You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

1756 lines
56KB

  1. /*
  2. * FFV1 codec for libavcodec
  3. *
  4. * Copyright (c) 2003 Michael Niedermayer <michaelni@gmx.at>
  5. *
  6. * This file is part of FFmpeg.
  7. *
  8. * FFmpeg is free software; you can redistribute it and/or
  9. * modify it under the terms of the GNU Lesser General Public
  10. * License as published by the Free Software Foundation; either
  11. * version 2.1 of the License, or (at your option) any later version.
  12. *
  13. * FFmpeg is distributed in the hope that it will be useful,
  14. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  15. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  16. * Lesser General Public License for more details.
  17. *
  18. * You should have received a copy of the GNU Lesser General Public
  19. * License along with FFmpeg; if not, write to the Free Software
  20. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  21. */
  22. /**
  23. * @file
  24. * FF Video Codec 1 (a lossless codec)
  25. */
  26. #include "avcodec.h"
  27. #include "get_bits.h"
  28. #include "put_bits.h"
  29. #include "dsputil.h"
  30. #include "rangecoder.h"
  31. #include "golomb.h"
  32. #include "mathops.h"
  33. #include "libavutil/avassert.h"
  34. #define MAX_PLANES 4
  35. #define CONTEXT_SIZE 32
  36. #define MAX_QUANT_TABLES 8
  37. #define MAX_CONTEXT_INPUTS 5
  38. extern const uint8_t ff_log2_run[32];
  39. static const int8_t quant3[256]={
  40. 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
  41. 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
  42. 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
  43. 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
  44. 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
  45. 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
  46. 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
  47. 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
  48. -1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,
  49. -1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,
  50. -1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,
  51. -1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,
  52. -1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,
  53. -1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,
  54. -1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,
  55. -1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1, 0,
  56. };
  57. static const int8_t quant5_10bit[256]={
  58. 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1,
  59. 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
  60. 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
  61. 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
  62. 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
  63. 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
  64. 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
  65. 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
  66. -2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,
  67. -2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,
  68. -2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,
  69. -2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,
  70. -2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-1,
  71. -1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,
  72. -1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,
  73. -1,-1,-1,-1,-1,-1,-0,-0,-0,-0,-0,-0,-0,-0,-0,-0,
  74. };
  75. static const int8_t quant5[256]={
  76. 0, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
  77. 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
  78. 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
  79. 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
  80. 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
  81. 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
  82. 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
  83. 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
  84. -2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,
  85. -2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,
  86. -2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,
  87. -2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,
  88. -2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,
  89. -2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,
  90. -2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,
  91. -2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-1,-1,-1,
  92. };
  93. static const int8_t quant7[256]={
  94. 0, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
  95. 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
  96. 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3,
  97. 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3,
  98. 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3,
  99. 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3,
  100. 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3,
  101. 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3,
  102. -3,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3,
  103. -3,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3,
  104. -3,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3,
  105. -3,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3,
  106. -3,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3,
  107. -3,-3,-3,-3,-3,-3,-3,-3,-3,-2,-2,-2,-2,-2,-2,-2,
  108. -2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,
  109. -2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-1,-1,
  110. };
  111. static const int8_t quant9[256]={
  112. 0, 1, 1, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3,
  113. 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4,
  114. 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4,
  115. 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4,
  116. 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4,
  117. 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4,
  118. 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4,
  119. 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4,
  120. -4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,
  121. -4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,
  122. -4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,
  123. -4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,
  124. -4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,
  125. -4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,
  126. -4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-3,-3,-3,-3,
  127. -3,-3,-3,-3,-3,-3,-3,-3,-3,-3,-2,-2,-2,-2,-1,-1,
  128. };
  129. static const int8_t quant9_10bit[256]={
  130. 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2,
  131. 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3,
  132. 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3,
  133. 3, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4,
  134. 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4,
  135. 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4,
  136. 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4,
  137. 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4,
