You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

860 lines
38KB

  1. /*
  2. * Copyright (C) 2001-2011 Michael Niedermayer <michaelni@gmx.at>
  3. *
  4. * This file is part of FFmpeg.
  5. *
  6. * FFmpeg is free software; you can redistribute it and/or
  7. * modify it under the terms of the GNU Lesser General Public
  8. * License as published by the Free Software Foundation; either
  9. * version 2.1 of the License, or (at your option) any later version.
  10. *
  11. * FFmpeg is distributed in the hope that it will be useful,
  12. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  13. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  14. * Lesser General Public License for more details.
  15. *
  16. * You should have received a copy of the GNU Lesser General Public
  17. * License along with FFmpeg; if not, write to the Free Software
  18. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  19. */
  20. #ifndef SWSCALE_SWSCALE_INTERNAL_H
  21. #define SWSCALE_SWSCALE_INTERNAL_H
  22. #include "config.h"
  23. #if HAVE_ALTIVEC_H
  24. #include <altivec.h>
  25. #endif
  26. #include "libavutil/avassert.h"
  27. #include "libavutil/avutil.h"
  28. #include "libavutil/common.h"
  29. #include "libavutil/intreadwrite.h"
  30. #include "libavutil/log.h"
  31. #include "libavutil/pixfmt.h"
  32. #include "libavutil/pixdesc.h"
  33. #define STR(s) AV_TOSTRING(s) // AV_STRINGIFY is too long
  34. #define YUVRGB_TABLE_HEADROOM 128
  35. #define MAX_FILTER_SIZE 256
  36. #define DITHER1XBPP
  37. #if HAVE_BIGENDIAN
  38. #define ALT32_CORR (-1)
  39. #else
  40. #define ALT32_CORR 1
  41. #endif
  42. #if ARCH_X86_64
  43. # define APCK_PTR2 8
  44. # define APCK_COEF 16
  45. # define APCK_SIZE 24
  46. #else
  47. # define APCK_PTR2 4
  48. # define APCK_COEF 8
  49. # define APCK_SIZE 16
  50. #endif
  51. struct SwsContext;
  52. typedef int (*SwsFunc)(struct SwsContext *context, const uint8_t *src[],
  53. int srcStride[], int srcSliceY, int srcSliceH,
  54. uint8_t *dst[], int dstStride[]);
  55. /**
  56. * Write one line of horizontally scaled data to planar output
  57. * without any additional vertical scaling (or point-scaling).
  58. *
  59. * @param src scaled source data, 15bit for 8-10bit output,
  60. * 19-bit for 16bit output (in int32_t)
  61. * @param dest pointer to the output plane. For >8bit
  62. * output, this is in uint16_t
  63. * @param dstW width of destination in pixels
  64. * @param dither ordered dither array of type int16_t and size 8
  65. * @param offset Dither offset
  66. */
  67. typedef void (*yuv2planar1_fn)(const int16_t *src, uint8_t *dest, int dstW,
  68. const uint8_t *dither, int offset);
  69. /**
  70. * Write one line of horizontally scaled data to planar output
  71. * with multi-point vertical scaling between input pixels.
  72. *
  73. * @param filter vertical luma/alpha scaling coefficients, 12bit [0,4096]
  74. * @param src scaled luma (Y) or alpha (A) source data, 15bit for 8-10bit output,
  75. * 19-bit for 16bit output (in int32_t)
  76. * @param filterSize number of vertical input lines to scale
  77. * @param dest pointer to output plane. For >8bit
  78. * output, this is in uint16_t
  79. * @param dstW width of destination pixels
  80. * @param offset Dither offset
  81. */
  82. typedef void (*yuv2planarX_fn)(const int16_t *filter, int filterSize,
  83. const int16_t **src, uint8_t *dest, int dstW,
  84. const uint8_t *dither, int offset);
  85. /**
  86. * Write one line of horizontally scaled chroma to interleaved output
  87. * with multi-point vertical scaling between input pixels.
  88. *
  89. * @param c SWS scaling context
  90. * @param chrFilter vertical chroma scaling coefficients, 12bit [0,4096]
  91. * @param chrUSrc scaled chroma (U) source data, 15bit for 8-10bit output,
  92. * 19-bit for 16bit output (in int32_t)
  93. * @param chrVSrc scaled chroma (V) source data, 15bit for 8-10bit output,
  94. * 19-bit for 16bit output (in int32_t)
  95. * @param chrFilterSize number of vertical chroma input lines to scale
  96. * @param dest pointer to the output plane. For >8bit
  97. * output, this is in uint16_t
  98. * @param dstW width of chroma planes
  99. */
  100. typedef void (*yuv2interleavedX_fn)(struct SwsContext *c,
  101. const int16_t *chrFilter,
  102. int chrFilterSize,
  103. const int16_t **chrUSrc,
  104. const int16_t **chrVSrc,
  105. uint8_t *dest, int dstW);
  106. /**
  107. * Write one line of horizontally scaled Y/U/V/A to packed-pixel YUV/RGB
  108. * output without any additional vertical scaling (or point-scaling). Note
  109. * that this function may do chroma scaling, see the "uvalpha" argument.
