You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

1678 lines
50KB

  1. /*
  2. * This file is part of FFmpeg.
  3. *
  4. * FFmpeg is free software; you can redistribute it and/or
  5. * modify it under the terms of the GNU Lesser General Public
  6. * License as published by the Free Software Foundation; either
  7. * version 2.1 of the License, or (at your option) any later version.
  8. *
  9. * FFmpeg is distributed in the hope that it will be useful,
  10. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  11. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  12. * Lesser General Public License for more details.
  13. *
  14. * You should have received a copy of the GNU Lesser General Public
  15. * License along with FFmpeg; if not, write to the Free Software
  16. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  17. */
  18. #include "libavutil/attributes.h"
  19. #include "libavutil/avassert.h"
  20. #include "bytestream.h"
  21. #include "cbs.h"
  22. #include "cbs_internal.h"
  23. #include "cbs_h264.h"
  24. #include "cbs_h265.h"
  25. #include "h264.h"
  26. #include "h264_sei.h"
  27. #include "h2645_parse.h"
  28. #include "hevc.h"
  29. #include "hevc_sei.h"
  30. static int cbs_read_ue_golomb(CodedBitstreamContext *ctx, GetBitContext *gbc,
  31. const char *name, const int *subscripts,
  32. uint32_t *write_to,
  33. uint32_t range_min, uint32_t range_max)
  34. {
  35. uint32_t value;
  36. int position, i, j;
  37. unsigned int k;
  38. char bits[65];
  39. position = get_bits_count(gbc);
  40. for (i = 0; i < 32; i++) {
  41. if (get_bits_left(gbc) < i + 1) {
  42. av_log(ctx->log_ctx, AV_LOG_ERROR, "Invalid ue-golomb code at "
  43. "%s: bitstream ended.\n", name);
  44. return AVERROR_INVALIDDATA;
  45. }
  46. k = get_bits1(gbc);
  47. bits[i] = k ? '1' : '0';
  48. if (k)
  49. break;
  50. }
  51. if (i >= 32) {
  52. av_log(ctx->log_ctx, AV_LOG_ERROR, "Invalid ue-golomb code at "
  53. "%s: more than 31 zeroes.\n", name);
  54. return AVERROR_INVALIDDATA;
  55. }
  56. value = 1;
  57. for (j = 0; j < i; j++) {
  58. k = get_bits1(gbc);
  59. bits[i + j + 1] = k ? '1' : '0';
  60. value = value << 1 | k;
  61. }
  62. bits[i + j + 1] = 0;
  63. --value;
  64. if (ctx->trace_enable)
  65. ff_cbs_trace_syntax_element(ctx, position, name, subscripts,
  66. bits, value);
  67. if (value < range_min || value > range_max) {
  68. av_log(ctx->log_ctx, AV_LOG_ERROR, "%s out of range: "
  69. "%"PRIu32", but must be in [%"PRIu32",%"PRIu32"].\n",
  70. name, value, range_min, range_max);
  71. return AVERROR_INVALIDDATA;
  72. }
  73. *write_to = value;
  74. return 0;
  75. }
  76. static int cbs_read_se_golomb(CodedBitstreamContext *ctx, GetBitContext *gbc,
  77. const char *name, const int *subscripts,
  78. int32_t *write_to,
  79. int32_t range_min, int32_t range_max)
  80. {
  81. int32_t value;
  82. int position, i, j;
  83. unsigned int k;
  84. uint32_t v;
  85. char bits[65];
  86. position = get_bits_count(gbc);
  87. for (i = 0; i < 32; i++) {
  88. if (get_bits_left(gbc) < i + 1) {
  89. av_log(ctx->log_ctx, AV_LOG_ERROR, "Invalid se-golomb code at "
  90. "%s: bitstream ended.\n", name);
  91. return AVERROR_INVALIDDATA;
  92. }
  93. k = get_bits1(gbc);
  94. bits[i] = k ? '1' : '0';
  95. if (k)
  96. break;
  97. }
  98. if (i >= 32) {
  99. av_log(ctx->log_ctx, AV_LOG_ERROR, "Invalid se-golomb code at "
  100. "%s: more than 31 zeroes.\n", name);
  101. return AVERROR_INVALIDDATA;
  102. }
  103. v = 1;
  104. for (j = 0; j < i; j++) {
  105. k = get_bits1(gbc);
  106. bits[i + j + 1] = k ? '1' : '0';
  107. v = v << 1 | k;
  108. }
  109. bits[i + j + 1] = 0;
  110. if (v & 1)
  111. value = -(int32_t)(v / 2);
  112. else
  113. value = v / 2;
  114. if (ctx->trace_enable)
  115. ff_cbs_trace_syntax_element(ctx, position, name, subscripts,
  116. bits, value);
  117. if (value < range_min || value > range_max) {
  118. av_log(ctx->log_ctx, AV_LOG_ERROR, "%s out of range: "
  119. "%"PRId32", but must be in [%"PRId32",%"PRId32"].\n",
  120. name, value, range_min, range_max);
  121. return AVERROR_INVALIDDATA;
  122. }
  123. *write_to = value;
  124. return 0;
  125. }
  126. static int cbs_write_ue_golomb(CodedBitstreamContext *ctx, PutBitContext *pbc,
  127. const char *name, const int *subscripts,
  128. uint32_t value,
  129. uint32_t range_min, uint32_t range_max)
  130. {
  131. int len;
  132. if (value < range_min || value > range_max) {
  133. av_log(ctx->log_ctx, AV_LOG_ERROR, "%s out of range: "
  134. "%"PRIu32", but must be in [%"PRIu32",%"PRIu32"].\n",
  135. name, value, range_min, range_max);
  136. return AVERROR_INVALIDDATA;
  137. }
  138. av_assert0(value != UINT32_MAX);
  139. len = av_log2(value + 1);
  140. if (put_bits_left(pbc) < 2 * len + 1)
  141. return AVERROR(ENOSPC);
  142. if (ctx->trace_enable) {
  143. char bits[65];
  144. int i;
  145. for (i = 0; i < len; i++)
  146. bits[i] = '0';
  147. bits[len] = '1';
  148. for (i = 0; i < len; i++)
  149. bits[len + i + 1] = (value + 1) >> (len - i - 1) & 1 ? '1' : '0';