  138. -4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,
  139. -4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,
  140. -4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,
  141. -4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,
  142. -4,-4,-4,-4,-4,-4,-4,-4,-4,-3,-3,-3,-3,-3,-3,-3,
  143. -3,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3,
  144. -3,-3,-3,-3,-3,-3,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,
  145. -2,-2,-2,-2,-1,-1,-1,-1,-1,-1,-1,-1,-0,-0,-0,-0,
  146. };
  147. static const int8_t quant11[256]={
  148. 0, 1, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4,
  149. 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4,
  150. 4, 4, 4, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,
  151. 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,
  152. 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,
  153. 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,
  154. 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,
  155. 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,
  156. -5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,
  157. -5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,
  158. -5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,
  159. -5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,
  160. -5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,
  161. -5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-4,-4,
  162. -4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,
  163. -4,-4,-4,-4,-4,-3,-3,-3,-3,-3,-3,-3,-2,-2,-2,-1,
  164. };
  165. static const int8_t quant13[256]={
  166. 0, 1, 2, 2, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4,
  167. 4, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,
  168. 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,
  169. 5, 5, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6,
  170. 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6,
  171. 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6,
  172. 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6,
  173. 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6,
  174. -6,-6,-6,-6,-6,-6,-6,-6,-6,-6,-6,-6,-6,-6,-6,-6,
  175. -6,-6,-6,-6,-6,-6,-6,-6,-6,-6,-6,-6,-6,-6,-6,-6,
  176. -6,-6,-6,-6,-6,-6,-6,-6,-6,-6,-6,-6,-6,-6,-6,-6,
  177. -6,-6,-6,-6,-6,-6,-6,-6,-6,-6,-6,-6,-6,-6,-6,-6,
  178. -6,-6,-6,-6,-6,-6,-6,-6,-6,-6,-6,-6,-6,-6,-6,-5,
  179. -5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,
  180. -5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,
  181. -4,-4,-4,-4,-4,-4,-4,-4,-4,-3,-3,-3,-3,-2,-2,-1,
  182. };
  183. static const uint8_t ver2_state[256]= {
  184. 0, 10, 10, 10, 10, 16, 16, 16, 28, 16, 16, 29, 42, 49, 20, 49,
  185. 59, 25, 26, 26, 27, 31, 33, 33, 33, 34, 34, 37, 67, 38, 39, 39,
  186. 40, 40, 41, 79, 43, 44, 45, 45, 48, 48, 64, 50, 51, 52, 88, 52,
  187. 53, 74, 55, 57, 58, 58, 74, 60, 101, 61, 62, 84, 66, 66, 68, 69,
  188. 87, 82, 71, 97, 73, 73, 82, 75, 111, 77, 94, 78, 87, 81, 83, 97,
  189. 85, 83, 94, 86, 99, 89, 90, 99, 111, 92, 93, 134, 95, 98, 105, 98,
  190. 105, 110, 102, 108, 102, 118, 103, 106, 106, 113, 109, 112, 114, 112, 116, 125,
  191. 115, 116, 117, 117, 126, 119, 125, 121, 121, 123, 145, 124, 126, 131, 127, 129,
  192. 165, 130, 132, 138, 133, 135, 145, 136, 137, 139, 146, 141, 143, 142, 144, 148,
  193. 147, 155, 151, 149, 151, 150, 152, 157, 153, 154, 156, 168, 158, 162, 161, 160,
  194. 172, 163, 169, 164, 166, 184, 167, 170, 177, 174, 171, 173, 182, 176, 180, 178,
  195. 175, 189, 179, 181, 186, 183, 192, 185, 200, 187, 191, 188, 190, 197, 193, 196,
  196. 197, 194, 195, 196, 198, 202, 199, 201, 210, 203, 207, 204, 205, 206, 208, 214,
  197. 209, 211, 221, 212, 213, 215, 224, 216, 217, 218, 219, 220, 222, 228, 223, 225,
  198. 226, 224, 227, 229, 240, 230, 231, 232, 233, 234, 235, 236, 238, 239, 237, 242,
  199. 241, 243, 242, 244, 245, 246, 247, 248, 249, 250, 251, 252, 252, 253, 254, 255,
  200. };
  201. typedef struct VlcState{
  202. int16_t drift;
  203. uint16_t error_sum;
  204. int8_t bias;
  205. uint8_t count;
  206. } VlcState;
  207. typedef struct PlaneContext{
  208. int16_t quant_table[MAX_CONTEXT_INPUTS][256];
  209. int quant_table_index;
  210. int context_count;
  211. uint8_t (*state)[CONTEXT_SIZE];
  212. VlcState *vlc_state;
  213. uint8_t interlace_bit_state[2];
  214. } PlaneContext;
  215. #define MAX_SLICES 256
  216. typedef struct FFV1Context{
  217. AVCodecContext *avctx;
  218. RangeCoder c;
  219. GetBitContext gb;
  220. PutBitContext pb;
  221. uint64_t rc_stat[256][2];
  222. uint64_t (*rc_stat2[MAX_QUANT_TABLES])[32][2];
  223. int version;
  224. int width, height;
  225. int chroma_h_shift, chroma_v_shift;
  226. int flags;
  227. int picture_number;
  228. AVFrame picture;
  229. int plane_count;
  230. int ac; ///< 1=range coder <-> 0=golomb rice
  231. PlaneContext plane[MAX_PLANES];
  232. int16_t quant_table[MAX_CONTEXT_INPUTS][256];
  233. int16_t quant_tables[MAX_QUANT_TABLES][MAX_CONTEXT_INPUTS][256];
  234. int context_count[MAX_QUANT_TABLES];
  235. uint8_t state_transition[256];
  236. uint8_t (*initial_states[MAX_QUANT_TABLES])[32];
  237. int run_index;
  238. int colorspace;
  239. int_fast16_t *sample_buffer;
  240. int quant_table_count;
  241. DSPContext dsp;
  242. struct FFV1Context *slice_context[MAX_SLICES];
  243. int slice_count;
  244. int num_v_slices;
  245. int num_h_slices;
  246. int slice_width;
  247. int slice_height;
  248. int slice_x;
  249. int slice_y;
  250. }FFV1Context;
  251. static av_always_inline int fold(int diff, int bits){
  252. if(bits==8)
  253. diff= (int8_t)diff;
  254. else{
  255. diff+= 1<<(bits-1);
  256. diff&=(1<<bits)-1;
  257. diff-= 1<<(bits-1);
  258. }
  259. return diff;
  260. }
  261. static inline int predict(int_fast16_t *src, int_fast16_t *last){
  262. const int LT= last[-1];
  263. const int T= last[ 0];
  264. const int L = src[-1];
  265. return mid_pred(L, L + T - LT, T);
  266. }
  267. static inline int get_context(PlaneContext *p, int_fast16_t *src, int_fast16_t *last, int_fast16_t *last2){
  268. const int LT= last[-1];
  269. const int T= last[ 0];
  270. const int RT= last[ 1];
  271. const int L = src[-1];
  272. if(p->quant_table[3][127]){
  273. const int TT= last2[0];
  274. const int LL= src[-2];
  275. return p->quant_table[0][(L-LT) & 0xFF] + p->quant_table[1][(LT-T) & 0xFF] + p->quant_table[2][(T-RT) & 0xFF]
  276. +p->quant_table[3][(LL-L) & 0xFF] + p->quant_table[4][(TT-T) & 0xFF];
  277. }else
  278. return p->quant_table[0][(L-LT) & 0xFF] + p->quant_table[1][(LT-T) & 0xFF] + p->quant_table[2][(T-RT) & 0xFF];
  279. }
  280. static av_always_inline av_flatten void put_symbol_inline(RangeCoder *c, uint8_t *state, int v, int is_signed, uint64_t rc_stat[256][2], uint64_t rc_stat2[32][2]){
  281. int i;
  282. #define put_rac(C,S,B) \
  283. do{\
  284. if(rc_stat){\
  285. rc_stat[*(S)][B]++;\
  286. rc_stat2[(S)-state][B]++;\
  287. }\
  288. put_rac(C,S,B);\
  289. }while(0)
  290. if(v){
  291. const int a= FFABS(v);
  292. const int e= av_log2(a);
  293. put_rac(c, state+0, 0);
  294. if(e<=9){
  295. for(i=0; i<e; i++){
  296. put_rac(c, state+1+i, 1); //1..10
  297. }
  298. put_rac(c, state+1+i, 0);
  299. for(i=e-1; i>=0; i--){