  110. *
  111. * @param c SWS scaling context
  112. * @param lumSrc scaled luma (Y) source data, 15bit for 8-10bit output,
  113. * 19-bit for 16bit output (in int32_t)
  114. * @param chrUSrc scaled chroma (U) source data, 15bit for 8-10bit output,
  115. * 19-bit for 16bit output (in int32_t)
  116. * @param chrVSrc scaled chroma (V) source data, 15bit for 8-10bit output,
  117. * 19-bit for 16bit output (in int32_t)
  118. * @param alpSrc scaled alpha (A) source data, 15bit for 8-10bit output,
  119. * 19-bit for 16bit output (in int32_t)
  120. * @param dest pointer to the output plane. For 16bit output, this is
  121. * uint16_t
  122. * @param dstW width of lumSrc and alpSrc in pixels, number of pixels
  123. * to write into dest[]
  124. * @param uvalpha chroma scaling coefficient for the second line of chroma
  125. * pixels, either 2048 or 0. If 0, one chroma input is used
  126. * for 2 output pixels (or if the SWS_FLAG_FULL_CHR_INT flag
  127. * is set, it generates 1 output pixel). If 2048, two chroma
  128. * input pixels should be averaged for 2 output pixels (this
  129. * only happens if SWS_FLAG_FULL_CHR_INT is not set)
  130. * @param y vertical line number for this output. This does not need
  131. * to be used to calculate the offset in the destination,
  132. * but can be used to generate comfort noise using dithering
  133. * for some output formats.
  134. */
  135. typedef void (*yuv2packed1_fn)(struct SwsContext *c, const int16_t *lumSrc,
  136. const int16_t *chrUSrc[2],
  137. const int16_t *chrVSrc[2],
  138. const int16_t *alpSrc, uint8_t *dest,
  139. int dstW, int uvalpha, int y);
  140. /**
  141. * Write one line of horizontally scaled Y/U/V/A to packed-pixel YUV/RGB
  142. * output by doing bilinear scaling between two input lines.
  143. *
  144. * @param c SWS scaling context
  145. * @param lumSrc scaled luma (Y) source data, 15bit for 8-10bit output,
  146. * 19-bit for 16bit output (in int32_t)
  147. * @param chrUSrc scaled chroma (U) source data, 15bit for 8-10bit output,
  148. * 19-bit for 16bit output (in int32_t)
  149. * @param chrVSrc scaled chroma (V) source data, 15bit for 8-10bit output,
  150. * 19-bit for 16bit output (in int32_t)
  151. * @param alpSrc scaled alpha (A) source data, 15bit for 8-10bit output,
  152. * 19-bit for 16bit output (in int32_t)
  153. * @param dest pointer to the output plane. For 16bit output, this is
  154. * uint16_t
  155. * @param dstW width of lumSrc and alpSrc in pixels, number of pixels
  156. * to write into dest[]
  157. * @param yalpha luma/alpha scaling coefficients for the second input line.
  158. * The first line's coefficients can be calculated by using
  159. * 4096 - yalpha
  160. * @param uvalpha chroma scaling coefficient for the second input line. The
  161. * first line's coefficients can be calculated by using
  162. * 4096 - uvalpha
  163. * @param y vertical line number for this output. This does not need
  164. * to be used to calculate the offset in the destination,
  165. * but can be used to generate comfort noise using dithering
  166. * for some output formats.
  167. */
  168. typedef void (*yuv2packed2_fn)(struct SwsContext *c, const int16_t *lumSrc[2],
  169. const int16_t *chrUSrc[2],
  170. const int16_t *chrVSrc[2],
  171. const int16_t *alpSrc[2],
  172. uint8_t *dest,
  173. int dstW, int yalpha, int uvalpha, int y);
  174. /**
  175. * Write one line of horizontally scaled Y/U/V/A to packed-pixel YUV/RGB
  176. * output by doing multi-point vertical scaling between input pixels.
  177. *
  178. * @param c SWS scaling context
  179. * @param lumFilter vertical luma/alpha scaling coefficients, 12bit [0,4096]
  180. * @param lumSrc scaled luma (Y) source data, 15bit for 8-10bit output,
  181. * 19-bit for 16bit output (in int32_t)
  182. * @param lumFilterSize number of vertical luma/alpha input lines to scale
  183. * @param chrFilter vertical chroma scaling coefficients, 12bit [0,4096]
  184. * @param chrUSrc scaled chroma (U) source data, 15bit for 8-10bit output,
  185. * 19-bit for 16bit output (in int32_t)
  186. * @param chrVSrc scaled chroma (V) source data, 15bit for 8-10bit output,
  187. * 19-bit for 16bit output (in int32_t)
  188. * @param chrFilterSize number of vertical chroma input lines to scale
  189. * @param alpSrc scaled alpha (A) source data, 15bit for 8-10bit output,
  190. * 19-bit for 16bit output (in int32_t)
  191. * @param dest pointer to the output plane. For 16bit output, this is
  192. * uint16_t
  193. * @param dstW width of lumSrc and alpSrc in pixels, number of pixels
  194. * to write into dest[]
  195. * @param y vertical line number for this output. This does not need
  196. * to be used to calculate the offset in the destination,
  197. * but can be used to generate comfort noise using dithering
  198. * or some output formats.
  199. */
  200. typedef void (*yuv2packedX_fn)(struct SwsContext *c, const int16_t *lumFilter,
  201. const int16_t **lumSrc, int lumFilterSize,
  202. const int16_t *chrFilter,
  203. const int16_t **chrUSrc,
  204. const int16_t **chrVSrc, int chrFilterSize,
  205. const int16_t **alpSrc, uint8_t *dest,
  206. int dstW, int y);
  207. /**
  208. * Write one line of horizontally scaled Y/U/V/A to YUV/RGB
  209. * output by doing multi-point vertical scaling between input pixels.
