You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

1975 lines
67KB

  1. /*
  2. * Copyright (C) 2007 Marco Gerards <marco@gnu.org>
  3. * Copyright (C) 2009 David Conrad
  4. * Copyright (C) 2011 Jordi Ortiz
  5. *
  6. * This file is part of FFmpeg.
  7. *
  8. * FFmpeg is free software; you can redistribute it and/or
  9. * modify it under the terms of the GNU Lesser General Public
  10. * License as published by the Free Software Foundation; either
  11. * version 2.1 of the License, or (at your option) any later version.
  12. *
  13. * FFmpeg is distributed in the hope that it will be useful,
  14. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  15. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  16. * Lesser General Public License for more details.
  17. *
  18. * You should have received a copy of the GNU Lesser General Public
  19. * License along with FFmpeg; if not, write to the Free Software
  20. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  21. */
  22. /**
  23. * @file
  24. * Dirac Decoder
  25. * @author Marco Gerards <marco@gnu.org>, David Conrad, Jordi Ortiz <nenjordi@gmail.com>
  26. */
  27. #include "avcodec.h"
  28. #include "dsputil.h"
  29. #include "get_bits.h"
  30. #include "bytestream.h"
  31. #include "internal.h"
  32. #include "golomb.h"
  33. #include "dirac_arith.h"
  34. #include "mpeg12data.h"
  35. #include "dirac_dwt.h"
  36. #include "dirac.h"
  37. #include "diracdsp.h"
  38. #include "videodsp.h" // for ff_emulated_edge_mc_8
  39. /**
  40. * The spec limits the number of wavelet decompositions to 4 for both
  41. * level 1 (VC-2) and 128 (long-gop default).
  42. * 5 decompositions is the maximum before >16-bit buffers are needed.
  43. * Schroedinger allows this for DD 9,7 and 13,7 wavelets only, limiting
  44. * the others to 4 decompositions (or 3 for the fidelity filter).
  45. *
  46. * We use this instead of MAX_DECOMPOSITIONS to save some memory.
  47. */
  48. #define MAX_DWT_LEVELS 5
  49. /**
  50. * The spec limits this to 3 for frame coding, but in practice can be as high as 6
  51. */
  52. #define MAX_REFERENCE_FRAMES 8
  53. #define MAX_DELAY 5 /* limit for main profile for frame coding (TODO: field coding) */
  54. #define MAX_FRAMES (MAX_REFERENCE_FRAMES + MAX_DELAY + 1)
  55. #define MAX_QUANT 68 /* max quant for VC-2 */
  56. #define MAX_BLOCKSIZE 32 /* maximum xblen/yblen we support */
  57. /**
  58. * DiracBlock->ref flags, if set then the block does MC from the given ref
  59. */
  60. #define DIRAC_REF_MASK_REF1 1
  61. #define DIRAC_REF_MASK_REF2 2
  62. #define DIRAC_REF_MASK_GLOBAL 4
  63. /**
  64. * Value of Picture.reference when Picture is not a reference picture, but
  65. * is held for delayed output.
  66. */
  67. #define DELAYED_PIC_REF 4
  68. #define ff_emulated_edge_mc ff_emulated_edge_mc_8 /* Fix: change the calls to this function regarding bit depth */
  69. #define CALC_PADDING(size, depth) \
  70. (((size + (1 << depth) - 1) >> depth) << depth)
  71. #define DIVRNDUP(a, b) (((a) + (b) - 1) / (b))
  72. typedef struct {
  73. AVFrame *avframe;
  74. int interpolated[3]; /* 1 if hpel[] is valid */
  75. uint8_t *hpel[3][4];
  76. uint8_t *hpel_base[3][4];
  77. } DiracFrame;
  78. typedef struct {
  79. union {
  80. int16_t mv[2][2];
  81. int16_t dc[3];
  82. } u; /* anonymous unions aren't in C99 :( */
  83. uint8_t ref;
  84. } DiracBlock;
  85. typedef struct SubBand {
  86. int level;
  87. int orientation;
  88. int stride;
  89. int width;
  90. int height;
  91. int quant;
  92. IDWTELEM *ibuf;
  93. struct SubBand *parent;
  94. /* for low delay */
  95. unsigned length;
  96. const uint8_t *coeff_data;
  97. } SubBand;
  98. typedef struct Plane {
  99. int width;
  100. int height;
  101. ptrdiff_t stride;
  102. int idwt_width;
  103. int idwt_height;
  104. int idwt_stride;
  105. IDWTELEM *idwt_buf;
  106. IDWTELEM *idwt_buf_base;
  107. IDWTELEM *idwt_tmp;
  108. /* block length */
  109. uint8_t xblen;
  110. uint8_t yblen;
  111. /* block separation (block n+1 starts after this many pixels in block n) */
  112. uint8_t xbsep;
  113. uint8_t ybsep;
  114. /* amount of overspill on each edge (half of the overlap between blocks) */
  115. uint8_t xoffset;
  116. uint8_t yoffset;
  117. SubBand band[MAX_DWT_LEVELS][4];
  118. } Plane;
  119. typedef struct DiracContext {
  120. AVCodecContext *avctx;
  121. DSPContext dsp;
  122. DiracDSPContext diracdsp;
  123. GetBitContext gb;
  124. dirac_source_params source;
  125. int seen_sequence_header;
  126. int frame_number; /* number of the next frame to display */
  127. Plane plane[3];
  128. int chroma_x_shift;
  129. int chroma_y_shift;
  130. int zero_res; /* zero residue flag */
  131. int is_arith; /* whether coeffs use arith or golomb coding */
  132. int low_delay; /* use the low delay syntax */
  133. int globalmc_flag; /* use global motion compensation */
  134. int num_refs; /* number of reference pictures */
  135. /* wavelet decoding */
  136. unsigned wavelet_depth; /* depth of the IDWT */
  137. unsigned wavelet_idx;
  138. /**
  139. * schroedinger older than 1.0.8 doesn't store
  140. * quant delta if only one codebook exists in a band
  141. */
  142. unsigned old_delta_quant;
  143. unsigned codeblock_mode;
  144. struct {
  145. unsigned width;
  146. unsigned height;
  147. } codeblock[MAX_DWT_LEVELS+1];
  148. struct {
  149. unsigned num_x; /* number of horizontal slices */
  150. unsigned num_y; /* number of vertical slices */
  151. AVRational bytes; /* average bytes per slice */
  152. uint8_t quant[MAX_DWT_LEVELS][4]; /* [DIRAC_STD] E.1 */
  153. } lowdelay;
  154. struct {
  155. int pan_tilt[2]; /* pan/tilt vector */
  156. int zrs[2][2]; /* zoom/rotate/shear matrix */
  157. int perspective[2]; /* perspective vector */
  158. unsigned zrs_exp;
  159. unsigned perspective_exp;
  160. } globalmc[2];
  161. /* motion compensation */
  162. uint8_t mv_precision; /* [DIRAC_STD] REFS_WT_PRECISION */
  163. int16_t weight[2]; /* [DIRAC_STD] REF1_WT and REF2_WT */
  164. unsigned weight_log2denom; /* [DIRAC_STD] REFS_WT_PRECISION */
  165. int blwidth; /* number of blocks (horizontally) */
  166. int blheight; /* number of blocks (vertically) */
  167. int sbwidth; /* number of superblocks (horizontally) */
  168. int sbheight; /* number of superblocks (vertically) */
  169. uint8_t *sbsplit;
  170. DiracBlock *blmotion;
  171. uint8_t *edge_emu_buffer[4];
  172. uint8_t *edge_emu_buffer_base;
  173. uint16_t *mctmp; /* buffer holding the MC data multipled by OBMC weights */
  174. uint8_t *mcscratch;
  175. DECLARE_ALIGNED(16, uint8_t, obmc_weight)[3][MAX_BLOCKSIZE*MAX_BLOCKSIZE];
  176. void (*put_pixels_tab[4])(uint8_t *dst, const uint8_t *src[5], int stride, int h);
  177. void (*avg_pixels_tab[4])(uint8_t *dst, const uint8_t *src[5], int stride, int h);
  178. void (*add_obmc)(uint16_t *dst, const uint8_t *src, int stride, const uint8_t *obmc_weight, int yblen);
  179. dirac_weight_func weight_func;
  180. dirac_biweight_func biweight_func;
  181. DiracFrame *current_picture;
  182. DiracFrame *ref_pics[2];
  183. DiracFrame *ref_frames[MAX_REFERENCE_FRAMES+1];
  184. DiracFrame *delay_frames[MAX_DELAY+1];
  185. DiracFrame all_frames[MAX_FRAMES];
  186. } DiracContext;
  187. /**
  188. * Dirac Specification ->
  189. * Parse code values. 9.6.1 Table 9.1
  190. */
  191. enum dirac_parse_code {
  192. pc_seq_header = 0x00,
  193. pc_eos = 0x10,
  194. pc_aux_data = 0x20,
  195. pc_padding = 0x30,
  196. };
  197. enum dirac_subband {
  198. subband_ll = 0,
  199. subband_hl = 1,
  200. subband_lh = 2,
  201. subband_hh = 3
  202. };
  203. static const uint8_t default_qmat[][4][4] = {
  204. { { 5, 3, 3, 0}, { 0, 4, 4, 1}, { 0, 5, 5, 2}, { 0, 6, 6, 3} },
  205. { { 4, 2, 2, 0}, { 0, 4, 4, 2}, { 0, 5, 5, 3}, { 0, 7, 7, 5} },
  206. { { 5, 3, 3, 0}, { 0, 4, 4, 1}, { 0, 5, 5, 2}, { 0, 6, 6, 3} },
  207. { { 8, 4, 4, 0}, { 0, 4, 4, 0}, { 0, 4, 4, 0}, { 0, 4, 4, 0} },
  208. { { 8, 4, 4, 0}, { 0, 4, 4, 0}, { 0, 4, 4, 0}, { 0, 4, 4, 0} },
  209. { { 0, 4, 4, 8}, { 0, 8, 8, 12}, { 0, 13, 13, 17}, { 0, 17, 17, 21} },
  210. { { 3, 1, 1, 0}, { 0, 4, 4, 2}, { 0, 6, 6, 5}, { 0, 9, 9, 7} },
  211. };
  212. static const int qscale_tab[MAX_QUANT+1] = {
  213. 4, 5, 6, 7, 8, 10, 11, 13,
  214. 16, 19, 23, 27, 32, 38, 45, 54,
  215. 64, 76, 91, 108, 128, 152, 181, 215,
  216. 256, 304, 362, 431, 512, 609, 724, 861,
  217. 1024, 1218, 1448, 1722, 2048, 2435, 2896, 3444,
  218. 4096, 4871, 5793, 6889, 8192, 9742, 11585, 13777,