  300. put_rac(c, state+22+i, (a>>i)&1); //22..31
  301. }
  302. if(is_signed)
  303. put_rac(c, state+11 + e, v < 0); //11..21
  304. }else{
  305. for(i=0; i<e; i++){
  306. put_rac(c, state+1+FFMIN(i,9), 1); //1..10
  307. }
  308. put_rac(c, state+1+9, 0);
  309. for(i=e-1; i>=0; i--){
  310. put_rac(c, state+22+FFMIN(i,9), (a>>i)&1); //22..31
  311. }
  312. if(is_signed)
  313. put_rac(c, state+11 + 10, v < 0); //11..21
  314. }
  315. }else{
  316. put_rac(c, state+0, 1);
  317. }
  318. #undef put_rac
  319. }
  320. static void av_noinline put_symbol(RangeCoder *c, uint8_t *state, int v, int is_signed){
  321. put_symbol_inline(c, state, v, is_signed, NULL, NULL);
  322. }
  323. static inline av_flatten int get_symbol_inline(RangeCoder *c, uint8_t *state, int is_signed){
  324. if(get_rac(c, state+0))
  325. return 0;
  326. else{
  327. int i, e, a;
  328. e= 0;
  329. while(get_rac(c, state+1 + FFMIN(e,9))){ //1..10
  330. e++;
  331. }
  332. a= 1;
  333. for(i=e-1; i>=0; i--){
  334. a += a + get_rac(c, state+22 + FFMIN(i,9)); //22..31
  335. }
  336. e= -(is_signed && get_rac(c, state+11 + FFMIN(e, 10))); //11..21
  337. return (a^e)-e;
  338. }
  339. }
  340. static int av_noinline get_symbol(RangeCoder *c, uint8_t *state, int is_signed){
  341. return get_symbol_inline(c, state, is_signed);
  342. }
  343. static inline void update_vlc_state(VlcState * const state, const int v){
  344. int drift= state->drift;
  345. int count= state->count;
  346. state->error_sum += FFABS(v);
  347. drift += v;
  348. if(count == 128){ //FIXME variable
  349. count >>= 1;
  350. drift >>= 1;
  351. state->error_sum >>= 1;
  352. }
  353. count++;
  354. if(drift <= -count){
  355. if(state->bias > -128) state->bias--;
  356. drift += count;
  357. if(drift <= -count)
  358. drift= -count + 1;
  359. }else if(drift > 0){
  360. if(state->bias < 127) state->bias++;
  361. drift -= count;
  362. if(drift > 0)
  363. drift= 0;
  364. }
  365. state->drift= drift;
  366. state->count= count;
  367. }
  368. static inline void put_vlc_symbol(PutBitContext *pb, VlcState * const state, int v, int bits){
  369. int i, k, code;
  370. //printf("final: %d ", v);
  371. v = fold(v - state->bias, bits);
  372. i= state->count;
  373. k=0;
  374. while(i < state->error_sum){ //FIXME optimize
  375. k++;
  376. i += i;
  377. }
  378. assert(k<=8);
  379. #if 0 // JPEG LS
  380. if(k==0 && 2*state->drift <= - state->count) code= v ^ (-1);
  381. else code= v;
  382. #else
  383. code= v ^ ((2*state->drift + state->count)>>31);
  384. #endif
  385. //printf("v:%d/%d bias:%d error:%d drift:%d count:%d k:%d\n", v, code, state->bias, state->error_sum, state->drift, state->count, k);
  386. set_sr_golomb(pb, code, k, 12, bits);
  387. update_vlc_state(state, v);
  388. }
  389. static inline int get_vlc_symbol(GetBitContext *gb, VlcState * const state, int bits){
  390. int k, i, v, ret;
  391. i= state->count;
  392. k=0;
  393. while(i < state->error_sum){ //FIXME optimize
  394. k++;
  395. i += i;
  396. }
  397. assert(k<=8);
  398. v= get_sr_golomb(gb, k, 12, bits);
  399. //printf("v:%d bias:%d error:%d drift:%d count:%d k:%d", v, state->bias, state->error_sum, state->drift, state->count, k);
  400. #if 0 // JPEG LS
  401. if(k==0 && 2*state->drift <= - state->count) v ^= (-1);
  402. #else
  403. v ^= ((2*state->drift + state->count)>>31);
  404. #endif
  405. ret= fold(v + state->bias, bits);
  406. update_vlc_state(state, v);
  407. //printf("final: %d\n", ret);
  408. return ret;
  409. }
  410. #if CONFIG_FFV1_ENCODER
  411. static av_always_inline int encode_line(FFV1Context *s, int w, int_fast16_t *sample[2], int plane_index, int bits){
  412. PlaneContext * const p= &s->plane[plane_index];
  413. RangeCoder * const c= &s->c;
  414. int x;
  415. int run_index= s->run_index;
  416. int run_count=0;
  417. int run_mode=0;
  418. if(s->ac){
  419. if(c->bytestream_end - c->bytestream < w*20){
  420. av_log(s->avctx, AV_LOG_ERROR, "encoded frame too large\n");
  421. return -1;
  422. }
  423. }else{
  424. if(s->pb.buf_end - s->pb.buf - (put_bits_count(&s->pb)>>3) < w*4){
  425. av_log(s->avctx, AV_LOG_ERROR, "encoded frame too large\n");
  426. return -1;
  427. }
  428. }
  429. for(x=0; x<w; x++){
  430. int diff, context;
  431. context= get_context(p, sample[0]+x, sample[1]+x, sample[2]+x);
  432. diff= sample[0][x] - predict(sample[0]+x, sample[1]+x);
  433. if(context < 0){
  434. context = -context;
  435. diff= -diff;
  436. }
  437. diff= fold(diff, bits);
  438. if(s->ac){
  439. if(s->flags & CODEC_FLAG_PASS1){
  440. put_symbol_inline(c, p->state[context], diff, 1, s->rc_stat, s->rc_stat2[p->quant_table_index][context]);
  441. }else{
  442. put_symbol_inline(c, p->state[context], diff, 1, NULL, NULL);
  443. }
  444. }else{
  445. if(context == 0) run_mode=1;
  446. if(run_mode){
  447. if(diff){
  448. while(run_count >= 1<<ff_log2_run[run_index]){
  449. run_count -= 1<<ff_log2_run[run_index];
  450. run_index++;
  451. put_bits(&s->pb, 1, 1);
  452. }
  453. put_bits(&s->pb, 1 + ff_log2_run[run_index], run_count);
  454. if(run_index) run_index--;
  455. run_count=0;
  456. run_mode=0;
  457. if(diff>0) diff--;
  458. }else{
  459. run_count++;
  460. }
  461. }
  462. // printf("count:%d index:%d, mode:%d, x:%d y:%d pos:%d\n", run_count, run_index, run_mode, x, y, (int)put_bits_count(&s->pb));
  463. if(run_mode == 0)
  464. put_vlc_symbol(&s->pb, &p->vlc_state[context], diff, bits);
  465. }
  466. }
  467. if(run_mode){
  468. while(run_count >= 1<<ff_log2_run[run_index]){
  469. run_count -= 1<<ff_log2_run[run_index];
  470. run_index++;
  471. put_bits(&s->pb, 1, 1);
  472. }
  473. if(run_count)
  474. put_bits(&s->pb, 1, 1);
  475. }
  476. s->run_index= run_index;
  477. return 0;
  478. }
  479. static void encode_plane(FFV1Context *s, uint8_t *src, int w, int h, int stride, int plane_index){
  480. int x,y,i;
  481. const int ring_size= s->avctx->context_model ? 3 : 2;
  482. int_fast16_t *sample[3];
  483. s->run_index=0;
  484. memset(s->sample_buffer, 0, ring_size*(w+6)*sizeof(*s->sample_buffer));
  485. for(y=0; y<h; y++){
  486. for(i=0; i<ring_size; i++)
  487. sample[i]= s->sample_buffer + (w+6)*((h+i-y)%ring_size) + 3;
  488. sample[0][-1]= sample[1][0 ];
  489. sample[1][ w]= sample[1][w-1];
  490. //{START_TIMER
  491. if(s->avctx->bits_per_raw_sample<=8){
  492. for(x=0; x<w; x++){
  493. sample[0][x]= src[x + stride*y];
  494. }
  495. encode_line(s, w, sample, plane_index, 8);
  496. }else{
  497. for(x=0; x<w; x++){
  498. sample[0][x]= ((uint16_t*)(src + stride*y))[x] >> (16 - s->avctx->bits_per_raw_sample);
  499. }
  500. encode_line(s, w, sample, plane_index, s->avctx->bits_per_raw_sample);
  501. }
  502. //STOP_TIMER("encode line")}
  503. }
  504. }
  505. static void encode_rgb_frame(FFV1Context *s, uint32_t *src, int w, int h, int stride){
  506. int x, y, p, i;
  507. const int ring_size= s->avctx->context_model ? 3 : 2;
  508. int_fast16_t *sample[3][3];
  509. s->run_index=0;
  510. memset(s->sample_buffer, 0, ring_size*3*(w+6)*sizeof(*s->sample_buffer));
  511. for(y=0; y<h; y++){
  512. for(i=0; i<ring_size; i++)
  513. for(p=0; p<3; p++)
  514. sample[p][i]= s->sample_buffer + p*ring_size*(w+6) + ((h+i-y)%ring_size)*(w+6) + 3;
