You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

3366 lines
93KB

  1. @chapter Filtergraph description
  2. @c man begin FILTERGRAPH DESCRIPTION
  3. A filtergraph is a directed graph of connected filters. It can contain
  4. cycles, and there can be multiple links between a pair of
  5. filters. Each link has one input pad on one side connecting it to one
  6. filter from which it takes its input, and one output pad on the other
  7. side connecting it to the one filter accepting its output.
  8. Each filter in a filtergraph is an instance of a filter class
  9. registered in the application, which defines the features and the
  10. number of input and output pads of the filter.
  11. A filter with no input pads is called a "source", a filter with no
  12. output pads is called a "sink".
  13. @section Filtergraph syntax
  14. A filtergraph can be represented using a textual representation, which
  15. is recognized by the @code{-vf} option of the ff*
  16. tools, and by the @code{avfilter_graph_parse()} function defined in
  17. @file{libavfilter/avfiltergraph.h}.
  18. A filterchain consists of a sequence of connected filters, each one
  19. connected to the previous one in the sequence. A filterchain is
  20. represented by a list of ","-separated filter descriptions.
  21. A filtergraph consists of a sequence of filterchains. A sequence of
  22. filterchains is represented by a list of ";"-separated filterchain
  23. descriptions.
  24. A filter is represented by a string of the form:
  25. [@var{in_link_1}]...[@var{in_link_N}]@var{filter_name}=@var{arguments}[@var{out_link_1}]...[@var{out_link_M}]
  26. @var{filter_name} is the name of the filter class of which the
  27. described filter is an instance of, and has to be the name of one of
  28. the filter classes registered in the program.
  29. The name of the filter class is optionally followed by a string
  30. "=@var{arguments}".
  31. @var{arguments} is a string which contains the parameters used to
  32. initialize the filter instance, and are described in the filter
  33. descriptions below.
  34. The list of arguments can be quoted using the character "'" as initial
  35. and ending mark, and the character '\' for escaping the characters
  36. within the quoted text; otherwise the argument string is considered
  37. terminated when the next special character (belonging to the set
  38. "[]=;,") is encountered.
  39. The name and arguments of the filter are optionally preceded and
  40. followed by a list of link labels.
  41. A link label allows to name a link and associate it to a filter output
  42. or input pad. The preceding labels @var{in_link_1}
  43. ... @var{in_link_N}, are associated to the filter input pads,
  44. the following labels @var{out_link_1} ... @var{out_link_M}, are
  45. associated to the output pads.
  46. When two link labels with the same name are found in the
  47. filtergraph, a link between the corresponding input and output pad is
  48. created.
  49. If an output pad is not labelled, it is linked by default to the first
  50. unlabelled input pad of the next filter in the filterchain.
  51. For example in the filterchain:
  52. @example
  53. nullsrc, split[L1], [L2]overlay, nullsink
  54. @end example
  55. the split filter instance has two output pads, and the overlay filter
  56. instance two input pads. The first output pad of split is labelled
  57. "L1", the first input pad of overlay is labelled "L2", and the second
  58. output pad of split is linked to the second input pad of overlay,
  59. which are both unlabelled.
  60. In a complete filterchain all the unlabelled filter input and output
  61. pads must be connected. A filtergraph is considered valid if all the
  62. filter input and output pads of all the filterchains are connected.
  63. Follows a BNF description for the filtergraph syntax:
  64. @example
  65. @var{NAME} ::= sequence of alphanumeric characters and '_'
  66. @var{LINKLABEL} ::= "[" @var{NAME} "]"
  67. @var{LINKLABELS} ::= @var{LINKLABEL} [@var{LINKLABELS}]
  68. @var{FILTER_ARGUMENTS} ::= sequence of chars (eventually quoted)
  69. @var{FILTER} ::= [@var{LINKNAMES}] @var{NAME} ["=" @var{ARGUMENTS}] [@var{LINKNAMES}]
  70. @var{FILTERCHAIN} ::= @var{FILTER} [,@var{FILTERCHAIN}]
  71. @var{FILTERGRAPH} ::= @var{FILTERCHAIN} [;@var{FILTERGRAPH}]
  72. @end example
  73. @c man end FILTERGRAPH DESCRIPTION
  74. @chapter Audio Filters
  75. @c man begin AUDIO FILTERS
  76. When you configure your FFmpeg build, you can disable any of the
  77. existing filters using @code{--disable-filters}.
  78. The configure output will show the audio filters included in your
  79. build.
  80. Below is a description of the currently available audio filters.
  81. @section aconvert
  82. Convert the input audio format to the specified formats.
  83. The filter accepts a string of the form:
  84. "@var{sample_format}:@var{channel_layout}".
  85. @var{sample_format} specifies the sample format, and can be a string or the
  86. corresponding numeric value defined in @file{libavutil/samplefmt.h}. Use 'p'
  87. suffix for a planar sample format.
  88. @var{channel_layout} specifies the channel layout, and can be a string
  89. or the corresponding number value defined in @file{libavutil/audioconvert.h}.
  90. The special parameter "auto", signifies that the filter will
  91. automatically select the output format depending on the output filter.
  92. Some examples follow.
  93. @itemize
  94. @item
  95. Convert input to float, planar, stereo:
  96. @example
  97. aconvert=fltp:stereo
  98. @end example
  99. @item
  100. Convert input to unsigned 8-bit, automatically select out channel layout:
  101. @example
  102. aconvert=u8:auto
  103. @end example
  104. @end itemize
  105. @section aformat
  106. Convert the input audio to one of the specified formats. The framework will
  107. negotiate the most appropriate format to minimize conversions.
  108. The filter accepts three lists of formats, separated by ":", in the form:
  109. "@var{sample_formats}:@var{channel_layouts}:@var{packing_formats}".
  110. Elements in each list are separated by "," which has to be escaped in the
  111. filtergraph specification.
  112. The special parameter "all", in place of a list of elements, signifies all
  113. supported formats.
  114. Some examples follow:
  115. @example
  116. aformat=u8\\,s16:mono:packed
  117. aformat=s16:mono\\,stereo:all
  118. @end example
  119. @section amerge
  120. Merge two audio streams into a single multi-channel stream.
  121. This filter does not need any argument.
  122. If the channel layouts of the inputs are disjoint, and therefore compatible,
  123. the channel layout of the output will be set accordingly and the channels
  124. will be reordered as necessary. If the channel layouts of the inputs are not
  125. disjoint, the output will have all the channels of the first input then all
  126. the channels of the second input, in that order, and the channel layout of
  127. the output will be the default value corresponding to the total number of
  128. channels.
  129. For example, if the first input is in 2.1 (FL+FR+LF) and the second input
  130. is FC+BL+BR, then the output will be in 5.1, with the channels in the
  131. following order: a1, a2, b1, a3, b2, b3 (a1 is the first channel of the
  132. first input, b1 is the first channel of the second input).
  133. On the other hand, if both input are in stereo, the output channels will be
  134. in the default order: a1, a2, b1, b2, and the channel layout will be
  135. arbitrarily set to 4.0, which may or may not be the expected value.
  136. Both inputs must have the same sample rate, format and packing.
  137. If inputs do not have the same duration, the output will stop with the
  138. shortest.
  139. Example: merge two mono files into a stereo stream:
  140. @example
  141. amovie=left.wav [l] ; amovie=right.mp3 [r] ; [l] [r] amerge
  142. @end example
  143. If you need to do multiple merges (for instance multiple mono audio streams in
  144. a single video media), you can do:
  145. @example
  146. ffmpeg -f lavfi -i "
  147. amovie=input.mkv:si=0 [a0];
  148. amovie=input.mkv:si=1 [a1];
  149. amovie=input.mkv:si=2 [a2];
  150. amovie=input.mkv:si=3 [a3];
  151. amovie=input.mkv:si=4 [a4];
  152. amovie=input.mkv:si=5 [a5];
  153. [a0][a1] amerge [x0];
  154. [x0][a2] amerge [x1];
  155. [x1][a3] amerge [x2];
  156. [x2][a4] amerge [x3];
  157. [x3][a5] amerge" -c:a pcm_s16le output.mkv
  158. @end example
  159. @section anull
  160. Pass the audio source unchanged to the output.
  161. @section aresample
  162. Resample the input audio to the specified sample rate.
  163. The filter accepts exactly one parameter, the output sample rate. If not
  164. specified then the filter will automatically convert between its input
  165. and output sample rates.
  166. For example, to resample the input audio to 44100Hz:
  167. @example
  168. aresample=44100
  169. @end example
  170. @section ashowinfo
  171. Show a line containing various information for each input audio frame.
  172. The input audio is not modified.
  173. The shown line contains a sequence of key/value pairs of the form
  174. @var{key}:@var{value}.
  175. A description of each shown parameter follows:
  176. @table @option
  177. @item n
  178. sequential number of the input frame, starting from 0
  179. @item pts
  180. presentation TimeStamp of the input frame, expressed as a number of
  181. time base units. The time base unit depends on the filter input pad, and
  182. is usually 1/@var{sample_rate}.
  183. @item pts_time
  184. presentation TimeStamp of the input frame, expressed as a number of
  185. seconds
  186. @item pos
  187. position of the frame in the input stream, -1 if this information in
  188. unavailable and/or meaningless (for example in case of synthetic audio)
  189. @item fmt
  190. sample format name
  191. @item chlayout
  192. channel layout description
  193. @item nb_samples
  194. number of samples (per each channel) contained in the filtered frame
  195. @item rate
  196. sample rate for the audio frame
  197. @item planar
  198. if the packing format is planar, 0 if packed
  199. @item checksum
  200. Adler-32 checksum (printed in hexadecimal) of all the planes of the input frame
  201. @item plane_checksum
  202. Adler-32 checksum (printed in hexadecimal) for each input frame plane,
  203. expressed in the form "[@var{c0} @var{c1} @var{c2} @var{c3} @var{c4} @var{c5}
  204. @var{c6} @var{c7}]"
  205. @end table
  206. @section asplit
  207. Pass on the input audio to two outputs. Both outputs are identical to
  208. the input audio.
  209. For example:
  210. @example
  211. [in] asplit[out0], showaudio[out1]
  212. @end example
  213. will create two separate outputs from the same input, one cropped and
  214. one padded.
  215. @section astreamsync
  216. Forward two audio streams and control the order the buffers are forwarded.
  217. The argument to the filter is an expression deciding which stream should be
  218. forwarded next: if the result is negative, the first stream is forwarded; if
  219. the result is positive or zero, the second stream is forwarded. It can use
  220. the following variables:
  221. @table @var
  222. @item b1 b2
  223. number of buffers forwarded so far on each stream
  224. @item s1 s2
  225. number of samples forwarded so far on each stream
  226. @item t1 t2
  227. current timestamp of each stream
  228. @end table
  229. The default value is @code{t1-t2}, which means to always forward the stream
  230. that has a smaller timestamp.
  231. Example: stress-test @code{amerge} by randomly sending buffers on the wrong
  232. input, while avoiding too much of a desynchronization:
  233. @example
  234. amovie=file.ogg [a] ; amovie=file.mp3 [b] ;
  235. [a] [b] astreamsync=(2*random(1))-1+tanh(5*(t1-t2)) [a2] [b2] ;
  236. [a2] [b2] amerge
  237. @end example
  238. @section earwax
  239. Make audio easier to listen to on headphones.
  240. This filter adds `cues' to 44.1kHz stereo (i.e. audio CD format) audio
  241. so that when listened to on headphones the stereo image is moved from
  242. inside your head (standard for headphones) to outside and in front of
  243. the listener (standard for speakers).
  244. Ported from SoX.
  245. @section pan
  246. Mix channels with specific gain levels. The filter accepts the output
  247. channel layout followed by a set of channels definitions.
  248. This filter is also designed to remap efficiently the channels of an audio
  249. stream.
  250. The filter accepts parameters of the form:
  251. "@var{l}:@var{outdef}:@var{outdef}:..."
  252. @table @option
  253. @item l
  254. output channel layout or number of channels
  255. @item outdef
  256. output channel specification, of the form:
  257. "@var{out_name}=[@var{gain}*]@var{in_name}[+[@var{gain}*]@var{in_name}...]"
  258. @item out_name
  259. output channel to define, either a channel name (FL, FR, etc.) or a channel
  260. number (c0, c1, etc.)
  261. @item gain
  262. multiplicative coefficient for the channel, 1 leaving the volume unchanged
  263. @item in_name
  264. input channel to use, see out_name for details; it is not possible to mix
  265. named and numbered input channels
  266. @end table
  267. If the `=' in a channel specification is replaced by `<', then the gains for
  268. that specification will be renormalized so that the total is 1, thus
  269. avoiding clipping noise.
  270. @subsection Mixing examples
  271. For example, if you want to down-mix from stereo to mono, but with a bigger
  272. factor for the left channel:
  273. @example
  274. pan=1:c0=0.9*c0+0.1*c1
  275. @end example
  276. A customized down-mix to stereo that works automatically for 3-, 4-, 5- and
  277. 7-channels surround:
  278. @example
  279. pan=stereo: FL < FL + 0.5*FC + 0.6*BL + 0.6*SL : FR < FR + 0.5*FC + 0.6*BR + 0.6*SR
  280. @end example
  281. Note that @command{ffmpeg} integrates a default down-mix (and up-mix) system
  282. that should be preferred (see "-ac" option) unless you have very specific
  283. needs.
  284. @subsection Remapping examples
  285. The channel remapping will be effective if, and only if:
  286. @itemize
  287. @item gain coefficients are zeroes or ones,
  288. @item only one input per channel output,
  289. @item the number of output channels is supported by libswresample (16 at the
  290. moment)
  291. @c if SWR_CH_MAX changes, fix the line above.