  219. 16384, 19484, 23170, 27554, 32768, 38968, 46341, 55109,
  220. 65536, 77936
  221. };
  222. static const int qoffset_intra_tab[MAX_QUANT+1] = {
  223. 1, 2, 3, 4, 4, 5, 6, 7,
  224. 8, 10, 12, 14, 16, 19, 23, 27,
  225. 32, 38, 46, 54, 64, 76, 91, 108,
  226. 128, 152, 181, 216, 256, 305, 362, 431,
  227. 512, 609, 724, 861, 1024, 1218, 1448, 1722,
  228. 2048, 2436, 2897, 3445, 4096, 4871, 5793, 6889,
  229. 8192, 9742, 11585, 13777, 16384, 19484, 23171, 27555,
  230. 32768, 38968
  231. };
  232. static const int qoffset_inter_tab[MAX_QUANT+1] = {
  233. 1, 2, 2, 3, 3, 4, 4, 5,
  234. 6, 7, 9, 10, 12, 14, 17, 20,
  235. 24, 29, 34, 41, 48, 57, 68, 81,
  236. 96, 114, 136, 162, 192, 228, 272, 323,
  237. 384, 457, 543, 646, 768, 913, 1086, 1292,
  238. 1536, 1827, 2172, 2583, 3072, 3653, 4344, 5166,
  239. 6144, 7307, 8689, 10333, 12288, 14613, 17378, 20666,
  240. 24576, 29226
  241. };
  242. /* magic number division by 3 from schroedinger */
  243. static inline int divide3(int x)
  244. {
  245. return ((x+1)*21845 + 10922) >> 16;
  246. }
  247. static DiracFrame *remove_frame(DiracFrame *framelist[], int picnum)
  248. {
  249. DiracFrame *remove_pic = NULL;
  250. int i, remove_idx = -1;
  251. for (i = 0; framelist[i]; i++)
  252. if (framelist[i]->avframe->display_picture_number == picnum) {
  253. remove_pic = framelist[i];
  254. remove_idx = i;
  255. }
  256. if (remove_pic)
  257. for (i = remove_idx; framelist[i]; i++)
  258. framelist[i] = framelist[i+1];
  259. return remove_pic;
  260. }
  261. static int add_frame(DiracFrame *framelist[], int maxframes, DiracFrame *frame)
  262. {
  263. int i;
  264. for (i = 0; i < maxframes; i++)
  265. if (!framelist[i]) {
  266. framelist[i] = frame;
  267. return 0;
  268. }
  269. return -1;
  270. }
  271. static int alloc_sequence_buffers(DiracContext *s)
  272. {
  273. int sbwidth = DIVRNDUP(s->source.width, 4);
  274. int sbheight = DIVRNDUP(s->source.height, 4);
  275. int i, w, h, top_padding;
  276. /* todo: think more about this / use or set Plane here */
  277. for (i = 0; i < 3; i++) {
  278. int max_xblen = MAX_BLOCKSIZE >> (i ? s->chroma_x_shift : 0);
  279. int max_yblen = MAX_BLOCKSIZE >> (i ? s->chroma_y_shift : 0);
  280. w = s->source.width >> (i ? s->chroma_x_shift : 0);
  281. h = s->source.height >> (i ? s->chroma_y_shift : 0);
  282. /* we allocate the max we support here since num decompositions can
  283. * change from frame to frame. Stride is aligned to 16 for SIMD, and
  284. * 1<<MAX_DWT_LEVELS top padding to avoid if(y>0) in arith decoding
  285. * MAX_BLOCKSIZE padding for MC: blocks can spill up to half of that
  286. * on each side */
  287. top_padding = FFMAX(1<<MAX_DWT_LEVELS, max_yblen/2);
  288. w = FFALIGN(CALC_PADDING(w, MAX_DWT_LEVELS), 8); /* FIXME: Should this be 16 for SSE??? */
  289. h = top_padding + CALC_PADDING(h, MAX_DWT_LEVELS) + max_yblen/2;
  290. s->plane[i].idwt_buf_base = av_mallocz_array((w+max_xblen), h * sizeof(IDWTELEM));
  291. s->plane[i].idwt_tmp = av_malloc_array((w+16), sizeof(IDWTELEM));
  292. s->plane[i].idwt_buf = s->plane[i].idwt_buf_base + top_padding*w;
  293. if (!s->plane[i].idwt_buf_base || !s->plane[i].idwt_tmp)
  294. return AVERROR(ENOMEM);
  295. }
  296. w = s->source.width;
  297. h = s->source.height;
  298. /* fixme: allocate using real stride here */
  299. s->sbsplit = av_malloc_array(sbwidth, sbheight);
  300. s->blmotion = av_malloc_array(sbwidth, sbheight * 16 * sizeof(*s->blmotion));
  301. s->edge_emu_buffer_base = av_malloc_array((w+64), MAX_BLOCKSIZE);
  302. s->mctmp = av_malloc_array((w+64+MAX_BLOCKSIZE), (h+MAX_BLOCKSIZE) * sizeof(*s->mctmp));
  303. s->mcscratch = av_malloc_array((w+64), MAX_BLOCKSIZE);
  304. if (!s->sbsplit || !s->blmotion || !s->mctmp || !s->mcscratch)
  305. return AVERROR(ENOMEM);
  306. return 0;
  307. }
  308. static void free_sequence_buffers(DiracContext *s)
  309. {
  310. int i, j, k;
  311. for (i = 0; i < MAX_FRAMES; i++) {
  312. if (s->all_frames[i].avframe->data[0]) {
  313. av_frame_unref(s->all_frames[i].avframe);
  314. memset(s->all_frames[i].interpolated, 0, sizeof(s->all_frames[i].interpolated));
  315. }
  316. for (j = 0; j < 3; j++)
  317. for (k = 1; k < 4; k++)
  318. av_freep(&s->all_frames[i].hpel_base[j][k]);
  319. }
  320. memset(s->ref_frames, 0, sizeof(s->ref_frames));
  321. memset(s->delay_frames, 0, sizeof(s->delay_frames));
  322. for (i = 0; i < 3; i++) {
  323. av_freep(&s->plane[i].idwt_buf_base);
  324. av_freep(&s->plane[i].idwt_tmp);
  325. }
  326. av_freep(&s->sbsplit);
  327. av_freep(&s->blmotion);
  328. av_freep(&s->edge_emu_buffer_base);
  329. av_freep(&s->mctmp);
  330. av_freep(&s->mcscratch);
  331. }
  332. static av_cold int dirac_decode_init(AVCodecContext *avctx)
  333. {
  334. DiracContext *s = avctx->priv_data;
  335. int i;
  336. s->avctx = avctx;
  337. s->frame_number = -1;
  338. ff_dsputil_init(&s->dsp, avctx);
  339. ff_diracdsp_init(&s->diracdsp);
  340. for (i = 0; i < MAX_FRAMES; i++) {
  341. s->all_frames[i].avframe = av_frame_alloc();
  342. if (!s->all_frames[i].avframe) {
  343. while (i > 0)
  344. av_frame_free(&s->all_frames[--i].avframe);
  345. return AVERROR(ENOMEM);
  346. }
  347. }
  348. return 0;
  349. }
  350. static void dirac_decode_flush(AVCodecContext *avctx)
  351. {
  352. DiracContext *s = avctx->priv_data;
  353. free_sequence_buffers(s);
  354. s->seen_sequence_header = 0;
  355. s->frame_number = -1;
  356. }
  357. static av_cold int dirac_decode_end(AVCodecContext *avctx)
  358. {
  359. DiracContext *s = avctx->priv_data;
  360. int i;
  361. dirac_decode_flush(avctx);
  362. for (i = 0; i < MAX_FRAMES; i++)
  363. av_frame_free(&s->all_frames[i].avframe);
  364. return 0;
  365. }
  366. #define SIGN_CTX(x) (CTX_SIGN_ZERO + ((x) > 0) - ((x) < 0))
  367. static inline void coeff_unpack_arith(DiracArith *c, int qfactor, int qoffset,
  368. SubBand *b, IDWTELEM *buf, int x, int y)
  369. {
  370. int coeff, sign;
  371. int sign_pred = 0;
  372. int pred_ctx = CTX_ZPZN_F1;
  373. /* Check if the parent subband has a 0 in the corresponding position */
  374. if (b->parent)
  375. pred_ctx += !!b->parent->ibuf[b->parent->stride * (y>>1) + (x>>1)] << 1;
  376. if (b->orientation == subband_hl)
  377. sign_pred = buf[-b->stride];
  378. /* Determine if the pixel has only zeros in its neighbourhood */
  379. if (x) {
  380. pred_ctx += !(buf[-1] | buf[-b->stride] | buf[-1-b->stride]);
  381. if (b->orientation == subband_lh)
  382. sign_pred = buf[-1];
  383. } else {
  384. pred_ctx += !buf[-b->stride];
  385. }
  386. coeff = dirac_get_arith_uint(c, pred_ctx, CTX_COEFF_DATA);
  387. if (coeff) {
  388. coeff = (coeff * qfactor + qoffset + 2) >> 2;
  389. sign = dirac_get_arith_bit(c, SIGN_CTX(sign_pred));
  390. coeff = (coeff ^ -sign) + sign;
  391. }
  392. *buf = coeff;
  393. }
  394. static inline int coeff_unpack_golomb(GetBitContext *gb, int qfactor, int qoffset)
  395. {
  396. int sign, coeff;
  397. coeff = svq3_get_ue_golomb(gb);
  398. if (coeff) {
  399. coeff = (coeff * qfactor + qoffset + 2) >> 2;
  400. sign = get_bits1(gb);
  401. coeff = (coeff ^ -sign) + sign;
  402. }
  403. return coeff;
  404. }
  405. /**
  406. * Decode the coeffs in the rectangle defined by left, right, top, bottom
  407. * [DIRAC_STD] 13.4.3.2 Codeblock unpacking loop. codeblock()
  408. */
  409. static inline void codeblock(DiracContext *s, SubBand *b,
  410. GetBitContext *gb, DiracArith *c,
  411. int left, int right, int top, int bottom,
  412. int blockcnt_one, int is_arith)
  413. {
  414. int x, y, zero_block;
  415. int qoffset, qfactor;
  416. IDWTELEM *buf;
  417. /* check for any coded coefficients in this codeblock */
  418. if (!blockcnt_one) {
  419. if (is_arith)
  420. zero_block = dirac_get_arith_bit(c, CTX_ZERO_BLOCK);
  421. else
  422. zero_block = get_bits1(gb);
  423. if (zero_block)
  424. return;
  425. }
  426. if (s->codeblock_mode && !(s->old_delta_quant && blockcnt_one)) {
  427. int quant = b->quant;
  428. if (is_arith)
  429. quant += dirac_get_arith_int(c, CTX_DELTA_Q_F, CTX_DELTA_Q_DATA);
  430. else
  431. quant += dirac_get_se_golomb(gb);
  432. if (quant < 0) {
  433. av_log(s->avctx, AV_LOG_ERROR, "Invalid quant\n");
  434. return;
  435. }
  436. b->quant = quant;
  437. }
  438. b->quant = FFMIN(b->quant, MAX_QUANT);
  439. qfactor = qscale_tab[b->quant];
  440. /* TODO: context pointer? */
  441. if (!s->num_refs)
  442. qoffset = qoffset_intra_tab[b->quant];
  443. else