  210. *
  211. * @param c SWS scaling context
  212. * @param lumFilter vertical luma/alpha scaling coefficients, 12bit [0,4096]
  213. * @param lumSrc scaled luma (Y) source data, 15bit for 8-10bit output,
  214. * 19-bit for 16bit output (in int32_t)
  215. * @param lumFilterSize number of vertical luma/alpha input lines to scale
  216. * @param chrFilter vertical chroma scaling coefficients, 12bit [0,4096]
  217. * @param chrUSrc scaled chroma (U) source data, 15bit for 8-10bit output,
  218. * 19-bit for 16bit output (in int32_t)
  219. * @param chrVSrc scaled chroma (V) source data, 15bit for 8-10bit output,
  220. * 19-bit for 16bit output (in int32_t)
  221. * @param chrFilterSize number of vertical chroma input lines to scale
  222. * @param alpSrc scaled alpha (A) source data, 15bit for 8-10bit output,
  223. * 19-bit for 16bit output (in int32_t)
  224. * @param dest pointer to the output planes. For 16bit output, this is
  225. * uint16_t
  226. * @param dstW width of lumSrc and alpSrc in pixels, number of pixels
  227. * to write into dest[]
  228. * @param y vertical line number for this output. This does not need
  229. * to be used to calculate the offset in the destination,
  230. * but can be used to generate comfort noise using dithering
  231. * or some output formats.
  232. */
  233. typedef void (*yuv2anyX_fn)(struct SwsContext *c, const int16_t *lumFilter,
  234. const int16_t **lumSrc, int lumFilterSize,
  235. const int16_t *chrFilter,
  236. const int16_t **chrUSrc,
  237. const int16_t **chrVSrc, int chrFilterSize,
  238. const int16_t **alpSrc, uint8_t **dest,
  239. int dstW, int y);
  240. /* This struct should be aligned on at least a 32-byte boundary. */
  241. typedef struct SwsContext {
  242. /**
  243. * info on struct for av_log
  244. */
  245. const AVClass *av_class;
  246. /**
  247. * Note that src, dst, srcStride, dstStride will be copied in the
  248. * sws_scale() wrapper so they can be freely modified here.
  249. */
  250. SwsFunc swScale;
  251. int srcW; ///< Width of source luma/alpha planes.
  252. int srcH; ///< Height of source luma/alpha planes.
  253. int dstH; ///< Height of destination luma/alpha planes.
  254. int chrSrcW; ///< Width of source chroma planes.
  255. int chrSrcH; ///< Height of source chroma planes.
  256. int chrDstW; ///< Width of destination chroma planes.
  257. int chrDstH; ///< Height of destination chroma planes.
  258. int lumXInc, chrXInc;
  259. int lumYInc, chrYInc;
  260. enum AVPixelFormat dstFormat; ///< Destination pixel format.
  261. enum AVPixelFormat srcFormat; ///< Source pixel format.
  262. int dstFormatBpp; ///< Number of bits per pixel of the destination pixel format.
  263. int srcFormatBpp; ///< Number of bits per pixel of the source pixel format.
  264. int dstBpc, srcBpc;
  265. int chrSrcHSubSample; ///< Binary logarithm of horizontal subsampling factor between luma/alpha and chroma planes in source image.
  266. int chrSrcVSubSample; ///< Binary logarithm of vertical subsampling factor between luma/alpha and chroma planes in source image.
  267. int chrDstHSubSample; ///< Binary logarithm of horizontal subsampling factor between luma/alpha and chroma planes in destination image.
  268. int chrDstVSubSample; ///< Binary logarithm of vertical subsampling factor between luma/alpha and chroma planes in destination image.
  269. int vChrDrop; ///< Binary logarithm of extra vertical subsampling factor in source image chroma planes specified by user.
  270. int sliceDir; ///< Direction that slices are fed to the scaler (1 = top-to-bottom, -1 = bottom-to-top).
  271. double param[2]; ///< Input parameters for scaling algorithms that need them.
  272. uint32_t pal_yuv[256];
  273. uint32_t pal_rgb[256];
  274. /**
  275. * @name Scaled horizontal lines ring buffer.
  276. * The horizontal scaler keeps just enough scaled lines in a ring buffer
  277. * so they may be passed to the vertical scaler. The pointers to the
  278. * allocated buffers for each line are duplicated in sequence in the ring
  279. * buffer to simplify indexing and avoid wrapping around between lines
  280. * inside the vertical scaler code. The wrapping is done before the
  281. * vertical scaler is called.
  282. */
  283. //@{
  284. int16_t **lumPixBuf; ///< Ring buffer for scaled horizontal luma plane lines to be fed to the vertical scaler.
  285. int16_t **chrUPixBuf; ///< Ring buffer for scaled horizontal chroma plane lines to be fed to the vertical scaler.
  286. int16_t **chrVPixBuf; ///< Ring buffer for scaled horizontal chroma plane lines to be fed to the vertical scaler.
  287. int16_t **alpPixBuf; ///< Ring buffer for scaled horizontal alpha plane lines to be fed to the vertical scaler.
  288. int vLumBufSize; ///< Number of vertical luma/alpha lines allocated in the ring buffer.
  289. int vChrBufSize; ///< Number of vertical chroma lines allocated in the ring buffer.
  290. int lastInLumBuf; ///< Last scaled horizontal luma/alpha line from source in the ring buffer.
  291. int lastInChrBuf; ///< Last scaled horizontal chroma line from source in the ring buffer.
  292. int lumBufIndex; ///< Index in ring buffer of the last scaled horizontal luma/alpha line from source.
  293. int chrBufIndex; ///< Index in ring buffer of the last scaled horizontal chroma line from source.
  294. //@}
  295. uint8_t *formatConvBuffer;
  296. /**
  297. * @name Horizontal and vertical filters.
  298. * To better understand the following fields, here is a pseudo-code of
  299. * their usage in filtering a horizontal line:
  300. * @code
  301. * for (i = 0; i < width; i++) {
  302. * dst[i] = 0;
  303. * for (j = 0; j < filterSize; j++)
  304. * dst[i] += src[ filterPos[i] + j ] * filter[ filterSize * i + j ];
  305. * dst[i] >>= FRAC_BITS; // The actual implementation is fixed-point.
