128 + col * 64);
  2973. s->min_mv.y = -(128 + row * 64);
  2974. s->max_mv.x = 128 + (s->cols - col - w4) * 64;
  2975. s->max_mv.y = 128 + (s->rows - row - h4) * 64;
  2976. if (s->pass < 2) {
  2977. b->bs = bs;
  2978. b->bl = bl;
  2979. b->bp = bp;
  2980. decode_mode(ctx);
  2981. b->uvtx = b->tx - ((s->ss_h && w4 * 2 == (1 << b->tx)) ||
  2982. (s->ss_v && h4 * 2 == (1 << b->tx)));
  2983. if (!b->skip) {
  2984. int has_coeffs;
  2985. if (bytesperpixel == 1) {
  2986. has_coeffs = decode_coeffs_8bpp(ctx);
  2987. } else {
  2988. has_coeffs = decode_coeffs_16bpp(ctx);
  2989. }
  2990. if (!has_coeffs && b->bs <= BS_8x8 && !b->intra) {
  2991. b->skip = 1;
  2992. memset(&s->above_skip_ctx[col], 1, w4);
  2993. memset(&s->left_skip_ctx[s->row7], 1, h4);
  2994. }
  2995. } else {
  2996. int row7 = s->row7;
  2997. #define SPLAT_ZERO_CTX(v, n) \
  2998. switch (n) { \
  2999. case 1: v = 0; break; \
  3000. case 2: AV_ZERO16(&v); break; \
  3001. case 4: AV_ZERO32(&v); break; \
  3002. case 8: AV_ZERO64(&v); break; \
  3003. case 16: AV_ZERO128(&v); break; \
  3004. }
  3005. #define SPLAT_ZERO_YUV(dir, var, off, n, dir2) \
  3006. do { \
  3007. SPLAT_ZERO_CTX(s->dir##_y_##var[off * 2], n * 2); \
  3008. if (s->ss_##dir2) { \
  3009. SPLAT_ZERO_CTX(s->dir##_uv_##var[0][off], n); \
  3010. SPLAT_ZERO_CTX(s->dir##_uv_##var[1][off], n); \
  3011. } else { \
  3012. SPLAT_ZERO_CTX(s->dir##_uv_##var[0][off * 2], n * 2); \
  3013. SPLAT_ZERO_CTX(s->dir##_uv_##var[1][off * 2], n * 2); \
  3014. } \
  3015. } while (0)
  3016. switch (w4) {
  3017. case 1: SPLAT_ZERO_YUV(above, nnz_ctx, col, 1, h); break;
  3018. case 2: SPLAT_ZERO_YUV(above, nnz_ctx, col, 2, h); break;
  3019. case 4: SPLAT_ZERO_YUV(above, nnz_ctx, col, 4, h); break;
  3020. case 8: SPLAT_ZERO_YUV(above, nnz_ctx, col, 8, h); break;
  3021. }
  3022. switch (h4) {
  3023. case 1: SPLAT_ZERO_YUV(left, nnz_ctx, row7, 1, v); break;
  3024. case 2: SPLAT_ZERO_YUV(left, nnz_ctx, row7, 2, v); break;
  3025. case 4: SPLAT_ZERO_YUV(left, nnz_ctx, row7, 4, v); break;
  3026. case 8: SPLAT_ZERO_YUV(left, nnz_ctx, row7, 8, v); break;
  3027. }
  3028. }
  3029. if (s->pass == 1) {
  3030. s->b++;
  3031. s->block += w4 * h4 * 64 * bytesperpixel;
  3032. s->uvblock[0] += w4 * h4 * 64 * bytesperpixel >> (s->ss_h + s->ss_v);
  3033. s->uvblock[1] += w4 * h4 * 64 * bytesperpixel >> (s->ss_h + s->ss_v);
  3034. s->eob += 4 * w4 * h4;
  3035. s->uveob[0] += 4 * w4 * h4 >> (s->ss_h + s->ss_v);
  3036. s->uveob[1] += 4 * w4 * h4 >> (s->ss_h + s->ss_v);
  3037. return;
  3038. }
  3039. }
  3040. // emulated overhangs if the stride of the target buffer can't hold. This
  3041. // makes it possible to support emu-edge and so on even if we have large block
  3042. // overhangs
  3043. emu[0] = (col + w4) * 8 * bytesperpixel > f->linesize[0] ||
  3044. (row + h4) > s->rows;
  3045. emu[1] = ((col + w4) * 8 >> s->ss_h) * bytesperpixel > f->linesize[1] ||
  3046. (row + h4) > s->rows;
  3047. if (emu[0]) {
  3048. s->dst[0] = s->tmp_y;
  3049. s->y_stride = 128;
  3050. } else {
  3051. s->dst[0] = f->data[0] + yoff;
  3052. s->y_stride = f->linesize[0];
  3053. }
  3054. if (emu[1]) {
  3055. s->dst[1] = s->tmp_uv[0];
  3056. s->dst[2] = s->tmp_uv[1];
  3057. s->uv_stride = 128;
  3058. } else {
  3059. s->dst[1] = f->data[1] + uvoff;
  3060. s->dst[2] = f->data[2] + uvoff;
  3061. s->uv_stride = f->linesize[1];
  3062. }
  3063. if (b->intra) {
  3064. if (s->bpp > 8) {
  3065. intra_recon_16bpp(ctx, yoff, uvoff);
  3066. } else {
  3067. intra_recon_8bpp(ctx, yoff, uvoff);
  3068. }
  3069. } else {
  3070. if (s->bpp > 8) {
  3071. inter_recon_16bpp(ctx);
  3072. } else {
  3073. inter_recon_8bpp(ctx);
  3074. }
  3075. }
  3076. if (emu[0]) {
  3077. int w = FFMIN(s->cols - col, w4) * 8, h = FFMIN(s->rows - row, h4) * 8, n, o = 0;
  3078. for (n = 0; o < w; n++) {
  3079. int bw = 64 >> n;
  3080. av_assert2(n <= 4);
  3081. if (w & bw) {
  3082. s->dsp.mc[n][0][0][0][0](f->data[0] + yoff + o * bytesperpixel, f->linesize[0],
  3083. s->tmp_y + o * bytesperpixel, 128, h, 0, 0);
  3084. o += bw;
  3085. }
  3086. }
  3087. }
  3088. if (emu[1]) {
  3089. int w = FFMIN(s->cols - col, w4) * 8 >> s->ss_h;
  3090. int h = FFMIN(s->rows - row, h4) * 8 >> s->ss_v, n, o = 0;
  3091. for (n = s->ss_h; o < w; n++) {
  3092. int bw = 64 >> n;
  3093. av_assert2(n <= 4);
  3094. if (w & bw) {
  3095. s->dsp.mc[n][0][0][0][0](f->data[1] + uvoff + o * bytesperpixel, f->linesize[1],
  3096. s->tmp_uv[0] + o * bytesperpixel, 128, h, 0, 0);
  3097. s->dsp.mc[n][0][0][0][0](f->data[2] + uvoff + o * bytesperpixel, f->linesize[2],
  3098. s->tmp_uv[1] + o * bytesperpixel, 128, h, 0, 0);
  3099. o += bw;
  3100. }
  3101. }
  3102. }
  3103. // pick filter level and find edges to apply filter to
  3104. if (s->s.h.filter.level &&
  3105. (lvl = s->s.h.segmentation.feat[b->seg_id].lflvl[b->intra ? 0 : b->ref[0] + 1]
  3106. [b->mode[3] != ZEROMV]) > 0) {
  3107. int x_end = FFMIN(s->cols - col, w4), y_end = FFMIN(s->rows - row, h4);
  3108. int skip_inter = !b->intra && b->skip, col7 = s->col7, row7 = s->row7;
  3109. setctx_2d(&lflvl->level[row7 * 8 + col7], w4, h4, 8, lvl);
  3110. mask_edges(lflvl->mask[0], 0, 0, row7, col7, x_end, y_end, 0, 0, b->tx, skip_inter);
  3111. if (s->ss_h || s->ss_v)
  3112. mask_edges(lflvl->mask[1], s->ss_h, s->ss_v, row7, col7, x_end, y_end,
  3113. s->cols & 1 && col + w4 >= s->cols ? s->cols & 7 : 0,
  3114. s->rows & 1 && row + h4 >= s->rows ? s->rows & 7 : 0,