  292. @end itemize
  293. If all these conditions are satisfied, the filter will notify the user ("Pure
  294. channel mapping detected"), and use an optimized and lossless method to do the
  295. remapping.
  296. For example, if you have a 5.1 source and want a stereo audio stream by
  297. dropping the extra channels:
  298. @example
  299. pan="stereo: c0=FL : c1=FR"
  300. @end example
  301. Given the same source, you can also switch front left and front right channels
  302. and keep the input channel layout:
  303. @example
  304. pan="5.1: c0=c1 : c1=c0 : c2=c2 : c3=c3 : c4=c4 : c5=c5"
  305. @end example
  306. If the input is a stereo audio stream, you can mute the front left channel (and
  307. still keep the stereo channel layout) with:
  308. @example
  309. pan="stereo:c1=c1"
  310. @end example
  311. Still with a stereo audio stream input, you can copy the right channel in both
  312. front left and right:
  313. @example
  314. pan="stereo: c0=FR : c1=FR"
  315. @end example
  316. @section silencedetect
  317. Detect silence in an audio stream.
  318. This filter logs a message when it detects that the input audio volume is less
  319. or equal to a noise tolerance value for a duration greater or equal to the
  320. minimum detected noise duration.
  321. The printed times and duration are expressed in seconds.
  322. @table @option
  323. @item duration, d
  324. Set silence duration until notification (default is 2 seconds).
  325. @item noise, n
  326. Set noise tolerance. Can be specified in dB (in case "dB" is appended to the
  327. specified value) or amplitude ratio. Default is -60dB, or 0.001.
  328. @end table
  329. Detect 5 seconds of silence with -50dB noise tolerance:
  330. @example
  331. silencedetect=n=-50dB:d=5
  332. @end example
  333. Complete example with @command{ffmpeg} to detect silence with 0.0001 noise
  334. tolerance in @file{silence.mp3}:
  335. @example
  336. ffmpeg -f lavfi -i amovie=silence.mp3,silencedetect=noise=0.0001 -f null -
  337. @end example
  338. @section volume
  339. Adjust the input audio volume.
  340. The filter accepts exactly one parameter @var{vol}, which expresses
  341. how the audio volume will be increased or decreased.
  342. Output values are clipped to the maximum value.
  343. If @var{vol} is expressed as a decimal number, the output audio
  344. volume is given by the relation:
  345. @example
  346. @var{output_volume} = @var{vol} * @var{input_volume}
  347. @end example
  348. If @var{vol} is expressed as a decimal number followed by the string
  349. "dB", the value represents the requested change in decibels of the
  350. input audio power, and the output audio volume is given by the
  351. relation:
  352. @example
  353. @var{output_volume} = 10^(@var{vol}/20) * @var{input_volume}
  354. @end example
  355. Otherwise @var{vol} is considered an expression and its evaluated
  356. value is used for computing the output audio volume according to the
  357. first relation.
  358. Default value for @var{vol} is 1.0.
  359. @subsection Examples
  360. @itemize
  361. @item
  362. Half the input audio volume:
  363. @example
  364. volume=0.5
  365. @end example
  366. The above example is equivalent to:
  367. @example
  368. volume=1/2
  369. @end example
  370. @item
  371. Decrease input audio power by 12 decibels:
  372. @example
  373. volume=-12dB
  374. @end example
  375. @end itemize
  376. @c man end AUDIO FILTERS
  377. @chapter Audio Sources
  378. @c man begin AUDIO SOURCES
  379. Below is a description of the currently available audio sources.
  380. @section abuffer
  381. Buffer audio frames, and make them available to the filter chain.
  382. This source is mainly intended for a programmatic use, in particular
  383. through the interface defined in @file{libavfilter/asrc_abuffer.h}.
  384. It accepts the following mandatory parameters:
  385. @var{sample_rate}:@var{sample_fmt}:@var{channel_layout}:@var{packing}
  386. @table @option
  387. @item sample_rate
  388. The sample rate of the incoming audio buffers.
  389. @item sample_fmt
  390. The sample format of the incoming audio buffers.
  391. Either a sample format name or its corresponging integer representation from
  392. the enum AVSampleFormat in @file{libavutil/samplefmt.h}
  393. @item channel_layout
  394. The channel layout of the incoming audio buffers.
  395. Either a channel layout name from channel_layout_map in
  396. @file{libavutil/audioconvert.c} or its corresponding integer representation
  397. from the AV_CH_LAYOUT_* macros in @file{libavutil/audioconvert.h}
  398. @item packing
  399. Either "packed" or "planar", or their integer representation: 0 or 1
  400. respectively.
  401. @end table
  402. For example:
  403. @example
  404. abuffer=44100:s16:stereo:planar
  405. @end example
  406. will instruct the source to accept planar 16bit signed stereo at 44100Hz.
  407. Since the sample format with name "s16" corresponds to the number
  408. 1 and the "stereo" channel layout corresponds to the value 3, this is
  409. equivalent to:
  410. @example
  411. abuffer=44100:1:3:1
  412. @end example
  413. @section aevalsrc
  414. Generate an audio signal specified by an expression.
  415. This source accepts in input one or more expressions (one for each
  416. channel), which are evaluated and used to generate a corresponding
  417. audio signal.
  418. It accepts the syntax: @var{exprs}[::@var{options}].
  419. @var{exprs} is a list of expressions separated by ":", one for each
  420. separate channel. The output channel layout depends on the number of
  421. provided expressions, up to 8 channels are supported.
  422. @var{options} is an optional sequence of @var{key}=@var{value} pairs,
  423. separated by ":".
  424. The description of the accepted options follows.
  425. @table @option
  426. @item duration, d
  427. Set the minimum duration of the sourced audio. See the function
  428. @code{av_parse_time()} for the accepted format.
  429. Note that the resulting duration may be greater than the specified
  430. duration, as the generated audio is always cut at the end of a
  431. complete frame.
  432. If not specified, or the expressed duration is negative, the audio is
  433. supposed to be generated forever.
  434. @item nb_samples, n
  435. Set the number of samples per channel per each output frame,
  436. default to 1024.
  437. @item sample_rate, s
  438. Specify the sample rate, default to 44100.
  439. @end table
  440. Each expression in @var{exprs} can contain the following constants:
  441. @table @option
  442. @item n
  443. number of the evaluated sample, starting from 0
  444. @item t
  445. time of the evaluated sample expressed in seconds, starting from 0
  446. @item s
  447. sample rate
  448. @end table
  449. @subsection Examples
  450. @itemize
  451. @item
  452. Generate silence:
  453. @example
  454. aevalsrc=0
  455. @end example
  456. @item
  457. Generate a sin signal with frequency of 440 Hz, set sample rate to
  458. 8000 Hz:
  459. @example
  460. aevalsrc="sin(440*2*PI*t)::s=8000"
  461. @end example
  462. @item
  463. Generate white noise:
  464. @example
  465. aevalsrc="-2+random(0)"
  466. @end example
  467. @item
  468. Generate an amplitude modulated signal:
  469. @example
  470. aevalsrc="sin(10*2*PI*t)*sin(880*2*PI*t)"
  471. @end example
  472. @item
  473. Generate 2.5 Hz binaural beats on a 360 Hz carrier:
  474. @example
  475. aevalsrc="0.1*sin(2*PI*(360-2.5/2)*t) : 0.1*sin(2*PI*(360+2.5/2)*t)"
  476. @end example
  477. @end itemize
  478. @section amovie
  479. Read an audio stream from a movie container.
  480. It accepts the syntax: @var{movie_name}[:@var{options}] where
  481. @var{movie_name} is the name of the resource to read (not necessarily
  482. a file but also a device or a stream accessed through some protocol),
  483. and @var{options} is an optional sequence of @var{key}=@var{value}
  484. pairs, separated by ":".
  485. The description of the accepted options follows.
  486. @table @option
  487. @item format_name, f
  488. Specify the format assumed for the movie to read, and can be either
  489. the name of a container or an input device. If not specified the
  490. format is guessed from @var{movie_name} or by probing.
  491. @item seek_point, sp
  492. Specify the seek point in seconds, the frames will be output
  493. starting from this seek point, the parameter is evaluated with
  494. @code{av_strtod} so the numerical value may be suffixed by an IS
  495. postfix. Default value is "0".
  496. @item stream_index, si
  497. Specify the index of the audio stream to read. If the value is -1,
  498. the best suited audio stream will be automatically selected. Default
  499. value is "-1".
  500. @end table
  501. @section anullsrc
  502. Null audio source, return unprocessed audio frames. It is mainly useful
  503. as a template and to be employed in analysis / debugging tools, or as
  504. the source for filters which ignore the input data (for example the sox
  505. synth filter).
  506. It accepts an optional sequence of @var{key}=@var{value} pairs,
  507. separated by ":".
  508. The description of the accepted options follows.
  509. @table @option
  510. @item sample_rate, s
  511. Specify the sample rate, and defaults to 44100.
  512. @item channel_layout, cl
  513. Specify the channel layout, and can be either an integer or a string
  514. representing a channel layout. The default value of @var{channel_layout}
  515. is "stereo".
  516. Check the channel_layout_map definition in
  517. @file{libavcodec/audioconvert.c} for the mapping between strings and
  518. channel layout values.
  519. @item nb_samples, n
  520. Set the number of samples per requested frames.
  521. @end table
  522. Follow some examples:
  523. @example
  524. # set the sample rate to 48000 Hz and the channel layout to AV_CH_LAYOUT_MONO.
  525. anullsrc=r=48000:cl=4
  526. # same as
  527. anullsrc=r=48000:cl=mono
  528. @end example
  529. @c man end AUDIO SOURCES
  530. @chapter Audio Sinks
  531. @c man begin AUDIO SINKS
  532. Below is a description of the currently available audio sinks.
  533. @section abuffersink
  534. Buffer audio frames, and make them available to the end of filter chain.
  535. This sink is mainly intended for programmatic use, in particular
  536. through the interface defined in @file{libavfilter/buffersink.h}.
  537. It requires a pointer to an AVABufferSinkContext structure, which
  538. defines the incoming buffers' formats, to be passed as the opaque
  539. parameter to @code{avfilter_init_filter} for initialization.
  540. @section anullsink
  541. Null audio sink, do absolutely nothing with the input audio. It is
  542. mainly useful as a template and to be employed in analysis / debugging
  543. tools.
  544. @c man end AUDIO SINKS
  545. @chapter Video Filters
  546. @c man begin VIDEO FILTERS
  547. When you configure your FFmpeg build, you can disable any of the
  548. existing filters using @code{--disable-filters}.
  549. The configure output will show the video filters included in your
  550. build.
  551. Below is a description of the currently available video filters.
  552. @section ass
  553. Draw ASS (Advanced Substation Alpha) subtitles on top of input video
  554. using the libass library.
  555. To enable compilation of this filter you need to configure FFmpeg with
  556. @code{--enable-libass}.
  557. This filter accepts in input the name of the ass file to render.
  558. For example, to render the file @file{sub.ass} on top of the input
  559. video, use the command:
  560. @example
  561. ass=sub.ass
  562. @end example
  563. @section blackframe
  564. Detect frames that are (almost) completely black. Can be useful to
  565. detect chapter transitions or commercials. Output lines consist of
  566. the frame number of the detected frame, the percentage of blackness,
  567. the position in the file if known or -1 and the timestamp in seconds.
  568. In order to display the output lines, you need to set the loglevel at
  569. least to the AV_LOG_INFO value.
  570. The filter accepts the syntax:
  571. @example
  572. blackframe[=@var{amount}:[@var{threshold}]]
  573. @end example
  574. @var{amount} is the percentage of the pixels that have to be below the
  575. threshold, and defaults to 98.
  576. @var{threshold} is the threshold below which a pixel value is
  577. considered black, and defaults to 32.
  578. @section boxblur
  579. Apply boxblur algorithm to the input video.
  580. This filter accepts the parameters:
  581. @var{luma_radius}:@var{luma_power}:@var{chroma_radius}:@var{chroma_power}:@var{alpha_radius}:@var{alpha_power}
  582. Chroma and alpha parameters are optional, if not specified they default
  583. to the corresponding values set for @var{luma_radius} and
  584. @var{luma_power}.
  585. @var{luma_radius}, @var{chroma_radius}, and @var{alpha_radius} represent
  586. the radius in pixels of the box used for blurring the corresponding
  587. input plane. They are expressions, and can contain the following
  588. constants:
  589. @table @option
  590. @item w, h
  591. the input width and height in pixels
  592. @item cw, ch
  593. the input chroma image width and height in pixels
  594. @item hsub, vsub
  595. horizontal and vertical chroma subsample values. For example for the
  596. pixel format "yuv422p" @var{hsub} is 2 and @var{vsub} is 1.
  597. @end table
  598. The radius must be a non-negative number, and must not be greater than
  599. the value of the expression @code{min(w,h)/2} for the luma and alpha planes,
  600. and of @code{min(cw,ch)/2} for the chroma planes.
  601. @var{luma_power}, @var{chroma_power}, and @var{alpha_power} represent
  602. how many times the boxblur filter is applied to the corresponding
  603. plane.
  604. Some examples follow:
  605. @itemize
  606. @item
  607. Apply a boxblur filter with luma, chroma, and alpha radius
  608. set to 2:
  609. @example
  610. boxblur=2:1
  611. @end example
  612. @item
  613. Set luma radius to 2, alpha and chroma radius to 0
  614. @example
  615. boxblur=2:1:0:0:0:0
  616. @end example
  617. @item
  618. Set luma and chroma radius to a fraction of the video dimension
  619. @example
  620. boxblur=min(h\,w)/10:1:min(cw\,ch)/10:1
  621. @end example
  622. @end itemize
  623. @section copy
  624. Copy the input source unchanged to the output. Mainly useful for
  625. testing purposes.