  150. bits[len + len + 1] = 0;
  151. ff_cbs_trace_syntax_element(ctx, put_bits_count(pbc),
  152. name, subscripts, bits, value);
  153. }
  154. put_bits(pbc, len, 0);
  155. if (len + 1 < 32)
  156. put_bits(pbc, len + 1, value + 1);
  157. else
  158. put_bits32(pbc, value + 1);
  159. return 0;
  160. }
  161. static int cbs_write_se_golomb(CodedBitstreamContext *ctx, PutBitContext *pbc,
  162. const char *name, const int *subscripts,
  163. int32_t value,
  164. int32_t range_min, int32_t range_max)
  165. {
  166. int len;
  167. uint32_t uvalue;
  168. if (value < range_min || value > range_max) {
  169. av_log(ctx->log_ctx, AV_LOG_ERROR, "%s out of range: "
  170. "%"PRId32", but must be in [%"PRId32",%"PRId32"].\n",
  171. name, value, range_min, range_max);
  172. return AVERROR_INVALIDDATA;
  173. }
  174. av_assert0(value != INT32_MIN);
  175. if (value == 0)
  176. uvalue = 0;
  177. else if (value > 0)
  178. uvalue = 2 * (uint32_t)value - 1;
  179. else
  180. uvalue = 2 * (uint32_t)-value;
  181. len = av_log2(uvalue + 1);
  182. if (put_bits_left(pbc) < 2 * len + 1)
  183. return AVERROR(ENOSPC);
  184. if (ctx->trace_enable) {
  185. char bits[65];
  186. int i;
  187. for (i = 0; i < len; i++)
  188. bits[i] = '0';
  189. bits[len] = '1';
  190. for (i = 0; i < len; i++)
  191. bits[len + i + 1] = (uvalue + 1) >> (len - i - 1) & 1 ? '1' : '0';
  192. bits[len + len + 1] = 0;
  193. ff_cbs_trace_syntax_element(ctx, put_bits_count(pbc),
  194. name, subscripts, bits, value);
  195. }
  196. put_bits(pbc, len, 0);
  197. if (len + 1 < 32)
  198. put_bits(pbc, len + 1, uvalue + 1);
  199. else
  200. put_bits32(pbc, uvalue + 1);
  201. return 0;
  202. }
  203. #define HEADER(name) do { \
  204. ff_cbs_trace_header(ctx, name); \
  205. } while (0)
  206. #define CHECK(call) do { \
  207. err = (call); \
  208. if (err < 0) \
  209. return err; \
  210. } while (0)
  211. #define FUNC_NAME(rw, codec, name) cbs_ ## codec ## _ ## rw ## _ ## name
  212. #define FUNC_H264(rw, name) FUNC_NAME(rw, h264, name)
  213. #define FUNC_H265(rw, name) FUNC_NAME(rw, h265, name)
  214. #define SUBSCRIPTS(subs, ...) (subs > 0 ? ((int[subs + 1]){ subs, __VA_ARGS__ }) : NULL)
  215. #define u(width, name, range_min, range_max) \
  216. xu(width, name, current->name, range_min, range_max, 0)
  217. #define ub(width, name) \
  218. xu(width, name, current->name, 0, MAX_UINT_BITS(width), 0)
  219. #define flag(name) ub(1, name)
  220. #define ue(name, range_min, range_max) \
  221. xue(name, current->name, range_min, range_max, 0)
  222. #define i(width, name, range_min, range_max) \
  223. xi(width, name, current->name, range_min, range_max, 0)
  224. #define ib(width, name) \
  225. xi(width, name, current->name, MIN_INT_BITS(width), MAX_INT_BITS(width), 0)
  226. #define se(name, range_min, range_max) \
  227. xse(name, current->name, range_min, range_max, 0)
  228. #define us(width, name, range_min, range_max, subs, ...) \
  229. xu(width, name, current->name, range_min, range_max, subs, __VA_ARGS__)
  230. #define ubs(width, name, subs, ...) \
  231. xu(width, name, current->name, 0, MAX_UINT_BITS(width), subs, __VA_ARGS__)
  232. #define flags(name, subs, ...) \
  233. xu(1, name, current->name, 0, 1, subs, __VA_ARGS__)
  234. #define ues(name, range_min, range_max, subs, ...) \
  235. xue(name, current->name, range_min, range_max, subs, __VA_ARGS__)
  236. #define is(width, name, range_min, range_max, subs, ...) \
  237. xi(width, name, current->name, range_min, range_max, subs, __VA_ARGS__)
  238. #define ibs(width, name, subs, ...) \
  239. xi(width, name, current->name, MIN_INT_BITS(width), MAX_INT_BITS(width), subs, __VA_ARGS__)
  240. #define ses(name, range_min, range_max, subs, ...) \
  241. xse(name, current->name, range_min, range_max, subs, __VA_ARGS__)
  242. #define fixed(width, name, value) do { \
  243. av_unused uint32_t fixed_value = value; \
  244. xu(width, name, fixed_value, value, value, 0); \
  245. } while (0)
  246. #define READ
  247. #define READWRITE read
  248. #define RWContext GetBitContext
  249. #define xu(width, name, var, range_min, range_max, subs, ...) do { \
  250. uint32_t value; \
  251. CHECK(ff_cbs_read_unsigned(ctx, rw, width, #name, \
  252. SUBSCRIPTS(subs, __VA_ARGS__), \
  253. &value, range_min, range_max)); \
  254. var = value; \
  255. } while (0)
  256. #define xue(name, var, range_min, range_max, subs, ...) do { \
  257. uint32_t value; \
  258. CHECK(cbs_read_ue_golomb(ctx, rw, #name, \
  259. SUBSCRIPTS(subs, __VA_ARGS__), \
  260. &value, range_min, range_max)); \
  261. var = value; \
  262. } while (0)
  263. #define xi(width, name, var, range_min, range_max, subs, ...) do { \
  264. int32_t value; \
  265. CHECK(ff_cbs_read_signed(ctx, rw, width, #name, \
  266. SUBSCRIPTS(subs, __VA_ARGS__), \
  267. &value, range_min, range_max)); \
  268. var = value; \
  269. } while (0)
  270. #define xse(name, var, range_min, range_max, subs, ...) do { \
  271. int32_t value; \