  444. qoffset = qoffset_inter_tab[b->quant];
  445. buf = b->ibuf + top * b->stride;
  446. for (y = top; y < bottom; y++) {
  447. for (x = left; x < right; x++) {
  448. /* [DIRAC_STD] 13.4.4 Subband coefficients. coeff_unpack() */
  449. if (is_arith)
  450. coeff_unpack_arith(c, qfactor, qoffset, b, buf+x, x, y);
  451. else
  452. buf[x] = coeff_unpack_golomb(gb, qfactor, qoffset);
  453. }
  454. buf += b->stride;
  455. }
  456. }
  457. /**
  458. * Dirac Specification ->
  459. * 13.3 intra_dc_prediction(band)
  460. */
  461. static inline void intra_dc_prediction(SubBand *b)
  462. {
  463. IDWTELEM *buf = b->ibuf;
  464. int x, y;
  465. for (x = 1; x < b->width; x++)
  466. buf[x] += buf[x-1];
  467. buf += b->stride;
  468. for (y = 1; y < b->height; y++) {
  469. buf[0] += buf[-b->stride];
  470. for (x = 1; x < b->width; x++) {
  471. int pred = buf[x - 1] + buf[x - b->stride] + buf[x - b->stride-1];
  472. buf[x] += divide3(pred);
  473. }
  474. buf += b->stride;
  475. }
  476. }
  477. /**
  478. * Dirac Specification ->
  479. * 13.4.2 Non-skipped subbands. subband_coeffs()
  480. */
  481. static av_always_inline void decode_subband_internal(DiracContext *s, SubBand *b, int is_arith)
  482. {
  483. int cb_x, cb_y, left, right, top, bottom;
  484. DiracArith c;
  485. GetBitContext gb;
  486. int cb_width = s->codeblock[b->level + (b->orientation != subband_ll)].width;
  487. int cb_height = s->codeblock[b->level + (b->orientation != subband_ll)].height;
  488. int blockcnt_one = (cb_width + cb_height) == 2;
  489. if (!b->length)
  490. return;
  491. init_get_bits8(&gb, b->coeff_data, b->length);
  492. if (is_arith)
  493. ff_dirac_init_arith_decoder(&c, &gb, b->length);
  494. top = 0;
  495. for (cb_y = 0; cb_y < cb_height; cb_y++) {
  496. bottom = (b->height * (cb_y+1)) / cb_height;
  497. left = 0;
  498. for (cb_x = 0; cb_x < cb_width; cb_x++) {
  499. right = (b->width * (cb_x+1)) / cb_width;
  500. codeblock(s, b, &gb, &c, left, right, top, bottom, blockcnt_one, is_arith);
  501. left = right;
  502. }
  503. top = bottom;
  504. }
  505. if (b->orientation == subband_ll && s->num_refs == 0)
  506. intra_dc_prediction(b);
  507. }
  508. static int decode_subband_arith(AVCodecContext *avctx, void *b)
  509. {
  510. DiracContext *s = avctx->priv_data;
  511. decode_subband_internal(s, b, 1);
  512. return 0;
  513. }
  514. static int decode_subband_golomb(AVCodecContext *avctx, void *arg)
  515. {
  516. DiracContext *s = avctx->priv_data;
  517. SubBand **b = arg;
  518. decode_subband_internal(s, *b, 0);
  519. return 0;
  520. }
  521. /**
  522. * Dirac Specification ->
  523. * [DIRAC_STD] 13.4.1 core_transform_data()
  524. */
  525. static void decode_component(DiracContext *s, int comp)
  526. {
  527. AVCodecContext *avctx = s->avctx;
  528. SubBand *bands[3*MAX_DWT_LEVELS+1];
  529. enum dirac_subband orientation;
  530. int level, num_bands = 0;
  531. /* Unpack all subbands at all levels. */
  532. for (level = 0; level < s->wavelet_depth; level++) {
  533. for (orientation = !!level; orientation < 4; orientation++) {
  534. SubBand *b = &s->plane[comp].band[level][orientation];
  535. bands[num_bands++] = b;
  536. align_get_bits(&s->gb);
  537. /* [DIRAC_STD] 13.4.2 subband() */
  538. b->length = svq3_get_ue_golomb(&s->gb);
  539. if (b->length) {
  540. b->quant = svq3_get_ue_golomb(&s->gb);
  541. align_get_bits(&s->gb);
  542. b->coeff_data = s->gb.buffer + get_bits_count(&s->gb)/8;
  543. b->length = FFMIN(b->length, FFMAX(get_bits_left(&s->gb)/8, 0));
  544. skip_bits_long(&s->gb, b->length*8);
  545. }
  546. }
  547. /* arithmetic coding has inter-level dependencies, so we can only execute one level at a time */
  548. if (s->is_arith)
  549. avctx->execute(avctx, decode_subband_arith, &s->plane[comp].band[level][!!level],
  550. NULL, 4-!!level, sizeof(SubBand));
  551. }
  552. /* golomb coding has no inter-level dependencies, so we can execute all subbands in parallel */
  553. if (!s->is_arith)
  554. avctx->execute(avctx, decode_subband_golomb, bands, NULL, num_bands, sizeof(SubBand*));
  555. }
  556. /* [DIRAC_STD] 13.5.5.2 Luma slice subband data. luma_slice_band(level,orient,sx,sy) --> if b2 == NULL */
  557. /* [DIRAC_STD] 13.5.5.3 Chroma slice subband data. chroma_slice_band(level,orient,sx,sy) --> if b2 != NULL */
  558. static void lowdelay_subband(DiracContext *s, GetBitContext *gb, int quant,
  559. int slice_x, int slice_y, int bits_end,
  560. SubBand *b1, SubBand *b2)
  561. {
  562. int left = b1->width * slice_x / s->lowdelay.num_x;
  563. int right = b1->width *(slice_x+1) / s->lowdelay.num_x;
  564. int top = b1->height * slice_y / s->lowdelay.num_y;
  565. int bottom = b1->height *(slice_y+1) / s->lowdelay.num_y;
  566. int qfactor = qscale_tab[FFMIN(quant, MAX_QUANT)];
  567. int qoffset = qoffset_intra_tab[FFMIN(quant, MAX_QUANT)];
  568. IDWTELEM *buf1 = b1->ibuf + top * b1->stride;
  569. IDWTELEM *buf2 = b2 ? b2->ibuf + top * b2->stride : NULL;
  570. int x, y;
  571. /* we have to constantly check for overread since the spec explictly
  572. requires this, with the meaning that all remaining coeffs are set to 0 */
  573. if (get_bits_count(gb) >= bits_end)
  574. return;
  575. for (y = top; y < bottom; y++) {
  576. for (x = left; x < right; x++) {
  577. buf1[x] = coeff_unpack_golomb(gb, qfactor, qoffset);
  578. if (get_bits_count(gb) >= bits_end)
  579. return;
  580. if (buf2) {
  581. buf2[x] = coeff_unpack_golomb(gb, qfactor, qoffset);
  582. if (get_bits_count(gb) >= bits_end)
  583. return;
  584. }
  585. }
  586. buf1 += b1->stride;
  587. if (buf2)
  588. buf2 += b2->stride;
  589. }
  590. }
  591. struct lowdelay_slice {
  592. GetBitContext gb;
  593. int slice_x;
  594. int slice_y;
  595. int bytes;
  596. };
  597. /**
  598. * Dirac Specification ->
  599. * 13.5.2 Slices. slice(sx,sy)
  600. */
  601. static int decode_lowdelay_slice(AVCodecContext *avctx, void *arg)
  602. {
  603. DiracContext *s = avctx->priv_data;
  604. struct lowdelay_slice *slice = arg;
  605. GetBitContext *gb = &slice->gb;
  606. enum dirac_subband orientation;
  607. int level, quant, chroma_bits, chroma_end;
  608. int quant_base = get_bits(gb, 7); /*[DIRAC_STD] qindex */
  609. int length_bits = av_log2(8 * slice->bytes)+1;
  610. int luma_bits = get_bits_long(gb, length_bits);
  611. int luma_end = get_bits_count(gb) + FFMIN(luma_bits, get_bits_left(gb));
  612. /* [DIRAC_STD] 13.5.5.2 luma_slice_band */
  613. for (level = 0; level < s->wavelet_depth; level++)
  614. for (orientation = !!level; orientation < 4; orientation++) {
  615. quant = FFMAX(quant_base - s->lowdelay.quant[level][orientation], 0);
  616. lowdelay_subband(s, gb, quant, slice->slice_x, slice->slice_y, luma_end,
  617. &s->plane[0].band[level][orientation], NULL);
  618. }
  619. /* consume any unused bits from luma */
  620. skip_bits_long(gb, get_bits_count(gb) - luma_end);
  621. chroma_bits = 8*slice->bytes - 7 - length_bits - luma_bits;
  622. chroma_end = get_bits_count(gb) + FFMIN(chroma_bits, get_bits_left(gb));
  623. /* [DIRAC_STD] 13.5.5.3 chroma_slice_band */
  624. for (level = 0; level < s->wavelet_depth; level++)
  625. for (orientation = !!level; orientation < 4; orientation++) {
  626. quant = FFMAX(quant_base - s->lowdelay.quant[level][orientation], 0);
  627. lowdelay_subband(s, gb, quant, slice->slice_x, slice->slice_y, chroma_end,
  628. &s->plane[1].band[level][orientation],
  629. &s->plane[2].band[level][orientation]);
  630. }
  631. return 0;
  632. }
  633. /**
  634. * Dirac Specification ->
  635. * 13.5.1 low_delay_transform_data()
  636. */
  637. static void decode_lowdelay(DiracContext *s)
  638. {
  639. AVCodecContext *avctx = s->avctx;
  640. int slice_x, slice_y, bytes, bufsize;
  641. const uint8_t *buf;
  642. struct lowdelay_slice *slices;
  643. int slice_num = 0;
  644. slices = av_mallocz_array(s->lowdelay.num_x, s->lowdelay.num_y * sizeof(struct lowdelay_slice));
  645. align_get_bits(&s->gb);
  646. /*[DIRAC_STD] 13.5.2 Slices. slice(sx,sy) */
  647. buf = s->gb.buffer + get_bits_count(&s->gb)/8;
  648. bufsize = get_bits_left(&s->gb);
  649. for (slice_y = 0; bufsize > 0 && slice_y < s->lowdelay.num_y; slice_y++)
  650. for (slice_x = 0; bufsize > 0 && slice_x < s->lowdelay.num_x; slice_x++) {
  651. bytes = (slice_num+1) * s->lowdelay.bytes.num / s->lowdelay.bytes.den
  652. - slice_num * s->lowdelay.bytes.num / s->lowdelay.bytes.den;
  653. slices[slice_num].bytes = bytes;