  3115. b->uvtx, skip_inter);
  3116. if (!s->filter_lut.lim_lut[lvl]) {
  3117. int sharp = s->s.h.filter.sharpness;
  3118. int limit = lvl;
  3119. if (sharp > 0) {
  3120. limit >>= (sharp + 3) >> 2;
  3121. limit = FFMIN(limit, 9 - sharp);
  3122. }
  3123. limit = FFMAX(limit, 1);
  3124. s->filter_lut.lim_lut[lvl] = limit;
  3125. s->filter_lut.mblim_lut[lvl] = 2 * (lvl + 2) + limit;
  3126. }
  3127. }
  3128. if (s->pass == 2) {
  3129. s->b++;
  3130. s->block += w4 * h4 * 64 * bytesperpixel;
  3131. s->uvblock[0] += w4 * h4 * 64 * bytesperpixel >> (s->ss_v + s->ss_h);
  3132. s->uvblock[1] += w4 * h4 * 64 * bytesperpixel >> (s->ss_v + s->ss_h);
  3133. s->eob += 4 * w4 * h4;
  3134. s->uveob[0] += 4 * w4 * h4 >> (s->ss_v + s->ss_h);
  3135. s->uveob[1] += 4 * w4 * h4 >> (s->ss_v + s->ss_h);
  3136. }
  3137. }
  3138. static void decode_sb(AVCodecContext *ctx, int row, int col, struct VP9Filter *lflvl,
  3139. ptrdiff_t yoff, ptrdiff_t uvoff, enum BlockLevel bl)
  3140. {
  3141. VP9Context *s = ctx->priv_data;
  3142. int c = ((s->above_partition_ctx[col] >> (3 - bl)) & 1) |
  3143. (((s->left_partition_ctx[row & 0x7] >> (3 - bl)) & 1) << 1);
  3144. const uint8_t *p = s->s.h.keyframe || s->s.h.intraonly ? vp9_default_kf_partition_probs[bl][c] :
  3145. s->prob.p.partition[bl][c];
  3146. enum BlockPartition bp;
  3147. ptrdiff_t hbs = 4 >> bl;
  3148. AVFrame *f = s->s.frames[CUR_FRAME].tf.f;
  3149. ptrdiff_t y_stride = f->linesize[0], uv_stride = f->linesize[1];
  3150. int bytesperpixel = s->bytesperpixel;
  3151. if (bl == BL_8X8) {
  3152. bp = vp8_rac_get_tree(&s->c, vp9_partition_tree, p);
  3153. decode_b(ctx, row, col, lflvl, yoff, uvoff, bl, bp);
  3154. } else if (col + hbs < s->cols) { // FIXME why not <=?
  3155. if (row + hbs < s->rows) { // FIXME why not <=?
  3156. bp = vp8_rac_get_tree(&s->c, vp9_partition_tree, p);
  3157. switch (bp) {
  3158. case PARTITION_NONE:
  3159. decode_b(ctx, row, col, lflvl, yoff, uvoff, bl, bp);
  3160. break;
  3161. case PARTITION_H:
  3162. decode_b(ctx, row, col, lflvl, yoff, uvoff, bl, bp);
  3163. yoff += hbs * 8 * y_stride;
  3164. uvoff += hbs * 8 * uv_stride >> s->ss_v;
  3165. decode_b(ctx, row + hbs, col, lflvl, yoff, uvoff, bl, bp);
  3166. break;
  3167. case PARTITION_V:
  3168. decode_b(ctx, row, col, lflvl, yoff, uvoff, bl, bp);
  3169. yoff += hbs * 8 * bytesperpixel;
  3170. uvoff += hbs * 8 * bytesperpixel >> s->ss_h;
  3171. decode_b(ctx, row, col + hbs, lflvl, yoff, uvoff, bl, bp);
  3172. break;
  3173. case PARTITION_SPLIT:
  3174. decode_sb(ctx, row, col, lflvl, yoff, uvoff, bl + 1);
  3175. decode_sb(ctx, row, col + hbs, lflvl,
  3176. yoff + 8 * hbs * bytesperpixel,
  3177. uvoff + (8 * hbs * bytesperpixel >> s->ss_h), bl + 1);
  3178. yoff += hbs * 8 * y_stride;
  3179. uvoff += hbs * 8 * uv_stride >> s->ss_v;
  3180. decode_sb(ctx, row + hbs, col, lflvl, yoff, uvoff, bl + 1);
  3181. decode_sb(ctx, row + hbs, col + hbs, lflvl,
  3182. yoff + 8 * hbs * bytesperpixel,
  3183. uvoff + (8 * hbs * bytesperpixel >> s->ss_h), bl + 1);
  3184. break;
  3185. default:
  3186. av_assert0(0);
  3187. }
  3188. } else if (vp56_rac_get_prob_branchy(&s->c, p[1])) {
  3189. bp = PARTITION_SPLIT;
  3190. decode_sb(ctx, row, col, lflvl, yoff, uvoff, bl + 1);
  3191. decode_sb(ctx, row, col + hbs, lflvl,
  3192. yoff + 8 * hbs * bytesperpixel,
  3193. uvoff + (8 * hbs * bytesperpixel >> s->ss_h), bl + 1);
  3194. } else {
  3195. bp = PARTITION_H;
  3196. decode_b(ctx, row, col, lflvl, yoff, uvoff, bl, bp);
  3197. }
  3198. } else if (row + hbs < s->rows) { // FIXME why not <=?
  3199. if (vp56_rac_get_prob_branchy(&s->c, p[2])) {
  3200. bp = PARTITION_SPLIT;
  3201. decode_sb(ctx, row, col, lflvl, yoff, uvoff, bl + 1);
  3202. yoff += hbs * 8 * y_stride;
  3203. uvoff += hbs * 8 * uv_stride >> s->ss_v;
  3204. decode_sb(ctx, row + hbs, col, lflvl, yoff, uvoff, bl + 1);
  3205. } else {
  3206. bp = PARTITION_V;
  3207. decode_b(ctx, row, col, lflvl, yoff, uvoff, bl, bp);
  3208. }
  3209. } else {
  3210. bp = PARTITION_SPLIT;
  3211. decode_sb(ctx, row, col, lflvl, yoff, uvoff, bl + 1);
  3212. }
  3213. s->counts.partition[bl][c][bp]++;
  3214. }
  3215. static void decode_sb_mem(AVCodecContext *ctx, int row, int col, struct VP9Filter *lflvl,
  3216. ptrdiff_t yoff, ptrdiff_t uvoff, enum BlockLevel bl)
  3217. {
  3218. VP9Context *s = ctx->priv_data;
  3219. VP9Block *b = s->b;
  3220. ptrdiff_t hbs = 4 >> bl;
  3221. AVFrame *f = s->s.frames[CUR_FRAME].tf.f;
  3222. ptrdiff_t y_stride = f->linesize[0], uv_stride = f->linesize[1];
  3223. int bytesperpixel = s->bytesperpixel;
  3224. if (bl == BL_8X8) {
  3225. av_assert2(b->bl == BL_8X8);
  3226. decode_b(ctx, row, col, lflvl, yoff, uvoff, b->bl, b->bp);
  3227. } else if (s->b->bl == bl) {
  3228. decode_b(ctx, row, col, lflvl, yoff, uvoff, b->bl, b->bp);
  3229. if (b->bp == PARTITION_H && row + hbs < s->rows) {
  3230. yoff += hbs * 8 * y_stride;
  3231. uvoff += hbs * 8 * uv_stride >> s->ss_v;
  3232. decode_b(ctx, row + hbs, col, lflvl, yoff, uvoff, b->bl, b->bp);
  3233. } else if (b->bp == PARTITION_V && col + hbs < s->cols) {
  3234. yoff += hbs * 8 * bytesperpixel;
  3235. uvoff += hbs * 8 * bytesperpixel >> s->ss_h;
  3236. decode_b(ctx, row, col + hbs, lflvl, yoff, uvoff, b->bl, b->bp);
  3237. }
  3238. } else {
  3239. decode_sb_mem(ctx, row, col, lflvl, yoff, uvoff, bl + 1);
  3240. if (col + hbs < s->cols) { // FIXME why not <=?