  306. * }
  307. * @endcode
  308. */
  309. //@{
  310. int16_t *hLumFilter; ///< Array of horizontal filter coefficients for luma/alpha planes.
  311. int16_t *hChrFilter; ///< Array of horizontal filter coefficients for chroma planes.
  312. int16_t *vLumFilter; ///< Array of vertical filter coefficients for luma/alpha planes.
  313. int16_t *vChrFilter; ///< Array of vertical filter coefficients for chroma planes.
  314. int32_t *hLumFilterPos; ///< Array of horizontal filter starting positions for each dst[i] for luma/alpha planes.
  315. int32_t *hChrFilterPos; ///< Array of horizontal filter starting positions for each dst[i] for chroma planes.
  316. int32_t *vLumFilterPos; ///< Array of vertical filter starting positions for each dst[i] for luma/alpha planes.
  317. int32_t *vChrFilterPos; ///< Array of vertical filter starting positions for each dst[i] for chroma planes.
  318. int hLumFilterSize; ///< Horizontal filter size for luma/alpha pixels.
  319. int hChrFilterSize; ///< Horizontal filter size for chroma pixels.
  320. int vLumFilterSize; ///< Vertical filter size for luma/alpha pixels.
  321. int vChrFilterSize; ///< Vertical filter size for chroma pixels.
  322. //@}
  323. int lumMmxextFilterCodeSize; ///< Runtime-generated MMXEXT horizontal fast bilinear scaler code size for luma/alpha planes.
  324. int chrMmxextFilterCodeSize; ///< Runtime-generated MMXEXT horizontal fast bilinear scaler code size for chroma planes.
  325. uint8_t *lumMmxextFilterCode; ///< Runtime-generated MMXEXT horizontal fast bilinear scaler code for luma/alpha planes.
  326. uint8_t *chrMmxextFilterCode; ///< Runtime-generated MMXEXT horizontal fast bilinear scaler code for chroma planes.
  327. int canMMXEXTBeUsed;
  328. int dstY; ///< Last destination vertical line output from last slice.
  329. int flags; ///< Flags passed by the user to select scaler algorithm, optimizations, subsampling, etc...
  330. void *yuvTable; // pointer to the yuv->rgb table start so it can be freed()
  331. uint8_t *table_rV[256 + 2*YUVRGB_TABLE_HEADROOM];
  332. uint8_t *table_gU[256 + 2*YUVRGB_TABLE_HEADROOM];
  333. int table_gV[256 + 2*YUVRGB_TABLE_HEADROOM];
  334. uint8_t *table_bU[256 + 2*YUVRGB_TABLE_HEADROOM];
  335. DECLARE_ALIGNED(16, int32_t, input_rgb2yuv_table)[16+40*4]; // This table can contain both C and SIMD formatted values, teh C vales are always at the XY_IDX points
  336. #define RY_IDX 0
  337. #define GY_IDX 1
  338. #define BY_IDX 2
  339. #define RU_IDX 3
  340. #define GU_IDX 4
  341. #define BU_IDX 5
  342. #define RV_IDX 6
  343. #define GV_IDX 7
  344. #define BV_IDX 8
  345. #define RGB2YUV_SHIFT 15
  346. int *dither_error[4];
  347. //Colorspace stuff
  348. int contrast, brightness, saturation; // for sws_getColorspaceDetails
  349. int srcColorspaceTable[4];
  350. int dstColorspaceTable[4];
  351. int srcRange; ///< 0 = MPG YUV range, 1 = JPG YUV range (source image).
  352. int dstRange; ///< 0 = MPG YUV range, 1 = JPG YUV range (destination image).
  353. int src0Alpha;
  354. int dst0Alpha;
  355. int srcXYZ;
  356. int dstXYZ;
  357. int src_h_chr_pos;
  358. int dst_h_chr_pos;
  359. int src_v_chr_pos;
  360. int dst_v_chr_pos;
  361. int yuv2rgb_y_offset;
  362. int yuv2rgb_y_coeff;
  363. int yuv2rgb_v2r_coeff;
  364. int yuv2rgb_v2g_coeff;
  365. int yuv2rgb_u2g_coeff;
  366. int yuv2rgb_u2b_coeff;
  367. #define RED_DITHER "0*8"
  368. #define GREEN_DITHER "1*8"
  369. #define BLUE_DITHER "2*8"
  370. #define Y_COEFF "3*8"
  371. #define VR_COEFF "4*8"
  372. #define UB_COEFF "5*8"
  373. #define VG_COEFF "6*8"
  374. #define UG_COEFF "7*8"
  375. #define Y_OFFSET "8*8"
  376. #define U_OFFSET "9*8"
  377. #define V_OFFSET "10*8"
  378. #define LUM_MMX_FILTER_OFFSET "11*8"
  379. #define CHR_MMX_FILTER_OFFSET "11*8+4*4*256"
  380. #define DSTW_OFFSET "11*8+4*4*256*2" //do not change, it is hardcoded in the ASM
  381. #define ESP_OFFSET "11*8+4*4*256*2+8"
  382. #define VROUNDER_OFFSET "11*8+4*4*256*2+16"
  383. #define U_TEMP "11*8+4*4*256*2+24"
  384. #define V_TEMP "11*8+4*4*256*2+32"
  385. #define Y_TEMP "11*8+4*4*256*2+40"
  386. #define ALP_MMX_FILTER_OFFSET "11*8+4*4*256*2+48"
  387. #define UV_OFF_PX "11*8+4*4*256*3+48"
  388. #define UV_OFF_BYTE "11*8+4*4*256*3+56"
  389. #define DITHER16 "11*8+4*4*256*3+64"
  390. #define DITHER32 "11*8+4*4*256*3+80"
  391. DECLARE_ALIGNED(8, uint64_t, redDither);
  392. DECLARE_ALIGNED(8, uint64_t, greenDither);
  393. DECLARE_ALIGNED(8, uint64_t, blueDither);
  394. DECLARE_ALIGNED(8, uint64_t, yCoeff);
  395. DECLARE_ALIGNED(8, uint64_t, vrCoeff);
  396. DECLARE_ALIGNED(8, uint64_t, ubCoeff);
  397. DECLARE_ALIGNED(8, uint64_t, vgCoeff);
  398. DECLARE_ALIGNED(8, uint64_t, ugCoeff);
  399. DECLARE_ALIGNED(8, uint64_t, yOffset);
  400. DECLARE_ALIGNED(8, uint64_t, uOffset);
  401. DECLARE_ALIGNED(8, uint64_t, vOffset);
  402. int32_t lumMmxFilter[4 * MAX_FILTER_SIZE];
  403. int32_t chrMmxFilter[4 * MAX_FILTER_SIZE];
  404. int dstW; ///< Width of destination luma/alpha planes.