  654. slices[slice_num].slice_x = slice_x;
  655. slices[slice_num].slice_y = slice_y;
  656. init_get_bits(&slices[slice_num].gb, buf, bufsize);
  657. slice_num++;
  658. buf += bytes;
  659. bufsize -= bytes*8;
  660. }
  661. avctx->execute(avctx, decode_lowdelay_slice, slices, NULL, slice_num,
  662. sizeof(struct lowdelay_slice)); /* [DIRAC_STD] 13.5.2 Slices */
  663. intra_dc_prediction(&s->plane[0].band[0][0]); /* [DIRAC_STD] 13.3 intra_dc_prediction() */
  664. intra_dc_prediction(&s->plane[1].band[0][0]); /* [DIRAC_STD] 13.3 intra_dc_prediction() */
  665. intra_dc_prediction(&s->plane[2].band[0][0]); /* [DIRAC_STD] 13.3 intra_dc_prediction() */
  666. av_free(slices);
  667. }
  668. static void init_planes(DiracContext *s)
  669. {
  670. int i, w, h, level, orientation;
  671. for (i = 0; i < 3; i++) {
  672. Plane *p = &s->plane[i];
  673. p->width = s->source.width >> (i ? s->chroma_x_shift : 0);
  674. p->height = s->source.height >> (i ? s->chroma_y_shift : 0);
  675. p->idwt_width = w = CALC_PADDING(p->width , s->wavelet_depth);
  676. p->idwt_height = h = CALC_PADDING(p->height, s->wavelet_depth);
  677. p->idwt_stride = FFALIGN(p->idwt_width, 8);
  678. for (level = s->wavelet_depth-1; level >= 0; level--) {
  679. w = w>>1;
  680. h = h>>1;
  681. for (orientation = !!level; orientation < 4; orientation++) {
  682. SubBand *b = &p->band[level][orientation];
  683. b->ibuf = p->idwt_buf;
  684. b->level = level;
  685. b->stride = p->idwt_stride << (s->wavelet_depth - level);
  686. b->width = w;
  687. b->height = h;
  688. b->orientation = orientation;
  689. if (orientation & 1)
  690. b->ibuf += w;
  691. if (orientation > 1)
  692. b->ibuf += b->stride>>1;
  693. if (level)
  694. b->parent = &p->band[level-1][orientation];
  695. }
  696. }
  697. if (i > 0) {
  698. p->xblen = s->plane[0].xblen >> s->chroma_x_shift;
  699. p->yblen = s->plane[0].yblen >> s->chroma_y_shift;
  700. p->xbsep = s->plane[0].xbsep >> s->chroma_x_shift;
  701. p->ybsep = s->plane[0].ybsep >> s->chroma_y_shift;
  702. }
  703. p->xoffset = (p->xblen - p->xbsep)/2;
  704. p->yoffset = (p->yblen - p->ybsep)/2;
  705. }
  706. }
  707. /**
  708. * Unpack the motion compensation parameters
  709. * Dirac Specification ->
  710. * 11.2 Picture prediction data. picture_prediction()
  711. */
  712. static int dirac_unpack_prediction_parameters(DiracContext *s)
  713. {
  714. static const uint8_t default_blen[] = { 4, 12, 16, 24 };
  715. static const uint8_t default_bsep[] = { 4, 8, 12, 16 };
  716. GetBitContext *gb = &s->gb;
  717. unsigned idx, ref;
  718. align_get_bits(gb);
  719. /* [DIRAC_STD] 11.2.2 Block parameters. block_parameters() */
  720. /* Luma and Chroma are equal. 11.2.3 */
  721. idx = svq3_get_ue_golomb(gb); /* [DIRAC_STD] index */
  722. if (idx > 4) {
  723. av_log(s->avctx, AV_LOG_ERROR, "Block prediction index too high\n");
  724. return -1;
  725. }
  726. if (idx == 0) {
  727. s->plane[0].xblen = svq3_get_ue_golomb(gb);
  728. s->plane[0].yblen = svq3_get_ue_golomb(gb);
  729. s->plane[0].xbsep = svq3_get_ue_golomb(gb);
  730. s->plane[0].ybsep = svq3_get_ue_golomb(gb);
  731. } else {
  732. /*[DIRAC_STD] preset_block_params(index). Table 11.1 */
  733. s->plane[0].xblen = default_blen[idx-1];
  734. s->plane[0].yblen = default_blen[idx-1];
  735. s->plane[0].xbsep = default_bsep[idx-1];
  736. s->plane[0].ybsep = default_bsep[idx-1];
  737. }
  738. /*[DIRAC_STD] 11.2.4 motion_data_dimensions()
  739. Calculated in function dirac_unpack_block_motion_data */
  740. if (!s->plane[0].xbsep || !s->plane[0].ybsep || s->plane[0].xbsep < s->plane[0].xblen/2 || s->plane[0].ybsep < s->plane[0].yblen/2) {
  741. av_log(s->avctx, AV_LOG_ERROR, "Block separation too small\n");
  742. return -1;
  743. }
  744. if (s->plane[0].xbsep > s->plane[0].xblen || s->plane[0].ybsep > s->plane[0].yblen) {
  745. av_log(s->avctx, AV_LOG_ERROR, "Block separation greater than size\n");
  746. return -1;
  747. }
  748. if (FFMAX(s->plane[0].xblen, s->plane[0].yblen) > MAX_BLOCKSIZE) {
  749. av_log(s->avctx, AV_LOG_ERROR, "Unsupported large block size\n");
  750. return -1;
  751. }
  752. /*[DIRAC_STD] 11.2.5 Motion vector precision. motion_vector_precision()
  753. Read motion vector precision */
  754. s->mv_precision = svq3_get_ue_golomb(gb);
  755. if (s->mv_precision > 3) {
  756. av_log(s->avctx, AV_LOG_ERROR, "MV precision finer than eighth-pel\n");
  757. return -1;
  758. }
  759. /*[DIRAC_STD] 11.2.6 Global motion. global_motion()
  760. Read the global motion compensation parameters */
  761. s->globalmc_flag = get_bits1(gb);
  762. if (s->globalmc_flag) {
  763. memset(s->globalmc, 0, sizeof(s->globalmc));
  764. /* [DIRAC_STD] pan_tilt(gparams) */
  765. for (ref = 0; ref < s->num_refs; ref++) {
  766. if (get_bits1(gb)) {
  767. s->globalmc[ref].pan_tilt[0] = dirac_get_se_golomb(gb);
  768. s->globalmc[ref].pan_tilt[1] = dirac_get_se_golomb(gb);
  769. }
  770. /* [DIRAC_STD] zoom_rotate_shear(gparams)
  771. zoom/rotation/shear parameters */
  772. if (get_bits1(gb)) {
  773. s->globalmc[ref].zrs_exp = svq3_get_ue_golomb(gb);
  774. s->globalmc[ref].zrs[0][0] = dirac_get_se_golomb(gb);
  775. s->globalmc[ref].zrs[0][1] = dirac_get_se_golomb(gb);
  776. s->globalmc[ref].zrs[1][0] = dirac_get_se_golomb(gb);
  777. s->globalmc[ref].zrs[1][1] = dirac_get_se_golomb(gb);
  778. } else {
  779. s->globalmc[ref].zrs[0][0] = 1;
  780. s->globalmc[ref].zrs[1][1] = 1;
  781. }
  782. /* [DIRAC_STD] perspective(gparams) */
  783. if (get_bits1(gb)) {
  784. s->globalmc[ref].perspective_exp = svq3_get_ue_golomb(gb);
  785. s->globalmc[ref].perspective[0] = dirac_get_se_golomb(gb);
  786. s->globalmc[ref].perspective[1] = dirac_get_se_golomb(gb);
  787. }
  788. }
  789. }
  790. /*[DIRAC_STD] 11.2.7 Picture prediction mode. prediction_mode()
  791. Picture prediction mode, not currently used. */
  792. if (svq3_get_ue_golomb(gb)) {
  793. av_log(s->avctx, AV_LOG_ERROR, "Unknown picture prediction mode\n");
  794. return -1;
  795. }
  796. /* [DIRAC_STD] 11.2.8 Reference picture weight. reference_picture_weights()
  797. just data read, weight calculation will be done later on. */
  798. s->weight_log2denom = 1;
  799. s->weight[0] = 1;
  800. s->weight[1] = 1;
  801. if (get_bits1(gb)) {
  802. s->weight_log2denom = svq3_get_ue_golomb(gb);
  803. s->weight[0] = dirac_get_se_golomb(gb);
  804. if (s->num_refs == 2)
  805. s->weight[1] = dirac_get_se_golomb(gb);
  806. }
  807. return 0;
  808. }
  809. /**
  810. * Dirac Specification ->
  811. * 11.3 Wavelet transform data. wavelet_transform()
  812. */
  813. static int dirac_unpack_idwt_params(DiracContext *s)
  814. {
  815. GetBitContext *gb = &s->gb;
  816. int i, level;
  817. unsigned tmp;
  818. #define CHECKEDREAD(dst, cond, errmsg) \
  819. tmp = svq3_get_ue_golomb(gb); \
  820. if (cond) { \
  821. av_log(s->avctx, AV_LOG_ERROR, errmsg); \
  822. return -1; \
  823. }\
  824. dst = tmp;
  825. align_get_bits(gb);
  826. s->zero_res = s->num_refs ? get_bits1(gb) : 0;
  827. if (s->zero_res)
  828. return 0;
  829. /*[DIRAC_STD] 11.3.1 Transform parameters. transform_parameters() */
  830. CHECKEDREAD(s->wavelet_idx, tmp > 6, "wavelet_idx is too big\n")
  831. CHECKEDREAD(s->wavelet_depth, tmp > MAX_DWT_LEVELS || tmp < 1, "invalid number of DWT decompositions\n")
  832. if (!s->low_delay) {
  833. /* Codeblock parameters (core syntax only) */
  834. if (get_bits1(gb)) {
  835. for (i = 0; i <= s->wavelet_depth; i++) {
  836. CHECKEDREAD(s->codeblock[i].width , tmp < 1, "codeblock width invalid\n")
  837. CHECKEDREAD(s->codeblock[i].height, tmp < 1, "codeblock height invalid\n")
  838. }
  839. CHECKEDREAD(s->codeblock_mode, tmp > 1, "unknown codeblock mode\n")
  840. } else
  841. for (i = 0; i <= s->wavelet_depth; i++)
  842. s->codeblock[i].width = s->codeblock[i].height = 1;
  843. } else {
  844. /* Slice parameters + quantization matrix*/
  845. /*[DIRAC_STD] 11.3.4 Slice coding Parameters (low delay syntax only). slice_parameters() */
  846. s->lowdelay.num_x = svq3_get_ue_golomb(gb);
  847. s->lowdelay.num_y = svq3_get_ue_golomb(gb);
  848. s->lowdelay.bytes.num = svq3_get_ue_golomb(gb);
  849. s->lowdelay.bytes.den = svq3_get_ue_golomb(gb);
  850. if (s->lowdelay.bytes.den <= 0) {
  851. av_log(s->avctx,AV_LOG_ERROR,"Invalid lowdelay.bytes.den\n");
  852. return AVERROR_INVALIDDATA;
  853. }
  854. /* [DIRAC_STD] 11.3.5 Quantisation matrices (low-delay syntax). quant_matrix() */
  855. if (get_bits1(gb)) {