  626. @section crop
  627. Crop the input video to @var{out_w}:@var{out_h}:@var{x}:@var{y}.
  628. The parameters are expressions containing the following constants:
  629. @table @option
  630. @item x, y
  631. the computed values for @var{x} and @var{y}. They are evaluated for
  632. each new frame.
  633. @item in_w, in_h
  634. the input width and height
  635. @item iw, ih
  636. same as @var{in_w} and @var{in_h}
  637. @item out_w, out_h
  638. the output (cropped) width and height
  639. @item ow, oh
  640. same as @var{out_w} and @var{out_h}
  641. @item a
  642. same as @var{iw} / @var{ih}
  643. @item sar
  644. input sample aspect ratio
  645. @item dar
  646. input display aspect ratio, it is the same as (@var{iw} / @var{ih}) * @var{sar}
  647. @item hsub, vsub
  648. horizontal and vertical chroma subsample values. For example for the
  649. pixel format "yuv422p" @var{hsub} is 2 and @var{vsub} is 1.
  650. @item n
  651. the number of input frame, starting from 0
  652. @item pos
  653. the position in the file of the input frame, NAN if unknown
  654. @item t
  655. timestamp expressed in seconds, NAN if the input timestamp is unknown
  656. @end table
  657. The @var{out_w} and @var{out_h} parameters specify the expressions for
  658. the width and height of the output (cropped) video. They are
  659. evaluated just at the configuration of the filter.
  660. The default value of @var{out_w} is "in_w", and the default value of
  661. @var{out_h} is "in_h".
  662. The expression for @var{out_w} may depend on the value of @var{out_h},
  663. and the expression for @var{out_h} may depend on @var{out_w}, but they
  664. cannot depend on @var{x} and @var{y}, as @var{x} and @var{y} are
  665. evaluated after @var{out_w} and @var{out_h}.
  666. The @var{x} and @var{y} parameters specify the expressions for the
  667. position of the top-left corner of the output (non-cropped) area. They
  668. are evaluated for each frame. If the evaluated value is not valid, it
  669. is approximated to the nearest valid value.
  670. The default value of @var{x} is "(in_w-out_w)/2", and the default
  671. value for @var{y} is "(in_h-out_h)/2", which set the cropped area at
  672. the center of the input image.
  673. The expression for @var{x} may depend on @var{y}, and the expression
  674. for @var{y} may depend on @var{x}.
  675. Follow some examples:
  676. @example
  677. # crop the central input area with size 100x100
  678. crop=100:100
  679. # crop the central input area with size 2/3 of the input video
  680. "crop=2/3*in_w:2/3*in_h"
  681. # crop the input video central square
  682. crop=in_h
  683. # delimit the rectangle with the top-left corner placed at position
  684. # 100:100 and the right-bottom corner corresponding to the right-bottom
  685. # corner of the input image.
  686. crop=in_w-100:in_h-100:100:100
  687. # crop 10 pixels from the left and right borders, and 20 pixels from
  688. # the top and bottom borders
  689. "crop=in_w-2*10:in_h-2*20"
  690. # keep only the bottom right quarter of the input image
  691. "crop=in_w/2:in_h/2:in_w/2:in_h/2"
  692. # crop height for getting Greek harmony
  693. "crop=in_w:1/PHI*in_w"
  694. # trembling effect
  695. "crop=in_w/2:in_h/2:(in_w-out_w)/2+((in_w-out_w)/2)*sin(n/10):(in_h-out_h)/2 +((in_h-out_h)/2)*sin(n/7)"
  696. # erratic camera effect depending on timestamp
  697. "crop=in_w/2:in_h/2:(in_w-out_w)/2+((in_w-out_w)/2)*sin(t*10):(in_h-out_h)/2 +((in_h-out_h)/2)*sin(t*13)"
  698. # set x depending on the value of y
  699. "crop=in_w/2:in_h/2:y:10+10*sin(n/10)"
  700. @end example
  701. @section cropdetect
  702. Auto-detect crop size.
  703. Calculate necessary cropping parameters and prints the recommended
  704. parameters through the logging system. The detected dimensions
  705. correspond to the non-black area of the input video.
  706. It accepts the syntax:
  707. @example
  708. cropdetect[=@var{limit}[:@var{round}[:@var{reset}]]]
  709. @end example
  710. @table @option
  711. @item limit
  712. Threshold, which can be optionally specified from nothing (0) to
  713. everything (255), defaults to 24.
  714. @item round
  715. Value which the width/height should be divisible by, defaults to
  716. 16. The offset is automatically adjusted to center the video. Use 2 to
  717. get only even dimensions (needed for 4:2:2 video). 16 is best when
  718. encoding to most video codecs.
  719. @item reset
  720. Counter that determines after how many frames cropdetect will reset
  721. the previously detected largest video area and start over to detect
  722. the current optimal crop area. Defaults to 0.
  723. This can be useful when channel logos distort the video area. 0
  724. indicates never reset and return the largest area encountered during
  725. playback.
  726. @end table
  727. @section delogo
  728. Suppress a TV station logo by a simple interpolation of the surrounding
  729. pixels. Just set a rectangle covering the logo and watch it disappear
  730. (and sometimes something even uglier appear - your mileage may vary).
  731. The filter accepts parameters as a string of the form
  732. "@var{x}:@var{y}:@var{w}:@var{h}:@var{band}", or as a list of
  733. @var{key}=@var{value} pairs, separated by ":".
  734. The description of the accepted parameters follows.
  735. @table @option
  736. @item x, y
  737. Specify the top left corner coordinates of the logo. They must be
  738. specified.
  739. @item w, h
  740. Specify the width and height of the logo to clear. They must be
  741. specified.
  742. @item band, t
  743. Specify the thickness of the fuzzy edge of the rectangle (added to
  744. @var{w} and @var{h}). The default value is 4.
  745. @item show
  746. When set to 1, a green rectangle is drawn on the screen to simplify
  747. finding the right @var{x}, @var{y}, @var{w}, @var{h} parameters, and
  748. @var{band} is set to 4. The default value is 0.
  749. @end table
  750. Some examples follow.
  751. @itemize
  752. @item
  753. Set a rectangle covering the area with top left corner coordinates 0,0
  754. and size 100x77, setting a band of size 10:
  755. @example
  756. delogo=0:0:100:77:10
  757. @end example
  758. @item
  759. As the previous example, but use named options:
  760. @example
  761. delogo=x=0:y=0:w=100:h=77:band=10
  762. @end example
  763. @end itemize
  764. @section deshake
  765. Attempt to fix small changes in horizontal and/or vertical shift. This
  766. filter helps remove camera shake from hand-holding a camera, bumping a
  767. tripod, moving on a vehicle, etc.
  768. The filter accepts parameters as a string of the form
  769. "@var{x}:@var{y}:@var{w}:@var{h}:@var{rx}:@var{ry}:@var{edge}:@var{blocksize}:@var{contrast}:@var{search}:@var{filename}"
  770. A description of the accepted parameters follows.
  771. @table @option
  772. @item x, y, w, h
  773. Specify a rectangular area where to limit the search for motion
  774. vectors.
  775. If desired the search for motion vectors can be limited to a
  776. rectangular area of the frame defined by its top left corner, width
  777. and height. These parameters have the same meaning as the drawbox
  778. filter which can be used to visualise the position of the bounding
  779. box.
  780. This is useful when simultaneous movement of subjects within the frame
  781. might be confused for camera motion by the motion vector search.
  782. If any or all of @var{x}, @var{y}, @var{w} and @var{h} are set to -1
  783. then the full frame is used. This allows later options to be set
  784. without specifying the bounding box for the motion vector search.
  785. Default - search the whole frame.
  786. @item rx, ry
  787. Specify the maximum extent of movement in x and y directions in the
  788. range 0-64 pixels. Default 16.
  789. @item edge
  790. Specify how to generate pixels to fill blanks at the edge of the
  791. frame. An integer from 0 to 3 as follows:
  792. @table @option
  793. @item 0
  794. Fill zeroes at blank locations
  795. @item 1
  796. Original image at blank locations
  797. @item 2
  798. Extruded edge value at blank locations
  799. @item 3
  800. Mirrored edge at blank locations
  801. @end table
  802. The default setting is mirror edge at blank locations.
  803. @item blocksize
  804. Specify the blocksize to use for motion search. Range 4-128 pixels,
  805. default 8.
  806. @item contrast
  807. Specify the contrast threshold for blocks. Only blocks with more than
  808. the specified contrast (difference between darkest and lightest
  809. pixels) will be considered. Range 1-255, default 125.
  810. @item search
  811. Specify the search strategy 0 = exhaustive search, 1 = less exhaustive
  812. search. Default - exhaustive search.
  813. @item filename
  814. If set then a detailed log of the motion search is written to the
  815. specified file.
  816. @end table
  817. @section drawbox
  818. Draw a colored box on the input image.
  819. It accepts the syntax:
  820. @example
  821. drawbox=@var{x}:@var{y}:@var{width}:@var{height}:@var{color}
  822. @end example
  823. @table @option
  824. @item x, y
  825. Specify the top left corner coordinates of the box. Default to 0.
  826. @item width, height
  827. Specify the width and height of the box, if 0 they are interpreted as
  828. the input width and height. Default to 0.
  829. @item color
  830. Specify the color of the box to write, it can be the name of a color
  831. (case insensitive match) or a 0xRRGGBB[AA] sequence.
  832. @end table
  833. Follow some examples:
  834. @example
  835. # draw a black box around the edge of the input image
  836. drawbox
  837. # draw a box with color red and an opacity of 50%
  838. drawbox=10:20:200:60:red@@0.5"
  839. @end example
  840. @section drawtext
  841. Draw text string or text from specified file on top of video using the
  842. libfreetype library.
  843. To enable compilation of this filter you need to configure FFmpeg with
  844. @code{--enable-libfreetype}.
  845. The filter also recognizes strftime() sequences in the provided text
  846. and expands them accordingly. Check the documentation of strftime().
  847. The filter accepts parameters as a list of @var{key}=@var{value} pairs,
  848. separated by ":".
  849. The description of the accepted parameters follows.
  850. @table @option
  851. @item fontfile
  852. The font file to be used for drawing text. Path must be included.
  853. This parameter is mandatory.
  854. @item text
  855. The text string to be drawn. The text must be a sequence of UTF-8
  856. encoded characters.
  857. This parameter is mandatory if no file is specified with the parameter
  858. @var{textfile}.
  859. @item textfile
  860. A text file containing text to be drawn. The text must be a sequence
  861. of UTF-8 encoded characters.
  862. This parameter is mandatory if no text string is specified with the
  863. parameter @var{text}.
  864. If both text and textfile are specified, an error is thrown.
  865. @item x, y
  866. The expressions which specify the offsets where text will be drawn
  867. within the video frame. They are relative to the top/left border of the
  868. output image.
  869. The default value of @var{x} and @var{y} is "0".
  870. See below for the list of accepted constants.
  871. @item fontsize
  872. The font size to be used for drawing text.
  873. The default value of @var{fontsize} is 16.
  874. @item fontcolor
  875. The color to be used for drawing fonts.
  876. Either a string (e.g. "red") or in 0xRRGGBB[AA] format
  877. (e.g. "0xff000033"), possibly followed by an alpha specifier.
  878. The default value of @var{fontcolor} is "black".
  879. @item boxcolor
  880. The color to be used for drawing box around text.
  881. Either a string (e.g. "yellow") or in 0xRRGGBB[AA] format
  882. (e.g. "0xff00ff"), possibly followed by an alpha specifier.
  883. The default value of @var{boxcolor} is "white".
  884. @item box
  885. Used to draw a box around text using background color.
  886. Value should be either 1 (enable) or 0 (disable).
  887. The default value of @var{box} is 0.
  888. @item shadowx, shadowy
  889. The x and y offsets for the text shadow position with respect to the
  890. position of the text. They can be either positive or negative
  891. values. Default value for both is "0".
  892. @item shadowcolor
  893. The color to be used for drawing a shadow behind the drawn text. It
  894. can be a color name (e.g. "yellow") or a string in the 0xRRGGBB[AA]
  895. form (e.g. "0xff00ff"), possibly followed by an alpha specifier.
  896. The default value of @var{shadowcolor} is "black".
  897. @item ft_load_flags
  898. Flags to be used for loading the fonts.
  899. The flags map the corresponding flags supported by libfreetype, and are
  900. a combination of the following values:
  901. @table @var
  902. @item default
  903. @item no_scale
  904. @item no_hinting
  905. @item render
  906. @item no_bitmap
  907. @item vertical_layout
  908. @item force_autohint
  909. @item crop_bitmap
  910. @item pedantic
  911. @item ignore_global_advance_width
  912. @item no_recurse
  913. @item ignore_transform
  914. @item monochrome
  915. @item linear_design
  916. @item no_autohint
  917. @item end table
  918. @end table
  919. Default value is "render".
  920. For more information consult the documentation for the FT_LOAD_*
  921. libfreetype flags.
  922. @item tabsize
  923. The size in number of spaces to use for rendering the tab.
  924. Default value is 4.
  925. @end table
  926. The parameters for @var{x} and @var{y} are expressions containing the
  927. following constants:
  928. @table @option
  929. @item W, H
  930. the input width and height
  931. @item tw, text_w
  932. the width of the rendered text
  933. @item th, text_h
  934. the height of the rendered text
  935. @item lh, line_h
  936. the height of each text line
  937. @item sar
  938. input sample aspect ratio
  939. @item dar
  940. input display aspect ratio, it is the same as (@var{w} / @var{h}) * @var{sar}
  941. @item hsub, vsub
  942. horizontal and vertical chroma subsample values. For example for the
  943. pixel format "yuv422p" @var{hsub} is 2 and @var{vsub} is 1.