  272. CHECK(cbs_read_se_golomb(ctx, rw, #name, \
  273. SUBSCRIPTS(subs, __VA_ARGS__), \
  274. &value, range_min, range_max)); \
  275. var = value; \
  276. } while (0)
  277. #define infer(name, value) do { \
  278. current->name = value; \
  279. } while (0)
  280. static int cbs_h2645_read_more_rbsp_data(GetBitContext *gbc)
  281. {
  282. int bits_left = get_bits_left(gbc);
  283. if (bits_left > 8)
  284. return 1;
  285. if (bits_left == 0)
  286. return 0;
  287. if (show_bits(gbc, bits_left) & MAX_UINT_BITS(bits_left - 1))
  288. return 1;
  289. return 0;
  290. }
  291. #define more_rbsp_data(var) ((var) = cbs_h2645_read_more_rbsp_data(rw))
  292. #define byte_alignment(rw) (get_bits_count(rw) % 8)
  293. #define allocate(name, size) do { \
  294. name ## _ref = av_buffer_allocz(size + \
  295. AV_INPUT_BUFFER_PADDING_SIZE); \
  296. if (!name ## _ref) \
  297. return AVERROR(ENOMEM); \
  298. name = name ## _ref->data; \
  299. } while (0)
  300. #define FUNC(name) FUNC_H264(READWRITE, name)
  301. #include "cbs_h264_syntax_template.c"
  302. #undef FUNC
  303. #define FUNC(name) FUNC_H265(READWRITE, name)
  304. #include "cbs_h265_syntax_template.c"
  305. #undef FUNC
  306. #undef READ
  307. #undef READWRITE
  308. #undef RWContext
  309. #undef xu
  310. #undef xi
  311. #undef xue
  312. #undef xse
  313. #undef infer
  314. #undef more_rbsp_data
  315. #undef byte_alignment
  316. #undef allocate
  317. #define WRITE
  318. #define READWRITE write
  319. #define RWContext PutBitContext
  320. #define xu(width, name, var, range_min, range_max, subs, ...) do { \
  321. uint32_t value = var; \
  322. CHECK(ff_cbs_write_unsigned(ctx, rw, width, #name, \
  323. SUBSCRIPTS(subs, __VA_ARGS__), \
  324. value, range_min, range_max)); \
  325. } while (0)
  326. #define xue(name, var, range_min, range_max, subs, ...) do { \
  327. uint32_t value = var; \
  328. CHECK(cbs_write_ue_golomb(ctx, rw, #name, \
  329. SUBSCRIPTS(subs, __VA_ARGS__), \
  330. value, range_min, range_max)); \
  331. } while (0)
  332. #define xi(width, name, var, range_min, range_max, subs, ...) do { \
  333. int32_t value = var; \
  334. CHECK(ff_cbs_write_signed(ctx, rw, width, #name, \
  335. SUBSCRIPTS(subs, __VA_ARGS__), \
  336. value, range_min, range_max)); \
  337. } while (0)
  338. #define xse(name, var, range_min, range_max, subs, ...) do { \
  339. int32_t value = var; \
  340. CHECK(cbs_write_se_golomb(ctx, rw, #name, \
  341. SUBSCRIPTS(subs, __VA_ARGS__), \
  342. value, range_min, range_max)); \
  343. } while (0)
  344. #define infer(name, value) do { \
  345. if (current->name != (value)) { \
  346. av_log(ctx->log_ctx, AV_LOG_WARNING, "Warning: " \
  347. "%s does not match inferred value: " \
  348. "%"PRId64", but should be %"PRId64".\n", \
  349. #name, (int64_t)current->name, (int64_t)(value)); \
  350. } \
  351. } while (0)
  352. #define more_rbsp_data(var) (var)
  353. #define byte_alignment(rw) (put_bits_count(rw) % 8)
  354. #define allocate(name, size) do { \
  355. if (!name) { \
  356. av_log(ctx->log_ctx, AV_LOG_ERROR, "%s must be set " \
  357. "for writing.\n", #name); \
  358. return AVERROR_INVALIDDATA; \
  359. } \
  360. } while (0)
  361. #define FUNC(name) FUNC_H264(READWRITE, name)
  362. #include "cbs_h264_syntax_template.c"
  363. #undef FUNC
  364. #define FUNC(name) FUNC_H265(READWRITE, name)
  365. #include "cbs_h265_syntax_template.c"
  366. #undef FUNC
  367. #undef WRITE
  368. #undef READWRITE
  369. #undef RWContext
  370. #undef xu
  371. #undef xi
  372. #undef xue
  373. #undef xse
  374. #undef u
  375. #undef i
  376. #undef flag
  377. #undef ue
  378. #undef se
  379. #undef infer
  380. #undef more_rbsp_data
  381. #undef byte_alignment
  382. #undef allocate
  383. static void cbs_h264_free_pps(void *unit, uint8_t *content)
  384. {
  385. H264RawPPS *pps = (H264RawPPS*)content;
  386. av_buffer_unref(&pps->slice_group_id_ref);
  387. av_freep(&content);
  388. }
  389. static void cbs_h264_free_sei_payload(H264RawSEIPayload *payload)
  390. {
  391. switch (payload->payload_type) {
  392. case H264_SEI_TYPE_BUFFERING_PERIOD:
  393. case H264_SEI_TYPE_PIC_TIMING:
  394. case H264_SEI_TYPE_PAN_SCAN_RECT:
  395. case H264_SEI_TYPE_RECOVERY_POINT:
  396. case H264_SEI_TYPE_DISPLAY_ORIENTATION:
  397. case H264_SEI_TYPE_MASTERING_DISPLAY_COLOUR_VOLUME:
  398. case H264_SEI_TYPE_ALTERNATIVE_TRANSFER:
  399. break;
  400. case H264_SEI_TYPE_USER_DATA_REGISTERED:
  401. av_buffer_unref(&payload->payload.user_data_registered.data_ref);
  402. break;
  403. case H264_SEI_TYPE_USER_DATA_UNREGISTERED:
  404. av_buffer_unref(&payload->payload.user_data_unregistered.data_ref);
  405. break;
  406. default:
  407. av_buffer_unref(&payload->payload.other.data_ref);
  408. break;
  409. }
  410. }
  411. static void cbs_h264_free_sei(void *unit, uint8_t *content)
  412. {
  413. H264RawSEI *sei = (H264RawSEI*)content;
  414. int i;
  415. for (i = 0; i < sei->payload_count; i++)
  416. cbs_h264_free_sei_payload(&sei->payload[i]);
  417. av_freep(&content);