  3241. if (row + hbs < s->rows) {
  3242. decode_sb_mem(ctx, row, col + hbs, lflvl, yoff + 8 * hbs * bytesperpixel,
  3243. uvoff + (8 * hbs * bytesperpixel >> s->ss_h), bl + 1);
  3244. yoff += hbs * 8 * y_stride;
  3245. uvoff += hbs * 8 * uv_stride >> s->ss_v;
  3246. decode_sb_mem(ctx, row + hbs, col, lflvl, yoff, uvoff, bl + 1);
  3247. decode_sb_mem(ctx, row + hbs, col + hbs, lflvl,
  3248. yoff + 8 * hbs * bytesperpixel,
  3249. uvoff + (8 * hbs * bytesperpixel >> s->ss_h), bl + 1);
  3250. } else {
  3251. yoff += hbs * 8 * bytesperpixel;
  3252. uvoff += hbs * 8 * bytesperpixel >> s->ss_h;
  3253. decode_sb_mem(ctx, row, col + hbs, lflvl, yoff, uvoff, bl + 1);
  3254. }
  3255. } else if (row + hbs < s->rows) {
  3256. yoff += hbs * 8 * y_stride;
  3257. uvoff += hbs * 8 * uv_stride >> s->ss_v;
  3258. decode_sb_mem(ctx, row + hbs, col, lflvl, yoff, uvoff, bl + 1);
  3259. }
  3260. }
  3261. }
  3262. static av_always_inline void filter_plane_cols(VP9Context *s, int col, int ss_h, int ss_v,
  3263. uint8_t *lvl, uint8_t (*mask)[4],
  3264. uint8_t *dst, ptrdiff_t ls)
  3265. {
  3266. int y, x, bytesperpixel = s->bytesperpixel;
  3267. // filter edges between columns (e.g. block1 | block2)
  3268. for (y = 0; y < 8; y += 2 << ss_v, dst += 16 * ls, lvl += 16 << ss_v) {
  3269. uint8_t *ptr = dst, *l = lvl, *hmask1 = mask[y], *hmask2 = mask[y + 1 + ss_v];
  3270. unsigned hm1 = hmask1[0] | hmask1[1] | hmask1[2], hm13 = hmask1[3];
  3271. unsigned hm2 = hmask2[1] | hmask2[2], hm23 = hmask2[3];
  3272. unsigned hm = hm1 | hm2 | hm13 | hm23;
  3273. for (x = 1; hm & ~(x - 1); x <<= 1, ptr += 8 * bytesperpixel >> ss_h) {
  3274. if (col || x > 1) {
  3275. if (hm1 & x) {
  3276. int L = *l, H = L >> 4;
  3277. int E = s->filter_lut.mblim_lut[L], I = s->filter_lut.lim_lut[L];
  3278. if (hmask1[0] & x) {
  3279. if (hmask2[0] & x) {
  3280. av_assert2(l[8 << ss_v] == L);
  3281. s->dsp.loop_filter_16[0](ptr, ls, E, I, H);
  3282. } else {
  3283. s->dsp.loop_filter_8[2][0](ptr, ls, E, I, H);
  3284. }
  3285. } else if (hm2 & x) {
  3286. L = l[8 << ss_v];
  3287. H |= (L >> 4) << 8;
  3288. E |= s->filter_lut.mblim_lut[L] << 8;
  3289. I |= s->filter_lut.lim_lut[L] << 8;
  3290. s->dsp.loop_filter_mix2[!!(hmask1[1] & x)]
  3291. [!!(hmask2[1] & x)]
  3292. [0](ptr, ls, E, I, H);
  3293. } else {
  3294. s->dsp.loop_filter_8[!!(hmask1[1] & x)]
  3295. [0](ptr, ls, E, I, H);
  3296. }
  3297. } else if (hm2 & x) {
  3298. int L = l[8 << ss_v], H = L >> 4;
  3299. int E = s->filter_lut.mblim_lut[L], I = s->filter_lut.lim_lut[L];
  3300. s->dsp.loop_filter_8[!!(hmask2[1] & x)]
  3301. [0](ptr + 8 * ls, ls, E, I, H);
  3302. }
  3303. }
  3304. if (ss_h) {
  3305. if (x & 0xAA)
  3306. l += 2;
  3307. } else {
  3308. if (hm13 & x) {
  3309. int L = *l, H = L >> 4;
  3310. int E = s->filter_lut.mblim_lut[L], I = s->filter_lut.lim_lut[L];
  3311. if (hm23 & x) {
  3312. L = l[8 << ss_v];
  3313. H |= (L >> 4) << 8;
  3314. E |= s->filter_lut.mblim_lut[L] << 8;
  3315. I |= s->filter_lut.lim_lut[L] << 8;
  3316. s->dsp.loop_filter_mix2[0][0][0](ptr + 4 * bytesperpixel, ls, E, I, H);
  3317. } else {
  3318. s->dsp.loop_filter_8[0][0](ptr + 4 * bytesperpixel, ls, E, I, H);
  3319. }
  3320. } else if (hm23 & x) {
  3321. int L = l[8 << ss_v], H = L >> 4;
  3322. int E = s->filter_lut.mblim_lut[L], I = s->filter_lut.lim_lut[L];
  3323. s->dsp.loop_filter_8[0][0](ptr + 8 * ls + 4 * bytesperpixel, ls, E, I, H);
  3324. }
  3325. l++;
  3326. }
  3327. }
  3328. }
  3329. }
  3330. static av_always_inline void filter_plane_rows(VP9Context *s, int row, int ss_h, int ss_v,
  3331. uint8_t *lvl, uint8_t (*mask)[4],
  3332. uint8_t *dst, ptrdiff_t ls)
  3333. {
  3334. int y, x, bytesperpixel = s->bytesperpixel;
  3335. // block1
  3336. // filter edges between rows (e.g. ------)
  3337. // block2
  3338. for (y = 0; y < 8; y++, dst += 8 * ls >> ss_v) {
  3339. uint8_t *ptr = dst, *l = lvl, *vmask = mask[y];
  3340. unsigned vm = vmask[0] | vmask[1] | vmask[2], vm3 = vmask[3];
  3341. for (x = 1; vm & ~(x - 1); x <<= (2 << ss_h), ptr += 16 * bytesperpixel, l += 2 << ss_h) {
  3342. if (row || y) {
  3343. if (vm & x) {
  3344. int L = *l, H = L >> 4;
  3345. int E = s->filter_lut.mblim_lut[L], I = s->filter_lut.lim_lut[L];
  3346. if (vmask[0] & x) {
  3347. if (vmask[0] & (x << (1 + ss_h))) {
  3348. av_assert2(l[1 + ss_h] == L);
  3349. s->dsp.loop_filter_16[1](ptr, ls, E, I, H);
  3350. } else {
  3351. s->dsp.loop_filter_8[2][1](ptr, ls, E, I, H);
  3352. }
  3353. } else if (vm & (x << (1 + ss_h))) {
  3354. L = l[1 + ss_h];
  3355. H |= (L >> 4) << 8;
  3356. E |= s->filter_lut.mblim_lut[L] << 8;
  3357. I |= s->filter_lut.lim_lut[L] << 8;
  3358. s->dsp.loop_filter_mix2[!!(vmask[1] & x)]
  3359. [!!(vmask[1] & (x << (1 + ss_h)))]
  3360. [1](ptr, ls, E, I, H);
  3361. } else {
  3362. s->dsp.loop_filter_8[!!(vmask[1] & x)]
  3363. [1](ptr, ls, E, I, H);
  3364. }
  3365. } else if (vm & (x << (1 + ss_h))) {
  3366. int L = l[1 + ss_h], H = L >> 4;
  3367. int E = s->filter_lut.mblim_lut[L], I = s->filter_lut.lim_lut[L];
  3368. s->dsp.loop_filter_8[!!(vmask[1] & (x << (1 + ss_h)))]
  3369. [1](ptr + 8 * bytesperpixel, ls, E, I, H);
  3370. }
  3371. }
  3372. if (!ss_v) {
  3373. if (vm3 & x) {
  3374. int L = *l, H = L >> 4;
  3375. int E = s->filter_lut.mblim_lut[L], I = s->filter_lut.lim_lut[L];