  944. @item max_glyph_w
  945. maximum glyph width, that is the maximum width for all the glyphs
  946. contained in the rendered text
  947. @item max_glyph_h
  948. maximum glyph height, that is the maximum height for all the glyphs
  949. contained in the rendered text, it is equivalent to @var{ascent} -
  950. @var{descent}.
  951. @item max_glyph_a, ascent
  952. the maximum distance from the baseline to the highest/upper grid
  953. coordinate used to place a glyph outline point, for all the rendered
  954. glyphs.
  955. It is a positive value, due to the grid's orientation with the Y axis
  956. upwards.
  957. @item max_glyph_d, descent
  958. the maximum distance from the baseline to the lowest grid coordinate
  959. used to place a glyph outline point, for all the rendered glyphs.
  960. This is a negative value, due to the grid's orientation, with the Y axis
  961. upwards.
  962. @item n
  963. the number of input frame, starting from 0
  964. @item t
  965. timestamp expressed in seconds, NAN if the input timestamp is unknown
  966. @item timecode
  967. initial timecode representation in "hh:mm:ss[:;.]ff" format. It can be used
  968. with or without text parameter. @var{rate} option must be specified.
  969. @item r, rate
  970. frame rate (timecode only)
  971. @end table
  972. Some examples follow.
  973. @itemize
  974. @item
  975. Draw "Test Text" with font FreeSerif, using the default values for the
  976. optional parameters.
  977. @example
  978. drawtext="fontfile=/usr/share/fonts/truetype/freefont/FreeSerif.ttf: text='Test Text'"
  979. @end example
  980. @item
  981. Draw 'Test Text' with font FreeSerif of size 24 at position x=100
  982. and y=50 (counting from the top-left corner of the screen), text is
  983. yellow with a red box around it. Both the text and the box have an
  984. opacity of 20%.
  985. @example
  986. drawtext="fontfile=/usr/share/fonts/truetype/freefont/FreeSerif.ttf: text='Test Text':\
  987. x=100: y=50: fontsize=24: fontcolor=yellow@@0.2: box=1: boxcolor=red@@0.2"
  988. @end example
  989. Note that the double quotes are not necessary if spaces are not used
  990. within the parameter list.
  991. @item
  992. Show the text at the center of the video frame:
  993. @example
  994. drawtext=fontsize=30:fontfile=FreeSerif.ttf:text='hello world':x=(w-text_w)/2:y=(h-text_h-line_h)/2"
  995. @end example
  996. @item
  997. Show a text line sliding from right to left in the last row of the video
  998. frame. The file @file{LONG_LINE} is assumed to contain a single line
  999. with no newlines.
  1000. @example
  1001. drawtext=fontsize=15:fontfile=FreeSerif.ttf:text=LONG_LINE:y=h-line_h:x=-50*t
  1002. @end example
  1003. @item
  1004. Show the content of file @file{CREDITS} off the bottom of the frame and scroll up.
  1005. @example
  1006. drawtext=fontsize=20:fontfile=FreeSerif.ttf:textfile=CREDITS:y=h-20*t"
  1007. @end example
  1008. @item
  1009. Draw a single green letter "g", at the center of the input video.
  1010. The glyph baseline is placed at half screen height.
  1011. @example
  1012. drawtext=fontsize=60:fontfile=FreeSerif.ttf:fontcolor=green:text=g:x=(w-max_glyph_w)/2:y=h/2-ascent
  1013. @end example
  1014. @end itemize
  1015. For more information about libfreetype, check:
  1016. @url{http://www.freetype.org/}.
  1017. @section fade
  1018. Apply fade-in/out effect to input video.
  1019. It accepts the parameters:
  1020. @var{type}:@var{start_frame}:@var{nb_frames}[:@var{options}]
  1021. @var{type} specifies if the effect type, can be either "in" for
  1022. fade-in, or "out" for a fade-out effect.
  1023. @var{start_frame} specifies the number of the start frame for starting
  1024. to apply the fade effect.
  1025. @var{nb_frames} specifies the number of frames for which the fade
  1026. effect has to last. At the end of the fade-in effect the output video
  1027. will have the same intensity as the input video, at the end of the
  1028. fade-out transition the output video will be completely black.
  1029. @var{options} is an optional sequence of @var{key}=@var{value} pairs,
  1030. separated by ":". The description of the accepted options follows.
  1031. @table @option
  1032. @item type, t
  1033. See @var{type}.
  1034. @item start_frame, s
  1035. See @var{start_frame}.
  1036. @item nb_frames, n
  1037. See @var{nb_frames}.
  1038. @item alpha
  1039. If set to 1, fade only alpha channel, if one exists on the input.
  1040. Default value is 0.
  1041. @end table
  1042. A few usage examples follow, usable too as test scenarios.
  1043. @example
  1044. # fade in first 30 frames of video
  1045. fade=in:0:30
  1046. # fade out last 45 frames of a 200-frame video
  1047. fade=out:155:45
  1048. # fade in first 25 frames and fade out last 25 frames of a 1000-frame video
  1049. fade=in:0:25, fade=out:975:25
  1050. # make first 5 frames black, then fade in from frame 5-24
  1051. fade=in:5:20
  1052. # fade in alpha over first 25 frames of video
  1053. fade=in:0:25:alpha=1
  1054. @end example
  1055. @section fieldorder
  1056. Transform the field order of the input video.
  1057. It accepts one parameter which specifies the required field order that
  1058. the input interlaced video will be transformed to. The parameter can
  1059. assume one of the following values:
  1060. @table @option
  1061. @item 0 or bff
  1062. output bottom field first
  1063. @item 1 or tff
  1064. output top field first
  1065. @end table
  1066. Default value is "tff".
  1067. Transformation is achieved by shifting the picture content up or down
  1068. by one line, and filling the remaining line with appropriate picture content.
  1069. This method is consistent with most broadcast field order converters.
  1070. If the input video is not flagged as being interlaced, or it is already
  1071. flagged as being of the required output field order then this filter does
  1072. not alter the incoming video.
  1073. This filter is very useful when converting to or from PAL DV material,
  1074. which is bottom field first.
  1075. For example:
  1076. @example
  1077. ffmpeg -i in.vob -vf "fieldorder=bff" out.dv
  1078. @end example
  1079. @section fifo
  1080. Buffer input images and send them when they are requested.
  1081. This filter is mainly useful when auto-inserted by the libavfilter
  1082. framework.
  1083. The filter does not take parameters.
  1084. @section format
  1085. Convert the input video to one of the specified pixel formats.
  1086. Libavfilter will try to pick one that is supported for the input to
  1087. the next filter.
  1088. The filter accepts a list of pixel format names, separated by ":",
  1089. for example "yuv420p:monow:rgb24".
  1090. Some examples follow:
  1091. @example
  1092. # convert the input video to the format "yuv420p"
  1093. format=yuv420p
  1094. # convert the input video to any of the formats in the list
  1095. format=yuv420p:yuv444p:yuv410p
  1096. @end example
  1097. @anchor{frei0r}
  1098. @section frei0r
  1099. Apply a frei0r effect to the input video.
  1100. To enable compilation of this filter you need to install the frei0r
  1101. header and configure FFmpeg with @code{--enable-frei0r}.
  1102. The filter supports the syntax:
  1103. @example
  1104. @var{filter_name}[@{:|=@}@var{param1}:@var{param2}:...:@var{paramN}]
  1105. @end example
  1106. @var{filter_name} is the name to the frei0r effect to load. If the
  1107. environment variable @env{FREI0R_PATH} is defined, the frei0r effect
  1108. is searched in each one of the directories specified by the colon
  1109. separated list in @env{FREIOR_PATH}, otherwise in the standard frei0r
  1110. paths, which are in this order: @file{HOME/.frei0r-1/lib/},
  1111. @file{/usr/local/lib/frei0r-1/}, @file{/usr/lib/frei0r-1/}.
  1112. @var{param1}, @var{param2}, ... , @var{paramN} specify the parameters
  1113. for the frei0r effect.
  1114. A frei0r effect parameter can be a boolean (whose values are specified
  1115. with "y" and "n"), a double, a color (specified by the syntax
  1116. @var{R}/@var{G}/@var{B}, @var{R}, @var{G}, and @var{B} being float
  1117. numbers from 0.0 to 1.0) or by an @code{av_parse_color()} color
  1118. description), a position (specified by the syntax @var{X}/@var{Y},
  1119. @var{X} and @var{Y} being float numbers) and a string.
  1120. The number and kind of parameters depend on the loaded effect. If an
  1121. effect parameter is not specified the default value is set.
  1122. Some examples follow:
  1123. @example
  1124. # apply the distort0r effect, set the first two double parameters
  1125. frei0r=distort0r:0.5:0.01
  1126. # apply the colordistance effect, takes a color as first parameter
  1127. frei0r=colordistance:0.2/0.3/0.4
  1128. frei0r=colordistance:violet
  1129. frei0r=colordistance:0x112233
  1130. # apply the perspective effect, specify the top left and top right
  1131. # image positions
  1132. frei0r=perspective:0.2/0.2:0.8/0.2
  1133. @end example
  1134. For more information see:
  1135. @url{http://piksel.org/frei0r}
  1136. @section gradfun
  1137. Fix the banding artifacts that are sometimes introduced into nearly flat
  1138. regions by truncation to 8bit color depth.
  1139. Interpolate the gradients that should go where the bands are, and
  1140. dither them.
  1141. This filter is designed for playback only. Do not use it prior to
  1142. lossy compression, because compression tends to lose the dither and
  1143. bring back the bands.
  1144. The filter takes two optional parameters, separated by ':':
  1145. @var{strength}:@var{radius}
  1146. @var{strength} is the maximum amount by which the filter will change
  1147. any one pixel. Also the threshold for detecting nearly flat
  1148. regions. Acceptable values range from .51 to 255, default value is
  1149. 1.2, out-of-range values will be clipped to the valid range.
  1150. @var{radius} is the neighborhood to fit the gradient to. A larger
  1151. radius makes for smoother gradients, but also prevents the filter from
  1152. modifying the pixels near detailed regions. Acceptable values are
  1153. 8-32, default value is 16, out-of-range values will be clipped to the
  1154. valid range.
  1155. @example
  1156. # default parameters
  1157. gradfun=1.2:16
  1158. # omitting radius
  1159. gradfun=1.2
  1160. @end example
  1161. @section hflip
  1162. Flip the input video horizontally.
  1163. For example to horizontally flip the input video with @command{ffmpeg}:
  1164. @example
  1165. ffmpeg -i in.avi -vf "hflip" out.avi
  1166. @end example
  1167. @section hqdn3d
  1168. High precision/quality 3d denoise filter. This filter aims to reduce
  1169. image noise producing smooth images and making still images really
  1170. still. It should enhance compressibility.
  1171. It accepts the following optional parameters:
  1172. @var{luma_spatial}:@var{chroma_spatial}:@var{luma_tmp}:@var{chroma_tmp}
  1173. @table @option
  1174. @item luma_spatial
  1175. a non-negative float number which specifies spatial luma strength,
  1176. defaults to 4.0
  1177. @item chroma_spatial
  1178. a non-negative float number which specifies spatial chroma strength,
  1179. defaults to 3.0*@var{luma_spatial}/4.0
  1180. @item luma_tmp
  1181. a float number which specifies luma temporal strength, defaults to
  1182. 6.0*@var{luma_spatial}/4.0
  1183. @item chroma_tmp
  1184. a float number which specifies chroma temporal strength, defaults to
  1185. @var{luma_tmp}*@var{chroma_spatial}/@var{luma_spatial}
  1186. @end table
  1187. @section lut, lutrgb, lutyuv
  1188. Compute a look-up table for binding each pixel component input value
  1189. to an output value, and apply it to input video.
  1190. @var{lutyuv} applies a lookup table to a YUV input video, @var{lutrgb}
  1191. to an RGB input video.
  1192. These filters accept in input a ":"-separated list of options, which
  1193. specify the expressions used for computing the lookup table for the
  1194. corresponding pixel component values.
  1195. The @var{lut} filter requires either YUV or RGB pixel formats in
  1196. input, and accepts the options:
  1197. @table @option
  1198. @item c0
  1199. first pixel component
  1200. @item c1
  1201. second pixel component
  1202. @item c2
  1203. third pixel component
  1204. @item c3
  1205. fourth pixel component, corresponds to the alpha component
  1206. @end table
  1207. The exact component associated to each option depends on the format in
  1208. input.