  856. av_log(s->avctx,AV_LOG_DEBUG,"Low Delay: Has Custom Quantization Matrix!\n");
  857. /* custom quantization matrix */
  858. s->lowdelay.quant[0][0] = svq3_get_ue_golomb(gb);
  859. for (level = 0; level < s->wavelet_depth; level++) {
  860. s->lowdelay.quant[level][1] = svq3_get_ue_golomb(gb);
  861. s->lowdelay.quant[level][2] = svq3_get_ue_golomb(gb);
  862. s->lowdelay.quant[level][3] = svq3_get_ue_golomb(gb);
  863. }
  864. } else {
  865. if (s->wavelet_depth > 4) {
  866. av_log(s->avctx,AV_LOG_ERROR,"Mandatory custom low delay matrix missing for depth %d\n", s->wavelet_depth);
  867. return AVERROR_INVALIDDATA;
  868. }
  869. /* default quantization matrix */
  870. for (level = 0; level < s->wavelet_depth; level++)
  871. for (i = 0; i < 4; i++) {
  872. s->lowdelay.quant[level][i] = default_qmat[s->wavelet_idx][level][i];
  873. /* haar with no shift differs for different depths */
  874. if (s->wavelet_idx == 3)
  875. s->lowdelay.quant[level][i] += 4*(s->wavelet_depth-1 - level);
  876. }
  877. }
  878. }
  879. return 0;
  880. }
  881. static inline int pred_sbsplit(uint8_t *sbsplit, int stride, int x, int y)
  882. {
  883. static const uint8_t avgsplit[7] = { 0, 0, 1, 1, 1, 2, 2 };
  884. if (!(x|y))
  885. return 0;
  886. else if (!y)
  887. return sbsplit[-1];
  888. else if (!x)
  889. return sbsplit[-stride];
  890. return avgsplit[sbsplit[-1] + sbsplit[-stride] + sbsplit[-stride-1]];
  891. }
  892. static inline int pred_block_mode(DiracBlock *block, int stride, int x, int y, int refmask)
  893. {
  894. int pred;
  895. if (!(x|y))
  896. return 0;
  897. else if (!y)
  898. return block[-1].ref & refmask;
  899. else if (!x)
  900. return block[-stride].ref & refmask;
  901. /* return the majority */
  902. pred = (block[-1].ref & refmask) + (block[-stride].ref & refmask) + (block[-stride-1].ref & refmask);
  903. return (pred >> 1) & refmask;
  904. }
  905. static inline void pred_block_dc(DiracBlock *block, int stride, int x, int y)
  906. {
  907. int i, n = 0;
  908. memset(block->u.dc, 0, sizeof(block->u.dc));
  909. if (x && !(block[-1].ref & 3)) {
  910. for (i = 0; i < 3; i++)
  911. block->u.dc[i] += block[-1].u.dc[i];
  912. n++;
  913. }
  914. if (y && !(block[-stride].ref & 3)) {
  915. for (i = 0; i < 3; i++)
  916. block->u.dc[i] += block[-stride].u.dc[i];
  917. n++;
  918. }
  919. if (x && y && !(block[-1-stride].ref & 3)) {
  920. for (i = 0; i < 3; i++)
  921. block->u.dc[i] += block[-1-stride].u.dc[i];
  922. n++;
  923. }
  924. if (n == 2) {
  925. for (i = 0; i < 3; i++)
  926. block->u.dc[i] = (block->u.dc[i]+1)>>1;
  927. } else if (n == 3) {
  928. for (i = 0; i < 3; i++)
  929. block->u.dc[i] = divide3(block->u.dc[i]);
  930. }
  931. }
  932. static inline void pred_mv(DiracBlock *block, int stride, int x, int y, int ref)
  933. {
  934. int16_t *pred[3];
  935. int refmask = ref+1;
  936. int mask = refmask | DIRAC_REF_MASK_GLOBAL; /* exclude gmc blocks */
  937. int n = 0;
  938. if (x && (block[-1].ref & mask) == refmask)
  939. pred[n++] = block[-1].u.mv[ref];
  940. if (y && (block[-stride].ref & mask) == refmask)
  941. pred[n++] = block[-stride].u.mv[ref];
  942. if (x && y && (block[-stride-1].ref & mask) == refmask)
  943. pred[n++] = block[-stride-1].u.mv[ref];
  944. switch (n) {
  945. case 0:
  946. block->u.mv[ref][0] = 0;
  947. block->u.mv[ref][1] = 0;
  948. break;
  949. case 1:
  950. block->u.mv[ref][0] = pred[0][0];
  951. block->u.mv[ref][1] = pred[0][1];
  952. break;
  953. case 2:
  954. block->u.mv[ref][0] = (pred[0][0] + pred[1][0] + 1) >> 1;
  955. block->u.mv[ref][1] = (pred[0][1] + pred[1][1] + 1) >> 1;
  956. break;
  957. case 3:
  958. block->u.mv[ref][0] = mid_pred(pred[0][0], pred[1][0], pred[2][0]);
  959. block->u.mv[ref][1] = mid_pred(pred[0][1], pred[1][1], pred[2][1]);
  960. break;
  961. }
  962. }
  963. static void global_mv(DiracContext *s, DiracBlock *block, int x, int y, int ref)
  964. {
  965. int ez = s->globalmc[ref].zrs_exp;
  966. int ep = s->globalmc[ref].perspective_exp;
  967. int (*A)[2] = s->globalmc[ref].zrs;
  968. int *b = s->globalmc[ref].pan_tilt;
  969. int *c = s->globalmc[ref].perspective;
  970. int m = (1<<ep) - (c[0]*x + c[1]*y);
  971. int mx = m * ((A[0][0] * x + A[0][1]*y) + (1<<ez) * b[0]);
  972. int my = m * ((A[1][0] * x + A[1][1]*y) + (1<<ez) * b[1]);
  973. block->u.mv[ref][0] = (mx + (1<<(ez+ep))) >> (ez+ep);
  974. block->u.mv[ref][1] = (my + (1<<(ez+ep))) >> (ez+ep);
  975. }
  976. static void decode_block_params(DiracContext *s, DiracArith arith[8], DiracBlock *block,
  977. int stride, int x, int y)
  978. {
  979. int i;
  980. block->ref = pred_block_mode(block, stride, x, y, DIRAC_REF_MASK_REF1);
  981. block->ref ^= dirac_get_arith_bit(arith, CTX_PMODE_REF1);
  982. if (s->num_refs == 2) {
  983. block->ref |= pred_block_mode(block, stride, x, y, DIRAC_REF_MASK_REF2);
  984. block->ref ^= dirac_get_arith_bit(arith, CTX_PMODE_REF2) << 1;
  985. }
  986. if (!block->ref) {
  987. pred_block_dc(block, stride, x, y);
  988. for (i = 0; i < 3; i++)
  989. block->u.dc[i] += dirac_get_arith_int(arith+1+i, CTX_DC_F1, CTX_DC_DATA);
  990. return;
  991. }
  992. if (s->globalmc_flag) {
  993. block->ref |= pred_block_mode(block, stride, x, y, DIRAC_REF_MASK_GLOBAL);
  994. block->ref ^= dirac_get_arith_bit(arith, CTX_GLOBAL_BLOCK) << 2;
  995. }
  996. for (i = 0; i < s->num_refs; i++)
  997. if (block->ref & (i+1)) {
  998. if (block->ref & DIRAC_REF_MASK_GLOBAL) {
  999. global_mv(s, block, x, y, i);
  1000. } else {
  1001. pred_mv(block, stride, x, y, i);
  1002. block->u.mv[i][0] += dirac_get_arith_int(arith + 4 + 2 * i, CTX_MV_F1, CTX_MV_DATA);
  1003. block->u.mv[i][1] += dirac_get_arith_int(arith + 5 + 2 * i, CTX_MV_F1, CTX_MV_DATA);
  1004. }
  1005. }
  1006. }
  1007. /**
  1008. * Copies the current block to the other blocks covered by the current superblock split mode
  1009. */
  1010. static void propagate_block_data(DiracBlock *block, int stride, int size)
  1011. {
  1012. int x, y;
  1013. DiracBlock *dst = block;
  1014. for (x = 1; x < size; x++)
  1015. dst[x] = *block;
  1016. for (y = 1; y < size; y++) {
  1017. dst += stride;
  1018. for (x = 0; x < size; x++)
  1019. dst[x] = *block;
  1020. }
  1021. }
  1022. /**
  1023. * Dirac Specification ->
  1024. * 12. Block motion data syntax
  1025. */
  1026. static int dirac_unpack_block_motion_data(DiracContext *s)
  1027. {
  1028. GetBitContext *gb = &s->gb;
  1029. uint8_t *sbsplit = s->sbsplit;
  1030. int i, x, y, q, p;
  1031. DiracArith arith[8];
  1032. align_get_bits(gb);
  1033. /* [DIRAC_STD] 11.2.4 and 12.2.1 Number of blocks and superblocks */
  1034. s->sbwidth = DIVRNDUP(s->source.width, 4*s->plane[0].xbsep);
  1035. s->sbheight = DIVRNDUP(s->source.height, 4*s->plane[0].ybsep);
  1036. s->blwidth = 4 * s->sbwidth;
  1037. s->blheight = 4 * s->sbheight;
  1038. /* [DIRAC_STD] 12.3.1 Superblock splitting modes. superblock_split_modes()
  1039. decode superblock split modes */
  1040. ff_dirac_init_arith_decoder(arith, gb, svq3_get_ue_golomb(gb)); /* svq3_get_ue_golomb(gb) is the length */
  1041. for (y = 0; y < s->sbheight; y++) {
  1042. for (x = 0; x < s->sbwidth; x++) {
  1043. unsigned int split = dirac_get_arith_uint(arith, CTX_SB_F1, CTX_SB_DATA);
  1044. if (split > 2)
  1045. return -1;
  1046. sbsplit[x] = (split + pred_sbsplit(sbsplit+x, s->sbwidth, x, y)) % 3;
  1047. }
  1048. sbsplit += s->sbwidth;
  1049. }
  1050. /* setup arith decoding */
  1051. ff_dirac_init_arith_decoder(arith, gb, svq3_get_ue_golomb(gb));
  1052. for (i = 0; i < s->num_refs; i++) {
  1053. ff_dirac_init_arith_decoder(arith + 4 + 2 * i, gb, svq3_get_ue_golomb(gb));
  1054. ff_dirac_init_arith_decoder(arith + 5 + 2 * i, gb, svq3_get_ue_golomb(gb));
  1055. }
  1056. for (i = 0; i < 3; i++)
  1057. ff_dirac_init_arith_decoder(arith+1+i, gb, svq3_get_ue_golomb(gb));
  1058. for (y = 0; y < s->sbheight; y++)
  1059. for (x = 0; x < s->sbwidth; x++) {
  1060. int blkcnt = 1 << s->sbsplit[y * s->sbwidth + x];
  1061. int step = 4 >> s->sbsplit[y * s->sbwidth + x];
  1062. for (q = 0; q < blkcnt; q++)
  1063. for (p = 0; p < blkcnt; p++) {
  1064. int bx = 4 * x + p*step;
  1065. int by = 4 * y + q*step;
  1066. DiracBlock *block = &s->blmotion[by*s->blwidth + bx];
  1067. decode_block_params(s, arith, block, s->blwidth, bx, by);
  1068. propagate_block_data(block, s->blwidth, step);
  1069. }
  1070. }
  1071. return 0;
  1072. }
  1073. static int weight(int i, int blen, int offset)
  1074. {