  515. for(x=0; x<w; x++){
  516. int v= src[x + stride*y];
  517. int b= v&0xFF;
  518. int g= (v>>8)&0xFF;
  519. int r= (v>>16)&0xFF;
  520. b -= g;
  521. r -= g;
  522. g += (b + r)>>2;
  523. b += 0x100;
  524. r += 0x100;
  525. // assert(g>=0 && b>=0 && r>=0);
  526. // assert(g<256 && b<512 && r<512);
  527. sample[0][0][x]= g;
  528. sample[1][0][x]= b;
  529. sample[2][0][x]= r;
  530. }
  531. for(p=0; p<3; p++){
  532. sample[p][0][-1]= sample[p][1][0 ];
  533. sample[p][1][ w]= sample[p][1][w-1];
  534. encode_line(s, w, sample[p], FFMIN(p, 1), 9);
  535. }
  536. }
  537. }
  538. static void write_quant_table(RangeCoder *c, int16_t *quant_table){
  539. int last=0;
  540. int i;
  541. uint8_t state[CONTEXT_SIZE];
  542. memset(state, 128, sizeof(state));
  543. for(i=1; i<128 ; i++){
  544. if(quant_table[i] != quant_table[i-1]){
  545. put_symbol(c, state, i-last-1, 0);
  546. last= i;
  547. }
  548. }
  549. put_symbol(c, state, i-last-1, 0);
  550. }
  551. static void write_quant_tables(RangeCoder *c, int16_t quant_table[MAX_CONTEXT_INPUTS][256]){
  552. int i;
  553. for(i=0; i<5; i++)
  554. write_quant_table(c, quant_table[i]);
  555. }
  556. static void write_header(FFV1Context *f){
  557. uint8_t state[CONTEXT_SIZE];
  558. int i, j;
  559. RangeCoder * const c= &f->slice_context[0]->c;
  560. memset(state, 128, sizeof(state));
  561. if(f->version < 2){
  562. put_symbol(c, state, f->version, 0);
  563. put_symbol(c, state, f->ac, 0);
  564. if(f->ac>1){
  565. for(i=1; i<256; i++){
  566. put_symbol(c, state, f->state_transition[i] - c->one_state[i], 1);
  567. }
  568. }
  569. put_symbol(c, state, f->colorspace, 0); //YUV cs type
  570. if(f->version>0)
  571. put_symbol(c, state, f->avctx->bits_per_raw_sample, 0);
  572. put_rac(c, state, 1); //chroma planes
  573. put_symbol(c, state, f->chroma_h_shift, 0);
  574. put_symbol(c, state, f->chroma_v_shift, 0);
  575. put_rac(c, state, 0); //no transparency plane
  576. write_quant_tables(c, f->quant_table);
  577. }else{
  578. put_symbol(c, state, f->slice_count, 0);
  579. for(i=0; i<f->slice_count; i++){
  580. FFV1Context *fs= f->slice_context[i];
  581. put_symbol(c, state, (fs->slice_x +1)*f->num_h_slices / f->width , 0);
  582. put_symbol(c, state, (fs->slice_y +1)*f->num_v_slices / f->height , 0);
  583. put_symbol(c, state, (fs->slice_width +1)*f->num_h_slices / f->width -1, 0);
  584. put_symbol(c, state, (fs->slice_height+1)*f->num_v_slices / f->height-1, 0);
  585. for(j=0; j<f->plane_count; j++){
  586. put_symbol(c, state, f->plane[j].quant_table_index, 0);
  587. av_assert0(f->plane[j].quant_table_index == f->avctx->context_model);
  588. }
  589. }
  590. }
  591. }
  592. #endif /* CONFIG_FFV1_ENCODER */
  593. static av_cold int common_init(AVCodecContext *avctx){
  594. FFV1Context *s = avctx->priv_data;
  595. s->avctx= avctx;
  596. s->flags= avctx->flags;
  597. dsputil_init(&s->dsp, avctx);
  598. s->width = avctx->width;
  599. s->height= avctx->height;
  600. assert(s->width && s->height);
  601. //defaults
  602. s->num_h_slices=1;
  603. s->num_v_slices=1;
  604. return 0;
  605. }
  606. static int init_slice_state(FFV1Context *f){
  607. int i, j;
  608. for(i=0; i<f->slice_count; i++){
  609. FFV1Context *fs= f->slice_context[i];
  610. for(j=0; j<f->plane_count; j++){
  611. PlaneContext * const p= &fs->plane[j];
  612. if(fs->ac){
  613. if(!p-> state) p-> state= av_malloc(CONTEXT_SIZE*p->context_count*sizeof(uint8_t));
  614. if(!p-> state)
  615. return AVERROR(ENOMEM);
  616. }else{
  617. if(!p->vlc_state) p->vlc_state= av_malloc(p->context_count*sizeof(VlcState));
  618. if(!p->vlc_state)
  619. return AVERROR(ENOMEM);
  620. }
  621. }
  622. if (fs->ac>1){
  623. //FIXME only redo if state_transition changed
  624. for(j=1; j<256; j++){
  625. fs->c.one_state [ j]= fs->state_transition[j];
  626. fs->c.zero_state[256-j]= 256-fs->c.one_state [j];
  627. }
  628. }
  629. }
  630. return 0;
  631. }
  632. static av_cold int init_slice_contexts(FFV1Context *f){
  633. int i;
  634. f->slice_count= f->num_h_slices * f->num_v_slices;
  635. for(i=0; i<f->slice_count; i++){
  636. FFV1Context *fs= av_mallocz(sizeof(*fs));
  637. int sx= i % f->num_h_slices;
  638. int sy= i / f->num_h_slices;
  639. int sxs= f->avctx->width * sx / f->num_h_slices;
  640. int sxe= f->avctx->width *(sx+1) / f->num_h_slices;
  641. int sys= f->avctx->height* sy / f->num_v_slices;
  642. int sye= f->avctx->height*(sy+1) / f->num_v_slices;
  643. f->slice_context[i]= fs;
  644. memcpy(fs, f, sizeof(*fs));
  645. memset(fs->rc_stat2, 0, sizeof(fs->rc_stat2));
  646. fs->slice_width = sxe - sxs;
  647. fs->slice_height= sye - sys;
  648. fs->slice_x = sxs;
  649. fs->slice_y = sys;
  650. fs->sample_buffer = av_malloc(6 * (fs->width+6) * sizeof(*fs->sample_buffer));
  651. if (!fs->sample_buffer)
  652. return AVERROR(ENOMEM);
  653. }
  654. return 0;
  655. }
  656. static int allocate_initial_states(FFV1Context *f){
  657. int i;
  658. for(i=0; i<f->quant_table_count; i++){
  659. f->initial_states[i]= av_malloc(f->context_count[i]*sizeof(*f->initial_states[i]));
  660. if(!f->initial_states[i])
  661. return AVERROR(ENOMEM);
  662. memset(f->initial_states[i], 128, f->context_count[i]*sizeof(*f->initial_states[i]));
  663. }
  664. return 0;
  665. }
  666. #if CONFIG_FFV1_ENCODER
  667. static int write_extra_header(FFV1Context *f){
  668. RangeCoder * const c= &f->c;
  669. uint8_t state[CONTEXT_SIZE];
  670. int i, j, k;
  671. uint8_t state2[32][CONTEXT_SIZE];
  672. memset(state2, 128, sizeof(state2));
  673. memset(state, 128, sizeof(state));
  674. f->avctx->extradata= av_malloc(f->avctx->extradata_size= 10000 + (11*11*5*5*5+11*11*11)*32);
  675. ff_init_range_encoder(c, f->avctx->extradata, f->avctx->extradata_size);
  676. ff_build_rac_states(c, 0.05*(1LL<<32), 256-8);
  677. put_symbol(c, state, f->version, 0);
  678. put_symbol(c, state, f->ac, 0);
  679. if(f->ac>1){
  680. for(i=1; i<256; i++){
  681. put_symbol(c, state, f->state_transition[i] - c->one_state[i], 1);
  682. }
  683. }
  684. put_symbol(c, state, f->colorspace, 0); //YUV cs type
  685. put_symbol(c, state, f->avctx->bits_per_raw_sample, 0);
  686. put_rac(c, state, 1); //chroma planes
  687. put_symbol(c, state, f->chroma_h_shift, 0);
  688. put_symbol(c, state, f->chroma_v_shift, 0);
  689. put_rac(c, state, 0); //no transparency plane
  690. put_symbol(c, state, f->num_h_slices-1, 0);
  691. put_symbol(c, state, f->num_v_slices-1, 0);
  692. put_symbol(c, state, f->quant_table_count, 0);
  693. for(i=0; i<f->quant_table_count; i++)
  694. write_quant_tables(c, f->quant_tables[i]);
  695. for(i=0; i<f->quant_table_count; i++){
  696. for(j=0; j<f->context_count[i]*CONTEXT_SIZE; j++)
  697. if(f->initial_states[i] && f->initial_states[i][0][j] != 128)
  698. break;
  699. if(j<f->context_count[i]*CONTEXT_SIZE){
  700. put_rac(c, state, 1);
  701. for(j=0; j<f->context_count[i]; j++){
  702. for(k=0; k<CONTEXT_SIZE; k++){
  703. int pred= j ? f->initial_states[i][j-1][k] : 128;
  704. put_symbol(c, state2[k], (int8_t)(f->initial_states[i][j][k]-pred), 1);
  705. }
  706. }
  707. }else{
  708. put_rac(c, state, 0);
  709. }
  710. }