  1209. The @var{lutrgb} filter requires RGB pixel formats in input, and
  1210. accepts the options:
  1211. @table @option
  1212. @item r
  1213. red component
  1214. @item g
  1215. green component
  1216. @item b
  1217. blue component
  1218. @item a
  1219. alpha component
  1220. @end table
  1221. The @var{lutyuv} filter requires YUV pixel formats in input, and
  1222. accepts the options:
  1223. @table @option
  1224. @item y
  1225. Y/luminance component
  1226. @item u
  1227. U/Cb component
  1228. @item v
  1229. V/Cr component
  1230. @item a
  1231. alpha component
  1232. @end table
  1233. The expressions can contain the following constants and functions:
  1234. @table @option
  1235. @item w, h
  1236. the input width and height
  1237. @item val
  1238. input value for the pixel component
  1239. @item clipval
  1240. the input value clipped in the @var{minval}-@var{maxval} range
  1241. @item maxval
  1242. maximum value for the pixel component
  1243. @item minval
  1244. minimum value for the pixel component
  1245. @item negval
  1246. the negated value for the pixel component value clipped in the
  1247. @var{minval}-@var{maxval} range , it corresponds to the expression
  1248. "maxval-clipval+minval"
  1249. @item clip(val)
  1250. the computed value in @var{val} clipped in the
  1251. @var{minval}-@var{maxval} range
  1252. @item gammaval(gamma)
  1253. the computed gamma correction value of the pixel component value
  1254. clipped in the @var{minval}-@var{maxval} range, corresponds to the
  1255. expression
  1256. "pow((clipval-minval)/(maxval-minval)\,@var{gamma})*(maxval-minval)+minval"
  1257. @end table
  1258. All expressions default to "val".
  1259. Some examples follow:
  1260. @example
  1261. # negate input video
  1262. lutrgb="r=maxval+minval-val:g=maxval+minval-val:b=maxval+minval-val"
  1263. lutyuv="y=maxval+minval-val:u=maxval+minval-val:v=maxval+minval-val"
  1264. # the above is the same as
  1265. lutrgb="r=negval:g=negval:b=negval"
  1266. lutyuv="y=negval:u=negval:v=negval"
  1267. # negate luminance
  1268. lutyuv=y=negval
  1269. # remove chroma components, turns the video into a graytone image
  1270. lutyuv="u=128:v=128"
  1271. # apply a luma burning effect
  1272. lutyuv="y=2*val"
  1273. # remove green and blue components
  1274. lutrgb="g=0:b=0"
  1275. # set a constant alpha channel value on input
  1276. format=rgba,lutrgb=a="maxval-minval/2"
  1277. # correct luminance gamma by a 0.5 factor
  1278. lutyuv=y=gammaval(0.5)
  1279. @end example
  1280. @section mp
  1281. Apply an MPlayer filter to the input video.
  1282. This filter provides a wrapper around most of the filters of
  1283. MPlayer/MEncoder.
  1284. This wrapper is considered experimental. Some of the wrapped filters
  1285. may not work properly and we may drop support for them, as they will
  1286. be implemented natively into FFmpeg. Thus you should avoid
  1287. depending on them when writing portable scripts.
  1288. The filters accepts the parameters:
  1289. @var{filter_name}[:=]@var{filter_params}
  1290. @var{filter_name} is the name of a supported MPlayer filter,
  1291. @var{filter_params} is a string containing the parameters accepted by
  1292. the named filter.
  1293. The list of the currently supported filters follows:
  1294. @table @var
  1295. @item 2xsai
  1296. @item decimate
  1297. @item denoise3d
  1298. @item detc
  1299. @item dint
  1300. @item divtc
  1301. @item down3dright
  1302. @item dsize
  1303. @item eq2
  1304. @item eq
  1305. @item field
  1306. @item fil
  1307. @item fixpts
  1308. @item framestep
  1309. @item fspp
  1310. @item geq
  1311. @item harddup
  1312. @item hqdn3d
  1313. @item hue
  1314. @item il
  1315. @item ilpack
  1316. @item ivtc
  1317. @item kerndeint
  1318. @item mcdeint
  1319. @item mirror
  1320. @item noise
  1321. @item ow
  1322. @item palette
  1323. @item perspective
  1324. @item phase
  1325. @item pp7
  1326. @item pullup
  1327. @item qp
  1328. @item rectangle
  1329. @item remove-logo
  1330. @item rotate
  1331. @item sab
  1332. @item screenshot
  1333. @item smartblur
  1334. @item softpulldown
  1335. @item softskip
  1336. @item spp
  1337. @item swapuv
  1338. @item telecine
  1339. @item tile
  1340. @item tinterlace
  1341. @item unsharp
  1342. @item uspp
  1343. @item yuvcsp
  1344. @item yvu9
  1345. @end table
  1346. The parameter syntax and behavior for the listed filters are the same
  1347. of the corresponding MPlayer filters. For detailed instructions check
  1348. the "VIDEO FILTERS" section in the MPlayer manual.
  1349. Some examples follow:
  1350. @example
  1351. # remove a logo by interpolating the surrounding pixels
  1352. mp=delogo=200:200:80:20:1
  1353. # adjust gamma, brightness, contrast
  1354. mp=eq2=1.0:2:0.5
  1355. # tweak hue and saturation
  1356. mp=hue=100:-10
  1357. @end example
  1358. See also mplayer(1), @url{http://www.mplayerhq.hu/}.
  1359. @section negate
  1360. Negate input video.
  1361. This filter accepts an integer in input, if non-zero it negates the
  1362. alpha component (if available). The default value in input is 0.
  1363. @section noformat
  1364. Force libavfilter not to use any of the specified pixel formats for the
  1365. input to the next filter.
  1366. The filter accepts a list of pixel format names, separated by ":",
  1367. for example "yuv420p:monow:rgb24".
  1368. Some examples follow:
  1369. @example
  1370. # force libavfilter to use a format different from "yuv420p" for the
  1371. # input to the vflip filter
  1372. noformat=yuv420p,vflip
  1373. # convert the input video to any of the formats not contained in the list
  1374. noformat=yuv420p:yuv444p:yuv410p
  1375. @end example
  1376. @section null
  1377. Pass the video source unchanged to the output.
  1378. @section ocv
  1379. Apply video transform using libopencv.
  1380. To enable this filter install libopencv library and headers and
  1381. configure FFmpeg with @code{--enable-libopencv}.
  1382. The filter takes the parameters: @var{filter_name}@{:=@}@var{filter_params}.
  1383. @var{filter_name} is the name of the libopencv filter to apply.
  1384. @var{filter_params} specifies the parameters to pass to the libopencv
  1385. filter. If not specified the default values are assumed.
  1386. Refer to the official libopencv documentation for more precise
  1387. information:
  1388. @url{http://opencv.willowgarage.com/documentation/c/image_filtering.html}
  1389. Follows the list of supported libopencv filters.
  1390. @anchor{dilate}
  1391. @subsection dilate
  1392. Dilate an image by using a specific structuring element.
  1393. This filter corresponds to the libopencv function @code{cvDilate}.
  1394. It accepts the parameters: @var{struct_el}:@var{nb_iterations}.
  1395. @var{struct_el} represents a structuring element, and has the syntax:
  1396. @var{cols}x@var{rows}+@var{anchor_x}x@var{anchor_y}/@var{shape}
  1397. @var{cols} and @var{rows} represent the number of columns and rows of
  1398. the structuring element, @var{anchor_x} and @var{anchor_y} the anchor
  1399. point, and @var{shape} the shape for the structuring element, and
  1400. can be one of the values "rect", "cross", "ellipse", "custom".
  1401. If the value for @var{shape} is "custom", it must be followed by a
  1402. string of the form "=@var{filename}". The file with name
  1403. @var{filename} is assumed to represent a binary image, with each
  1404. printable character corresponding to a bright pixel. When a custom
  1405. @var{shape} is used, @var{cols} and @var{rows} are ignored, the number
  1406. or columns and rows of the read file are assumed instead.
  1407. The default value for @var{struct_el} is "3x3+0x0/rect".
  1408. @var{nb_iterations} specifies the number of times the transform is
  1409. applied to the image, and defaults to 1.
  1410. Follow some example:
  1411. @example
  1412. # use the default values
  1413. ocv=dilate
  1414. # dilate using a structuring element with a 5x5 cross, iterate two times
  1415. ocv=dilate=5x5+2x2/cross:2
  1416. # read the shape from the file diamond.shape, iterate two times
  1417. # the file diamond.shape may contain a pattern of characters like this:
  1418. # *
  1419. # ***
  1420. # *****
  1421. # ***
  1422. # *
  1423. # the specified cols and rows are ignored (but not the anchor point coordinates)
  1424. ocv=0x0+2x2/custom=diamond.shape:2
  1425. @end example
  1426. @subsection erode
  1427. Erode an image by using a specific structuring element.
  1428. This filter corresponds to the libopencv function @code{cvErode}.
  1429. The filter accepts the parameters: @var{struct_el}:@var{nb_iterations},
  1430. with the same syntax and semantics as the @ref{dilate} filter.
  1431. @subsection smooth
  1432. Smooth the input video.
  1433. The filter takes the following parameters:
  1434. @var{type}:@var{param1}:@var{param2}:@var{param3}:@var{param4}.
  1435. @var{type} is the type of smooth filter to apply, and can be one of
  1436. the following values: "blur", "blur_no_scale", "median", "gaussian",
  1437. "bilateral". The default value is "gaussian".
  1438. @var{param1}, @var{param2}, @var{param3}, and @var{param4} are
  1439. parameters whose meanings depend on smooth type. @var{param1} and
  1440. @var{param2} accept integer positive values or 0, @var{param3} and
  1441. @var{param4} accept float values.
  1442. The default value for @var{param1} is 3, the default value for the
  1443. other parameters is 0.
  1444. These parameters correspond to the parameters assigned to the
  1445. libopencv function @code{cvSmooth}.
  1446. @anchor{overlay}
  1447. @section overlay
  1448. Overlay one video on top of another.
  1449. It takes two inputs and one output, the first input is the "main"
  1450. video on which the second input is overlayed.
  1451. It accepts the parameters: @var{x}:@var{y}[:@var{options}].
  1452. @var{x} is the x coordinate of the overlayed video on the main video,
  1453. @var{y} is the y coordinate. @var{x} and @var{y} are expressions containing
  1454. the following parameters:
  1455. @table @option
  1456. @item main_w, main_h
  1457. main input width and height
  1458. @item W, H
  1459. same as @var{main_w} and @var{main_h}
  1460. @item overlay_w, overlay_h
  1461. overlay input width and height
  1462. @item w, h
  1463. same as @var{overlay_w} and @var{overlay_h}
  1464. @end table
  1465. @var{options} is an optional list of @var{key}=@var{value} pairs,
  1466. separated by ":".
  1467. The description of the accepted options follows.
  1468. @table @option
  1469. @item rgb
  1470. If set to 1, force the filter to accept inputs in the RGB
  1471. color space. Default value is 0.
  1472. @end table
  1473. Be aware that frames are taken from each input video in timestamp
  1474. order, hence, if their initial timestamps differ, it is a a good idea
  1475. to pass the two inputs through a @var{setpts=PTS-STARTPTS} filter to
  1476. have them begin in the same zero timestamp, as it does the example for
  1477. the @var{movie} filter.
  1478. Follow some examples:
  1479. @example
  1480. # draw the overlay at 10 pixels from the bottom right
  1481. # corner of the main video.
  1482. overlay=main_w-overlay_w-10:main_h-overlay_h-10
  1483. # insert a transparent PNG logo in the bottom left corner of the input
  1484. movie=logo.png [logo];
  1485. [in][logo] overlay=10:main_h-overlay_h-10 [out]
  1486. # insert 2 different transparent PNG logos (second logo on bottom
  1487. # right corner):
  1488. movie=logo1.png [logo1];
  1489. movie=logo2.png [logo2];
  1490. [in][logo1] overlay=10:H-h-10 [in+logo1];
  1491. [in+logo1][logo2] overlay=W-w-10:H-h-10 [out]
  1492. # add a transparent color layer on top of the main video,
  1493. # WxH specifies the size of the main input to the overlay filter
  1494. color=red@.3:WxH [over]; [in][over] overlay [out]
  1495. @end example
  1496. You can chain together more overlays but the efficiency of such
  1497. approach is yet to be tested.
  1498. @section pad
  1499. Add paddings to the input image, and places the original input at the
  1500. given coordinates @var{x}, @var{y}.
  1501. It accepts the following parameters:
  1502. @var{width}:@var{height}:@var{x}:@var{y}:@var{color}.
  1503. The parameters @var{width}, @var{height}, @var{x}, and @var{y} are
  1504. expressions containing the following constants:
  1505. @table @option
  1506. @item in_w, in_h
  1507. the input video width and height
  1508. @item iw, ih
  1509. same as @var{in_w} and @var{in_h}
  1510. @item out_w, out_h
  1511. the output width and height, that is the size of the padded area as
  1512. specified by the @var{width} and @var{height} expressions
  1513. @item ow, oh
  1514. same as @var{out_w} and @var{out_h}
  1515. @item x, y
  1516. x and y offsets as specified by the @var{x} and @var{y}
  1517. expressions, or NAN if not yet specified
  1518. @item a
  1519. same as @var{iw} / @var{ih}
  1520. @item sar
  1521. input sample aspect ratio
  1522. @item dar
  1523. input display aspect ratio, it is the same as (@var{iw} / @var{ih}) * @var{sar}
  1524. @item hsub, vsub
  1525. horizontal and vertical chroma subsample values. For example for the
  1526. pixel format "yuv422p" @var{hsub} is 2 and @var{vsub} is 1.
  1527. @end table
  1528. Follows the description of the accepted parameters.
  1529. @table @option
  1530. @item width, height
  1531. Specify the size of the output image with the paddings added. If the
  1532. value for @var{width} or @var{height} is 0, the corresponding input size
  1533. is used for the output.
  1534. The @var{width} expression can reference the value set by the
  1535. @var{height} expression, and vice versa.
  1536. The default value of @var{width} and @var{height} is 0.
  1537. @item x, y
  1538. Specify the offsets where to place the input image in the padded area
  1539. with respect to the top/left border of the output image.
  1540. The @var{x} expression can reference the value set by the @var{y}
  1541. expression, and vice versa.
  1542. The default value of @var{x} and @var{y} is 0.
  1543. @item color
  1544. Specify the color of the padded area, it can be the name of a color
  1545. (case insensitive match) or a 0xRRGGBB[AA] sequence.
  1546. The default value of @var{color} is "black".
  1547. @end table
  1548. Some examples follow:
  1549. @example
  1550. # Add paddings with color "violet" to the input video. Output video
  1551. # size is 640x480, the top-left corner of the input video is placed at
  1552. # column 0, row 40.