  3376. if (vm3 & (x << (1 + ss_h))) {
  3377. L = l[1 + ss_h];
  3378. H |= (L >> 4) << 8;
  3379. E |= s->filter_lut.mblim_lut[L] << 8;
  3380. I |= s->filter_lut.lim_lut[L] << 8;
  3381. s->dsp.loop_filter_mix2[0][0][1](ptr + ls * 4, ls, E, I, H);
  3382. } else {
  3383. s->dsp.loop_filter_8[0][1](ptr + ls * 4, ls, E, I, H);
  3384. }
  3385. } else if (vm3 & (x << (1 + ss_h))) {
  3386. int L = l[1 + ss_h], H = L >> 4;
  3387. int E = s->filter_lut.mblim_lut[L], I = s->filter_lut.lim_lut[L];
  3388. s->dsp.loop_filter_8[0][1](ptr + ls * 4 + 8 * bytesperpixel, ls, E, I, H);
  3389. }
  3390. }
  3391. }
  3392. if (ss_v) {
  3393. if (y & 1)
  3394. lvl += 16;
  3395. } else {
  3396. lvl += 8;
  3397. }
  3398. }
  3399. }
  3400. static void loopfilter_sb(AVCodecContext *ctx, struct VP9Filter *lflvl,
  3401. int row, int col, ptrdiff_t yoff, ptrdiff_t uvoff)
  3402. {
  3403. VP9Context *s = ctx->priv_data;
  3404. AVFrame *f = s->s.frames[CUR_FRAME].tf.f;
  3405. uint8_t *dst = f->data[0] + yoff;
  3406. ptrdiff_t ls_y = f->linesize[0], ls_uv = f->linesize[1];
  3407. uint8_t (*uv_masks)[8][4] = lflvl->mask[s->ss_h | s->ss_v];
  3408. int p;
  3409. // FIXME in how far can we interleave the v/h loopfilter calls? E.g.
  3410. // if you think of them as acting on a 8x8 block max, we can interleave
  3411. // each v/h within the single x loop, but that only works if we work on
  3412. // 8 pixel blocks, and we won't always do that (we want at least 16px
  3413. // to use SSE2 optimizations, perhaps 32 for AVX2)
  3414. filter_plane_cols(s, col, 0, 0, lflvl->level, lflvl->mask[0][0], dst, ls_y);
  3415. filter_plane_rows(s, row, 0, 0, lflvl->level, lflvl->mask[0][1], dst, ls_y);
  3416. for (p = 0; p < 2; p++) {
  3417. dst = f->data[1 + p] + uvoff;
  3418. filter_plane_cols(s, col, s->ss_h, s->ss_v, lflvl->level, uv_masks[0], dst, ls_uv);
  3419. filter_plane_rows(s, row, s->ss_h, s->ss_v, lflvl->level, uv_masks[1], dst, ls_uv);
  3420. }
  3421. }
  3422. static void set_tile_offset(int *start, int *end, int idx, int log2_n, int n)
  3423. {
  3424. int sb_start = ( idx * n) >> log2_n;
  3425. int sb_end = ((idx + 1) * n) >> log2_n;
  3426. *start = FFMIN(sb_start, n) << 3;
  3427. *end = FFMIN(sb_end, n) << 3;
  3428. }
  3429. static av_always_inline void adapt_prob(uint8_t *p, unsigned ct0, unsigned ct1,
  3430. int max_count, int update_factor)
  3431. {
  3432. unsigned ct = ct0 + ct1, p2, p1;
  3433. if (!ct)
  3434. return;
  3435. p1 = *p;
  3436. p2 = ((ct0 << 8) + (ct >> 1)) / ct;
  3437. p2 = av_clip(p2, 1, 255);
  3438. ct = FFMIN(ct, max_count);
  3439. update_factor = FASTDIV(update_factor * ct, max_count);
  3440. // (p1 * (256 - update_factor) + p2 * update_factor + 128) >> 8
  3441. *p = p1 + (((p2 - p1) * update_factor + 128) >> 8);
  3442. }
  3443. static void adapt_probs(VP9Context *s)
  3444. {
  3445. int i, j, k, l, m;
  3446. prob_context *p = &s->prob_ctx[s->s.h.framectxid].p;
  3447. int uf = (s->s.h.keyframe || s->s.h.intraonly || !s->last_keyframe) ? 112 : 128;
  3448. // coefficients
  3449. for (i = 0; i < 4; i++)
  3450. for (j = 0; j < 2; j++)
  3451. for (k = 0; k < 2; k++)
  3452. for (l = 0; l < 6; l++)
  3453. for (m = 0; m < 6; m++) {
  3454. uint8_t *pp = s->prob_ctx[s->s.h.framectxid].coef[i][j][k][l][m];
  3455. unsigned *e = s->counts.eob[i][j][k][l][m];
  3456. unsigned *c = s->counts.coef[i][j][k][l][m];
  3457. if (l == 0 && m >= 3) // dc only has 3 pt
  3458. break;
  3459. adapt_prob(&pp[0], e[0], e[1], 24, uf);
  3460. adapt_prob(&pp[1], c[0], c[1] + c[2], 24, uf);
  3461. adapt_prob(&pp[2], c[1], c[2], 24, uf);
  3462. }
  3463. if (s->s.h.keyframe || s->s.h.intraonly) {
  3464. memcpy(p->skip, s->prob.p.skip, sizeof(p->skip));
  3465. memcpy(p->tx32p, s->prob.p.tx32p, sizeof(p->tx32p));
  3466. memcpy(p->tx16p, s->prob.p.tx16p, sizeof(p->tx16p));
  3467. memcpy(p->tx8p, s->prob.p.tx8p, sizeof(p->tx8p));
  3468. return;
  3469. }
  3470. // skip flag
  3471. for (i = 0; i < 3; i++)
  3472. adapt_prob(&p->skip[i], s->counts.skip[i][0], s->counts.skip[i][1], 20, 128);
  3473. // intra/inter flag
  3474. for (i = 0; i < 4; i++)
  3475. adapt_prob(&p->intra[i], s->counts.intra[i][0], s->counts.intra[i][1], 20, 128);
  3476. // comppred flag
  3477. if (s->s.h.comppredmode == PRED_SWITCHABLE) {
  3478. for (i = 0; i < 5; i++)
  3479. adapt_prob(&p->comp[i], s->counts.comp[i][0], s->counts.comp[i][1], 20, 128);
  3480. }
  3481. // reference frames
  3482. if (s->s.h.comppredmode != PRED_SINGLEREF) {
  3483. for (i = 0; i < 5; i++)
  3484. adapt_prob(&p->comp_ref[i], s->counts.comp_ref[i][0],
  3485. s->counts.comp_ref[i][1], 20, 128);
  3486. }
  3487. if (s->s.h.comppredmode != PRED_COMPREF) {
  3488. for (i = 0; i < 5; i++) {
  3489. uint8_t *pp = p->single_ref[i];
  3490. unsigned (*c)[2] = s->counts.single_ref[i];
  3491. adapt_prob(&pp[0], c[0][0], c[0][1], 20, 128);
  3492. adapt_prob(&pp[1], c[1][0], c[1][1], 20, 128);
  3493. }
  3494. }
  3495. // block partitioning
  3496. for (i = 0; i < 4; i++)
  3497. for (j = 0; j < 4; j++) {
  3498. uint8_t *pp = p->partition[i][j];
  3499. unsigned *c = s->counts.partition[i][j];
  3500. adapt_prob(&pp[0], c[0], c[1] + c[2] + c[3], 20, 128);
  3501. adapt_prob(&pp[1], c[1], c[2] + c[3], 20, 128);
  3502. adapt_prob(&pp[2], c[2], c[3], 20, 128);