  418. }
  419. static void cbs_h264_free_slice(void *unit, uint8_t *content)
  420. {
  421. H264RawSlice *slice = (H264RawSlice*)content;
  422. av_buffer_unref(&slice->data_ref);
  423. av_freep(&content);
  424. }
  425. static void cbs_h265_free_vps(void *unit, uint8_t *content)
  426. {
  427. H265RawVPS *vps = (H265RawVPS*)content;
  428. av_buffer_unref(&vps->extension_data.data_ref);
  429. av_freep(&content);
  430. }
  431. static void cbs_h265_free_sps(void *unit, uint8_t *content)
  432. {
  433. H265RawSPS *sps = (H265RawSPS*)content;
  434. av_buffer_unref(&sps->extension_data.data_ref);
  435. av_freep(&content);
  436. }
  437. static void cbs_h265_free_pps(void *unit, uint8_t *content)
  438. {
  439. H265RawPPS *pps = (H265RawPPS*)content;
  440. av_buffer_unref(&pps->extension_data.data_ref);
  441. av_freep(&content);
  442. }
  443. static void cbs_h265_free_slice(void *unit, uint8_t *content)
  444. {
  445. H265RawSlice *slice = (H265RawSlice*)content;
  446. av_buffer_unref(&slice->data_ref);
  447. av_freep(&content);
  448. }
  449. static void cbs_h265_free_sei_payload(H265RawSEIPayload *payload)
  450. {
  451. switch (payload->payload_type) {
  452. case HEVC_SEI_TYPE_BUFFERING_PERIOD:
  453. case HEVC_SEI_TYPE_PICTURE_TIMING:
  454. case HEVC_SEI_TYPE_PAN_SCAN_RECT:
  455. case HEVC_SEI_TYPE_RECOVERY_POINT:
  456. case HEVC_SEI_TYPE_DISPLAY_ORIENTATION:
  457. case HEVC_SEI_TYPE_ACTIVE_PARAMETER_SETS:
  458. case HEVC_SEI_TYPE_DECODED_PICTURE_HASH:
  459. case HEVC_SEI_TYPE_TIME_CODE:
  460. case HEVC_SEI_TYPE_MASTERING_DISPLAY_INFO:
  461. case HEVC_SEI_TYPE_CONTENT_LIGHT_LEVEL_INFO:
  462. case HEVC_SEI_TYPE_ALTERNATIVE_TRANSFER_CHARACTERISTICS:
  463. case HEVC_SEI_TYPE_ALPHA_CHANNEL_INFO:
  464. break;
  465. case HEVC_SEI_TYPE_USER_DATA_REGISTERED_ITU_T_T35:
  466. av_buffer_unref(&payload->payload.user_data_registered.data_ref);
  467. break;
  468. case HEVC_SEI_TYPE_USER_DATA_UNREGISTERED:
  469. av_buffer_unref(&payload->payload.user_data_unregistered.data_ref);
  470. break;
  471. default:
  472. av_buffer_unref(&payload->payload.other.data_ref);
  473. break;
  474. }
  475. }
  476. static void cbs_h265_free_sei(void *unit, uint8_t *content)
  477. {
  478. H265RawSEI *sei = (H265RawSEI*)content;
  479. int i;
  480. for (i = 0; i < sei->payload_count; i++)
  481. cbs_h265_free_sei_payload(&sei->payload[i]);
  482. av_freep(&content);
  483. }
  484. static int cbs_h2645_fragment_add_nals(CodedBitstreamContext *ctx,
  485. CodedBitstreamFragment *frag,
  486. const H2645Packet *packet)
  487. {
  488. int err, i;
  489. for (i = 0; i < packet->nb_nals; i++) {
  490. const H2645NAL *nal = &packet->nals[i];
  491. AVBufferRef *ref;
  492. size_t size = nal->size;
  493. // Remove trailing zeroes.
  494. while (size > 0 && nal->data[size - 1] == 0)
  495. --size;
  496. av_assert0(size > 0);
  497. ref = (nal->data == nal->raw_data) ? frag->data_ref
  498. : packet->rbsp.rbsp_buffer_ref;
  499. err = ff_cbs_insert_unit_data(ctx, frag, -1, nal->type,
  500. (uint8_t*)nal->data, size, ref);
  501. if (err < 0)
  502. return err;
  503. }
  504. return 0;
  505. }
  506. static int cbs_h2645_split_fragment(CodedBitstreamContext *ctx,
  507. CodedBitstreamFragment *frag,
  508. int header)
  509. {
  510. enum AVCodecID codec_id = ctx->codec->codec_id;
  511. CodedBitstreamH2645Context *priv = ctx->priv_data;
  512. GetByteContext gbc;
  513. int err;
  514. av_assert0(frag->data && frag->nb_units == 0);
  515. if (frag->data_size == 0)
  516. return 0;
  517. if (header && frag->data[0] && codec_id == AV_CODEC_ID_H264) {
  518. // AVCC header.
  519. size_t size, start, end;
  520. int i, count, version;
  521. priv->mp4 = 1;
  522. bytestream2_init(&gbc, frag->data, frag->data_size);
  523. if (bytestream2_get_bytes_left(&gbc) < 6)
  524. return AVERROR_INVALIDDATA;
  525. version = bytestream2_get_byte(&gbc);
  526. if (version != 1) {
  527. av_log(ctx->log_ctx, AV_LOG_ERROR, "Invalid AVCC header: "
  528. "first byte %u.", version);
  529. return AVERROR_INVALIDDATA;
  530. }
  531. bytestream2_skip(&gbc, 3);
  532. priv->nal_length_size = (bytestream2_get_byte(&gbc) & 3) + 1;
  533. // SPS array.
  534. count = bytestream2_get_byte(&gbc) & 0x1f;
  535. start = bytestream2_tell(&gbc);
  536. for (i = 0; i < count; i++) {
  537. if (bytestream2_get_bytes_left(&gbc) < 2 * (count - i))
  538. return AVERROR_INVALIDDATA;
  539. size = bytestream2_get_be16(&gbc);
  540. if (bytestream2_get_bytes_left(&gbc) < size)
  541. return AVERROR_INVALIDDATA;
  542. bytestream2_skip(&gbc, size);
  543. }
  544. end = bytestream2_tell(&gbc);
  545. err = ff_h2645_packet_split(&priv->read_packet,
  546. frag->data + start, end - start,
  547. ctx->log_ctx, 1, 2, AV_CODEC_ID_H264, 1, 1);
  548. if (err < 0) {
  549. av_log(ctx->log_ctx, AV_LOG_ERROR, "Failed to split AVCC SPS array.\n");
  550. return err;
  551. }
  552. err = cbs_h2645_fragment_add_nals(ctx, frag, &priv->read_packet);
  553. if (err < 0)
  554. return err;
  555. // PPS array.