  711. f->avctx->extradata_size= ff_rac_terminate(c);
  712. return 0;
  713. }
  714. static int sort_stt(FFV1Context *s, uint8_t stt[256]){
  715. int i,i2,changed,print=0;
  716. do{
  717. changed=0;
  718. for(i=12; i<244; i++){
  719. for(i2=i+1; i2<245 && i2<i+4; i2++){
  720. #define COST(old, new) \
  721. s->rc_stat[old][0]*-log2((256-(new))/256.0)\
  722. +s->rc_stat[old][1]*-log2( (new) /256.0)
  723. #define COST2(old, new) \
  724. COST(old, new)\
  725. +COST(256-(old), 256-(new))
  726. double size0= COST2(i, i ) + COST2(i2, i2);
  727. double sizeX= COST2(i, i2) + COST2(i2, i );
  728. if(sizeX < size0 && i!=128 && i2!=128){
  729. int j;
  730. FFSWAP(int, stt[ i], stt[ i2]);
  731. FFSWAP(int, s->rc_stat[i ][0],s->rc_stat[ i2][0]);
  732. FFSWAP(int, s->rc_stat[i ][1],s->rc_stat[ i2][1]);
  733. if(i != 256-i2){
  734. FFSWAP(int, stt[256-i], stt[256-i2]);
  735. FFSWAP(int, s->rc_stat[256-i][0],s->rc_stat[256-i2][0]);
  736. FFSWAP(int, s->rc_stat[256-i][1],s->rc_stat[256-i2][1]);
  737. }
  738. for(j=1; j<256; j++){
  739. if (stt[j] == i ) stt[j] = i2;
  740. else if(stt[j] == i2) stt[j] = i ;
  741. if(i != 256-i2){
  742. if (stt[256-j] == 256-i ) stt[256-j] = 256-i2;
  743. else if(stt[256-j] == 256-i2) stt[256-j] = 256-i ;
  744. }
  745. }
  746. print=changed=1;
  747. }
  748. }
  749. }
  750. }while(changed);
  751. return print;
  752. }
  753. static av_cold int encode_init(AVCodecContext *avctx)
  754. {
  755. FFV1Context *s = avctx->priv_data;
  756. int i, j, k, m;
  757. common_init(avctx);
  758. s->version=0;
  759. s->ac= avctx->coder_type ? 2:0;
  760. if(s->ac>1)
  761. for(i=1; i<256; i++)
  762. s->state_transition[i]=ver2_state[i];
  763. s->plane_count=2;
  764. for(i=0; i<256; i++){
  765. s->quant_table_count=2;
  766. if(avctx->bits_per_raw_sample <=8){
  767. s->quant_tables[0][0][i]= quant11[i];
  768. s->quant_tables[0][1][i]= 11*quant11[i];
  769. s->quant_tables[0][2][i]= 11*11*quant11[i];
  770. s->quant_tables[1][0][i]= quant11[i];
  771. s->quant_tables[1][1][i]= 11*quant11[i];
  772. s->quant_tables[1][2][i]= 11*11*quant5 [i];
  773. s->quant_tables[1][3][i]= 5*11*11*quant5 [i];
  774. s->quant_tables[1][4][i]= 5*5*11*11*quant5 [i];
  775. }else{
  776. s->quant_tables[0][0][i]= quant9_10bit[i];
  777. s->quant_tables[0][1][i]= 11*quant9_10bit[i];
  778. s->quant_tables[0][2][i]= 11*11*quant9_10bit[i];
  779. s->quant_tables[1][0][i]= quant9_10bit[i];
  780. s->quant_tables[1][1][i]= 11*quant9_10bit[i];
  781. s->quant_tables[1][2][i]= 11*11*quant5_10bit[i];
  782. s->quant_tables[1][3][i]= 5*11*11*quant5_10bit[i];
  783. s->quant_tables[1][4][i]= 5*5*11*11*quant5_10bit[i];
  784. }
  785. }
  786. s->context_count[0]= (11*11*11+1)/2;
  787. s->context_count[1]= (11*11*5*5*5+1)/2;
  788. memcpy(s->quant_table, s->quant_tables[avctx->context_model], sizeof(s->quant_table));
  789. for(i=0; i<s->plane_count; i++){
  790. PlaneContext * const p= &s->plane[i];
  791. memcpy(p->quant_table, s->quant_table, sizeof(p->quant_table));
  792. p->quant_table_index= avctx->context_model;
  793. p->context_count= s->context_count[p->quant_table_index];
  794. }
  795. if(allocate_initial_states(s) < 0)
  796. return AVERROR(ENOMEM);
  797. avctx->coded_frame= &s->picture;
  798. switch(avctx->pix_fmt){
  799. case PIX_FMT_YUV444P16:
  800. case PIX_FMT_YUV422P16:
  801. case PIX_FMT_YUV420P16:
  802. if(avctx->bits_per_raw_sample <=8){
  803. av_log(avctx, AV_LOG_ERROR, "bits_per_raw_sample invalid\n");
  804. return -1;
  805. }
  806. if(!s->ac){
  807. av_log(avctx, AV_LOG_ERROR, "bits_per_raw_sample of more than 8 needs -coder 1 currently\n");
  808. return -1;
  809. }
  810. s->version= FFMAX(s->version, 1);
  811. case PIX_FMT_YUV444P:
  812. case PIX_FMT_YUV422P:
  813. case PIX_FMT_YUV420P:
  814. case PIX_FMT_YUV411P:
  815. case PIX_FMT_YUV410P:
  816. s->colorspace= 0;
  817. break;
  818. case PIX_FMT_RGB32:
  819. s->colorspace= 1;
  820. break;
  821. default:
  822. av_log(avctx, AV_LOG_ERROR, "format not supported\n");
  823. return -1;
  824. }
  825. avcodec_get_chroma_sub_sample(avctx->pix_fmt, &s->chroma_h_shift, &s->chroma_v_shift);
  826. s->picture_number=0;
  827. if(avctx->flags & (CODEC_FLAG_PASS1|CODEC_FLAG_PASS2)){
  828. for(i=0; i<s->quant_table_count; i++){
  829. s->rc_stat2[i]= av_mallocz(s->context_count[i]*sizeof(*s->rc_stat2[i]));
  830. if(!s->rc_stat2[i])
  831. return AVERROR(ENOMEM);
  832. }
  833. }
  834. if(avctx->stats_in){
  835. char *p= avctx->stats_in;
  836. av_assert0(s->version>=2);
  837. for(;;){
  838. for(j=0; j<256; j++){
  839. for(i=0; i<2; i++){
  840. char *next;
  841. s->rc_stat[j][i]= strtol(p, &next, 0);
  842. if(next==p){
  843. av_log(avctx, AV_LOG_ERROR, "2Pass file invalid at %d %d [%s]\n", j,i,p);
  844. return -1;
  845. }
  846. p=next;
  847. }
  848. }
  849. for(i=0; i<s->quant_table_count; i++){
  850. for(j=0; j<s->context_count[i]; j++){
  851. for(k=0; k<32; k++){
  852. for(m=0; m<2; m++){
  853. char *next;
  854. s->rc_stat2[i][j][k][m]= strtol(p, &next, 0);
  855. if(next==p){
  856. av_log(avctx, AV_LOG_ERROR, "2Pass file invalid at %d %d %d %d [%s]\n", i,j,k,m,p);
  857. return -1;
  858. }
  859. p=next;
  860. }
  861. }
  862. }
  863. }
  864. while(*p=='\n' || *p==' ') p++;
  865. if(p[0]==0) break;
  866. }
  867. sort_stt(s, s->state_transition);
  868. for(i=0; i<s->quant_table_count; i++){
  869. for(j=0; j<s->context_count[i]; j++){
  870. for(k=0; k<32; k++){
  871. int p= 128;
  872. if(s->rc_stat2[i][j][k][0]+s->rc_stat2[i][j][k][1]){
  873. p=256*s->rc_stat2[i][j][k][1] / (s->rc_stat2[i][j][k][0]+s->rc_stat2[i][j][k][1]);
  874. }
  875. p= av_clip(p, 1, 254);
  876. s->initial_states[i][j][k]= p;
  877. }
  878. }
  879. }
  880. }
  881. if(s->version>1){
  882. s->num_h_slices=2;
  883. s->num_v_slices=2;
  884. write_extra_header(s);
  885. }
  886. if(init_slice_contexts(s) < 0)
  887. return -1;
  888. if(init_slice_state(s) < 0)
  889. return -1;
  890. #define STATS_OUT_SIZE 1024*1024*6
  891. if(avctx->flags & CODEC_FLAG_PASS1){
  892. avctx->stats_out= av_mallocz(STATS_OUT_SIZE);
  893. for(i=0; i<s->quant_table_count; i++){
  894. for(j=0; j<s->slice_count; j++){
  895. FFV1Context *sf= s->slice_context[j];
  896. av_assert0(!sf->rc_stat2[i]);
  897. sf->rc_stat2[i]= av_mallocz(s->context_count[i]*sizeof(*sf->rc_stat2[i]));
  898. if(!sf->rc_stat2[i])
  899. return AVERROR(ENOMEM);
  900. }
  901. }
  902. }
  903. return 0;
  904. }
  905. #endif /* CONFIG_FFV1_ENCODER */
  906. static void clear_state(FFV1Context *f){
  907. int i, si, j;
  908. for(si=0; si<f->slice_count; si++){
  909. FFV1Context *fs= f->slice_context[si];
  910. for(i=0; i<f->plane_count; i++){
  911. PlaneContext *p= &fs->plane[i];
  912. p->interlace_bit_state[0]= 128;
  913. p->interlace_bit_state[1]= 128;
  914. if(fs->ac){
  915. if(f->initial_states[p->quant_table_index]){
  916. memcpy(p->state, f->initial_states[p->quant_table_index], CONTEXT_SIZE*p->context_count);
  917. }else
  918. memset(p->state, 128, CONTEXT_SIZE*p->context_count);
  919. }else{
  920. for(j=0; j<p->context_count; j++){
  921. p->vlc_state[j].drift= 0;
  922. p->vlc_state[j].error_sum= 4; //FFMAX((RANGE + 32)/64, 2);