  1075. #define ROLLOFF(i) offset == 1 ? ((i) ? 5 : 3) : \
  1076. (1 + (6*(i) + offset - 1) / (2*offset - 1))
  1077. if (i < 2*offset)
  1078. return ROLLOFF(i);
  1079. else if (i > blen-1 - 2*offset)
  1080. return ROLLOFF(blen-1 - i);
  1081. return 8;
  1082. }
  1083. static void init_obmc_weight_row(Plane *p, uint8_t *obmc_weight, int stride,
  1084. int left, int right, int wy)
  1085. {
  1086. int x;
  1087. for (x = 0; left && x < p->xblen >> 1; x++)
  1088. obmc_weight[x] = wy*8;
  1089. for (; x < p->xblen >> right; x++)
  1090. obmc_weight[x] = wy*weight(x, p->xblen, p->xoffset);
  1091. for (; x < p->xblen; x++)
  1092. obmc_weight[x] = wy*8;
  1093. for (; x < stride; x++)
  1094. obmc_weight[x] = 0;
  1095. }
  1096. static void init_obmc_weight(Plane *p, uint8_t *obmc_weight, int stride,
  1097. int left, int right, int top, int bottom)
  1098. {
  1099. int y;
  1100. for (y = 0; top && y < p->yblen >> 1; y++) {
  1101. init_obmc_weight_row(p, obmc_weight, stride, left, right, 8);
  1102. obmc_weight += stride;
  1103. }
  1104. for (; y < p->yblen >> bottom; y++) {
  1105. int wy = weight(y, p->yblen, p->yoffset);
  1106. init_obmc_weight_row(p, obmc_weight, stride, left, right, wy);
  1107. obmc_weight += stride;
  1108. }
  1109. for (; y < p->yblen; y++) {
  1110. init_obmc_weight_row(p, obmc_weight, stride, left, right, 8);
  1111. obmc_weight += stride;
  1112. }
  1113. }
  1114. static void init_obmc_weights(DiracContext *s, Plane *p, int by)
  1115. {
  1116. int top = !by;
  1117. int bottom = by == s->blheight-1;
  1118. /* don't bother re-initing for rows 2 to blheight-2, the weights don't change */
  1119. if (top || bottom || by == 1) {
  1120. init_obmc_weight(p, s->obmc_weight[0], MAX_BLOCKSIZE, 1, 0, top, bottom);
  1121. init_obmc_weight(p, s->obmc_weight[1], MAX_BLOCKSIZE, 0, 0, top, bottom);
  1122. init_obmc_weight(p, s->obmc_weight[2], MAX_BLOCKSIZE, 0, 1, top, bottom);
  1123. }
  1124. }
  1125. static const uint8_t epel_weights[4][4][4] = {
  1126. {{ 16, 0, 0, 0 },
  1127. { 12, 4, 0, 0 },
  1128. { 8, 8, 0, 0 },
  1129. { 4, 12, 0, 0 }},
  1130. {{ 12, 0, 4, 0 },
  1131. { 9, 3, 3, 1 },
  1132. { 6, 6, 2, 2 },
  1133. { 3, 9, 1, 3 }},
  1134. {{ 8, 0, 8, 0 },
  1135. { 6, 2, 6, 2 },
  1136. { 4, 4, 4, 4 },
  1137. { 2, 6, 2, 6 }},
  1138. {{ 4, 0, 12, 0 },
  1139. { 3, 1, 9, 3 },
  1140. { 2, 2, 6, 6 },
  1141. { 1, 3, 3, 9 }}
  1142. };
  1143. /**
  1144. * For block x,y, determine which of the hpel planes to do bilinear
  1145. * interpolation from and set src[] to the location in each hpel plane
  1146. * to MC from.
  1147. *
  1148. * @return the index of the put_dirac_pixels_tab function to use
  1149. * 0 for 1 plane (fpel,hpel), 1 for 2 planes (qpel), 2 for 4 planes (qpel), and 3 for epel
  1150. */
  1151. static int mc_subpel(DiracContext *s, DiracBlock *block, const uint8_t *src[5],
  1152. int x, int y, int ref, int plane)
  1153. {
  1154. Plane *p = &s->plane[plane];
  1155. uint8_t **ref_hpel = s->ref_pics[ref]->hpel[plane];
  1156. int motion_x = block->u.mv[ref][0];
  1157. int motion_y = block->u.mv[ref][1];
  1158. int mx, my, i, epel, nplanes = 0;
  1159. if (plane) {
  1160. motion_x >>= s->chroma_x_shift;
  1161. motion_y >>= s->chroma_y_shift;
  1162. }
  1163. mx = motion_x & ~(-1U << s->mv_precision);
  1164. my = motion_y & ~(-1U << s->mv_precision);
  1165. motion_x >>= s->mv_precision;
  1166. motion_y >>= s->mv_precision;
  1167. /* normalize subpel coordinates to epel */
  1168. /* TODO: template this function? */
  1169. mx <<= 3 - s->mv_precision;
  1170. my <<= 3 - s->mv_precision;
  1171. x += motion_x;
  1172. y += motion_y;
  1173. epel = (mx|my)&1;
  1174. /* hpel position */
  1175. if (!((mx|my)&3)) {
  1176. nplanes = 1;
  1177. src[0] = ref_hpel[(my>>1)+(mx>>2)] + y*p->stride + x;
  1178. } else {
  1179. /* qpel or epel */
  1180. nplanes = 4;
  1181. for (i = 0; i < 4; i++)
  1182. src[i] = ref_hpel[i] + y*p->stride + x;
  1183. /* if we're interpolating in the right/bottom halves, adjust the planes as needed
  1184. we increment x/y because the edge changes for half of the pixels */
  1185. if (mx > 4) {
  1186. src[0] += 1;
  1187. src[2] += 1;
  1188. x++;
  1189. }
  1190. if (my > 4) {
  1191. src[0] += p->stride;
  1192. src[1] += p->stride;
  1193. y++;
  1194. }
  1195. /* hpel planes are:
  1196. [0]: F [1]: H
  1197. [2]: V [3]: C */
  1198. if (!epel) {
  1199. /* check if we really only need 2 planes since either mx or my is
  1200. a hpel position. (epel weights of 0 handle this there) */
  1201. if (!(mx&3)) {
  1202. /* mx == 0: average [0] and [2]
  1203. mx == 4: average [1] and [3] */
  1204. src[!mx] = src[2 + !!mx];
  1205. nplanes = 2;
  1206. } else if (!(my&3)) {
  1207. src[0] = src[(my>>1) ];
  1208. src[1] = src[(my>>1)+1];
  1209. nplanes = 2;
  1210. }
  1211. } else {
  1212. /* adjust the ordering if needed so the weights work */
  1213. if (mx > 4) {
  1214. FFSWAP(const uint8_t *, src[0], src[1]);
  1215. FFSWAP(const uint8_t *, src[2], src[3]);
  1216. }
  1217. if (my > 4) {
  1218. FFSWAP(const uint8_t *, src[0], src[2]);
  1219. FFSWAP(const uint8_t *, src[1], src[3]);
  1220. }
  1221. src[4] = epel_weights[my&3][mx&3];
  1222. }
  1223. }
  1224. /* fixme: v/h _edge_pos */
  1225. if (x + p->xblen > p->width +EDGE_WIDTH/2 ||
  1226. y + p->yblen > p->height+EDGE_WIDTH/2 ||
  1227. x < 0 || y < 0) {
  1228. for (i = 0; i < nplanes; i++) {
  1229. ff_emulated_edge_mc(s->edge_emu_buffer[i], src[i],
  1230. p->stride, p->stride,
  1231. p->xblen, p->yblen, x, y,
  1232. p->width+EDGE_WIDTH/2, p->height+EDGE_WIDTH/2);
  1233. src[i] = s->edge_emu_buffer[i];
  1234. }
  1235. }
  1236. return (nplanes>>1) + epel;
  1237. }
  1238. static void add_dc(uint16_t *dst, int dc, int stride,
  1239. uint8_t *obmc_weight, int xblen, int yblen)
  1240. {
  1241. int x, y;
  1242. dc += 128;
  1243. for (y = 0; y < yblen; y++) {
  1244. for (x = 0; x < xblen; x += 2) {
  1245. dst[x ] += dc * obmc_weight[x ];
  1246. dst[x+1] += dc * obmc_weight[x+1];
  1247. }
  1248. dst += stride;
  1249. obmc_weight += MAX_BLOCKSIZE;
  1250. }
  1251. }
  1252. static void block_mc(DiracContext *s, DiracBlock *block,
  1253. uint16_t *mctmp, uint8_t *obmc_weight,
  1254. int plane, int dstx, int dsty)
  1255. {
  1256. Plane *p = &s->plane[plane];
  1257. const uint8_t *src[5];
  1258. int idx;
  1259. switch (block->ref&3) {
  1260. case 0: /* DC */
  1261. add_dc(mctmp, block->u.dc[plane], p->stride, obmc_weight, p->xblen, p->yblen);
  1262. return;
  1263. case 1:
  1264. case 2:
  1265. idx = mc_subpel(s, block, src, dstx, dsty, (block->ref&3)-1, plane);
  1266. s->put_pixels_tab[idx](s->mcscratch, src, p->stride, p->yblen);
  1267. if (s->weight_func)
  1268. s->weight_func(s->mcscratch, p->stride, s->weight_log2denom,
  1269. s->weight[0] + s->weight[1], p->yblen);
  1270. break;
  1271. case 3:
  1272. idx = mc_subpel(s, block, src, dstx, dsty, 0, plane);
  1273. s->put_pixels_tab[idx](s->mcscratch, src, p->stride, p->yblen);
  1274. idx = mc_subpel(s, block, src, dstx, dsty, 1, plane);
  1275. if (s->biweight_func) {
  1276. /* fixme: +32 is a quick hack */
  1277. s->put_pixels_tab[idx](s->mcscratch + 32, src, p->stride, p->yblen);
  1278. s->biweight_func(s->mcscratch, s->mcscratch+32, p->stride, s->weight_log2denom,
  1279. s->weight[0], s->weight[1], p->yblen);
  1280. } else
  1281. s->avg_pixels_tab[idx](s->mcscratch, src, p->stride, p->yblen);
  1282. break;
  1283. }
  1284. s->add_obmc(mctmp, s->mcscratch, p->stride, obmc_weight, p->yblen);
  1285. }
  1286. static void mc_row(DiracContext *s, DiracBlock *block, uint16_t *mctmp, int plane, int dsty)
  1287. {
  1288. Plane *p = &s->plane[plane];
  1289. int x, dstx = p->xbsep - p->xoffset;
  1290. block_mc(s, block, mctmp, s->obmc_weight[0], plane, -p->xoffset, dsty);
  1291. mctmp += p->xbsep;
  1292. for (x = 1; x < s->blwidth-1; x++) {
  1293. block_mc(s, block+x, mctmp, s->obmc_weight[1], plane, dstx, dsty);
  1294. dstx += p->xbsep;
  1295. mctmp += p->xbsep;
  1296. }
  1297. block_mc(s, block+x, mctmp, s->obmc_weight[2], plane, dstx, dsty);
  1298. }
  1299. static void select_dsp_funcs(DiracContext *s, int width, int height, int xblen, int yblen)
  1300. {
  1301. int idx = 0;
  1302. if (xblen > 8)
  1303. idx = 1;
  1304. if (xblen > 16)
  1305. idx = 2;
  1306. memcpy(s->put_pixels_tab, s->diracdsp.put_dirac_pixels_tab[idx], sizeof(s->put_pixels_tab));
  1307. memcpy(s->avg_pixels_tab, s->diracdsp.avg_dirac_pixels_tab[idx], sizeof(s->avg_pixels_tab));