  1553. pad=640:480:0:40:violet
  1554. # pad the input to get an output with dimensions increased bt 3/2,
  1555. # and put the input video at the center of the padded area
  1556. pad="3/2*iw:3/2*ih:(ow-iw)/2:(oh-ih)/2"
  1557. # pad the input to get a squared output with size equal to the maximum
  1558. # value between the input width and height, and put the input video at
  1559. # the center of the padded area
  1560. pad="max(iw\,ih):ow:(ow-iw)/2:(oh-ih)/2"
  1561. # pad the input to get a final w/h ratio of 16:9
  1562. pad="ih*16/9:ih:(ow-iw)/2:(oh-ih)/2"
  1563. # for anamorphic video, in order to set the output display aspect ratio,
  1564. # it is necessary to use sar in the expression, according to the relation:
  1565. # (ih * X / ih) * sar = output_dar
  1566. # X = output_dar / sar
  1567. pad="ih*16/9/sar:ih:(ow-iw)/2:(oh-ih)/2"
  1568. # double output size and put the input video in the bottom-right
  1569. # corner of the output padded area
  1570. pad="2*iw:2*ih:ow-iw:oh-ih"
  1571. @end example
  1572. @section pixdesctest
  1573. Pixel format descriptor test filter, mainly useful for internal
  1574. testing. The output video should be equal to the input video.
  1575. For example:
  1576. @example
  1577. format=monow, pixdesctest
  1578. @end example
  1579. can be used to test the monowhite pixel format descriptor definition.
  1580. @section scale
  1581. Scale the input video to @var{width}:@var{height}[:@var{interl}=@{1|-1@}] and/or convert the image format.
  1582. The parameters @var{width} and @var{height} are expressions containing
  1583. the following constants:
  1584. @table @option
  1585. @item in_w, in_h
  1586. the input width and height
  1587. @item iw, ih
  1588. same as @var{in_w} and @var{in_h}
  1589. @item out_w, out_h
  1590. the output (cropped) width and height
  1591. @item ow, oh
  1592. same as @var{out_w} and @var{out_h}
  1593. @item a
  1594. same as @var{iw} / @var{ih}
  1595. @item sar
  1596. input sample aspect ratio
  1597. @item dar
  1598. input display aspect ratio, it is the same as (@var{iw} / @var{ih}) * @var{sar}
  1599. @item hsub, vsub
  1600. horizontal and vertical chroma subsample values. For example for the
  1601. pixel format "yuv422p" @var{hsub} is 2 and @var{vsub} is 1.
  1602. @end table
  1603. If the input image format is different from the format requested by
  1604. the next filter, the scale filter will convert the input to the
  1605. requested format.
  1606. If the value for @var{width} or @var{height} is 0, the respective input
  1607. size is used for the output.
  1608. If the value for @var{width} or @var{height} is -1, the scale filter will
  1609. use, for the respective output size, a value that maintains the aspect
  1610. ratio of the input image.
  1611. The default value of @var{width} and @var{height} is 0.
  1612. Valid values for the optional parameter @var{interl} are:
  1613. @table @option
  1614. @item 1
  1615. force interlaced aware scaling
  1616. @item -1
  1617. select interlaced aware scaling depending on whether the source frames
  1618. are flagged as interlaced or not
  1619. @end table
  1620. Some examples follow:
  1621. @example
  1622. # scale the input video to a size of 200x100.
  1623. scale=200:100
  1624. # scale the input to 2x
  1625. scale=2*iw:2*ih
  1626. # the above is the same as
  1627. scale=2*in_w:2*in_h
  1628. # scale the input to half size
  1629. scale=iw/2:ih/2
  1630. # increase the width, and set the height to the same size
  1631. scale=3/2*iw:ow
  1632. # seek for Greek harmony
  1633. scale=iw:1/PHI*iw
  1634. scale=ih*PHI:ih
  1635. # increase the height, and set the width to 3/2 of the height
  1636. scale=3/2*oh:3/5*ih
  1637. # increase the size, but make the size a multiple of the chroma
  1638. scale="trunc(3/2*iw/hsub)*hsub:trunc(3/2*ih/vsub)*vsub"
  1639. # increase the width to a maximum of 500 pixels, keep the same input aspect ratio
  1640. scale='min(500\, iw*3/2):-1'
  1641. @end example
  1642. @section select
  1643. Select frames to pass in output.
  1644. It accepts in input an expression, which is evaluated for each input
  1645. frame. If the expression is evaluated to a non-zero value, the frame
  1646. is selected and passed to the output, otherwise it is discarded.
  1647. The expression can contain the following constants:
  1648. @table @option
  1649. @item n
  1650. the sequential number of the filtered frame, starting from 0
  1651. @item selected_n
  1652. the sequential number of the selected frame, starting from 0
  1653. @item prev_selected_n
  1654. the sequential number of the last selected frame, NAN if undefined
  1655. @item TB
  1656. timebase of the input timestamps
  1657. @item pts
  1658. the PTS (Presentation TimeStamp) of the filtered video frame,
  1659. expressed in @var{TB} units, NAN if undefined
  1660. @item t
  1661. the PTS (Presentation TimeStamp) of the filtered video frame,
  1662. expressed in seconds, NAN if undefined
  1663. @item prev_pts
  1664. the PTS of the previously filtered video frame, NAN if undefined
  1665. @item prev_selected_pts
  1666. the PTS of the last previously filtered video frame, NAN if undefined
  1667. @item prev_selected_t
  1668. the PTS of the last previously selected video frame, NAN if undefined
  1669. @item start_pts
  1670. the PTS of the first video frame in the video, NAN if undefined
  1671. @item start_t
  1672. the time of the first video frame in the video, NAN if undefined
  1673. @item pict_type
  1674. the type of the filtered frame, can assume one of the following
  1675. values:
  1676. @table @option
  1677. @item I
  1678. @item P
  1679. @item B
  1680. @item S
  1681. @item SI
  1682. @item SP
  1683. @item BI
  1684. @end table
  1685. @item interlace_type
  1686. the frame interlace type, can assume one of the following values:
  1687. @table @option
  1688. @item PROGRESSIVE
  1689. the frame is progressive (not interlaced)
  1690. @item TOPFIRST
  1691. the frame is top-field-first
  1692. @item BOTTOMFIRST
  1693. the frame is bottom-field-first
  1694. @end table
  1695. @item key
  1696. 1 if the filtered frame is a key-frame, 0 otherwise
  1697. @item pos
  1698. the position in the file of the filtered frame, -1 if the information
  1699. is not available (e.g. for synthetic video)
  1700. @end table
  1701. The default value of the select expression is "1".
  1702. Some examples follow:
  1703. @example
  1704. # select all frames in input
  1705. select
  1706. # the above is the same as:
  1707. select=1
  1708. # skip all frames:
  1709. select=0
  1710. # select only I-frames
  1711. select='eq(pict_type\,I)'
  1712. # select one frame every 100
  1713. select='not(mod(n\,100))'
  1714. # select only frames contained in the 10-20 time interval
  1715. select='gte(t\,10)*lte(t\,20)'
  1716. # select only I frames contained in the 10-20 time interval
  1717. select='gte(t\,10)*lte(t\,20)*eq(pict_type\,I)'
  1718. # select frames with a minimum distance of 10 seconds
  1719. select='isnan(prev_selected_t)+gte(t-prev_selected_t\,10)'
  1720. @end example
  1721. @section setdar, setsar
  1722. The @code{setdar} filter sets the Display Aspect Ratio for the filter
  1723. output video.
  1724. This is done by changing the specified Sample (aka Pixel) Aspect
  1725. Ratio, according to the following equation:
  1726. @example
  1727. @var{DAR} = @var{HORIZONTAL_RESOLUTION} / @var{VERTICAL_RESOLUTION} * @var{SAR}
  1728. @end example
  1729. Keep in mind that the @code{setdar} filter does not modify the pixel
  1730. dimensions of the video frame. Also the display aspect ratio set by
  1731. this filter may be changed by later filters in the filterchain,
  1732. e.g. in case of scaling or if another "setdar" or a "setsar" filter is
  1733. applied.
  1734. The @code{setsar} filter sets the Sample (aka Pixel) Aspect Ratio for
  1735. the filter output video.
  1736. Note that as a consequence of the application of this filter, the
  1737. output display aspect ratio will change according to the equation
  1738. above.
  1739. Keep in mind that the sample aspect ratio set by the @code{setsar}
  1740. filter may be changed by later filters in the filterchain, e.g. if
  1741. another "setsar" or a "setdar" filter is applied.
  1742. The @code{setdar} and @code{setsar} filters accept a parameter string
  1743. which represents the wanted aspect ratio. The parameter can
  1744. be a floating point number string, an expression, or a string of the form
  1745. @var{num}:@var{den}, where @var{num} and @var{den} are the numerator
  1746. and denominator of the aspect ratio. If the parameter is not
  1747. specified, it is assumed the value "0:1".
  1748. For example to change the display aspect ratio to 16:9, specify:
  1749. @example
  1750. setdar=16:9
  1751. @end example
  1752. The example above is equivalent to:
  1753. @example
  1754. setdar=1.77777
  1755. @end example
  1756. To change the sample aspect ratio to 10:11, specify:
  1757. @example
  1758. setsar=10:11
  1759. @end example
  1760. @section setfield
  1761. Force field for the output video frame.
  1762. The @code{setfield} filter marks the interlace type field for the
  1763. output frames. It does not change the input frame, but only sets the
  1764. corresponding property, which affects how the frame is treated by
  1765. followig filters (e.g. @code{fieldorder} or @code{yadif}).
  1766. It accepts a parameter representing an integer or a string, which can
  1767. assume the following values:
  1768. @table @samp
  1769. @item -1, auto
  1770. Keep the same field property.
  1771. @item 0, bff
  1772. Mark the frame as bottom-field-first.
  1773. @item 1, tff
  1774. Mark the frame as top-field-first.
  1775. @end table
  1776. @section setpts
  1777. Change the PTS (presentation timestamp) of the input video frames.
  1778. Accept in input an expression evaluated through the eval API, which
  1779. can contain the following constants:
  1780. @table @option
  1781. @item PTS
  1782. the presentation timestamp in input
  1783. @item N
  1784. the count of the input frame, starting from 0.
  1785. @item STARTPTS
  1786. the PTS of the first video frame
  1787. @item INTERLACED
  1788. tell if the current frame is interlaced
  1789. @item POS
  1790. original position in the file of the frame, or undefined if undefined
  1791. for the current frame
  1792. @item PREV_INPTS
  1793. previous input PTS
  1794. @item PREV_OUTPTS
  1795. previous output PTS
  1796. @end table
  1797. Some examples follow:
  1798. @example
  1799. # start counting PTS from zero
  1800. setpts=PTS-STARTPTS
  1801. # fast motion
  1802. setpts=0.5*PTS
  1803. # slow motion
  1804. setpts=2.0*PTS
  1805. # fixed rate 25 fps
  1806. setpts=N/(25*TB)
  1807. # fixed rate 25 fps with some jitter
  1808. setpts='1/(25*TB) * (N + 0.05 * sin(N*2*PI/25))'
  1809. @end example
  1810. @section settb
  1811. Set the timebase to use for the output frames timestamps.
  1812. It is mainly useful for testing timebase configuration.
  1813. It accepts in input an arithmetic expression representing a rational.
  1814. The expression can contain the constants "AVTB" (the
  1815. default timebase), and "intb" (the input timebase).
  1816. The default value for the input is "intb".
  1817. Follow some examples.
  1818. @example
  1819. # set the timebase to 1/25
  1820. settb=1/25
  1821. # set the timebase to 1/10
  1822. settb=0.1
  1823. #set the timebase to 1001/1000
  1824. settb=1+0.001
  1825. #set the timebase to 2*intb
  1826. settb=2*intb
  1827. #set the default timebase value
  1828. settb=AVTB
  1829. @end example
  1830. @section showinfo
  1831. Show a line containing various information for each input video frame.
  1832. The input video is not modified.
  1833. The shown line contains a sequence of key/value pairs of the form
  1834. @var{key}:@var{value}.
  1835. A description of each shown parameter follows:
  1836. @table @option
  1837. @item n
  1838. sequential number of the input frame, starting from 0
  1839. @item pts
  1840. Presentation TimeStamp of the input frame, expressed as a number of
  1841. time base units. The time base unit depends on the filter input pad.
  1842. @item pts_time
  1843. Presentation TimeStamp of the input frame, expressed as a number of
  1844. seconds
  1845. @item pos
  1846. position of the frame in the input stream, -1 if this information in
  1847. unavailable and/or meaningless (for example in case of synthetic video)
  1848. @item fmt
  1849. pixel format name
  1850. @item sar
  1851. sample aspect ratio of the input frame, expressed in the form
  1852. @var{num}/@var{den}
  1853. @item s
  1854. size of the input frame, expressed in the form
  1855. @var{width}x@var{height}
  1856. @item i
  1857. interlaced mode ("P" for "progressive", "T" for top field first, "B"
  1858. for bottom field first)
  1859. @item iskey
  1860. 1 if the frame is a key frame, 0 otherwise
  1861. @item type
  1862. picture type of the input frame ("I" for an I-frame, "P" for a
  1863. P-frame, "B" for a B-frame, "?" for unknown type).
  1864. Check also the documentation of the @code{AVPictureType} enum and of
  1865. the @code{av_get_picture_type_char} function defined in
  1866. @file{libavutil/avutil.h}.
  1867. @item checksum
  1868. Adler-32 checksum (printed in hexadecimal) of all the planes of the input frame
  1869. @item plane_checksum
  1870. Adler-32 checksum (printed in hexadecimal) of each plane of the input frame,
  1871. expressed in the form "[@var{c0} @var{c1} @var{c2} @var{c3}]"
  1872. @end table
  1873. @section slicify
  1874. Pass the images of input video on to next video filter as multiple
  1875. slices.