  405. DECLARE_ALIGNED(8, uint64_t, esp);
  406. DECLARE_ALIGNED(8, uint64_t, vRounder);
  407. DECLARE_ALIGNED(8, uint64_t, u_temp);
  408. DECLARE_ALIGNED(8, uint64_t, v_temp);
  409. DECLARE_ALIGNED(8, uint64_t, y_temp);
  410. int32_t alpMmxFilter[4 * MAX_FILTER_SIZE];
  411. // alignment of these values is not necessary, but merely here
  412. // to maintain the same offset across x8632 and x86-64. Once we
  413. // use proper offset macros in the asm, they can be removed.
  414. DECLARE_ALIGNED(8, ptrdiff_t, uv_off); ///< offset (in pixels) between u and v planes
  415. DECLARE_ALIGNED(8, ptrdiff_t, uv_offx2); ///< offset (in bytes) between u and v planes
  416. DECLARE_ALIGNED(8, uint16_t, dither16)[8];
  417. DECLARE_ALIGNED(8, uint32_t, dither32)[8];
  418. const uint8_t *chrDither8, *lumDither8;
  419. #if HAVE_ALTIVEC
  420. vector signed short CY;
  421. vector signed short CRV;
  422. vector signed short CBU;
  423. vector signed short CGU;
  424. vector signed short CGV;
  425. vector signed short OY;
  426. vector unsigned short CSHIFT;
  427. vector signed short *vYCoeffsBank, *vCCoeffsBank;
  428. #endif
  429. #if ARCH_BFIN
  430. DECLARE_ALIGNED(4, uint32_t, oy);
  431. DECLARE_ALIGNED(4, uint32_t, oc);
  432. DECLARE_ALIGNED(4, uint32_t, zero);
  433. DECLARE_ALIGNED(4, uint32_t, cy);
  434. DECLARE_ALIGNED(4, uint32_t, crv);
  435. DECLARE_ALIGNED(4, uint32_t, rmask);
  436. DECLARE_ALIGNED(4, uint32_t, cbu);
  437. DECLARE_ALIGNED(4, uint32_t, bmask);
  438. DECLARE_ALIGNED(4, uint32_t, cgu);
  439. DECLARE_ALIGNED(4, uint32_t, cgv);
  440. DECLARE_ALIGNED(4, uint32_t, gmask);
  441. #endif
  442. #if HAVE_VIS
  443. DECLARE_ALIGNED(8, uint64_t, sparc_coeffs)[10];
  444. #endif
  445. int use_mmx_vfilter;
  446. /* pre defined color-spaces gamma */
  447. #define XYZ_GAMMA (2.6f)
  448. #define RGB_GAMMA (2.2f)
  449. int16_t *xyzgamma;
  450. int16_t *rgbgamma;
  451. int16_t *xyzgammainv;
  452. int16_t *rgbgammainv;
  453. int16_t xyz2rgb_matrix[3][4];
  454. int16_t rgb2xyz_matrix[3][4];
  455. /* function pointers for swScale() */
  456. yuv2planar1_fn yuv2plane1;
  457. yuv2planarX_fn yuv2planeX;
  458. yuv2interleavedX_fn yuv2nv12cX;
  459. yuv2packed1_fn yuv2packed1;
  460. yuv2packed2_fn yuv2packed2;
  461. yuv2packedX_fn yuv2packedX;
  462. yuv2anyX_fn yuv2anyX;
  463. /// Unscaled conversion of luma plane to YV12 for horizontal scaler.
  464. void (*lumToYV12)(uint8_t *dst, const uint8_t *src, const uint8_t *src2, const uint8_t *src3,
  465. int width, uint32_t *pal);
  466. /// Unscaled conversion of alpha plane to YV12 for horizontal scaler.
  467. void (*alpToYV12)(uint8_t *dst, const uint8_t *src, const uint8_t *src2, const uint8_t *src3,
  468. int width, uint32_t *pal);
  469. /// Unscaled conversion of chroma planes to YV12 for horizontal scaler.
  470. void (*chrToYV12)(uint8_t *dstU, uint8_t *dstV,
  471. const uint8_t *src1, const uint8_t *src2, const uint8_t *src3,
  472. int width, uint32_t *pal);
  473. /**
  474. * Functions to read planar input, such as planar RGB, and convert
  475. * internally to Y/UV/A.
  476. */
  477. /** @{ */
  478. void (*readLumPlanar)(uint8_t *dst, const uint8_t *src[4], int width, int32_t *rgb2yuv);
  479. void (*readChrPlanar)(uint8_t *dstU, uint8_t *dstV, const uint8_t *src[4],
  480. int width, int32_t *rgb2yuv);
  481. void (*readAlpPlanar)(uint8_t *dst, const uint8_t *src[4], int width, int32_t *rgb2yuv);
  482. /** @} */
  483. /**
  484. * Scale one horizontal line of input data using a bilinear filter
  485. * to produce one line of output data. Compared to SwsContext->hScale(),
  486. * please take note of the following caveats when using these:
  487. * - Scaling is done using only 7bit instead of 14bit coefficients.