  1308. s->add_obmc = s->diracdsp.add_dirac_obmc[idx];
  1309. if (s->weight_log2denom > 1 || s->weight[0] != 1 || s->weight[1] != 1) {
  1310. s->weight_func = s->diracdsp.weight_dirac_pixels_tab[idx];
  1311. s->biweight_func = s->diracdsp.biweight_dirac_pixels_tab[idx];
  1312. } else {
  1313. s->weight_func = NULL;
  1314. s->biweight_func = NULL;
  1315. }
  1316. }
  1317. static void interpolate_refplane(DiracContext *s, DiracFrame *ref, int plane, int width, int height)
  1318. {
  1319. /* chroma allocates an edge of 8 when subsampled
  1320. which for 4:2:2 means an h edge of 16 and v edge of 8
  1321. just use 8 for everything for the moment */
  1322. int i, edge = EDGE_WIDTH/2;
  1323. ref->hpel[plane][0] = ref->avframe->data[plane];
  1324. s->dsp.draw_edges(ref->hpel[plane][0], ref->avframe->linesize[plane], width, height, edge, edge, EDGE_TOP | EDGE_BOTTOM); /* EDGE_TOP | EDGE_BOTTOM values just copied to make it build, this needs to be ensured */
  1325. /* no need for hpel if we only have fpel vectors */
  1326. if (!s->mv_precision)
  1327. return;
  1328. for (i = 1; i < 4; i++) {
  1329. if (!ref->hpel_base[plane][i])
  1330. ref->hpel_base[plane][i] = av_malloc((height+2*edge) * ref->avframe->linesize[plane] + 32);
  1331. /* we need to be 16-byte aligned even for chroma */
  1332. ref->hpel[plane][i] = ref->hpel_base[plane][i] + edge*ref->avframe->linesize[plane] + 16;
  1333. }
  1334. if (!ref->interpolated[plane]) {
  1335. s->diracdsp.dirac_hpel_filter(ref->hpel[plane][1], ref->hpel[plane][2],
  1336. ref->hpel[plane][3], ref->hpel[plane][0],
  1337. ref->avframe->linesize[plane], width, height);
  1338. s->dsp.draw_edges(ref->hpel[plane][1], ref->avframe->linesize[plane], width, height, edge, edge, EDGE_TOP | EDGE_BOTTOM);
  1339. s->dsp.draw_edges(ref->hpel[plane][2], ref->avframe->linesize[plane], width, height, edge, edge, EDGE_TOP | EDGE_BOTTOM);
  1340. s->dsp.draw_edges(ref->hpel[plane][3], ref->avframe->linesize[plane], width, height, edge, edge, EDGE_TOP | EDGE_BOTTOM);
  1341. }
  1342. ref->interpolated[plane] = 1;
  1343. }
  1344. /**
  1345. * Dirac Specification ->
  1346. * 13.0 Transform data syntax. transform_data()
  1347. */
  1348. static int dirac_decode_frame_internal(DiracContext *s)
  1349. {
  1350. DWTContext d;
  1351. int y, i, comp, dsty;
  1352. if (s->low_delay) {
  1353. /* [DIRAC_STD] 13.5.1 low_delay_transform_data() */
  1354. for (comp = 0; comp < 3; comp++) {
  1355. Plane *p = &s->plane[comp];
  1356. memset(p->idwt_buf, 0, p->idwt_stride * p->idwt_height * sizeof(IDWTELEM));
  1357. }
  1358. if (!s->zero_res)
  1359. decode_lowdelay(s);
  1360. }
  1361. for (comp = 0; comp < 3; comp++) {
  1362. Plane *p = &s->plane[comp];
  1363. uint8_t *frame = s->current_picture->avframe->data[comp];
  1364. /* FIXME: small resolutions */
  1365. for (i = 0; i < 4; i++)
  1366. s->edge_emu_buffer[i] = s->edge_emu_buffer_base + i*FFALIGN(p->width, 16);
  1367. if (!s->zero_res && !s->low_delay)
  1368. {
  1369. memset(p->idwt_buf, 0, p->idwt_stride * p->idwt_height * sizeof(IDWTELEM));
  1370. decode_component(s, comp); /* [DIRAC_STD] 13.4.1 core_transform_data() */
  1371. }
  1372. if (ff_spatial_idwt_init2(&d, p->idwt_buf, p->idwt_width, p->idwt_height, p->idwt_stride,
  1373. s->wavelet_idx+2, s->wavelet_depth, p->idwt_tmp))
  1374. return -1;
  1375. if (!s->num_refs) { /* intra */
  1376. for (y = 0; y < p->height; y += 16) {
  1377. ff_spatial_idwt_slice2(&d, y+16); /* decode */
  1378. s->diracdsp.put_signed_rect_clamped(frame + y*p->stride, p->stride,
  1379. p->idwt_buf + y*p->idwt_stride, p->idwt_stride, p->width, 16);
  1380. }
  1381. } else { /* inter */
  1382. int rowheight = p->ybsep*p->stride;
  1383. select_dsp_funcs(s, p->width, p->height, p->xblen, p->yblen);
  1384. for (i = 0; i < s->num_refs; i++)
  1385. interpolate_refplane(s, s->ref_pics[i], comp, p->width, p->height);
  1386. memset(s->mctmp, 0, 4*p->yoffset*p->stride);
  1387. dsty = -p->yoffset;
  1388. for (y = 0; y < s->blheight; y++) {
  1389. int h = 0,
  1390. start = FFMAX(dsty, 0);
  1391. uint16_t *mctmp = s->mctmp + y*rowheight;
  1392. DiracBlock *blocks = s->blmotion + y*s->blwidth;
  1393. init_obmc_weights(s, p, y);
  1394. if (y == s->blheight-1 || start+p->ybsep > p->height)
  1395. h = p->height - start;
  1396. else
  1397. h = p->ybsep - (start - dsty);
  1398. if (h < 0)
  1399. break;
  1400. memset(mctmp+2*p->yoffset*p->stride, 0, 2*rowheight);
  1401. mc_row(s, blocks, mctmp, comp, dsty);
  1402. mctmp += (start - dsty)*p->stride + p->xoffset;
  1403. ff_spatial_idwt_slice2(&d, start + h); /* decode */
  1404. s->diracdsp.add_rect_clamped(frame + start*p->stride, mctmp, p->stride,
  1405. p->idwt_buf + start*p->idwt_stride, p->idwt_stride, p->width, h);
  1406. dsty += p->ybsep;
  1407. }
  1408. }
  1409. }
  1410. return 0;
  1411. }
  1412. static int get_buffer_with_edge(AVCodecContext *avctx, AVFrame *f, int flags)
  1413. {
  1414. int ret, i;
  1415. int chroma_x_shift, chroma_y_shift;
  1416. avcodec_get_chroma_sub_sample(avctx->pix_fmt, &chroma_x_shift, &chroma_y_shift);
  1417. f->width = avctx->width + 2 * EDGE_WIDTH;
  1418. f->height = avctx->height + 2 * EDGE_WIDTH + 2;
  1419. ret = ff_get_buffer(avctx, f, flags);
  1420. if (ret < 0)
  1421. return ret;
  1422. for (i = 0; f->data[i]; i++) {
  1423. int offset = (EDGE_WIDTH >> (i && i<3 ? chroma_y_shift : 0)) *
  1424. f->linesize[i] + 32;
  1425. f->data[i] += offset;
  1426. }
  1427. f->width = avctx->width;
  1428. f->height = avctx->height;
  1429. return 0;
  1430. }
  1431. /**
  1432. * Dirac Specification ->
  1433. * 11.1.1 Picture Header. picture_header()
  1434. */
  1435. static int dirac_decode_picture_header(DiracContext *s)
  1436. {
  1437. int retire, picnum;
  1438. int i, j, refnum, refdist;
  1439. GetBitContext *gb = &s->gb;
  1440. /* [DIRAC_STD] 11.1.1 Picture Header. picture_header() PICTURE_NUM */
  1441. picnum = s->current_picture->avframe->display_picture_number = get_bits_long(gb, 32);
  1442. av_log(s->avctx,AV_LOG_DEBUG,"PICTURE_NUM: %d\n",picnum);
  1443. /* if this is the first keyframe after a sequence header, start our
  1444. reordering from here */
  1445. if (s->frame_number < 0)
  1446. s->frame_number = picnum;
  1447. s->ref_pics[0] = s->ref_pics[1] = NULL;
  1448. for (i = 0; i < s->num_refs; i++) {
  1449. refnum = picnum + dirac_get_se_golomb(gb);
  1450. refdist = INT_MAX;
  1451. /* find the closest reference to the one we want */
  1452. /* Jordi: this is needed if the referenced picture hasn't yet arrived */
  1453. for (j = 0; j < MAX_REFERENCE_FRAMES && refdist; j++)
  1454. if (s->ref_frames[j]
  1455. && FFABS(s->ref_frames[j]->avframe->display_picture_number - refnum) < refdist) {
  1456. s->ref_pics[i] = s->ref_frames[j];
  1457. refdist = FFABS(s->ref_frames[j]->avframe->display_picture_number - refnum);
  1458. }
  1459. if (!s->ref_pics[i] || refdist)
  1460. av_log(s->avctx, AV_LOG_DEBUG, "Reference not found\n");
  1461. /* if there were no references at all, allocate one */
  1462. if (!s->ref_pics[i])
  1463. for (j = 0; j < MAX_FRAMES; j++)
  1464. if (!s->all_frames[j].avframe->data[0]) {
  1465. s->ref_pics[i] = &s->all_frames[j];
  1466. get_buffer_with_edge(s->avctx, s->ref_pics[i]->avframe, AV_GET_BUFFER_FLAG_REF);
  1467. break;
  1468. }
  1469. }
  1470. /* retire the reference frames that are not used anymore */
  1471. if (s->current_picture->avframe->reference) {
  1472. retire = picnum + dirac_get_se_golomb(gb);
  1473. if (retire != picnum) {
  1474. DiracFrame *retire_pic = remove_frame(s->ref_frames, retire);
  1475. if (retire_pic)
  1476. retire_pic->avframe->reference &= DELAYED_PIC_REF;
  1477. else
  1478. av_log(s->avctx, AV_LOG_DEBUG, "Frame to retire not found\n");
  1479. }
  1480. /* if reference array is full, remove the oldest as per the spec */
  1481. while (add_frame(s->ref_frames, MAX_REFERENCE_FRAMES, s->current_picture)) {
  1482. av_log(s->avctx, AV_LOG_ERROR, "Reference frame overflow\n");
  1483. remove_frame(s->ref_frames, s->ref_frames[0]->avframe->display_picture_number)->avframe->reference &= DELAYED_PIC_REF;
  1484. }
  1485. }
  1486. if (s->num_refs) {
  1487. if (dirac_unpack_prediction_parameters(s)) /* [DIRAC_STD] 11.2 Picture Prediction Data. picture_prediction() */
  1488. return -1;
  1489. if (dirac_unpack_block_motion_data(s)) /* [DIRAC_STD] 12. Block motion data syntax */
  1490. return -1;
  1491. }
  1492. if (dirac_unpack_idwt_params(s)) /* [DIRAC_STD] 11.3 Wavelet transform data */