  923. p->vlc_state[j].bias= 0;
  924. p->vlc_state[j].count= 1;
  925. }
  926. }
  927. }
  928. }
  929. }
  930. #if CONFIG_FFV1_ENCODER
  931. static int encode_slice(AVCodecContext *c, void *arg){
  932. FFV1Context *fs= *(void**)arg;
  933. FFV1Context *f= fs->avctx->priv_data;
  934. int width = fs->slice_width;
  935. int height= fs->slice_height;
  936. int x= fs->slice_x;
  937. int y= fs->slice_y;
  938. AVFrame * const p= &f->picture;
  939. if(f->colorspace==0){
  940. const int chroma_width = -((-width )>>f->chroma_h_shift);
  941. const int chroma_height= -((-height)>>f->chroma_v_shift);
  942. const int cx= x>>f->chroma_h_shift;
  943. const int cy= y>>f->chroma_v_shift;
  944. encode_plane(fs, p->data[0] + x + y*p->linesize[0], width, height, p->linesize[0], 0);
  945. encode_plane(fs, p->data[1] + cx+cy*p->linesize[1], chroma_width, chroma_height, p->linesize[1], 1);
  946. encode_plane(fs, p->data[2] + cx+cy*p->linesize[2], chroma_width, chroma_height, p->linesize[2], 1);
  947. }else{
  948. encode_rgb_frame(fs, (uint32_t*)(p->data[0]) + x + y*(p->linesize[0]/4), width, height, p->linesize[0]/4);
  949. }
  950. emms_c();
  951. return 0;
  952. }
  953. static int encode_frame(AVCodecContext *avctx, unsigned char *buf, int buf_size, void *data){
  954. FFV1Context *f = avctx->priv_data;
  955. RangeCoder * const c= &f->slice_context[0]->c;
  956. AVFrame *pict = data;
  957. AVFrame * const p= &f->picture;
  958. int used_count= 0;
  959. uint8_t keystate=128;
  960. uint8_t *buf_p;
  961. int i;
  962. ff_init_range_encoder(c, buf, buf_size);
  963. ff_build_rac_states(c, 0.05*(1LL<<32), 256-8);
  964. *p = *pict;
  965. p->pict_type= FF_I_TYPE;
  966. if(avctx->gop_size==0 || f->picture_number % avctx->gop_size == 0){
  967. put_rac(c, &keystate, 1);
  968. p->key_frame= 1;
  969. write_header(f);
  970. clear_state(f);
  971. }else{
  972. put_rac(c, &keystate, 0);
  973. p->key_frame= 0;
  974. }
  975. if(!f->ac){
  976. used_count += ff_rac_terminate(c);
  977. //printf("pos=%d\n", used_count);
  978. init_put_bits(&f->slice_context[0]->pb, buf + used_count, buf_size - used_count);
  979. }else if (f->ac>1){
  980. int i;
  981. for(i=1; i<256; i++){
  982. c->one_state[i]= f->state_transition[i];
  983. c->zero_state[256-i]= 256-c->one_state[i];
  984. }
  985. }
  986. for(i=1; i<f->slice_count; i++){
  987. FFV1Context *fs= f->slice_context[i];
  988. uint8_t *start= buf + (buf_size-used_count)*i/f->slice_count;
  989. int len= buf_size/f->slice_count;
  990. if(fs->ac){
  991. ff_init_range_encoder(&fs->c, start, len);
  992. }else{
  993. init_put_bits(&fs->pb, start, len);
  994. }
  995. }
  996. avctx->execute(avctx, encode_slice, &f->slice_context[0], NULL, f->slice_count, sizeof(void*));
  997. buf_p=buf;
  998. for(i=0; i<f->slice_count; i++){
  999. FFV1Context *fs= f->slice_context[i];
  1000. int bytes;
  1001. if(fs->ac){
  1002. uint8_t state=128;
  1003. put_rac(&fs->c, &state, 0);
  1004. bytes= ff_rac_terminate(&fs->c);
  1005. }else{
  1006. flush_put_bits(&fs->pb); //nicer padding FIXME
  1007. bytes= used_count + (put_bits_count(&fs->pb)+7)/8;
  1008. used_count= 0;
  1009. }
  1010. if(i>0){
  1011. av_assert0(bytes < buf_size/f->slice_count);
  1012. memmove(buf_p, fs->ac ? fs->c.bytestream_start : fs->pb.buf, bytes);
  1013. av_assert0(bytes < (1<<24));
  1014. AV_WB24(buf_p+bytes, bytes);
  1015. bytes+=3;
  1016. }
  1017. buf_p += bytes;
  1018. }
  1019. if((avctx->flags&CODEC_FLAG_PASS1) && (f->picture_number&31)==0){
  1020. int j, k, m;
  1021. char *p= avctx->stats_out;
  1022. char *end= p + STATS_OUT_SIZE;
  1023. memset(f->rc_stat, 0, sizeof(f->rc_stat));
  1024. for(i=0; i<f->quant_table_count; i++)
  1025. memset(f->rc_stat2[i], 0, f->context_count[i]*sizeof(*f->rc_stat2[i]));
  1026. for(j=0; j<f->slice_count; j++){
  1027. FFV1Context *fs= f->slice_context[j];
  1028. for(i=0; i<256; i++){
  1029. f->rc_stat[i][0] += fs->rc_stat[i][0];
  1030. f->rc_stat[i][1] += fs->rc_stat[i][1];
  1031. }
  1032. for(i=0; i<f->quant_table_count; i++){
  1033. for(k=0; k<f->context_count[i]; k++){
  1034. for(m=0; m<32; m++){
  1035. f->rc_stat2[i][k][m][0] += fs->rc_stat2[i][k][m][0];
  1036. f->rc_stat2[i][k][m][1] += fs->rc_stat2[i][k][m][1];
  1037. }
  1038. }
  1039. }
  1040. }
  1041. for(j=0; j<256; j++){
  1042. snprintf(p, end-p, "%"PRIu64" %"PRIu64" ", f->rc_stat[j][0], f->rc_stat[j][1]);
  1043. p+= strlen(p);
  1044. }
  1045. snprintf(p, end-p, "\n");
  1046. for(i=0; i<f->quant_table_count; i++){
  1047. for(j=0; j<f->context_count[i]; j++){
  1048. for(m=0; m<32; m++){
  1049. snprintf(p, end-p, "%"PRIu64" %"PRIu64" ", f->rc_stat2[i][j][m][0], f->rc_stat2[i][j][m][1]);
  1050. p+= strlen(p);
  1051. }
  1052. }
  1053. }
  1054. snprintf(p, end-p, "\n");
  1055. } else if(avctx->flags&CODEC_FLAG_PASS1)
  1056. avctx->stats_out[0] = '\0';
  1057. f->picture_number++;
  1058. return buf_p-buf;
  1059. }
  1060. #endif /* CONFIG_FFV1_ENCODER */
  1061. static av_cold int common_end(AVCodecContext *avctx){
  1062. FFV1Context *s = avctx->priv_data;
  1063. int i, j;
  1064. for(j=0; j<s->slice_count; j++){
  1065. FFV1Context *fs= s->slice_context[j];
  1066. for(i=0; i<s->plane_count; i++){
  1067. PlaneContext *p= &fs->plane[i];
  1068. av_freep(&p->state);
  1069. av_freep(&p->vlc_state);
  1070. }
  1071. av_freep(&fs->sample_buffer);
  1072. }
  1073. av_freep(&avctx->stats_out);
  1074. for(j=0; j<s->quant_table_count; j++){
  1075. av_freep(&s->initial_states[j]);
  1076. for(i=0; i<s->slice_count; i++){
  1077. FFV1Context *sf= s->slice_context[i];
  1078. av_freep(&sf->rc_stat2[j]);
  1079. }
  1080. av_freep(&s->rc_stat2[j]);
  1081. }
  1082. return 0;
  1083. }
  1084. static av_always_inline void decode_line(FFV1Context *s, int w, int_fast16_t *sample[2], int plane_index, int bits){
  1085. PlaneContext * const p= &s->plane[plane_index];
  1086. RangeCoder * const c= &s->c;
  1087. int x;
  1088. int run_count=0;
  1089. int run_mode=0;
  1090. int run_index= s->run_index;
  1091. for(x=0; x<w; x++){
  1092. int diff, context, sign;
  1093. context= get_context(p, sample[1] + x, sample[0] + x, sample[1] + x);
  1094. if(context < 0){
  1095. context= -context;
  1096. sign=1;
  1097. }else
  1098. sign=0;
  1099. av_assert2(context < p->context_count);
  1100. if(s->ac){
  1101. diff= get_symbol_inline(c, p->state[context], 1);
  1102. }else{
  1103. if(context == 0 && run_mode==0) run_mode=1;
  1104. if(run_mode){
  1105. if(run_count==0 && run_mode==1){
  1106. if(get_bits1(&s->gb)){
  1107. run_count = 1<<ff_log2_run[run_index];
  1108. if(x + run_count <= w) run_index++;
  1109. }else{
  1110. if(ff_log2_run[run_index]) run_count = get_bits(&s->gb, ff_log2_run[run_index]);
  1111. else run_count=0;
  1112. if(run_index) run_index--;
  1113. run_mode=2;
  1114. }
  1115. }
  1116. run_count--;
  1117. if(run_count < 0){
  1118. run_mode=0;
  1119. run_count=0;
  1120. diff= get_vlc_symbol(&s->gb, &p->vlc_state[context], bits);
  1121. if(diff>=0) diff++;
  1122. }else
  1123. diff=0;
  1124. }else
  1125. diff= get_vlc_symbol(&s->gb, &p->vlc_state[context], bits);
  1126. // printf("count:%d index:%d, mode:%d, x:%d y:%d pos:%d\n", run_count, run_index, run_mode, x, y, get_bits_count(&s->gb));