  488. * - You can use no more than 5 input pixels to produce 4 output
  489. * pixels. Therefore, this filter should not be used for downscaling
  490. * by more than ~20% in width (because that equals more than 5/4th
  491. * downscaling and thus more than 5 pixels input per 4 pixels output).
  492. * - In general, bilinear filters create artifacts during downscaling
  493. * (even when <20%), because one output pixel will span more than one
  494. * input pixel, and thus some pixels will need edges of both neighbor
  495. * pixels to interpolate the output pixel. Since you can use at most
  496. * two input pixels per output pixel in bilinear scaling, this is
  497. * impossible and thus downscaling by any size will create artifacts.
  498. * To enable this type of scaling, set SWS_FLAG_FAST_BILINEAR
  499. * in SwsContext->flags.
  500. */
  501. /** @{ */
  502. void (*hyscale_fast)(struct SwsContext *c,
  503. int16_t *dst, int dstWidth,
  504. const uint8_t *src, int srcW, int xInc);
  505. void (*hcscale_fast)(struct SwsContext *c,
  506. int16_t *dst1, int16_t *dst2, int dstWidth,
  507. const uint8_t *src1, const uint8_t *src2,
  508. int srcW, int xInc);
  509. /** @} */
  510. /**
  511. * Scale one horizontal line of input data using a filter over the input
  512. * lines, to produce one (differently sized) line of output data.
  513. *
  514. * @param dst pointer to destination buffer for horizontally scaled
  515. * data. If the number of bits per component of one
  516. * destination pixel (SwsContext->dstBpc) is <= 10, data
  517. * will be 15bpc in 16bits (int16_t) width. Else (i.e.
  518. * SwsContext->dstBpc == 16), data will be 19bpc in
  519. * 32bits (int32_t) width.
  520. * @param dstW width of destination image
  521. * @param src pointer to source data to be scaled. If the number of
  522. * bits per component of a source pixel (SwsContext->srcBpc)
  523. * is 8, this is 8bpc in 8bits (uint8_t) width. Else
  524. * (i.e. SwsContext->dstBpc > 8), this is native depth
  525. * in 16bits (uint16_t) width. In other words, for 9-bit
  526. * YUV input, this is 9bpc, for 10-bit YUV input, this is
  527. * 10bpc, and for 16-bit RGB or YUV, this is 16bpc.
  528. * @param filter filter coefficients to be used per output pixel for
  529. * scaling. This contains 14bpp filtering coefficients.
  530. * Guaranteed to contain dstW * filterSize entries.
  531. * @param filterPos position of the first input pixel to be used for
  532. * each output pixel during scaling. Guaranteed to
  533. * contain dstW entries.
  534. * @param filterSize the number of input coefficients to be used (and
  535. * thus the number of input pixels to be used) for
  536. * creating a single output pixel. Is aligned to 4
  537. * (and input coefficients thus padded with zeroes)
  538. * to simplify creating SIMD code.
  539. */
  540. /** @{ */
  541. void (*hyScale)(struct SwsContext *c, int16_t *dst, int dstW,
  542. const uint8_t *src, const int16_t *filter,
  543. const int32_t *filterPos, int filterSize);
  544. void (*hcScale)(struct SwsContext *c, int16_t *dst, int dstW,
  545. const uint8_t *src, const int16_t *filter,
  546. const int32_t *filterPos, int filterSize);
  547. /** @} */
  548. /// Color range conversion function for luma plane if needed.
  549. void (*lumConvertRange)(int16_t *dst, int width);
  550. /// Color range conversion function for chroma planes if needed.
  551. void (*chrConvertRange)(int16_t *dst1, int16_t *dst2, int width);
  552. int needs_hcscale; ///< Set if there are chroma planes to be converted.
  553. } SwsContext;
  554. //FIXME check init (where 0)
  555. SwsFunc ff_yuv2rgb_get_func_ptr(SwsContext *c);
  556. int ff_yuv2rgb_c_init_tables(SwsContext *c, const int inv_table[4],
  557. int fullRange, int brightness,
  558. int contrast, int saturation);
  559. void ff_yuv2rgb_init_tables_altivec(SwsContext *c, const int inv_table[4],
  560. int brightness, int contrast, int saturation);
  561. void updateMMXDitherTables(SwsContext *c, int dstY, int lumBufIndex, int chrBufIndex,
  562. int lastInLumBuf, int lastInChrBuf);
  563. SwsFunc ff_yuv2rgb_init_mmx(SwsContext *c);
  564. SwsFunc ff_yuv2rgb_init_vis(SwsContext *c);
  565. SwsFunc ff_yuv2rgb_init_altivec(SwsContext *c);
  566. SwsFunc ff_yuv2rgb_get_func_ptr_bfin(SwsContext *c);
  567. void ff_bfin_get_unscaled_swscale(SwsContext *c);
  568. #if FF_API_SWS_FORMAT_NAME
  569. /**
  570. * @deprecated Use av_get_pix_fmt_name() instead.