  556. count = bytestream2_get_byte(&gbc);
  557. start = bytestream2_tell(&gbc);
  558. for (i = 0; i < count; i++) {
  559. if (bytestream2_get_bytes_left(&gbc) < 2 * (count - i))
  560. return AVERROR_INVALIDDATA;
  561. size = bytestream2_get_be16(&gbc);
  562. if (bytestream2_get_bytes_left(&gbc) < size)
  563. return AVERROR_INVALIDDATA;
  564. bytestream2_skip(&gbc, size);
  565. }
  566. end = bytestream2_tell(&gbc);
  567. err = ff_h2645_packet_split(&priv->read_packet,
  568. frag->data + start, end - start,
  569. ctx->log_ctx, 1, 2, AV_CODEC_ID_H264, 1, 1);
  570. if (err < 0) {
  571. av_log(ctx->log_ctx, AV_LOG_ERROR, "Failed to split AVCC PPS array.\n");
  572. return err;
  573. }
  574. err = cbs_h2645_fragment_add_nals(ctx, frag, &priv->read_packet);
  575. if (err < 0)
  576. return err;
  577. if (bytestream2_get_bytes_left(&gbc) > 0) {
  578. av_log(ctx->log_ctx, AV_LOG_WARNING, "%u bytes left at end of AVCC "
  579. "header.\n", bytestream2_get_bytes_left(&gbc));
  580. }
  581. } else if (header && frag->data[0] && codec_id == AV_CODEC_ID_HEVC) {
  582. // HVCC header.
  583. size_t size, start, end;
  584. int i, j, nb_arrays, nal_unit_type, nb_nals, version;
  585. priv->mp4 = 1;
  586. bytestream2_init(&gbc, frag->data, frag->data_size);
  587. if (bytestream2_get_bytes_left(&gbc) < 23)
  588. return AVERROR_INVALIDDATA;
  589. version = bytestream2_get_byte(&gbc);
  590. if (version != 1) {
  591. av_log(ctx->log_ctx, AV_LOG_ERROR, "Invalid HVCC header: "
  592. "first byte %u.", version);
  593. return AVERROR_INVALIDDATA;
  594. }
  595. bytestream2_skip(&gbc, 20);
  596. priv->nal_length_size = (bytestream2_get_byte(&gbc) & 3) + 1;
  597. nb_arrays = bytestream2_get_byte(&gbc);
  598. for (i = 0; i < nb_arrays; i++) {
  599. nal_unit_type = bytestream2_get_byte(&gbc) & 0x3f;
  600. nb_nals = bytestream2_get_be16(&gbc);
  601. start = bytestream2_tell(&gbc);
  602. for (j = 0; j < nb_nals; j++) {
  603. if (bytestream2_get_bytes_left(&gbc) < 2)
  604. return AVERROR_INVALIDDATA;
  605. size = bytestream2_get_be16(&gbc);
  606. if (bytestream2_get_bytes_left(&gbc) < size)
  607. return AVERROR_INVALIDDATA;
  608. bytestream2_skip(&gbc, size);
  609. }
  610. end = bytestream2_tell(&gbc);
  611. err = ff_h2645_packet_split(&priv->read_packet,
  612. frag->data + start, end - start,
  613. ctx->log_ctx, 1, 2, AV_CODEC_ID_HEVC, 1, 1);
  614. if (err < 0) {
  615. av_log(ctx->log_ctx, AV_LOG_ERROR, "Failed to split "
  616. "HVCC array %d (%d NAL units of type %d).\n",
  617. i, nb_nals, nal_unit_type);
  618. return err;
  619. }
  620. err = cbs_h2645_fragment_add_nals(ctx, frag, &priv->read_packet);
  621. if (err < 0)
  622. return err;
  623. }
  624. } else {
  625. // Annex B, or later MP4 with already-known parameters.
  626. err = ff_h2645_packet_split(&priv->read_packet,
  627. frag->data, frag->data_size,
  628. ctx->log_ctx,
  629. priv->mp4, priv->nal_length_size,
  630. codec_id, 1, 1);
  631. if (err < 0)
  632. return err;
  633. err = cbs_h2645_fragment_add_nals(ctx, frag, &priv->read_packet);
  634. if (err < 0)
  635. return err;
  636. }
  637. return 0;
  638. }
  639. #define cbs_h2645_replace_ps(h26n, ps_name, ps_var, id_element) \
  640. static int cbs_h26 ## h26n ## _replace_ ## ps_var(CodedBitstreamContext *ctx, \
  641. CodedBitstreamUnit *unit) \
  642. { \
  643. CodedBitstreamH26 ## h26n ## Context *priv = ctx->priv_data; \
  644. H26 ## h26n ## Raw ## ps_name *ps_var = unit->content; \
  645. unsigned int id = ps_var->id_element; \
  646. if (id > FF_ARRAY_ELEMS(priv->ps_var)) { \
  647. av_log(ctx->log_ctx, AV_LOG_ERROR, "Invalid " #ps_name \
  648. " id : %d.\n", id); \
  649. return AVERROR_INVALIDDATA; \
  650. } \
  651. if (priv->ps_var[id] == priv->active_ ## ps_var) \
  652. priv->active_ ## ps_var = NULL ; \
  653. av_buffer_unref(&priv->ps_var ## _ref[id]); \
  654. if (unit->content_ref) \
  655. priv->ps_var ## _ref[id] = av_buffer_ref(unit->content_ref); \
  656. else \
  657. priv->ps_var ## _ref[id] = av_buffer_alloc(sizeof(*ps_var)); \
  658. if (!priv->ps_var ## _ref[id]) \
  659. return AVERROR(ENOMEM); \
  660. priv->ps_var[id] = (H26 ## h26n ## Raw ## ps_name *)priv->ps_var ## _ref[id]->data; \
  661. if (!unit->content_ref) \
  662. memcpy(priv->ps_var[id], ps_var, sizeof(*ps_var)); \
  663. return 0; \
  664. }
  665. cbs_h2645_replace_ps(4, SPS, sps, seq_parameter_set_id)
  666. cbs_h2645_replace_ps(4, PPS, pps, pic_parameter_set_id)
  667. cbs_h2645_replace_ps(5, VPS, vps, vps_video_parameter_set_id)
  668. cbs_h2645_replace_ps(5, SPS, sps, sps_seq_parameter_set_id)
  669. cbs_h2645_replace_ps(5, PPS, pps, pps_pic_parameter_set_id)
  670. static int cbs_h264_read_nal_unit(CodedBitstreamContext *ctx,
  671. CodedBitstreamUnit *unit)
  672. {
  673. GetBitContext gbc;
  674. int err;
  675. err = init_get_bits(&gbc, unit->data, 8 * unit->data_size);
  676. if (err < 0)
  677. return err;
  678. switch (unit->type) {
  679. case H264_NAL_SPS:
  680. {
  681. H264RawSPS *sps;
  682. err = ff_cbs_alloc_unit_content(ctx, unit, sizeof(*sps), NULL);
  683. if (err < 0)