  1493. return -1;
  1494. init_planes(s);
  1495. return 0;
  1496. }
  1497. static int get_delayed_pic(DiracContext *s, AVFrame *picture, int *got_frame)
  1498. {
  1499. DiracFrame *out = s->delay_frames[0];
  1500. int i, out_idx = 0;
  1501. int ret;
  1502. /* find frame with lowest picture number */
  1503. for (i = 1; s->delay_frames[i]; i++)
  1504. if (s->delay_frames[i]->avframe->display_picture_number < out->avframe->display_picture_number) {
  1505. out = s->delay_frames[i];
  1506. out_idx = i;
  1507. }
  1508. for (i = out_idx; s->delay_frames[i]; i++)
  1509. s->delay_frames[i] = s->delay_frames[i+1];
  1510. if (out) {
  1511. out->avframe->reference ^= DELAYED_PIC_REF;
  1512. *got_frame = 1;
  1513. if((ret = av_frame_ref(picture, out->avframe)) < 0)
  1514. return ret;
  1515. }
  1516. return 0;
  1517. }
  1518. /**
  1519. * Dirac Specification ->
  1520. * 9.6 Parse Info Header Syntax. parse_info()
  1521. * 4 byte start code + byte parse code + 4 byte size + 4 byte previous size
  1522. */
  1523. #define DATA_UNIT_HEADER_SIZE 13
  1524. /* [DIRAC_STD] dirac_decode_data_unit makes reference to the while defined in 9.3
  1525. inside the function parse_sequence() */
  1526. static int dirac_decode_data_unit(AVCodecContext *avctx, const uint8_t *buf, int size)
  1527. {
  1528. DiracContext *s = avctx->priv_data;
  1529. DiracFrame *pic = NULL;
  1530. int ret, i, parse_code = buf[4];
  1531. unsigned tmp;
  1532. if (size < DATA_UNIT_HEADER_SIZE)
  1533. return -1;
  1534. init_get_bits(&s->gb, &buf[13], 8*(size - DATA_UNIT_HEADER_SIZE));
  1535. if (parse_code == pc_seq_header) {
  1536. if (s->seen_sequence_header)
  1537. return 0;
  1538. /* [DIRAC_STD] 10. Sequence header */
  1539. if (avpriv_dirac_parse_sequence_header(avctx, &s->gb, &s->source))
  1540. return -1;
  1541. avcodec_get_chroma_sub_sample(avctx->pix_fmt, &s->chroma_x_shift, &s->chroma_y_shift);
  1542. if (alloc_sequence_buffers(s))
  1543. return -1;
  1544. s->seen_sequence_header = 1;
  1545. } else if (parse_code == pc_eos) { /* [DIRAC_STD] End of Sequence */
  1546. free_sequence_buffers(s);
  1547. s->seen_sequence_header = 0;
  1548. } else if (parse_code == pc_aux_data) {
  1549. if (buf[13] == 1) { /* encoder implementation/version */
  1550. int ver[3];
  1551. /* versions older than 1.0.8 don't store quant delta for
  1552. subbands with only one codeblock */
  1553. if (sscanf(buf+14, "Schroedinger %d.%d.%d", ver, ver+1, ver+2) == 3)
  1554. if (ver[0] == 1 && ver[1] == 0 && ver[2] <= 7)
  1555. s->old_delta_quant = 1;
  1556. }
  1557. } else if (parse_code & 0x8) { /* picture data unit */
  1558. if (!s->seen_sequence_header) {
  1559. av_log(avctx, AV_LOG_DEBUG, "Dropping frame without sequence header\n");
  1560. return -1;
  1561. }
  1562. /* find an unused frame */
  1563. for (i = 0; i < MAX_FRAMES; i++)
  1564. if (s->all_frames[i].avframe->data[0] == NULL)
  1565. pic = &s->all_frames[i];
  1566. if (!pic) {
  1567. av_log(avctx, AV_LOG_ERROR, "framelist full\n");
  1568. return -1;
  1569. }
  1570. av_frame_unref(pic->avframe);
  1571. /* [DIRAC_STD] Defined in 9.6.1 ... */
  1572. tmp = parse_code & 0x03; /* [DIRAC_STD] num_refs() */
  1573. if (tmp > 2) {
  1574. av_log(avctx, AV_LOG_ERROR, "num_refs of 3\n");
  1575. return -1;
  1576. }
  1577. s->num_refs = tmp;
  1578. s->is_arith = (parse_code & 0x48) == 0x08; /* [DIRAC_STD] using_ac() */
  1579. s->low_delay = (parse_code & 0x88) == 0x88; /* [DIRAC_STD] is_low_delay() */
  1580. pic->avframe->reference = (parse_code & 0x0C) == 0x0C; /* [DIRAC_STD] is_reference() */
  1581. pic->avframe->key_frame = s->num_refs == 0; /* [DIRAC_STD] is_intra() */
  1582. pic->avframe->pict_type = s->num_refs + 1; /* Definition of AVPictureType in avutil.h */
  1583. if ((ret = get_buffer_with_edge(avctx, pic->avframe, (parse_code & 0x0C) == 0x0C ? AV_GET_BUFFER_FLAG_REF : 0)) < 0)
  1584. return ret;
  1585. s->current_picture = pic;
  1586. s->plane[0].stride = pic->avframe->linesize[0];
  1587. s->plane[1].stride = pic->avframe->linesize[1];
  1588. s->plane[2].stride = pic->avframe->linesize[2];
  1589. /* [DIRAC_STD] 11.1 Picture parse. picture_parse() */
  1590. if (dirac_decode_picture_header(s))
  1591. return -1;
  1592. /* [DIRAC_STD] 13.0 Transform data syntax. transform_data() */
  1593. if (dirac_decode_frame_internal(s))
  1594. return -1;
  1595. }
  1596. return 0;
  1597. }
  1598. static int dirac_decode_frame(AVCodecContext *avctx, void *data, int *got_frame, AVPacket *pkt)
  1599. {
  1600. DiracContext *s = avctx->priv_data;
  1601. AVFrame *picture = data;
  1602. uint8_t *buf = pkt->data;
  1603. int buf_size = pkt->size;
  1604. int i, data_unit_size, buf_idx = 0;
  1605. int ret;
  1606. /* release unused frames */
  1607. for (i = 0; i < MAX_FRAMES; i++)
  1608. if (s->all_frames[i].avframe->data[0] && !s->all_frames[i].avframe->reference) {
  1609. av_frame_unref(s->all_frames[i].avframe);
  1610. memset(s->all_frames[i].interpolated, 0, sizeof(s->all_frames[i].interpolated));
  1611. }
  1612. s->current_picture = NULL;
  1613. *got_frame = 0;
  1614. /* end of stream, so flush delayed pics */
  1615. if (buf_size == 0)
  1616. return get_delayed_pic(s, (AVFrame *)data, got_frame);
  1617. for (;;) {
  1618. /*[DIRAC_STD] Here starts the code from parse_info() defined in 9.6
  1619. [DIRAC_STD] PARSE_INFO_PREFIX = "BBCD" as defined in ISO/IEC 646
  1620. BBCD start code search */
  1621. for (; buf_idx + DATA_UNIT_HEADER_SIZE < buf_size; buf_idx++) {
  1622. if (buf[buf_idx ] == 'B' && buf[buf_idx+1] == 'B' &&
  1623. buf[buf_idx+2] == 'C' && buf[buf_idx+3] == 'D')
  1624. break;
  1625. }
  1626. /* BBCD found or end of data */
  1627. if (buf_idx + DATA_UNIT_HEADER_SIZE >= buf_size)
  1628. break;
  1629. data_unit_size = AV_RB32(buf+buf_idx+5);
  1630. if (buf_idx + data_unit_size > buf_size || !data_unit_size) {
  1631. if(buf_idx + data_unit_size > buf_size)
  1632. av_log(s->avctx, AV_LOG_ERROR,
  1633. "Data unit with size %d is larger than input buffer, discarding\n",
  1634. data_unit_size);
  1635. buf_idx += 4;
  1636. continue;
  1637. }
  1638. /* [DIRAC_STD] dirac_decode_data_unit makes reference to the while defined in 9.3 inside the function parse_sequence() */
  1639. if (dirac_decode_data_unit(avctx, buf+buf_idx, data_unit_size))
  1640. {
  1641. av_log(s->avctx, AV_LOG_ERROR,"Error in dirac_decode_data_unit\n");
  1642. return -1;
  1643. }
  1644. buf_idx += data_unit_size;
  1645. }
  1646. if (!s->current_picture)
  1647. return buf_size;
  1648. if (s->current_picture->avframe->display_picture_number > s->frame_number) {
  1649. DiracFrame *delayed_frame = remove_frame(s->delay_frames, s->frame_number);
  1650. s->current_picture->avframe->reference |= DELAYED_PIC_REF;
  1651. if (add_frame(s->delay_frames, MAX_DELAY, s->current_picture)) {
  1652. int min_num = s->delay_frames[0]->avframe->display_picture_number;
  1653. /* Too many delayed frames, so we display the frame with the lowest pts */
  1654. av_log(avctx, AV_LOG_ERROR, "Delay frame overflow\n");
  1655. delayed_frame = s->delay_frames[0];
  1656. for (i = 1; s->delay_frames[i]; i++)
  1657. if (s->delay_frames[i]->avframe->display_picture_number < min_num)
  1658. min_num = s->delay_frames[i]->avframe->display_picture_number;
  1659. delayed_frame = remove_frame(s->delay_frames, min_num);
  1660. add_frame(s->delay_frames, MAX_DELAY, s->current_picture);
  1661. }
  1662. if (delayed_frame) {
  1663. delayed_frame->avframe->reference ^= DELAYED_PIC_REF;
  1664. if((ret=av_frame_ref(data, delayed_frame->avframe)) < 0)
  1665. return ret;
  1666. *got_frame = 1;
  1667. }
  1668. } else if (s->current_picture->avframe->display_picture_number == s->frame_number) {
  1669. /* The right frame at the right time :-) */
  1670. if((ret=av_frame_ref(data, s->current_picture->avframe)) < 0)
  1671. return ret;
  1672. *got_frame = 1;
  1673. }
  1674. if (*got_frame)
  1675. s->frame_number = picture->display_picture_number + 1;
  1676. return buf_idx;
  1677. }
  1678. AVCodec ff_dirac_decoder = {
  1679. .name = "dirac",
  1680. .long_name = NULL_IF_CONFIG_SMALL("BBC Dirac VC-2"),
  1681. .type = AVMEDIA_TYPE_VIDEO,
  1682. .id = AV_CODEC_ID_DIRAC,
  1683. .priv_data_size = sizeof(DiracContext),
  1684. .init = dirac_decode_init,
  1685. .close = dirac_decode_end,
  1686. .decode = dirac_decode_frame,
  1687. .capabilities = CODEC_CAP_DELAY,
  1688. .flush = dirac_decode_flush,
  1689. };