  571. */
  572. attribute_deprecated
  573. const char *sws_format_name(enum AVPixelFormat format);
  574. #endif
  575. static av_always_inline int is16BPS(enum AVPixelFormat pix_fmt)
  576. {
  577. const AVPixFmtDescriptor *desc = av_pix_fmt_desc_get(pix_fmt);
  578. av_assert0(desc);
  579. return desc->comp[0].depth_minus1 == 15;
  580. }
  581. static av_always_inline int is9_OR_10BPS(enum AVPixelFormat pix_fmt)
  582. {
  583. const AVPixFmtDescriptor *desc = av_pix_fmt_desc_get(pix_fmt);
  584. av_assert0(desc);
  585. return desc->comp[0].depth_minus1 >= 8 && desc->comp[0].depth_minus1 <= 13;
  586. }
  587. #define isNBPS(x) is9_OR_10BPS(x)
  588. static av_always_inline int isBE(enum AVPixelFormat pix_fmt)
  589. {
  590. const AVPixFmtDescriptor *desc = av_pix_fmt_desc_get(pix_fmt);
  591. av_assert0(desc);
  592. return desc->flags & AV_PIX_FMT_FLAG_BE;
  593. }
  594. static av_always_inline int isYUV(enum AVPixelFormat pix_fmt)
  595. {
  596. const AVPixFmtDescriptor *desc = av_pix_fmt_desc_get(pix_fmt);
  597. av_assert0(desc);
  598. return !(desc->flags & AV_PIX_FMT_FLAG_RGB) && desc->nb_components >= 2;
  599. }
  600. static av_always_inline int isPlanarYUV(enum AVPixelFormat pix_fmt)
  601. {
  602. const AVPixFmtDescriptor *desc = av_pix_fmt_desc_get(pix_fmt);
  603. av_assert0(desc);
  604. return ((desc->flags & AV_PIX_FMT_FLAG_PLANAR) && isYUV(pix_fmt));
  605. }
  606. static av_always_inline int isRGB(enum AVPixelFormat pix_fmt)
  607. {
  608. const AVPixFmtDescriptor *desc = av_pix_fmt_desc_get(pix_fmt);
  609. av_assert0(desc);
  610. return (desc->flags & AV_PIX_FMT_FLAG_RGB);
  611. }
  612. #if 0 // FIXME
  613. #define isGray(x) \
  614. (!(av_pix_fmt_desc_get(x)->flags & AV_PIX_FMT_FLAG_PAL) && \
  615. av_pix_fmt_desc_get(x)->nb_components <= 2)
  616. #else
  617. #define isGray(x) \
  618. ((x) == AV_PIX_FMT_GRAY8 || \
  619. (x) == AV_PIX_FMT_Y400A || \
  620. (x) == AV_PIX_FMT_GRAY16BE || \
  621. (x) == AV_PIX_FMT_GRAY16LE)
  622. #endif
  623. #define isRGBinInt(x) \
  624. ( \
  625. (x) == AV_PIX_FMT_RGB48BE || \
  626. (x) == AV_PIX_FMT_RGB48LE || \
  627. (x) == AV_PIX_FMT_RGBA64BE || \
  628. (x) == AV_PIX_FMT_RGBA64LE || \
  629. (x) == AV_PIX_FMT_RGB32 || \
  630. (x) == AV_PIX_FMT_RGB32_1 || \
  631. (x) == AV_PIX_FMT_RGB24 || \
  632. (x) == AV_PIX_FMT_RGB565BE || \
  633. (x) == AV_PIX_FMT_RGB565LE || \
  634. (x) == AV_PIX_FMT_RGB555BE || \
  635. (x) == AV_PIX_FMT_RGB555LE || \
  636. (x) == AV_PIX_FMT_RGB444BE || \
  637. (x) == AV_PIX_FMT_RGB444LE || \
  638. (x) == AV_PIX_FMT_RGB8 || \
  639. (x) == AV_PIX_FMT_RGB4 || \
  640. (x) == AV_PIX_FMT_RGB4_BYTE || \
  641. (x) == AV_PIX_FMT_MONOBLACK || \
  642. (x) == AV_PIX_FMT_MONOWHITE \
  643. )
  644. #define isBGRinInt(x) \
  645. ( \
  646. (x) == AV_PIX_FMT_BGR48BE || \
  647. (x) == AV_PIX_FMT_BGR48LE || \
  648. (x) == AV_PIX_FMT_BGRA64BE || \
  649. (x) == AV_PIX_FMT_BGRA64LE || \
  650. (x) == AV_PIX_FMT_BGR32 || \
  651. (x) == AV_PIX_FMT_BGR32_1 || \
  652. (x) == AV_PIX_FMT_BGR24 || \
  653. (x) == AV_PIX_FMT_BGR565BE || \
  654. (x) == AV_PIX_FMT_BGR565LE || \
  655. (x) == AV_PIX_FMT_BGR555BE || \
  656. (x) == AV_PIX_FMT_BGR555LE || \
  657. (x) == AV_PIX_FMT_BGR444BE || \
  658. (x) == AV_PIX_FMT_BGR444LE || \
  659. (x) == AV_PIX_FMT_BGR8 || \
  660. (x) == AV_PIX_FMT_BGR4 || \
  661. (x) == AV_PIX_FMT_BGR4_BYTE || \
  662. (x) == AV_PIX_FMT_MONOBLACK || \
  663. (x) == AV_PIX_FMT_MONOWHITE \
  664. )
  665. #define isRGBinBytes(x) ( \
  666. (x) == AV_PIX_FMT_RGB48BE \
  667. || (x) == AV_PIX_FMT_RGB48LE \
  668. || (x) == AV_PIX_FMT_RGBA64BE \
  669. || (x) == AV_PIX_FMT_RGBA64LE \
  670. || (x) == AV_PIX_FMT_RGBA \
  671. || (x) == AV_PIX_FMT_ARGB \
  672. || (x) == AV_PIX_FMT_RGB24 \
  673. )
  674. #define isBGRinBytes(x) ( \
  675. (x) == AV_PIX_FMT_BGR48BE \
  676. || (x) == AV_PIX_FMT_BGR48LE \
  677. || (x) == AV_PIX_FMT_BGRA64BE \
  678. || (x) == AV_PIX_FMT_BGRA64LE \
  679. || (x) == AV_PIX_FMT_BGRA \