  684. return err;
  685. sps = unit->content;
  686. err = cbs_h264_read_sps(ctx, &gbc, sps);
  687. if (err < 0)
  688. return err;
  689. err = cbs_h264_replace_sps(ctx, unit);
  690. if (err < 0)
  691. return err;
  692. }
  693. break;
  694. case H264_NAL_SPS_EXT:
  695. {
  696. err = ff_cbs_alloc_unit_content(ctx, unit,
  697. sizeof(H264RawSPSExtension),
  698. NULL);
  699. if (err < 0)
  700. return err;
  701. err = cbs_h264_read_sps_extension(ctx, &gbc, unit->content);
  702. if (err < 0)
  703. return err;
  704. }
  705. break;
  706. case H264_NAL_PPS:
  707. {
  708. H264RawPPS *pps;
  709. err = ff_cbs_alloc_unit_content(ctx, unit, sizeof(*pps),
  710. &cbs_h264_free_pps);
  711. if (err < 0)
  712. return err;
  713. pps = unit->content;
  714. err = cbs_h264_read_pps(ctx, &gbc, pps);
  715. if (err < 0)
  716. return err;
  717. err = cbs_h264_replace_pps(ctx, unit);
  718. if (err < 0)
  719. return err;
  720. }
  721. break;
  722. case H264_NAL_SLICE:
  723. case H264_NAL_IDR_SLICE:
  724. case H264_NAL_AUXILIARY_SLICE:
  725. {
  726. H264RawSlice *slice;
  727. int pos, len;
  728. err = ff_cbs_alloc_unit_content(ctx, unit, sizeof(*slice),
  729. &cbs_h264_free_slice);
  730. if (err < 0)
  731. return err;
  732. slice = unit->content;
  733. err = cbs_h264_read_slice_header(ctx, &gbc, &slice->header);
  734. if (err < 0)
  735. return err;
  736. pos = get_bits_count(&gbc);
  737. len = unit->data_size;
  738. if (!unit->data[len - 1]) {
  739. int z;
  740. for (z = 0; z < len && !unit->data[len - z - 1]; z++);
  741. av_log(ctx->log_ctx, AV_LOG_DEBUG, "Deleted %d trailing zeroes "
  742. "from slice data.\n", z);
  743. len -= z;
  744. }
  745. slice->data_size = len - pos / 8;
  746. slice->data_ref = av_buffer_ref(unit->data_ref);
  747. if (!slice->data_ref)
  748. return AVERROR(ENOMEM);
  749. slice->data = unit->data + pos / 8;
  750. slice->data_bit_start = pos % 8;
  751. }
  752. break;
  753. case H264_NAL_AUD:
  754. {
  755. err = ff_cbs_alloc_unit_content(ctx, unit,
  756. sizeof(H264RawAUD), NULL);
  757. if (err < 0)
  758. return err;
  759. err = cbs_h264_read_aud(ctx, &gbc, unit->content);
  760. if (err < 0)
  761. return err;
  762. }
  763. break;
  764. case H264_NAL_SEI:
  765. {
  766. err = ff_cbs_alloc_unit_content(ctx, unit, sizeof(H264RawSEI),
  767. &cbs_h264_free_sei);
  768. if (err < 0)
  769. return err;
  770. err = cbs_h264_read_sei(ctx, &gbc, unit->content);
  771. if (err < 0)
  772. return err;
  773. }
  774. break;
  775. case H264_NAL_FILLER_DATA:
  776. {
  777. err = ff_cbs_alloc_unit_content(ctx, unit,
  778. sizeof(H264RawFiller), NULL);
  779. if (err < 0)
  780. return err;
  781. err = cbs_h264_read_filler(ctx, &gbc, unit->content);
  782. if (err < 0)
  783. return err;
  784. }
  785. break;
  786. case H264_NAL_END_SEQUENCE:
  787. case H264_NAL_END_STREAM:
  788. {
  789. err = ff_cbs_alloc_unit_content(ctx, unit,
  790. sizeof(H264RawNALUnitHeader),
  791. NULL);
  792. if (err < 0)
  793. return err;
  794. err = (unit->type == H264_NAL_END_SEQUENCE ?
  795. cbs_h264_read_end_of_sequence :
  796. cbs_h264_read_end_of_stream)(ctx, &gbc, unit->content);
  797. if (err < 0)
  798. return err;
  799. }
  800. break;
  801. default:
  802. return AVERROR(ENOSYS);
  803. }
  804. return 0;
  805. }
  806. static int cbs_h265_read_nal_unit(CodedBitstreamContext *ctx,
  807. CodedBitstreamUnit *unit)
  808. {
  809. GetBitContext gbc;
  810. int err;
  811. err = init_get_bits(&gbc, unit->data, 8 * unit->data_size);
  812. if (err < 0)
  813. return err;
  814. switch (unit->type) {
  815. case HEVC_NAL_VPS:
  816. {
  817. H265RawVPS *vps;
  818. err = ff_cbs_alloc_unit_content(ctx, unit, sizeof(*vps),
  819. &cbs_h265_free_vps);
  820. if (err < 0)
  821. return err;
  822. vps = unit->content;
  823. err = cbs_h265_read_vps(ctx, &gbc, vps);
  824. if (err < 0)
  825. return err;
  826. err = cbs_h265_replace_vps(ctx, unit);
  827. if (err < 0)
  828. return err;
  829. }
  830. break;
  831. case HEVC_NAL_SPS:
  832. {
  833. H265RawSPS *sps;
  834. err = ff_cbs_alloc_unit_content(ctx, unit, sizeof(*sps),
  835. &cbs_h265_free_sps);
  836. if (err < 0)
  837. return err;
  838. sps = unit->content;
  839. err = cbs_h265_read_sps(ctx, &gbc, sps);
  840. if (err < 0)
  841. return err;
  842. err = cbs_h265_replace_sps(ctx, unit);
  843. if (err < 0)
  844. return err;
  845. }
  846. break;
  847. case HEVC_NAL_PPS:
  848. {
  849. H265RawPPS *pps;
  850. err = ff_cbs_alloc_unit_content(ctx, unit, sizeof(*pps),
  851. &cbs_h265_free_pps);
  852. if (err < 0)
  853. return err;
  854. pps = unit->content;
  855. err = cbs_h265_read_pps(ctx, &gbc, pps);
  856. if (err < 0)
  857. return err;
  858. err = cbs_h265_replace_pps(ctx, unit);
  859. if (err < 0)
  860. return err;
  861. }
  862. break;
  863. case HEVC_NAL_TRAIL_N:
  864. case HEVC_NAL_TRAIL_R:
  865. case HEVC_NAL_TSA_N:
  866. case HEVC_NAL_TSA_R:
  867. case HEVC_NAL_STSA_N:
  868. case HEVC_NAL_STSA_R:
  869. case HEVC_NAL_RADL_N:
  870. case HEVC_NAL_RADL_R:
  871. case HEVC_NAL_RASL_N:
  872. case HEVC_NAL_RASL_R:
  873. case HEVC_NAL_BLA_W_LP:
  874. case HEVC_NAL_BLA_W_RADL:
  875. case HEVC_NAL_BLA_N_LP:
  876. case HEVC_NAL_IDR_W_RADL:
  877. case HEVC_NAL_IDR_N_LP:
  878. case HEVC_NAL_CRA_NUT:
  879. {
  880. H265RawSlice *slice;
  881. int pos, len;
  882. err = ff_cbs_alloc_unit_content(ctx, unit, sizeof(*slice),
  883. &cbs_h265_free_slice);
  884. if (err < 0)
  885. return err;
  886. slice = unit->content;
  887. err = cbs_h265_read_slice_segment_header(ctx, &gbc, &slice->header);
  888. if (err < 0)
  889. return err;
  890. pos = get_bits_count(&gbc);
  891. len = unit->data_size;
  892. if (!unit->data[len - 1]) {
  893. int z;
  894. for (z = 0; z < len && !unit->data[len - z - 1]; z++);
  895. av_log(ctx->log_ctx, AV_LOG_DEBUG, "Deleted %d trailing zeroes "
  896. "from slice data.\n", z);
  897. len -= z;
  898. }
  899. slice->data_size = len - pos / 8;
  900. slice->data_ref = av_buffer_ref(unit->data_ref);
  901. if (!slice->data_ref)
  902. return AVERROR(ENOMEM);
  903. slice->data = unit->data + pos / 8;
  904. slice->data_bit_start = pos % 8;
  905. }
  906. break;
  907. case HEVC_NAL_AUD:
  908. {
  909. err = ff_cbs_alloc_unit_content(ctx, unit,
  910. sizeof(H265RawAUD), NULL);
  911. if (err < 0)
  912. return err;
  913. err = cbs_h265_read_aud(ctx, &gbc, unit->content);
  914. if (err < 0)
  915. return err;
  916. }
  917. break;
  918. case HEVC_NAL_SEI_PREFIX:
  919. case HEVC_NAL_SEI_SUFFIX:
  920. {
  921. err = ff_cbs_alloc_unit_content(ctx, unit, sizeof(H265RawSEI),
  922. &cbs_h265_free_sei);
  923. if (err < 0)
  924. return err;
  925. err = cbs_h265_read_sei(ctx, &gbc, unit->content,
  926. unit->type == HEVC_NAL_SEI_PREFIX);
  927. if (err < 0)
  928. return err;
  929. }
  930. break;
  931. default:
  932. return AVERROR(ENOSYS);
  933. }
  934. return 0;
  935. }
  936. static int cbs_h2645_write_slice_data(CodedBitstreamContext *ctx,
  937. PutBitContext *pbc, const uint8_t *data,
  938. size_t data_size, int data_bit_start)
  939. {
  940. size_t rest = data_size - (data_bit_start + 7) / 8;
  941. const uint8_t *pos = data + data_bit_start / 8;
  942. av_assert0(data_bit_start >= 0 &&
  943. 8 * data_size > data_bit_start);
  944. if (data_size * 8 + 8 > put_bits_left(pbc))
  945. return AVERROR(ENOSPC);
  946. if (!rest)
  947. goto rbsp_stop_one_bit;
  948. // First copy the remaining bits of the first byte
  949. // The above check ensures that we do not accidentally
  950. // copy beyond the rbsp_stop_one_bit.
  951. if (data_bit_start % 8)
  952. put_bits(pbc, 8 - data_bit_start % 8,
  953. *pos++ & MAX_UINT_BITS(8 - data_bit_start % 8));
  954. if (put_bits_count(pbc) % 8 == 0) {
  955. // If the writer is aligned at this point,
  956. // memcpy can be used to improve performance.
  957. // This happens normally for CABAC.
  958. flush_put_bits(pbc);
  959. memcpy(put_bits_ptr(pbc), pos, rest);
  960. skip_put_bytes(pbc, rest);
  961. } else {
  962. // If not, we have to copy manually.
  963. // rbsp_stop_one_bit forces us to special-case
  964. // the last byte.
  965. uint8_t temp;
  966. int i;
  967. for (; rest > 4; rest -= 4, pos += 4)
  968. put_bits32(pbc, AV_RB32(pos));
  969. for (; rest > 1; rest--, pos++)
  970. put_bits(pbc, 8, *pos);
  971. rbsp_stop_one_bit:
  972. temp = rest ? *pos : *pos & MAX_UINT_BITS(8 - data_bit_start % 8);
  973. av_assert0(temp);
  974. i = ff_ctz(*pos);
  975. temp = temp >> i;
  976. i = rest ? (8 - i) : (8 - i - data_bit_start % 8);
  977. put_bits(pbc, i, temp);
  978. if (put_bits_count(pbc) % 8)
  979. put_bits(pbc, 8 - put_bits_count(pbc) % 8, 0);
  980. }
  981. return 0;
  982. }
  983. static int cbs_h264_write_nal_unit(CodedBitstreamContext *ctx,
  984. CodedBitstreamUnit *unit,
  985. PutBitContext *pbc)
  986. {
  987. int err;
  988. switch (unit->type) {
  989. case H264_NAL_SPS:
  990. {
  991. H264RawSPS *sps = unit->content;
  992. err = cbs_h264_write_sps(ctx, pbc, sps);
  993. if (err < 0)
  994. return err;
  995. err = cbs_h264_replace_sps(ctx, unit);
  996. if (err < 0)
  997. return err;
  998. }
  999. break;
  1000. case H264_NAL_SPS_EXT:
  1001. {
  1002. H264RawSPSExtension *sps_ext = unit->content;
  1003. err = cbs_h264_write_sps_extension(ctx, pbc, sps_ext);
  1004. if (err < 0)
  1005. return err;
  1006. }
  1007. break;
  1008. case H264_NAL_PPS:
  1009. {
  1010. H264RawPPS *pps = unit->content;
  1011. err = cbs_h264_write_pps(ctx, pbc, pps);
  1012. if (err < 0)
  1013. return err;
  1014. err = cbs_h264_replace_pps(ctx, unit);
  1015. if (err < 0)
  1016. return err;
  1017. }
  1018. break;
  1019. case H264_NAL_SLICE:
  1020. case H264_NAL_IDR_SLICE:
  1021. case H264_NAL_AUXILIARY_SLICE:
  1022. {
  1023. H264RawSlice *slice = unit->content;
  1024. err = cbs_h264_write_slice_header(ctx, pbc, &slice->header);
  1025. if (err < 0)
  1026. return err;
  1027. if (slice->data) {
  1028. err = cbs_h2645_write_slice_data(ctx, pbc, slice->data,
  1029. slice->data_size,
  1030. slice->data_bit_start);
  1031. if (err < 0)
  1032. return err;
  1033. } else {
  1034. // No slice data - that was just the header.