  3503. }
  3504. // tx size
  3505. if (s->s.h.txfmmode == TX_SWITCHABLE) {
  3506. for (i = 0; i < 2; i++) {
  3507. unsigned *c16 = s->counts.tx16p[i], *c32 = s->counts.tx32p[i];
  3508. adapt_prob(&p->tx8p[i], s->counts.tx8p[i][0], s->counts.tx8p[i][1], 20, 128);
  3509. adapt_prob(&p->tx16p[i][0], c16[0], c16[1] + c16[2], 20, 128);
  3510. adapt_prob(&p->tx16p[i][1], c16[1], c16[2], 20, 128);
  3511. adapt_prob(&p->tx32p[i][0], c32[0], c32[1] + c32[2] + c32[3], 20, 128);
  3512. adapt_prob(&p->tx32p[i][1], c32[1], c32[2] + c32[3], 20, 128);
  3513. adapt_prob(&p->tx32p[i][2], c32[2], c32[3], 20, 128);
  3514. }
  3515. }
  3516. // interpolation filter
  3517. if (s->s.h.filtermode == FILTER_SWITCHABLE) {
  3518. for (i = 0; i < 4; i++) {
  3519. uint8_t *pp = p->filter[i];
  3520. unsigned *c = s->counts.filter[i];
  3521. adapt_prob(&pp[0], c[0], c[1] + c[2], 20, 128);
  3522. adapt_prob(&pp[1], c[1], c[2], 20, 128);
  3523. }
  3524. }
  3525. // inter modes
  3526. for (i = 0; i < 7; i++) {
  3527. uint8_t *pp = p->mv_mode[i];
  3528. unsigned *c = s->counts.mv_mode[i];
  3529. adapt_prob(&pp[0], c[2], c[1] + c[0] + c[3], 20, 128);
  3530. adapt_prob(&pp[1], c[0], c[1] + c[3], 20, 128);
  3531. adapt_prob(&pp[2], c[1], c[3], 20, 128);
  3532. }
  3533. // mv joints
  3534. {
  3535. uint8_t *pp = p->mv_joint;
  3536. unsigned *c = s->counts.mv_joint;
  3537. adapt_prob(&pp[0], c[0], c[1] + c[2] + c[3], 20, 128);
  3538. adapt_prob(&pp[1], c[1], c[2] + c[3], 20, 128);
  3539. adapt_prob(&pp[2], c[2], c[3], 20, 128);
  3540. }
  3541. // mv components
  3542. for (i = 0; i < 2; i++) {
  3543. uint8_t *pp;
  3544. unsigned *c, (*c2)[2], sum;
  3545. adapt_prob(&p->mv_comp[i].sign, s->counts.mv_comp[i].sign[0],
  3546. s->counts.mv_comp[i].sign[1], 20, 128);
  3547. pp = p->mv_comp[i].classes;
  3548. c = s->counts.mv_comp[i].classes;
  3549. sum = c[1] + c[2] + c[3] + c[4] + c[5] + c[6] + c[7] + c[8] + c[9] + c[10];
  3550. adapt_prob(&pp[0], c[0], sum, 20, 128);
  3551. sum -= c[1];
  3552. adapt_prob(&pp[1], c[1], sum, 20, 128);
  3553. sum -= c[2] + c[3];
  3554. adapt_prob(&pp[2], c[2] + c[3], sum, 20, 128);
  3555. adapt_prob(&pp[3], c[2], c[3], 20, 128);
  3556. sum -= c[4] + c[5];
  3557. adapt_prob(&pp[4], c[4] + c[5], sum, 20, 128);
  3558. adapt_prob(&pp[5], c[4], c[5], 20, 128);
  3559. sum -= c[6];
  3560. adapt_prob(&pp[6], c[6], sum, 20, 128);
  3561. adapt_prob(&pp[7], c[7] + c[8], c[9] + c[10], 20, 128);
  3562. adapt_prob(&pp[8], c[7], c[8], 20, 128);
  3563. adapt_prob(&pp[9], c[9], c[10], 20, 128);
  3564. adapt_prob(&p->mv_comp[i].class0, s->counts.mv_comp[i].class0[0],
  3565. s->counts.mv_comp[i].class0[1], 20, 128);
  3566. pp = p->mv_comp[i].bits;
  3567. c2 = s->counts.mv_comp[i].bits;
  3568. for (j = 0; j < 10; j++)
  3569. adapt_prob(&pp[j], c2[j][0], c2[j][1], 20, 128);
  3570. for (j = 0; j < 2; j++) {
  3571. pp = p->mv_comp[i].class0_fp[j];
  3572. c = s->counts.mv_comp[i].class0_fp[j];
  3573. adapt_prob(&pp[0], c[0], c[1] + c[2] + c[3], 20, 128);
  3574. adapt_prob(&pp[1], c[1], c[2] + c[3], 20, 128);
  3575. adapt_prob(&pp[2], c[2], c[3], 20, 128);
  3576. }
  3577. pp = p->mv_comp[i].fp;
  3578. c = s->counts.mv_comp[i].fp;
  3579. adapt_prob(&pp[0], c[0], c[1] + c[2] + c[3], 20, 128);
  3580. adapt_prob(&pp[1], c[1], c[2] + c[3], 20, 128);
  3581. adapt_prob(&pp[2], c[2], c[3], 20, 128);
  3582. if (s->s.h.highprecisionmvs) {
  3583. adapt_prob(&p->mv_comp[i].class0_hp, s->counts.mv_comp[i].class0_hp[0],
  3584. s->counts.mv_comp[i].class0_hp[1], 20, 128);
  3585. adapt_prob(&p->mv_comp[i].hp, s->counts.mv_comp[i].hp[0],
  3586. s->counts.mv_comp[i].hp[1], 20, 128);
  3587. }
  3588. }
  3589. // y intra modes
  3590. for (i = 0; i < 4; i++) {
  3591. uint8_t *pp = p->y_mode[i];
  3592. unsigned *c = s->counts.y_mode[i], sum, s2;
  3593. sum = c[0] + c[1] + c[3] + c[4] + c[5] + c[6] + c[7] + c[8] + c[9];
  3594. adapt_prob(&pp[0], c[DC_PRED], sum, 20, 128);
  3595. sum -= c[TM_VP8_PRED];
  3596. adapt_prob(&pp[1], c[TM_VP8_PRED], sum, 20, 128);
  3597. sum -= c[VERT_PRED];
  3598. adapt_prob(&pp[2], c[VERT_PRED], sum, 20, 128);
  3599. s2 = c[HOR_PRED] + c[DIAG_DOWN_RIGHT_PRED] + c[VERT_RIGHT_PRED];
  3600. sum -= s2;
  3601. adapt_prob(&pp[3], s2, sum, 20, 128);
  3602. s2 -= c[HOR_PRED];
  3603. adapt_prob(&pp[4], c[HOR_PRED], s2, 20, 128);
  3604. adapt_prob(&pp[5], c[DIAG_DOWN_RIGHT_PRED], c[VERT_RIGHT_PRED], 20, 128);
  3605. sum -= c[DIAG_DOWN_LEFT_PRED];
  3606. adapt_prob(&pp[6], c[DIAG_DOWN_LEFT_PRED], sum, 20, 128);
  3607. sum -= c[VERT_LEFT_PRED];
  3608. adapt_prob(&pp[7], c[VERT_LEFT_PRED], sum, 20, 128);
  3609. adapt_prob(&pp[8], c[HOR_DOWN_PRED], c[HOR_UP_PRED], 20, 128);
  3610. }
  3611. // uv intra modes
  3612. for (i = 0; i < 10; i++) {
  3613. uint8_t *pp = p->uv_mode[i];
  3614. unsigned *c = s->counts.uv_mode[i], sum, s2;
  3615. sum = c[0] + c[1] + c[3] + c[4] + c[5] + c[6] + c[7] + c[8] + c[9];
  3616. adapt_prob(&pp[0], c[DC_PRED], sum, 20, 128);
  3617. sum -= c[TM_VP8_PRED];
  3618. adapt_prob(&pp[1], c[TM_VP8_PRED], sum, 20, 128);
  3619. sum -= c[VERT_PRED];
  3620. adapt_prob(&pp[2], c[VERT_PRED], sum, 20, 128);
  3621. s2 = c[HOR_PRED] + c[DIAG_DOWN_RIGHT_PRED] + c[VERT_RIGHT_PRED];
  3622. sum -= s2;
  3623. adapt_prob(&pp[3], s2, sum, 20, 128);
  3624. s2 -= c[HOR_PRED];