  680. || (x) == AV_PIX_FMT_ABGR \
  681. || (x) == AV_PIX_FMT_BGR24 \
  682. )
  683. #define isAnyRGB(x) \
  684. ( \
  685. isRGBinInt(x) || \
  686. isBGRinInt(x) || \
  687. isRGB(x) \
  688. )
  689. static av_always_inline int isALPHA(enum AVPixelFormat pix_fmt)
  690. {
  691. const AVPixFmtDescriptor *desc = av_pix_fmt_desc_get(pix_fmt);
  692. av_assert0(desc);
  693. if (pix_fmt == AV_PIX_FMT_PAL8)
  694. return 1;
  695. return desc->flags & AV_PIX_FMT_FLAG_ALPHA;
  696. }
  697. #if 1
  698. #define isPacked(x) ( \
  699. (x)==AV_PIX_FMT_PAL8 \
  700. || (x)==AV_PIX_FMT_YUYV422 \
  701. || (x)==AV_PIX_FMT_UYVY422 \
  702. || (x)==AV_PIX_FMT_Y400A \
  703. || isRGBinInt(x) \
  704. || isBGRinInt(x) \
  705. )
  706. #else
  707. static av_always_inline int isPacked(enum AVPixelFormat pix_fmt)
  708. {
  709. const AVPixFmtDescriptor *desc = av_pix_fmt_desc_get(pix_fmt);
  710. av_assert0(desc);
  711. return ((desc->nb_components >= 2 && !(desc->flags & AV_PIX_FMT_FLAG_PLANAR)) ||
  712. pix_fmt == AV_PIX_FMT_PAL8);
  713. }
  714. #endif
  715. static av_always_inline int isPlanar(enum AVPixelFormat pix_fmt)
  716. {
  717. const AVPixFmtDescriptor *desc = av_pix_fmt_desc_get(pix_fmt);
  718. av_assert0(desc);
  719. return (desc->nb_components >= 2 && (desc->flags & AV_PIX_FMT_FLAG_PLANAR));
  720. }
  721. static av_always_inline int isPackedRGB(enum AVPixelFormat pix_fmt)
  722. {
  723. const AVPixFmtDescriptor *desc = av_pix_fmt_desc_get(pix_fmt);
  724. av_assert0(desc);
  725. return ((desc->flags & (AV_PIX_FMT_FLAG_PLANAR | AV_PIX_FMT_FLAG_RGB)) == AV_PIX_FMT_FLAG_RGB);
  726. }
  727. static av_always_inline int isPlanarRGB(enum AVPixelFormat pix_fmt)
  728. {
  729. const AVPixFmtDescriptor *desc = av_pix_fmt_desc_get(pix_fmt);
  730. av_assert0(desc);
  731. return ((desc->flags & (AV_PIX_FMT_FLAG_PLANAR | AV_PIX_FMT_FLAG_RGB)) ==
  732. (AV_PIX_FMT_FLAG_PLANAR | AV_PIX_FMT_FLAG_RGB));
  733. }
  734. static av_always_inline int usePal(enum AVPixelFormat pix_fmt)
  735. {
  736. const AVPixFmtDescriptor *desc = av_pix_fmt_desc_get(pix_fmt);
  737. av_assert0(desc);
  738. return (desc->flags & AV_PIX_FMT_FLAG_PAL) || (desc->flags & AV_PIX_FMT_FLAG_PSEUDOPAL);
  739. }
  740. extern const uint64_t ff_dither4[2];
  741. extern const uint64_t ff_dither8[2];
  742. extern const uint8_t dithers[8][8][8];
  743. extern const uint16_t dither_scale[15][16];
  744. extern const AVClass sws_context_class;
  745. /**
  746. * Set c->swScale to an unscaled converter if one exists for the specific
  747. * source and destination formats, bit depths, flags, etc.
  748. */
  749. void ff_get_unscaled_swscale(SwsContext *c);
  750. void ff_swscale_get_unscaled_altivec(SwsContext *c);
  751. /**
  752. * Return function pointer to fastest main scaler path function depending
  753. * on architecture and available optimizations.
  754. */
  755. SwsFunc ff_getSwsFunc(SwsContext *c);
  756. void ff_sws_init_input_funcs(SwsContext *c);
  757. void ff_sws_init_output_funcs(SwsContext *c,
  758. yuv2planar1_fn *yuv2plane1,
  759. yuv2planarX_fn *yuv2planeX,
  760. yuv2interleavedX_fn *yuv2nv12cX,
  761. yuv2packed1_fn *yuv2packed1,
  762. yuv2packed2_fn *yuv2packed2,
  763. yuv2packedX_fn *yuv2packedX,
  764. yuv2anyX_fn *yuv2anyX);
  765. void ff_sws_init_swScale_altivec(SwsContext *c);
  766. void ff_sws_init_swScale_mmx(SwsContext *c);
  767. static inline void fillPlane16(uint8_t *plane, int stride, int width, int height, int y,
  768. int alpha, int bits, const int big_endian)
  769. {
  770. int i, j;
  771. uint8_t *ptr = plane + stride * y;
  772. int v = alpha ? 0xFFFF>>(15-bits) : (1<<bits);
  773. for (i = 0; i < height; i++) {
  774. #define FILL(wfunc) \
  775. for (j = 0; j < width; j++) {\
  776. wfunc(ptr+2*j, v);\
  777. }
  778. if (big_endian) {
  779. FILL(AV_WB16);
  780. } else {
  781. FILL(AV_WL16);
  782. }
  783. ptr += stride;
  784. }
  785. }
  786. #endif /* SWSCALE_SWSCALE_INTERNAL_H */