  1876. @example
  1877. ffmpeg -i in.avi -vf "slicify=32" out.avi
  1878. @end example
  1879. The filter accepts the slice height as parameter. If the parameter is
  1880. not specified it will use the default value of 16.
  1881. Adding this in the beginning of filter chains should make filtering
  1882. faster due to better use of the memory cache.
  1883. @section split
  1884. Pass on the input video to two outputs. Both outputs are identical to
  1885. the input video.
  1886. For example:
  1887. @example
  1888. [in] split [splitout1][splitout2];
  1889. [splitout1] crop=100:100:0:0 [cropout];
  1890. [splitout2] pad=200:200:100:100 [padout];
  1891. @end example
  1892. will create two separate outputs from the same input, one cropped and
  1893. one padded.
  1894. @section thumbnail
  1895. Select the most representative frame in a given sequence of consecutive frames.
  1896. It accepts as argument the frames batch size to analyze (default @var{N}=100);
  1897. in a set of @var{N} frames, the filter will pick one of them, and then handle
  1898. the next batch of @var{N} frames until the end.
  1899. Since the filter keeps track of the whole frames sequence, a bigger @var{N}
  1900. value will result in a higher memory usage, so a high value is not recommended.
  1901. The following example extract one picture each 50 frames:
  1902. @example
  1903. thumbnail=50
  1904. @end example
  1905. Complete example of a thumbnail creation with @command{ffmpeg}:
  1906. @example
  1907. ffmpeg -i in.avi -vf thumbnail,scale=300:200 -frames:v 1 out.png
  1908. @end example
  1909. @section tinterlace
  1910. Perform various types of temporal field interlacing.
  1911. Frames are counted starting from 1, so the first input frame is
  1912. considered odd.
  1913. This filter accepts a single parameter specifying the mode. Available
  1914. modes are:
  1915. @table @samp
  1916. @item 0
  1917. Move odd frames into the upper field, even into the lower field,
  1918. generating a double height frame at half framerate.
  1919. @item 1
  1920. Only output even frames, odd frames are dropped, generating a frame with
  1921. unchanged height at half framerate.
  1922. @item 2
  1923. Only output odd frames, even frames are dropped, generating a frame with
  1924. unchanged height at half framerate.
  1925. @item 3
  1926. Expand each frame to full height, but pad alternate lines with black,
  1927. generating a frame with double height at the same input framerate.
  1928. @item 4
  1929. Interleave the upper field from odd frames with the lower field from
  1930. even frames, generating a frame with unchanged height at half framerate.
  1931. @item 5
  1932. Interleave the lower field from odd frames with the upper field from
  1933. even frames, generating a frame with unchanged height at half framerate.
  1934. @end table
  1935. Default mode is 0.
  1936. @section transpose
  1937. Transpose rows with columns in the input video and optionally flip it.
  1938. It accepts a parameter representing an integer, which can assume the
  1939. values:
  1940. @table @samp
  1941. @item 0
  1942. Rotate by 90 degrees counterclockwise and vertically flip (default), that is:
  1943. @example
  1944. L.R L.l
  1945. . . -> . .
  1946. l.r R.r
  1947. @end example
  1948. @item 1
  1949. Rotate by 90 degrees clockwise, that is:
  1950. @example
  1951. L.R l.L
  1952. . . -> . .
  1953. l.r r.R
  1954. @end example
  1955. @item 2
  1956. Rotate by 90 degrees counterclockwise, that is:
  1957. @example
  1958. L.R R.r
  1959. . . -> . .
  1960. l.r L.l
  1961. @end example
  1962. @item 3
  1963. Rotate by 90 degrees clockwise and vertically flip, that is:
  1964. @example
  1965. L.R r.R
  1966. . . -> . .
  1967. l.r l.L
  1968. @end example
  1969. @end table
  1970. @section unsharp
  1971. Sharpen or blur the input video.
  1972. It accepts the following parameters:
  1973. @var{luma_msize_x}:@var{luma_msize_y}:@var{luma_amount}:@var{chroma_msize_x}:@var{chroma_msize_y}:@var{chroma_amount}
  1974. Negative values for the amount will blur the input video, while positive
  1975. values will sharpen. All parameters are optional and default to the
  1976. equivalent of the string '5:5:1.0:5:5:0.0'.
  1977. @table @option
  1978. @item luma_msize_x
  1979. Set the luma matrix horizontal size. It can be an integer between 3
  1980. and 13, default value is 5.
  1981. @item luma_msize_y
  1982. Set the luma matrix vertical size. It can be an integer between 3
  1983. and 13, default value is 5.
  1984. @item luma_amount
  1985. Set the luma effect strength. It can be a float number between -2.0
  1986. and 5.0, default value is 1.0.
  1987. @item chroma_msize_x
  1988. Set the chroma matrix horizontal size. It can be an integer between 3
  1989. and 13, default value is 5.
  1990. @item chroma_msize_y
  1991. Set the chroma matrix vertical size. It can be an integer between 3
  1992. and 13, default value is 5.
  1993. @item chroma_amount
  1994. Set the chroma effect strength. It can be a float number between -2.0
  1995. and 5.0, default value is 0.0.
  1996. @end table
  1997. @example
  1998. # Strong luma sharpen effect parameters
  1999. unsharp=7:7:2.5
  2000. # Strong blur of both luma and chroma parameters
  2001. unsharp=7:7:-2:7:7:-2
  2002. # Use the default values with @command{ffmpeg}
  2003. ffmpeg -i in.avi -vf "unsharp" out.mp4
  2004. @end example
  2005. @section vflip
  2006. Flip the input video vertically.
  2007. @example
  2008. ffmpeg -i in.avi -vf "vflip" out.avi
  2009. @end example
  2010. @section yadif
  2011. Deinterlace the input video ("yadif" means "yet another deinterlacing
  2012. filter").
  2013. It accepts the optional parameters: @var{mode}:@var{parity}:@var{auto}.
  2014. @var{mode} specifies the interlacing mode to adopt, accepts one of the
  2015. following values:
  2016. @table @option
  2017. @item 0
  2018. output 1 frame for each frame
  2019. @item 1
  2020. output 1 frame for each field
  2021. @item 2
  2022. like 0 but skips spatial interlacing check
  2023. @item 3
  2024. like 1 but skips spatial interlacing check
  2025. @end table
  2026. Default value is 0.
  2027. @var{parity} specifies the picture field parity assumed for the input
  2028. interlaced video, accepts one of the following values:
  2029. @table @option
  2030. @item 0
  2031. assume top field first
  2032. @item 1
  2033. assume bottom field first
  2034. @item -1
  2035. enable automatic detection
  2036. @end table
  2037. Default value is -1.
  2038. If interlacing is unknown or decoder does not export this information,
  2039. top field first will be assumed.
  2040. @var{auto} specifies if deinterlacer should trust the interlaced flag
  2041. and only deinterlace frames marked as interlaced
  2042. @table @option
  2043. @item 0
  2044. deinterlace all frames
  2045. @item 1
  2046. only deinterlace frames marked as interlaced
  2047. @end table
  2048. Default value is 0.
  2049. @c man end VIDEO FILTERS
  2050. @chapter Video Sources
  2051. @c man begin VIDEO SOURCES
  2052. Below is a description of the currently available video sources.
  2053. @section buffer
  2054. Buffer video frames, and make them available to the filter chain.
  2055. This source is mainly intended for a programmatic use, in particular
  2056. through the interface defined in @file{libavfilter/vsrc_buffer.h}.
  2057. It accepts the following parameters:
  2058. @var{width}:@var{height}:@var{pix_fmt_string}:@var{timebase_num}:@var{timebase_den}:@var{sample_aspect_ratio_num}:@var{sample_aspect_ratio.den}:@var{scale_params}
  2059. All the parameters but @var{scale_params} need to be explicitly
  2060. defined.
  2061. Follows the list of the accepted parameters.
  2062. @table @option
  2063. @item width, height
  2064. Specify the width and height of the buffered video frames.
  2065. @item pix_fmt_string
  2066. A string representing the pixel format of the buffered video frames.
  2067. It may be a number corresponding to a pixel format, or a pixel format
  2068. name.
  2069. @item timebase_num, timebase_den
  2070. Specify numerator and denomitor of the timebase assumed by the
  2071. timestamps of the buffered frames.
  2072. @item sample_aspect_ratio.num, sample_aspect_ratio.den
  2073. Specify numerator and denominator of the sample aspect ratio assumed
  2074. by the video frames.
  2075. @item scale_params
  2076. Specify the optional parameters to be used for the scale filter which
  2077. is automatically inserted when an input change is detected in the
  2078. input size or format.
  2079. @end table
  2080. For example:
  2081. @example
  2082. buffer=320:240:yuv410p:1:24:1:1
  2083. @end example
  2084. will instruct the source to accept video frames with size 320x240 and
  2085. with format "yuv410p", assuming 1/24 as the timestamps timebase and
  2086. square pixels (1:1 sample aspect ratio).
  2087. Since the pixel format with name "yuv410p" corresponds to the number 6
  2088. (check the enum PixelFormat definition in @file{libavutil/pixfmt.h}),
  2089. this example corresponds to:
  2090. @example
  2091. buffer=320:240:6:1:24:1:1
  2092. @end example
  2093. @section cellauto
  2094. Create a pattern generated by an elementary cellular automaton.
  2095. The initial state of the cellular automaton can be defined through the
  2096. @option{filename}, and @option{pattern} options. If such options are
  2097. not specified an initial state is created randomly.
  2098. At each new frame a new row in the video is filled with the result of
  2099. the cellular automaton next generation. The behavior when the whole
  2100. frame is filled is defined by the @option{scroll} option.
  2101. This source accepts a list of options in the form of
  2102. @var{key}=@var{value} pairs separated by ":". A description of the
  2103. accepted options follows.
  2104. @table @option
  2105. @item filename, f
  2106. Read the initial cellular automaton state, i.e. the starting row, from
  2107. the specified file.
  2108. In the file, each non-whitespace character is considered an alive
  2109. cell, a newline will terminate the row, and further characters in the
  2110. file will be ignored.
  2111. @item pattern, p
  2112. Read the initial cellular automaton state, i.e. the starting row, from
  2113. the specified string.
  2114. Each non-whitespace character in the string is considered an alive
  2115. cell, a newline will terminate the row, and further characters in the
  2116. string will be ignored.
  2117. @item rate, r
  2118. Set the video rate, that is the number of frames generated per second.
  2119. Default is 25.
  2120. @item random_fill_ratio, ratio
  2121. Set the random fill ratio for the initial cellular automaton row. It
  2122. is a floating point number value ranging from 0 to 1, defaults to
  2123. 1/PHI.
  2124. This option is ignored when a file or a pattern is specified.
  2125. @item random_seed, seed
  2126. Set the seed for filling randomly the initial row, must be an integer
  2127. included between 0 and UINT32_MAX. If not specified, or if explicitly
  2128. set to -1, the filter will try to use a good random seed on a best
  2129. effort basis.
  2130. @item rule
  2131. Set the cellular automaton rule, it is a number ranging from 0 to 255.
  2132. Default value is 110.
  2133. @item size, s
  2134. Set the size of the output video.
  2135. If @option{filename} or @option{pattern} is specified, the size is set
  2136. by default to the width of the specified initial state row, and the
  2137. height is set to @var{width} * PHI.
  2138. If @option{size} is set, it must contain the width of the specified
  2139. pattern string, and the specified pattern will be centered in the
  2140. larger row.
  2141. If a filename or a pattern string is not specified, the size value
  2142. defaults to "320x518" (used for a randomly generated initial state).
  2143. @item scroll
  2144. If set to 1, scroll the output upward when all the rows in the output
  2145. have been already filled. If set to 0, the new generated row will be
  2146. written over the top row just after the bottom row is filled.
  2147. Defaults to 1.
  2148. @item start_full, full
  2149. If set to 1, completely fill the output with generated rows before
  2150. outputting the first frame.
  2151. This is the default behavior, for disabling set the value to 0.
  2152. @item stitch
  2153. If set to 1, stitch the left and right row edges together.
  2154. This is the default behavior, for disabling set the value to 0.
  2155. @end table
  2156. @subsection Examples
  2157. @itemize
  2158. @item
  2159. Read the initial state from @file{pattern}, and specify an output of
  2160. size 200x400.
  2161. @example
  2162. cellauto=f=pattern:s=200x400
  2163. @end example
  2164. @item
  2165. Generate a random initial row with a width of 200 cells, with a fill
  2166. ratio of 2/3:
  2167. @example
  2168. cellauto=ratio=2/3:s=200x200
  2169. @end example
  2170. @item
  2171. Create a pattern generated by rule 18 starting by a single alive cell
  2172. centered on an initial row with width 100:
  2173. @example
  2174. cellauto=p=@@:s=100x400:full=0:rule=18
  2175. @end example
  2176. @item
  2177. Specify a more elaborated initial pattern:
  2178. @example
  2179. cellauto=p='@@@@ @@ @@@@':s=100x400:full=0:rule=18
  2180. @end example
  2181. @end itemize
  2182. @section color
  2183. Provide an uniformly colored input.
  2184. It accepts the following parameters:
  2185. @var{color}:@var{frame_size}:@var{frame_rate}
  2186. Follows the description of the accepted parameters.
  2187. @table @option
  2188. @item color
  2189. Specify the color of the source. It can be the name of a color (case
  2190. insensitive match) or a 0xRRGGBB[AA] sequence, possibly followed by an
  2191. alpha specifier. The default value is "black".
  2192. @item frame_size
  2193. Specify the size of the sourced video, it may be a string of the form
  2194. @var{width}x@var{height}, or the name of a size abbreviation. The
  2195. default value is "320x240".