  3625. adapt_prob(&pp[4], c[HOR_PRED], s2, 20, 128);
  3626. adapt_prob(&pp[5], c[DIAG_DOWN_RIGHT_PRED], c[VERT_RIGHT_PRED], 20, 128);
  3627. sum -= c[DIAG_DOWN_LEFT_PRED];
  3628. adapt_prob(&pp[6], c[DIAG_DOWN_LEFT_PRED], sum, 20, 128);
  3629. sum -= c[VERT_LEFT_PRED];
  3630. adapt_prob(&pp[7], c[VERT_LEFT_PRED], sum, 20, 128);
  3631. adapt_prob(&pp[8], c[HOR_DOWN_PRED], c[HOR_UP_PRED], 20, 128);
  3632. }
  3633. }
  3634. static void free_buffers(VP9Context *s)
  3635. {
  3636. av_freep(&s->intra_pred_data[0]);
  3637. av_freep(&s->b_base);
  3638. av_freep(&s->block_base);
  3639. }
  3640. static av_cold int vp9_decode_free(AVCodecContext *ctx)
  3641. {
  3642. VP9Context *s = ctx->priv_data;
  3643. int i;
  3644. for (i = 0; i < 3; i++) {
  3645. if (s->s.frames[i].tf.f->buf[0])
  3646. vp9_unref_frame(ctx, &s->s.frames[i]);
  3647. av_frame_free(&s->s.frames[i].tf.f);
  3648. }
  3649. for (i = 0; i < 8; i++) {
  3650. if (s->s.refs[i].f->buf[0])
  3651. ff_thread_release_buffer(ctx, &s->s.refs[i]);
  3652. av_frame_free(&s->s.refs[i].f);
  3653. if (s->next_refs[i].f->buf[0])
  3654. ff_thread_release_buffer(ctx, &s->next_refs[i]);
  3655. av_frame_free(&s->next_refs[i].f);
  3656. }
  3657. free_buffers(s);
  3658. av_freep(&s->c_b);
  3659. s->c_b_size = 0;
  3660. return 0;
  3661. }
  3662. static int vp9_decode_frame(AVCodecContext *ctx, void *frame,
  3663. int *got_frame, AVPacket *pkt)
  3664. {
  3665. const uint8_t *data = pkt->data;
  3666. int size = pkt->size;
  3667. VP9Context *s = ctx->priv_data;
  3668. int res, tile_row, tile_col, i, ref, row, col;
  3669. int retain_segmap_ref = s->s.frames[REF_FRAME_SEGMAP].segmentation_map &&
  3670. (!s->s.h.segmentation.enabled || !s->s.h.segmentation.update_map);
  3671. ptrdiff_t yoff, uvoff, ls_y, ls_uv;
  3672. AVFrame *f;
  3673. int bytesperpixel;
  3674. if ((res = decode_frame_header(ctx, data, size, &ref)) < 0) {
  3675. return res;
  3676. } else if (res == 0) {
  3677. if (!s->s.refs[ref].f->buf[0]) {
  3678. av_log(ctx, AV_LOG_ERROR, "Requested reference %d not available\n", ref);
  3679. return AVERROR_INVALIDDATA;
  3680. }
  3681. if ((res = av_frame_ref(frame, s->s.refs[ref].f)) < 0)
  3682. return res;
  3683. ((AVFrame *)frame)->pkt_pts = pkt->pts;
  3684. ((AVFrame *)frame)->pkt_dts = pkt->dts;
  3685. for (i = 0; i < 8; i++) {
  3686. if (s->next_refs[i].f->buf[0])
  3687. ff_thread_release_buffer(ctx, &s->next_refs[i]);
  3688. if (s->s.refs[i].f->buf[0] &&
  3689. (res = ff_thread_ref_frame(&s->next_refs[i], &s->s.refs[i])) < 0)
  3690. return res;
  3691. }
  3692. *got_frame = 1;
  3693. return pkt->size;
  3694. }
  3695. data += res;
  3696. size -= res;
  3697. if (!retain_segmap_ref || s->s.h.keyframe || s->s.h.intraonly) {
  3698. if (s->s.frames[REF_FRAME_SEGMAP].tf.f->buf[0])
  3699. vp9_unref_frame(ctx, &s->s.frames[REF_FRAME_SEGMAP]);
  3700. if (!s->s.h.keyframe && !s->s.h.intraonly && !s->s.h.errorres && s->s.frames[CUR_FRAME].tf.f->buf[0] &&
  3701. (res = vp9_ref_frame(ctx, &s->s.frames[REF_FRAME_SEGMAP], &s->s.frames[CUR_FRAME])) < 0)
  3702. return res;
  3703. }
  3704. if (s->s.frames[REF_FRAME_MVPAIR].tf.f->buf[0])
  3705. vp9_unref_frame(ctx, &s->s.frames[REF_FRAME_MVPAIR]);
  3706. if (!s->s.h.intraonly && !s->s.h.keyframe && !s->s.h.errorres && s->s.frames[CUR_FRAME].tf.f->buf[0] &&
  3707. (res = vp9_ref_frame(ctx, &s->s.frames[REF_FRAME_MVPAIR], &s->s.frames[CUR_FRAME])) < 0)
  3708. return res;
  3709. if (s->s.frames[CUR_FRAME].tf.f->buf[0])
  3710. vp9_unref_frame(ctx, &s->s.frames[CUR_FRAME]);
  3711. if ((res = vp9_alloc_frame(ctx, &s->s.frames[CUR_FRAME])) < 0)
  3712. return res;
  3713. f = s->s.frames[CUR_FRAME].tf.f;
  3714. f->key_frame = s->s.h.keyframe;
  3715. f->pict_type = (s->s.h.keyframe || s->s.h.intraonly) ? AV_PICTURE_TYPE_I : AV_PICTURE_TYPE_P;
  3716. ls_y = f->linesize[0];
  3717. ls_uv =f->linesize[1];
  3718. if (s->s.frames[REF_FRAME_SEGMAP].tf.f->buf[0] &&
  3719. (s->s.frames[REF_FRAME_MVPAIR].tf.f->width != s->s.frames[CUR_FRAME].tf.f->width ||
  3720. s->s.frames[REF_FRAME_MVPAIR].tf.f->height != s->s.frames[CUR_FRAME].tf.f->height)) {
  3721. vp9_unref_frame(ctx, &s->s.frames[REF_FRAME_SEGMAP]);
  3722. }
  3723. // ref frame setup
  3724. for (i = 0; i < 8; i++) {
  3725. if (s->next_refs[i].f->buf[0])
  3726. ff_thread_release_buffer(ctx, &s->next_refs[i]);
  3727. if (s->s.h.refreshrefmask & (1 << i)) {
  3728. res = ff_thread_ref_frame(&s->next_refs[i], &s->s.frames[CUR_FRAME].tf);
  3729. } else if (s->s.refs[i].f->buf[0]) {
  3730. res = ff_thread_ref_frame(&s->next_refs[i], &s->s.refs[i]);
  3731. }
  3732. if (res < 0)
  3733. return res;
  3734. }
  3735. if (ctx->hwaccel) {
  3736. res = ctx->hwaccel->start_frame(ctx, NULL, 0);
  3737. if (res < 0)
  3738. return res;
  3739. res = ctx->hwaccel->decode_slice(ctx, pkt->data, pkt->size);
  3740. if (res < 0)
  3741. return res;
  3742. res = ctx->hwaccel->end_frame(ctx);
  3743. if (res < 0)
  3744. return res;
  3745. goto finish;
  3746. }
  3747. // main tile decode loop
  3748. bytesperpixel = s->bytesperpixel;
  3749. memset(s->above_partition_ctx, 0, s->cols);
  3750. memset(s->above_skip_ctx, 0, s->cols);
  3751. if (s->s.h.keyframe || s->s.h.intraonly) {
  3752. memset(s->above_mode_ctx, DC_PRED, s->cols * 2);
  3753. } else {
  3754. memset(s->above_mode_ctx, NEARESTMV, s->cols);