  1127. }
  1128. if(sign) diff= -diff;
  1129. sample[1][x]= (predict(sample[1] + x, sample[0] + x) + diff) & ((1<<bits)-1);
  1130. }
  1131. s->run_index= run_index;
  1132. }
  1133. static void decode_plane(FFV1Context *s, uint8_t *src, int w, int h, int stride, int plane_index){
  1134. int x, y;
  1135. int_fast16_t *sample[2];
  1136. sample[0]=s->sample_buffer +3;
  1137. sample[1]=s->sample_buffer+w+6+3;
  1138. s->run_index=0;
  1139. memset(s->sample_buffer, 0, 2*(w+6)*sizeof(*s->sample_buffer));
  1140. for(y=0; y<h; y++){
  1141. int_fast16_t *temp= sample[0]; //FIXME try a normal buffer
  1142. sample[0]= sample[1];
  1143. sample[1]= temp;
  1144. sample[1][-1]= sample[0][0 ];
  1145. sample[0][ w]= sample[0][w-1];
  1146. //{START_TIMER
  1147. if(s->avctx->bits_per_raw_sample <= 8){
  1148. decode_line(s, w, sample, plane_index, 8);
  1149. for(x=0; x<w; x++){
  1150. src[x + stride*y]= sample[1][x];
  1151. }
  1152. }else{
  1153. decode_line(s, w, sample, plane_index, s->avctx->bits_per_raw_sample);
  1154. for(x=0; x<w; x++){
  1155. ((uint16_t*)(src + stride*y))[x]= sample[1][x] << (16 - s->avctx->bits_per_raw_sample);
  1156. }
  1157. }
  1158. //STOP_TIMER("decode-line")}
  1159. }
  1160. }
  1161. static void decode_rgb_frame(FFV1Context *s, uint32_t *src, int w, int h, int stride){
  1162. int x, y, p;
  1163. int_fast16_t *sample[3][2];
  1164. for(x=0; x<3; x++){
  1165. sample[x][0] = s->sample_buffer + x*2 *(w+6) + 3;
  1166. sample[x][1] = s->sample_buffer + (x*2+1)*(w+6) + 3;
  1167. }
  1168. s->run_index=0;
  1169. memset(s->sample_buffer, 0, 6*(w+6)*sizeof(*s->sample_buffer));
  1170. for(y=0; y<h; y++){
  1171. for(p=0; p<3; p++){
  1172. int_fast16_t *temp= sample[p][0]; //FIXME try a normal buffer
  1173. sample[p][0]= sample[p][1];
  1174. sample[p][1]= temp;
  1175. sample[p][1][-1]= sample[p][0][0 ];
  1176. sample[p][0][ w]= sample[p][0][w-1];
  1177. decode_line(s, w, sample[p], FFMIN(p, 1), 9);
  1178. }
  1179. for(x=0; x<w; x++){
  1180. int g= sample[0][1][x];
  1181. int b= sample[1][1][x];
  1182. int r= sample[2][1][x];
  1183. // assert(g>=0 && b>=0 && r>=0);
  1184. // assert(g<256 && b<512 && r<512);
  1185. b -= 0x100;
  1186. r -= 0x100;
  1187. g -= (b + r)>>2;
  1188. b += g;
  1189. r += g;
  1190. src[x + stride*y]= b + (g<<8) + (r<<16) + (0xFF<<24);
  1191. }
  1192. }
  1193. }
  1194. static int decode_slice(AVCodecContext *c, void *arg){
  1195. FFV1Context *fs= *(void**)arg;
  1196. FFV1Context *f= fs->avctx->priv_data;
  1197. int width = fs->slice_width;
  1198. int height= fs->slice_height;
  1199. int x= fs->slice_x;
  1200. int y= fs->slice_y;
  1201. AVFrame * const p= &f->picture;
  1202. av_assert1(width && height);
  1203. if(f->colorspace==0){
  1204. const int chroma_width = -((-width )>>f->chroma_h_shift);
  1205. const int chroma_height= -((-height)>>f->chroma_v_shift);
  1206. const int cx= x>>f->chroma_h_shift;
  1207. const int cy= y>>f->chroma_v_shift;
  1208. decode_plane(fs, p->data[0] + x + y*p->linesize[0], width, height, p->linesize[0], 0);
  1209. decode_plane(fs, p->data[1] + cx+cy*p->linesize[1], chroma_width, chroma_height, p->linesize[1], 1);
  1210. decode_plane(fs, p->data[2] + cx+cy*p->linesize[1], chroma_width, chroma_height, p->linesize[2], 1);
  1211. }else{
  1212. decode_rgb_frame(fs, (uint32_t*)p->data[0] + x + y*(p->linesize[0]/4), width, height, p->linesize[0]/4);
  1213. }
  1214. emms_c();
  1215. return 0;
  1216. }
  1217. static int read_quant_table(RangeCoder *c, int16_t *quant_table, int scale){
  1218. int v;
  1219. int i=0;
  1220. uint8_t state[CONTEXT_SIZE];
  1221. memset(state, 128, sizeof(state));
  1222. for(v=0; i<128 ; v++){
  1223. int len= get_symbol(c, state, 0) + 1;
  1224. if(len + i > 128) return -1;
  1225. while(len--){
  1226. quant_table[i] = scale*v;
  1227. i++;
  1228. //printf("%2d ",v);
  1229. //if(i%16==0) printf("\n");
  1230. }
  1231. }
  1232. for(i=1; i<128; i++){
  1233. quant_table[256-i]= -quant_table[i];
  1234. }
  1235. quant_table[128]= -quant_table[127];
  1236. return 2*v - 1;
  1237. }
  1238. static int read_quant_tables(RangeCoder *c, int16_t quant_table[MAX_CONTEXT_INPUTS][256]){
  1239. int i;
  1240. int context_count=1;
  1241. for(i=0; i<5; i++){
  1242. context_count*= read_quant_table(c, quant_table[i], context_count);
  1243. if(context_count > 32768U){
  1244. return -1;
  1245. }
  1246. }
  1247. return (context_count+1)/2;
  1248. }
  1249. static int read_extra_header(FFV1Context *f){
  1250. RangeCoder * const c= &f->c;
  1251. uint8_t state[CONTEXT_SIZE];
  1252. int i, j, k;
  1253. uint8_t state2[32][CONTEXT_SIZE];
  1254. memset(state2, 128, sizeof(state2));
  1255. memset(state, 128, sizeof(state));
  1256. ff_init_range_decoder(c, f->avctx->extradata, f->avctx->extradata_size);
  1257. ff_build_rac_states(c, 0.05*(1LL<<32), 256-8);
  1258. f->version= get_symbol(c, state, 0);
  1259. f->ac= f->avctx->coder_type= get_symbol(c, state, 0);
  1260. if(f->ac>1){
  1261. for(i=1; i<256; i++){
  1262. f->state_transition[i]= get_symbol(c, state, 1) + c->one_state[i];
  1263. }
  1264. }
  1265. f->colorspace= get_symbol(c, state, 0); //YUV cs type
  1266. f->avctx->bits_per_raw_sample= get_symbol(c, state, 0);
  1267. get_rac(c, state); //no chroma = false
  1268. f->chroma_h_shift= get_symbol(c, state, 0);
  1269. f->chroma_v_shift= get_symbol(c, state, 0);
  1270. get_rac(c, state); //transparency plane
  1271. f->plane_count= 2;
  1272. f->num_h_slices= 1 + get_symbol(c, state, 0);
  1273. f->num_v_slices= 1 + get_symbol(c, state, 0);
  1274. if(f->num_h_slices > (unsigned)f->width || f->num_v_slices > (unsigned)f->height){
  1275. av_log(f->avctx, AV_LOG_ERROR, "too many slices\n");
  1276. return -1;
  1277. }
  1278. f->quant_table_count= get_symbol(c, state, 0);
  1279. if(f->quant_table_count > (unsigned)MAX_QUANT_TABLES)
  1280. return -1;
  1281. for(i=0; i<f->quant_table_count; i++){
  1282. if((f->context_count[i]= read_quant_tables(c, f->quant_tables[i])) < 0){
  1283. av_log(f->avctx, AV_LOG_ERROR, "read_quant_table error\n");
  1284. return -1;
  1285. }
  1286. }
  1287. if(allocate_initial_states(f) < 0)
  1288. return AVERROR(ENOMEM);
  1289. for(i=0; i<f->quant_table_count; i++){
  1290. if(get_rac(c, state)){
  1291. for(j=0; j<f->context_count[i]; j++){
  1292. for(k=0; k<CONTEXT_SIZE; k++){
  1293. int pred= j ? f->initial_states[i][j-1][k] : 128;
  1294. f->initial_states[i][j][k]= (pred+get_symbol(c, state2[k], 1))&0xFF;
  1295. }
  1296. }
  1297. }
  1298. }
  1299. return 0;
  1300. }
  1301. static int read_header(FFV1Context *f){
  1302. uint8_t state[CONTEXT_SIZE];
  1303. int i, j, context_count;
  1304. RangeCoder * const c= &f->slice_context[0]->c;
  1305. memset(state, 128, sizeof(state));
  1306. if(f->version < 2){
  1307. f->version= get_symbol(c, state, 0);
  1308. f->ac= f->avctx->coder_type= get_symbol(c, state, 0);
  1309. if(f->ac>1){
  1310. for(i=1; i<256; i++){
  1311. f->state_transition[i]= get_symbol(c, state, 1) + c->one_state[i];
  1312. }
  1313. }
  1314. f->colorspace= get_symbol(c, state, 0); //YUV cs type
  1315. if(f->version>0)
  1316. f->avctx->bits_per_raw_sample= get_symbol(c, state, 0);