  2196. @item frame_rate
  2197. Specify the frame rate of the sourced video, as the number of frames
  2198. generated per second. It has to be a string in the format
  2199. @var{frame_rate_num}/@var{frame_rate_den}, an integer number, a float
  2200. number or a valid video frame rate abbreviation. The default value is
  2201. "25".
  2202. @end table
  2203. For example the following graph description will generate a red source
  2204. with an opacity of 0.2, with size "qcif" and a frame rate of 10
  2205. frames per second, which will be overlayed over the source connected
  2206. to the pad with identifier "in".
  2207. @example
  2208. "color=red@@0.2:qcif:10 [color]; [in][color] overlay [out]"
  2209. @end example
  2210. @section movie
  2211. Read a video stream from a movie container.
  2212. It accepts the syntax: @var{movie_name}[:@var{options}] where
  2213. @var{movie_name} is the name of the resource to read (not necessarily
  2214. a file but also a device or a stream accessed through some protocol),
  2215. and @var{options} is an optional sequence of @var{key}=@var{value}
  2216. pairs, separated by ":".
  2217. The description of the accepted options follows.
  2218. @table @option
  2219. @item format_name, f
  2220. Specifies the format assumed for the movie to read, and can be either
  2221. the name of a container or an input device. If not specified the
  2222. format is guessed from @var{movie_name} or by probing.
  2223. @item seek_point, sp
  2224. Specifies the seek point in seconds, the frames will be output
  2225. starting from this seek point, the parameter is evaluated with
  2226. @code{av_strtod} so the numerical value may be suffixed by an IS
  2227. postfix. Default value is "0".
  2228. @item stream_index, si
  2229. Specifies the index of the video stream to read. If the value is -1,
  2230. the best suited video stream will be automatically selected. Default
  2231. value is "-1".
  2232. @end table
  2233. This filter allows to overlay a second video on top of main input of
  2234. a filtergraph as shown in this graph:
  2235. @example
  2236. input -----------> deltapts0 --> overlay --> output
  2237. ^
  2238. |
  2239. movie --> scale--> deltapts1 -------+
  2240. @end example
  2241. Some examples follow:
  2242. @example
  2243. # skip 3.2 seconds from the start of the avi file in.avi, and overlay it
  2244. # on top of the input labelled as "in".
  2245. movie=in.avi:seek_point=3.2, scale=180:-1, setpts=PTS-STARTPTS [movie];
  2246. [in] setpts=PTS-STARTPTS, [movie] overlay=16:16 [out]
  2247. # read from a video4linux2 device, and overlay it on top of the input
  2248. # labelled as "in"
  2249. movie=/dev/video0:f=video4linux2, scale=180:-1, setpts=PTS-STARTPTS [movie];
  2250. [in] setpts=PTS-STARTPTS, [movie] overlay=16:16 [out]
  2251. @end example
  2252. @section mptestsrc
  2253. Generate various test patterns, as generated by the MPlayer test filter.
  2254. The size of the generated video is fixed, and is 256x256.
  2255. This source is useful in particular for testing encoding features.
  2256. This source accepts an optional sequence of @var{key}=@var{value} pairs,
  2257. separated by ":". The description of the accepted options follows.
  2258. @table @option
  2259. @item rate, r
  2260. Specify the frame rate of the sourced video, as the number of frames
  2261. generated per second. It has to be a string in the format
  2262. @var{frame_rate_num}/@var{frame_rate_den}, an integer number, a float
  2263. number or a valid video frame rate abbreviation. The default value is
  2264. "25".
  2265. @item duration, d
  2266. Set the video duration of the sourced video. The accepted syntax is:
  2267. @example
  2268. [-]HH[:MM[:SS[.m...]]]
  2269. [-]S+[.m...]
  2270. @end example
  2271. See also the function @code{av_parse_time()}.
  2272. If not specified, or the expressed duration is negative, the video is
  2273. supposed to be generated forever.
  2274. @item test, t
  2275. Set the number or the name of the test to perform. Supported tests are:
  2276. @table @option
  2277. @item dc_luma
  2278. @item dc_chroma
  2279. @item freq_luma
  2280. @item freq_chroma
  2281. @item amp_luma
  2282. @item amp_chroma
  2283. @item cbp
  2284. @item mv
  2285. @item ring1
  2286. @item ring2
  2287. @item all
  2288. @end table
  2289. Default value is "all", which will cycle through the list of all tests.
  2290. @end table
  2291. For example the following:
  2292. @example
  2293. testsrc=t=dc_luma
  2294. @end example
  2295. will generate a "dc_luma" test pattern.
  2296. @section frei0r_src
  2297. Provide a frei0r source.
  2298. To enable compilation of this filter you need to install the frei0r
  2299. header and configure FFmpeg with @code{--enable-frei0r}.
  2300. The source supports the syntax:
  2301. @example
  2302. @var{size}:@var{rate}:@var{src_name}[@{=|:@}@var{param1}:@var{param2}:...:@var{paramN}]
  2303. @end example
  2304. @var{size} is the size of the video to generate, may be a string of the
  2305. form @var{width}x@var{height} or a frame size abbreviation.
  2306. @var{rate} is the rate of the video to generate, may be a string of
  2307. the form @var{num}/@var{den} or a frame rate abbreviation.
  2308. @var{src_name} is the name to the frei0r source to load. For more
  2309. information regarding frei0r and how to set the parameters read the
  2310. section @ref{frei0r} in the description of the video filters.
  2311. Some examples follow:
  2312. @example
  2313. # generate a frei0r partik0l source with size 200x200 and frame rate 10
  2314. # which is overlayed on the overlay filter main input
  2315. frei0r_src=200x200:10:partik0l=1234 [overlay]; [in][overlay] overlay
  2316. @end example
  2317. @section life
  2318. Generate a life pattern.
  2319. This source is based on a generalization of John Conway's life game.
  2320. The sourced input represents a life grid, each pixel represents a cell
  2321. which can be in one of two possible states, alive or dead. Every cell
  2322. interacts with its eight neighbours, which are the cells that are
  2323. horizontally, vertically, or diagonally adjacent.
  2324. At each interaction the grid evolves according to the adopted rule,
  2325. which specifies the number of neighbor alive cells which will make a
  2326. cell stay alive or born. The @option{rule} option allows to specify
  2327. the rule to adopt.
  2328. This source accepts a list of options in the form of
  2329. @var{key}=@var{value} pairs separated by ":". A description of the
  2330. accepted options follows.
  2331. @table @option
  2332. @item filename, f
  2333. Set the file from which to read the initial grid state. In the file,
  2334. each non-whitespace character is considered an alive cell, and newline
  2335. is used to delimit the end of each row.
  2336. If this option is not specified, the initial grid is generated
  2337. randomly.
  2338. @item rate, r
  2339. Set the video rate, that is the number of frames generated per second.
  2340. Default is 25.
  2341. @item random_fill_ratio, ratio
  2342. Set the random fill ratio for the initial random grid. It is a
  2343. floating point number value ranging from 0 to 1, defaults to 1/PHI.
  2344. It is ignored when a file is specified.
  2345. @item random_seed, seed
  2346. Set the seed for filling the initial random grid, must be an integer
  2347. included between 0 and UINT32_MAX. If not specified, or if explicitly
  2348. set to -1, the filter will try to use a good random seed on a best
  2349. effort basis.
  2350. @item rule
  2351. Set the life rule.
  2352. A rule can be specified with a code of the kind "S@var{NS}/B@var{NB}",
  2353. where @var{NS} and @var{NB} are sequences of numbers in the range 0-8,
  2354. @var{NS} specifies the number of alive neighbor cells which make a
  2355. live cell stay alive, and @var{NB} the number of alive neighbor cells
  2356. which make a dead cell to become alive (i.e. to "born").
  2357. "s" and "b" can be used in place of "S" and "B", respectively.
  2358. Alternatively a rule can be specified by an 18-bits integer. The 9
  2359. high order bits are used to encode the next cell state if it is alive
  2360. for each number of neighbor alive cells, the low order bits specify
  2361. the rule for "borning" new cells. Higher order bits encode for an
  2362. higher number of neighbor cells.
  2363. For example the number 6153 = @code{(12<<9)+9} specifies a stay alive
  2364. rule of 12 and a born rule of 9, which corresponds to "S23/B03".
  2365. Default value is "S23/B3", which is the original Conway's game of life
  2366. rule, and will keep a cell alive if it has 2 or 3 neighbor alive
  2367. cells, and will born a new cell if there are three alive cells around
  2368. a dead cell.
  2369. @item size, s
  2370. Set the size of the output video.
  2371. If @option{filename} is specified, the size is set by default to the
  2372. same size of the input file. If @option{size} is set, it must contain
  2373. the size specified in the input file, and the initial grid defined in
  2374. that file is centered in the larger resulting area.
  2375. If a filename is not specified, the size value defaults to "320x240"
  2376. (used for a randomly generated initial grid).
  2377. @item stitch
  2378. If set to 1, stitch the left and right grid edges together, and the
  2379. top and bottom edges also. Defaults to 1.
  2380. @item mold
  2381. Set cell mold speed. If set, a dead cell will go from @option{death_color} to
  2382. @option{mold_color} with a step of @option{mold}. @option{mold} can have a
  2383. value from 0 to 255.
  2384. @item life_color
  2385. Set the color of living (or new born) cells.
  2386. @item death_color
  2387. Set the color of dead cells. If @option{mold} is set, this is the first color
  2388. used to represent a dead cell.
  2389. @item mold_color
  2390. Set mold color, for definitely dead and moldy cells.
  2391. @end table
  2392. @subsection Examples
  2393. @itemize
  2394. @item
  2395. Read a grid from @file{pattern}, and center it on a grid of size
  2396. 300x300 pixels:
  2397. @example
  2398. life=f=pattern:s=300x300
  2399. @end example
  2400. @item
  2401. Generate a random grid of size 200x200, with a fill ratio of 2/3:
  2402. @example
  2403. life=ratio=2/3:s=200x200
  2404. @end example
  2405. @item
  2406. Specify a custom rule for evolving a randomly generated grid:
  2407. @example
  2408. life=rule=S14/B34
  2409. @end example
  2410. @item
  2411. Full example with slow death effect (mold) using @command{ffplay}:
  2412. @example
  2413. ffplay -f lavfi life=s=300x200:mold=10:r=60:ratio=0.1:death_color=#C83232:life_color=#00ff00,scale=1200:800:flags=16
  2414. @end example
  2415. @end itemize
  2416. @section nullsrc, rgbtestsrc, testsrc
  2417. The @code{nullsrc} source returns unprocessed video frames. It is
  2418. mainly useful to be employed in analysis / debugging tools, or as the
  2419. source for filters which ignore the input data.
  2420. The @code{rgbtestsrc} source generates an RGB test pattern useful for
  2421. detecting RGB vs BGR issues. You should see a red, green and blue
  2422. stripe from top to bottom.
  2423. The @code{testsrc} source generates a test video pattern, showing a
  2424. color pattern, a scrolling gradient and a timestamp. This is mainly
  2425. intended for testing purposes.
  2426. These sources accept an optional sequence of @var{key}=@var{value} pairs,
  2427. separated by ":". The description of the accepted options follows.
  2428. @table @option
  2429. @item size, s
  2430. Specify the size of the sourced video, it may be a string of the form
  2431. @var{width}x@var{height}, or the name of a size abbreviation. The
  2432. default value is "320x240".
  2433. @item rate, r
  2434. Specify the frame rate of the sourced video, as the number of frames
  2435. generated per second. It has to be a string in the format
  2436. @var{frame_rate_num}/@var{frame_rate_den}, an integer number, a float
  2437. number or a valid video frame rate abbreviation. The default value is
  2438. "25".
  2439. @item sar
  2440. Set the sample aspect ratio of the sourced video.
  2441. @item duration, d
  2442. Set the video duration of the sourced video. The accepted syntax is:
  2443. @example
  2444. [-]HH[:MM[:SS[.m...]]]
  2445. [-]S+[.m...]
  2446. @end example
  2447. See also the function @code{av_parse_time()}.
  2448. If not specified, or the expressed duration is negative, the video is
  2449. supposed to be generated forever.
  2450. @item decimals, n
  2451. Set the number of decimals to show in the timestamp, only used in the
  2452. @code{testsrc} source.
  2453. The displayed timestamp value will correspond to the original
  2454. timestamp value multiplied by the power of 10 of the specified
  2455. value. Default value is 0.
  2456. @end table
  2457. For example the following:
  2458. @example
  2459. testsrc=duration=5.3:size=qcif:rate=10
  2460. @end example
  2461. will generate a video with a duration of 5.3 seconds, with size
  2462. 176x144 and a frame rate of 10 frames per second.
  2463. If the input content is to be ignored, @code{nullsrc} can be used. The
  2464. following command generates noise in the luminance plane by employing
  2465. the @code{mp=geq} filter:
  2466. @example
  2467. nullsrc=s=256x256, mp=geq=random(1)*255:128:128
  2468. @end example
  2469. @c man end VIDEO SOURCES
  2470. @chapter Video Sinks
  2471. @c man begin VIDEO SINKS
  2472. Below is a description of the currently available video sinks.
  2473. @section buffersink
  2474. Buffer video frames, and make them available to the end of the filter
  2475. graph.
  2476. This sink is mainly intended for a programmatic use, in particular
  2477. through the interface defined in @file{libavfilter/buffersink.h}.
  2478. It does not require a string parameter in input, but you need to
  2479. specify a pointer to a list of supported pixel formats terminated by
  2480. -1 in the opaque parameter provided to @code{avfilter_init_filter}
  2481. when initializing this sink.
  2482. @section nullsink
  2483. Null video sink, do absolutely nothing with the input video. It is
  2484. mainly useful as a template and to be employed in analysis / debugging
  2485. tools.
  2486. @c man end VIDEO SINKS