  3755. }
  3756. memset(s->above_y_nnz_ctx, 0, s->sb_cols * 16);
  3757. memset(s->above_uv_nnz_ctx[0], 0, s->sb_cols * 16 >> s->ss_h);
  3758. memset(s->above_uv_nnz_ctx[1], 0, s->sb_cols * 16 >> s->ss_h);
  3759. memset(s->above_segpred_ctx, 0, s->cols);
  3760. s->pass = s->s.frames[CUR_FRAME].uses_2pass =
  3761. ctx->active_thread_type == FF_THREAD_FRAME && s->s.h.refreshctx && !s->s.h.parallelmode;
  3762. if ((res = update_block_buffers(ctx)) < 0) {
  3763. av_log(ctx, AV_LOG_ERROR,
  3764. "Failed to allocate block buffers\n");
  3765. return res;
  3766. }
  3767. if (s->s.h.refreshctx && s->s.h.parallelmode) {
  3768. int j, k, l, m;
  3769. for (i = 0; i < 4; i++) {
  3770. for (j = 0; j < 2; j++)
  3771. for (k = 0; k < 2; k++)
  3772. for (l = 0; l < 6; l++)
  3773. for (m = 0; m < 6; m++)
  3774. memcpy(s->prob_ctx[s->s.h.framectxid].coef[i][j][k][l][m],
  3775. s->prob.coef[i][j][k][l][m], 3);
  3776. if (s->s.h.txfmmode == i)
  3777. break;
  3778. }
  3779. s->prob_ctx[s->s.h.framectxid].p = s->prob.p;
  3780. ff_thread_finish_setup(ctx);
  3781. } else if (!s->s.h.refreshctx) {
  3782. ff_thread_finish_setup(ctx);
  3783. }
  3784. do {
  3785. yoff = uvoff = 0;
  3786. s->b = s->b_base;
  3787. s->block = s->block_base;
  3788. s->uvblock[0] = s->uvblock_base[0];
  3789. s->uvblock[1] = s->uvblock_base[1];
  3790. s->eob = s->eob_base;
  3791. s->uveob[0] = s->uveob_base[0];
  3792. s->uveob[1] = s->uveob_base[1];
  3793. for (tile_row = 0; tile_row < s->s.h.tiling.tile_rows; tile_row++) {
  3794. set_tile_offset(&s->tile_row_start, &s->tile_row_end,
  3795. tile_row, s->s.h.tiling.log2_tile_rows, s->sb_rows);
  3796. if (s->pass != 2) {
  3797. for (tile_col = 0; tile_col < s->s.h.tiling.tile_cols; tile_col++) {
  3798. int64_t tile_size;
  3799. if (tile_col == s->s.h.tiling.tile_cols - 1 &&
  3800. tile_row == s->s.h.tiling.tile_rows - 1) {
  3801. tile_size = size;
  3802. } else {
  3803. tile_size = AV_RB32(data);
  3804. data += 4;
  3805. size -= 4;
  3806. }
  3807. if (tile_size > size) {
  3808. ff_thread_report_progress(&s->s.frames[CUR_FRAME].tf, INT_MAX, 0);
  3809. return AVERROR_INVALIDDATA;
  3810. }
  3811. ff_vp56_init_range_decoder(&s->c_b[tile_col], data, tile_size);
  3812. if (vp56_rac_get_prob_branchy(&s->c_b[tile_col], 128)) { // marker bit
  3813. ff_thread_report_progress(&s->s.frames[CUR_FRAME].tf, INT_MAX, 0);
  3814. return AVERROR_INVALIDDATA;
  3815. }
  3816. data += tile_size;
  3817. size -= tile_size;
  3818. }
  3819. }
  3820. for (row = s->tile_row_start; row < s->tile_row_end;
  3821. row += 8, yoff += ls_y * 64, uvoff += ls_uv * 64 >> s->ss_v) {
  3822. struct VP9Filter *lflvl_ptr = s->lflvl;
  3823. ptrdiff_t yoff2 = yoff, uvoff2 = uvoff;
  3824. for (tile_col = 0; tile_col < s->s.h.tiling.tile_cols; tile_col++) {
  3825. set_tile_offset(&s->tile_col_start, &s->tile_col_end,
  3826. tile_col, s->s.h.tiling.log2_tile_cols, s->sb_cols);
  3827. if (s->pass != 2) {
  3828. memset(s->left_partition_ctx, 0, 8);
  3829. memset(s->left_skip_ctx, 0, 8);
  3830. if (s->s.h.keyframe || s->s.h.intraonly) {
  3831. memset(s->left_mode_ctx, DC_PRED, 16);
  3832. } else {
  3833. memset(s->left_mode_ctx, NEARESTMV, 8);
  3834. }
  3835. memset(s->left_y_nnz_ctx, 0, 16);
  3836. memset(s->left_uv_nnz_ctx, 0, 32);
  3837. memset(s->left_segpred_ctx, 0, 8);
  3838. memcpy(&s->c, &s->c_b[tile_col], sizeof(s->c));
  3839. }
  3840. for (col = s->tile_col_start;
  3841. col < s->tile_col_end;
  3842. col += 8, yoff2 += 64 * bytesperpixel,
  3843. uvoff2 += 64 * bytesperpixel >> s->ss_h, lflvl_ptr++) {
  3844. // FIXME integrate with lf code (i.e. zero after each
  3845. // use, similar to invtxfm coefficients, or similar)
  3846. if (s->pass != 1) {
  3847. memset(lflvl_ptr->mask, 0, sizeof(lflvl_ptr->mask));
  3848. }
  3849. if (s->pass == 2) {
  3850. decode_sb_mem(ctx, row, col, lflvl_ptr,
  3851. yoff2, uvoff2, BL_64X64);
  3852. } else {
  3853. decode_sb(ctx, row, col, lflvl_ptr,
  3854. yoff2, uvoff2, BL_64X64);
  3855. }
  3856. }
  3857. if (s->pass != 2) {
  3858. memcpy(&s->c_b[tile_col], &s->c, sizeof(s->c));
  3859. }
  3860. }
  3861. if (s->pass == 1) {
  3862. continue;
  3863. }
  3864. // backup pre-loopfilter reconstruction data for intra
  3865. // prediction of next row of sb64s
  3866. if (row + 8 < s->rows) {
  3867. memcpy(s->intra_pred_data[0],
  3868. f->data[0] + yoff + 63 * ls_y,
  3869. 8 * s->cols * bytesperpixel);
  3870. memcpy(s->intra_pred_data[1],
  3871. f->data[1] + uvoff + ((64 >> s->ss_v) - 1) * ls_uv,
  3872. 8 * s->cols * bytesperpixel >> s->ss_h);
  3873. memcpy(s->intra_pred_data[2],
  3874. f->data[2] + uvoff + ((64 >> s->ss_v) - 1) * ls_uv,
  3875. 8 * s->cols * bytesperpixel >> s->ss_h);
  3876. }
  3877. // loopfilter one row
  3878. if (s->s.h.filter.level) {
  3879. yoff2 = yoff;
  3880. uvoff2 = uvoff;
  3881. lflvl_ptr = s->lflvl;
  3882. for (col = 0; col < s->cols;
  3883. col += 8, yoff2 += 64 * bytesperpixel,
  3884. uvoff2 += 64 * bytesperpixel >> s->ss_h, lflvl_ptr++) {
  3885. loopfilter_sb(ctx, lflvl_ptr, row, col, yoff2, uvoff2);
  3886. }
  3887. }
  3888. // FIXME maybe we can make this more finegrained by running the
  3889. // loopfilter per-block instead of after each sbrow
  3890. // In fact that would also make intra pred left preparation easier?