  1317. get_rac(c, state); //no chroma = false
  1318. f->chroma_h_shift= get_symbol(c, state, 0);
  1319. f->chroma_v_shift= get_symbol(c, state, 0);
  1320. get_rac(c, state); //transparency plane
  1321. f->plane_count= 2;
  1322. }
  1323. if(f->colorspace==0){
  1324. if(f->avctx->bits_per_raw_sample<=8){
  1325. switch(16*f->chroma_h_shift + f->chroma_v_shift){
  1326. case 0x00: f->avctx->pix_fmt= PIX_FMT_YUV444P; break;
  1327. case 0x10: f->avctx->pix_fmt= PIX_FMT_YUV422P; break;
  1328. case 0x11: f->avctx->pix_fmt= PIX_FMT_YUV420P; break;
  1329. case 0x20: f->avctx->pix_fmt= PIX_FMT_YUV411P; break;
  1330. case 0x22: f->avctx->pix_fmt= PIX_FMT_YUV410P; break;
  1331. default:
  1332. av_log(f->avctx, AV_LOG_ERROR, "format not supported\n");
  1333. return -1;
  1334. }
  1335. }else{
  1336. switch(16*f->chroma_h_shift + f->chroma_v_shift){
  1337. case 0x00: f->avctx->pix_fmt= PIX_FMT_YUV444P16; break;
  1338. case 0x10: f->avctx->pix_fmt= PIX_FMT_YUV422P16; break;
  1339. case 0x11: f->avctx->pix_fmt= PIX_FMT_YUV420P16; break;
  1340. default:
  1341. av_log(f->avctx, AV_LOG_ERROR, "format not supported\n");
  1342. return -1;
  1343. }
  1344. }
  1345. }else if(f->colorspace==1){
  1346. if(f->chroma_h_shift || f->chroma_v_shift){
  1347. av_log(f->avctx, AV_LOG_ERROR, "chroma subsampling not supported in this colorspace\n");
  1348. return -1;
  1349. }
  1350. f->avctx->pix_fmt= PIX_FMT_RGB32;
  1351. }else{
  1352. av_log(f->avctx, AV_LOG_ERROR, "colorspace not supported\n");
  1353. return -1;
  1354. }
  1355. //printf("%d %d %d\n", f->chroma_h_shift, f->chroma_v_shift,f->avctx->pix_fmt);
  1356. if(f->version < 2){
  1357. context_count= read_quant_tables(c, f->quant_table);
  1358. if(context_count < 0){
  1359. av_log(f->avctx, AV_LOG_ERROR, "read_quant_table error\n");
  1360. return -1;
  1361. }
  1362. }else{
  1363. f->slice_count= get_symbol(c, state, 0);
  1364. if(f->slice_count > (unsigned)MAX_SLICES)
  1365. return -1;
  1366. }
  1367. for(j=0; j<f->slice_count; j++){
  1368. FFV1Context *fs= f->slice_context[j];
  1369. fs->ac= f->ac;
  1370. if(f->version >= 2){
  1371. fs->slice_x = get_symbol(c, state, 0) *f->width ;
  1372. fs->slice_y = get_symbol(c, state, 0) *f->height;
  1373. fs->slice_width =(get_symbol(c, state, 0)+1)*f->width + fs->slice_x;
  1374. fs->slice_height=(get_symbol(c, state, 0)+1)*f->height + fs->slice_y;
  1375. fs->slice_x /= f->num_h_slices;
  1376. fs->slice_y /= f->num_v_slices;
  1377. fs->slice_width = fs->slice_width /f->num_h_slices - fs->slice_x;
  1378. fs->slice_height = fs->slice_height/f->num_v_slices - fs->slice_y;
  1379. if((unsigned)fs->slice_width > f->width || (unsigned)fs->slice_height > f->height)
  1380. return -1;
  1381. if( (unsigned)fs->slice_x + (uint64_t)fs->slice_width > f->width
  1382. || (unsigned)fs->slice_y + (uint64_t)fs->slice_height > f->height)
  1383. return -1;
  1384. }
  1385. for(i=0; i<f->plane_count; i++){
  1386. PlaneContext * const p= &fs->plane[i];
  1387. if(f->version >= 2){
  1388. int idx=get_symbol(c, state, 0);
  1389. if(idx > (unsigned)f->quant_table_count){
  1390. av_log(f->avctx, AV_LOG_ERROR, "quant_table_index out of range\n");
  1391. return -1;
  1392. }
  1393. p->quant_table_index= idx;
  1394. memcpy(p->quant_table, f->quant_tables[idx], sizeof(p->quant_table));
  1395. context_count= f->context_count[idx];
  1396. }else{
  1397. memcpy(p->quant_table, f->quant_table, sizeof(p->quant_table));
  1398. }
  1399. if(p->context_count < context_count){
  1400. av_freep(&p->state);
  1401. av_freep(&p->vlc_state);
  1402. }
  1403. p->context_count= context_count;
  1404. }
  1405. }
  1406. return 0;
  1407. }
  1408. static av_cold int decode_init(AVCodecContext *avctx)
  1409. {
  1410. FFV1Context *f = avctx->priv_data;
  1411. common_init(avctx);
  1412. if(avctx->extradata && read_extra_header(f) < 0)
  1413. return -1;
  1414. if(init_slice_contexts(f) < 0)
  1415. return -1;
  1416. return 0;
  1417. }
  1418. static int decode_frame(AVCodecContext *avctx, void *data, int *data_size, AVPacket *avpkt){
  1419. const uint8_t *buf = avpkt->data;
  1420. int buf_size = avpkt->size;
  1421. FFV1Context *f = avctx->priv_data;
  1422. RangeCoder * const c= &f->slice_context[0]->c;
  1423. AVFrame * const p= &f->picture;
  1424. int bytes_read, i;
  1425. uint8_t keystate= 128;
  1426. const uint8_t *buf_p;
  1427. AVFrame *picture = data;
  1428. ff_init_range_decoder(c, buf, buf_size);
  1429. ff_build_rac_states(c, 0.05*(1LL<<32), 256-8);
  1430. p->pict_type= FF_I_TYPE; //FIXME I vs. P
  1431. if(get_rac(c, &keystate)){
  1432. p->key_frame= 1;
  1433. if(read_header(f) < 0)
  1434. return -1;
  1435. if(init_slice_state(f) < 0)
  1436. return -1;
  1437. clear_state(f);
  1438. }else{
  1439. p->key_frame= 0;
  1440. }
  1441. if(f->ac>1){
  1442. int i;
  1443. for(i=1; i<256; i++){
  1444. c->one_state[i]= f->state_transition[i];
  1445. c->zero_state[256-i]= 256-c->one_state[i];
  1446. }
  1447. }
  1448. p->reference= 0;
  1449. if(avctx->get_buffer(avctx, p) < 0){
  1450. av_log(avctx, AV_LOG_ERROR, "get_buffer() failed\n");
  1451. return -1;
  1452. }
  1453. if(avctx->debug&FF_DEBUG_PICT_INFO)
  1454. av_log(avctx, AV_LOG_ERROR, "keyframe:%d coder:%d\n", p->key_frame, f->ac);
  1455. if(!f->ac){
  1456. bytes_read = c->bytestream - c->bytestream_start - 1;
  1457. if(bytes_read ==0) av_log(avctx, AV_LOG_ERROR, "error at end of AC stream\n"); //FIXME
  1458. //printf("pos=%d\n", bytes_read);
  1459. init_get_bits(&f->slice_context[0]->gb, buf + bytes_read, buf_size - bytes_read);
  1460. } else {
  1461. bytes_read = 0; /* avoid warning */
  1462. }
  1463. buf_p= buf + buf_size;
  1464. for(i=f->slice_count-1; i>0; i--){
  1465. FFV1Context *fs= f->slice_context[i];
  1466. int v= AV_RB24(buf_p-3)+3;
  1467. if(buf_p - buf <= v){
  1468. av_log(avctx, AV_LOG_ERROR, "Slice pointer chain broken\n");
  1469. return -1;
  1470. }
  1471. buf_p -= v;
  1472. if(fs->ac){
  1473. ff_init_range_decoder(&fs->c, buf_p, v);
  1474. }else{
  1475. init_get_bits(&fs->gb, buf_p, v);
  1476. }
  1477. }
  1478. avctx->execute(avctx, decode_slice, &f->slice_context[0], NULL, f->slice_count, sizeof(void*));
  1479. f->picture_number++;
  1480. *picture= *p;
  1481. avctx->release_buffer(avctx, p); //FIXME
  1482. *data_size = sizeof(AVFrame);
  1483. return buf_size;
  1484. }
  1485. AVCodec ffv1_decoder = {
  1486. "ffv1",
  1487. AVMEDIA_TYPE_VIDEO,
  1488. CODEC_ID_FFV1,
  1489. sizeof(FFV1Context),
  1490. decode_init,
  1491. NULL,
  1492. common_end,
  1493. decode_frame,
  1494. CODEC_CAP_DR1 /*| CODEC_CAP_DRAW_HORIZ_BAND*/,
  1495. NULL,
  1496. .long_name= NULL_IF_CONFIG_SMALL("FFmpeg video codec #1"),
  1497. };
  1498. #if CONFIG_FFV1_ENCODER
  1499. AVCodec ffv1_encoder = {
  1500. "ffv1",
  1501. AVMEDIA_TYPE_VIDEO,
  1502. CODEC_ID_FFV1,
  1503. sizeof(FFV1Context),
  1504. encode_init,
  1505. encode_frame,
  1506. common_end,
  1507. .pix_fmts= (const enum PixelFormat[]){PIX_FMT_YUV420P, PIX_FMT_YUV444P, PIX_FMT_YUV422P, PIX_FMT_YUV411P, PIX_FMT_YUV410P, PIX_FMT_RGB32, PIX_FMT_YUV420P16, PIX_FMT_YUV422P16, PIX_FMT_YUV444P16, PIX_FMT_NONE},
  1508. .long_name= NULL_IF_CONFIG_SMALL("FFmpeg video codec #1"),
  1509. };
  1510. #endif