  3891. ff_thread_report_progress(&s->s.frames[CUR_FRAME].tf, row >> 3, 0);
  3892. }
  3893. }
  3894. if (s->pass < 2 && s->s.h.refreshctx && !s->s.h.parallelmode) {
  3895. adapt_probs(s);
  3896. ff_thread_finish_setup(ctx);
  3897. }
  3898. } while (s->pass++ == 1);
  3899. ff_thread_report_progress(&s->s.frames[CUR_FRAME].tf, INT_MAX, 0);
  3900. finish:
  3901. // ref frame setup
  3902. for (i = 0; i < 8; i++) {
  3903. if (s->s.refs[i].f->buf[0])
  3904. ff_thread_release_buffer(ctx, &s->s.refs[i]);
  3905. if (s->next_refs[i].f->buf[0] &&
  3906. (res = ff_thread_ref_frame(&s->s.refs[i], &s->next_refs[i])) < 0)
  3907. return res;
  3908. }
  3909. if (!s->s.h.invisible) {
  3910. if ((res = av_frame_ref(frame, s->s.frames[CUR_FRAME].tf.f)) < 0)
  3911. return res;
  3912. *got_frame = 1;
  3913. }
  3914. return pkt->size;
  3915. }
  3916. static void vp9_decode_flush(AVCodecContext *ctx)
  3917. {
  3918. VP9Context *s = ctx->priv_data;
  3919. int i;
  3920. for (i = 0; i < 3; i++)
  3921. vp9_unref_frame(ctx, &s->s.frames[i]);
  3922. for (i = 0; i < 8; i++)
  3923. ff_thread_release_buffer(ctx, &s->s.refs[i]);
  3924. }
  3925. static int init_frames(AVCodecContext *ctx)
  3926. {
  3927. VP9Context *s = ctx->priv_data;
  3928. int i;
  3929. for (i = 0; i < 3; i++) {
  3930. s->s.frames[i].tf.f = av_frame_alloc();
  3931. if (!s->s.frames[i].tf.f) {
  3932. vp9_decode_free(ctx);
  3933. av_log(ctx, AV_LOG_ERROR, "Failed to allocate frame buffer %d\n", i);
  3934. return AVERROR(ENOMEM);
  3935. }
  3936. }
  3937. for (i = 0; i < 8; i++) {
  3938. s->s.refs[i].f = av_frame_alloc();
  3939. s->next_refs[i].f = av_frame_alloc();
  3940. if (!s->s.refs[i].f || !s->next_refs[i].f) {
  3941. vp9_decode_free(ctx);
  3942. av_log(ctx, AV_LOG_ERROR, "Failed to allocate frame buffer %d\n", i);
  3943. return AVERROR(ENOMEM);
  3944. }
  3945. }
  3946. return 0;
  3947. }
  3948. static av_cold int vp9_decode_init(AVCodecContext *ctx)
  3949. {
  3950. VP9Context *s = ctx->priv_data;
  3951. ctx->internal->allocate_progress = 1;
  3952. s->last_bpp = 0;
  3953. s->s.h.filter.sharpness = -1;
  3954. return init_frames(ctx);
  3955. }
  3956. #if HAVE_THREADS
  3957. static av_cold int vp9_decode_init_thread_copy(AVCodecContext *avctx)
  3958. {
  3959. return init_frames(avctx);
  3960. }
  3961. static int vp9_decode_update_thread_context(AVCodecContext *dst, const AVCodecContext *src)
  3962. {
  3963. int i, res;
  3964. VP9Context *s = dst->priv_data, *ssrc = src->priv_data;
  3965. for (i = 0; i < 3; i++) {
  3966. if (s->s.frames[i].tf.f->buf[0])
  3967. vp9_unref_frame(dst, &s->s.frames[i]);
  3968. if (ssrc->s.frames[i].tf.f->buf[0]) {
  3969. if ((res = vp9_ref_frame(dst, &s->s.frames[i], &ssrc->s.frames[i])) < 0)
  3970. return res;
  3971. }
  3972. }
  3973. for (i = 0; i < 8; i++) {
  3974. if (s->s.refs[i].f->buf[0])
  3975. ff_thread_release_buffer(dst, &s->s.refs[i]);
  3976. if (ssrc->next_refs[i].f->buf[0]) {
  3977. if ((res = ff_thread_ref_frame(&s->s.refs[i], &ssrc->next_refs[i])) < 0)
  3978. return res;
  3979. }
  3980. }
  3981. s->s.h.invisible = ssrc->s.h.invisible;
  3982. s->s.h.keyframe = ssrc->s.h.keyframe;
  3983. s->s.h.intraonly = ssrc->s.h.intraonly;
  3984. s->ss_v = ssrc->ss_v;
  3985. s->ss_h = ssrc->ss_h;
  3986. s->s.h.segmentation.enabled = ssrc->s.h.segmentation.enabled;
  3987. s->s.h.segmentation.update_map = ssrc->s.h.segmentation.update_map;
  3988. s->s.h.segmentation.absolute_vals = ssrc->s.h.segmentation.absolute_vals;
  3989. s->bytesperpixel = ssrc->bytesperpixel;
  3990. s->gf_fmt = ssrc->gf_fmt;
  3991. s->w = ssrc->w;
  3992. s->h = ssrc->h;
  3993. s->bpp = ssrc->bpp;
  3994. s->bpp_index = ssrc->bpp_index;
  3995. s->pix_fmt = ssrc->pix_fmt;
  3996. memcpy(&s->prob_ctx, &ssrc->prob_ctx, sizeof(s->prob_ctx));
  3997. memcpy(&s->s.h.lf_delta, &ssrc->s.h.lf_delta, sizeof(s->s.h.lf_delta));
  3998. memcpy(&s->s.h.segmentation.feat, &ssrc->s.h.segmentation.feat,
  3999. sizeof(s->s.h.segmentation.feat));
  4000. return 0;
  4001. }
  4002. #endif
  4003. AVCodec ff_vp9_decoder = {
  4004. .name = "vp9",
  4005. .long_name = NULL_IF_CONFIG_SMALL("Google VP9"),
  4006. .type = AVMEDIA_TYPE_VIDEO,
  4007. .id = AV_CODEC_ID_VP9,
  4008. .priv_data_size = sizeof(VP9Context),
  4009. .init = vp9_decode_init,
  4010. .close = vp9_decode_free,
  4011. .decode = vp9_decode_frame,
  4012. .capabilities = AV_CODEC_CAP_DR1 | AV_CODEC_CAP_FRAME_THREADS,
  4013. .flush = vp9_decode_flush,
  4014. .init_thread_copy = ONLY_IF_THREADS_ENABLED(vp9_decode_init_thread_copy),
  4015. .update_thread_context = ONLY_IF_THREADS_ENABLED(vp9_decode_update_thread_context),
  4016. .profiles = NULL_IF_CONFIG_SMALL(ff_vp9_profiles),
  4017. };