  1035. // (Bitstream may be unaligned!)
  1036. }
  1037. }
  1038. break;
  1039. case H264_NAL_AUD:
  1040. {
  1041. err = cbs_h264_write_aud(ctx, pbc, unit->content);
  1042. if (err < 0)
  1043. return err;
  1044. }
  1045. break;
  1046. case H264_NAL_SEI:
  1047. {
  1048. err = cbs_h264_write_sei(ctx, pbc, unit->content);
  1049. if (err < 0)
  1050. return err;
  1051. }
  1052. break;
  1053. case H264_NAL_FILLER_DATA:
  1054. {
  1055. err = cbs_h264_write_filler(ctx, pbc, unit->content);
  1056. if (err < 0)
  1057. return err;
  1058. }
  1059. break;
  1060. case H264_NAL_END_SEQUENCE:
  1061. {
  1062. err = cbs_h264_write_end_of_sequence(ctx, pbc, unit->content);
  1063. if (err < 0)
  1064. return err;
  1065. }
  1066. break;
  1067. case H264_NAL_END_STREAM:
  1068. {
  1069. err = cbs_h264_write_end_of_stream(ctx, pbc, unit->content);
  1070. if (err < 0)
  1071. return err;
  1072. }
  1073. break;
  1074. default:
  1075. av_log(ctx->log_ctx, AV_LOG_ERROR, "Write unimplemented for "
  1076. "NAL unit type %"PRIu32".\n", unit->type);
  1077. return AVERROR_PATCHWELCOME;
  1078. }
  1079. return 0;
  1080. }
  1081. static int cbs_h265_write_nal_unit(CodedBitstreamContext *ctx,
  1082. CodedBitstreamUnit *unit,
  1083. PutBitContext *pbc)
  1084. {
  1085. int err;
  1086. switch (unit->type) {
  1087. case HEVC_NAL_VPS:
  1088. {
  1089. H265RawVPS *vps = unit->content;
  1090. err = cbs_h265_write_vps(ctx, pbc, vps);
  1091. if (err < 0)
  1092. return err;
  1093. err = cbs_h265_replace_vps(ctx, unit);
  1094. if (err < 0)
  1095. return err;
  1096. }
  1097. break;
  1098. case HEVC_NAL_SPS:
  1099. {
  1100. H265RawSPS *sps = unit->content;
  1101. err = cbs_h265_write_sps(ctx, pbc, sps);
  1102. if (err < 0)
  1103. return err;
  1104. err = cbs_h265_replace_sps(ctx, unit);
  1105. if (err < 0)
  1106. return err;
  1107. }
  1108. break;
  1109. case HEVC_NAL_PPS:
  1110. {
  1111. H265RawPPS *pps = unit->content;
  1112. err = cbs_h265_write_pps(ctx, pbc, pps);
  1113. if (err < 0)
  1114. return err;
  1115. err = cbs_h265_replace_pps(ctx, unit);
  1116. if (err < 0)
  1117. return err;
  1118. }
  1119. break;
  1120. case HEVC_NAL_TRAIL_N:
  1121. case HEVC_NAL_TRAIL_R:
  1122. case HEVC_NAL_TSA_N:
  1123. case HEVC_NAL_TSA_R:
  1124. case HEVC_NAL_STSA_N:
  1125. case HEVC_NAL_STSA_R:
  1126. case HEVC_NAL_RADL_N:
  1127. case HEVC_NAL_RADL_R:
  1128. case HEVC_NAL_RASL_N:
  1129. case HEVC_NAL_RASL_R:
  1130. case HEVC_NAL_BLA_W_LP:
  1131. case HEVC_NAL_BLA_W_RADL:
  1132. case HEVC_NAL_BLA_N_LP:
  1133. case HEVC_NAL_IDR_W_RADL:
  1134. case HEVC_NAL_IDR_N_LP:
  1135. case HEVC_NAL_CRA_NUT:
  1136. {
  1137. H265RawSlice *slice = unit->content;
  1138. err = cbs_h265_write_slice_segment_header(ctx, pbc, &slice->header);
  1139. if (err < 0)
  1140. return err;
  1141. if (slice->data) {
  1142. err = cbs_h2645_write_slice_data(ctx, pbc, slice->data,
  1143. slice->data_size,
  1144. slice->data_bit_start);
  1145. if (err < 0)
  1146. return err;
  1147. } else {
  1148. // No slice data - that was just the header.
  1149. }
  1150. }
  1151. break;
  1152. case HEVC_NAL_AUD:
  1153. {
  1154. err = cbs_h265_write_aud(ctx, pbc, unit->content);
  1155. if (err < 0)
  1156. return err;
  1157. }
  1158. break;
  1159. case HEVC_NAL_SEI_PREFIX:
  1160. case HEVC_NAL_SEI_SUFFIX:
  1161. {
  1162. err = cbs_h265_write_sei(ctx, pbc, unit->content,
  1163. unit->type == HEVC_NAL_SEI_PREFIX);
  1164. if (err < 0)
  1165. return err;
  1166. }
  1167. break;
  1168. default:
  1169. av_log(ctx->log_ctx, AV_LOG_ERROR, "Write unimplemented for "
  1170. "NAL unit type %"PRIu32".\n", unit->type);
  1171. return AVERROR_PATCHWELCOME;
  1172. }
  1173. return 0;
  1174. }
  1175. static int cbs_h2645_write_nal_unit(CodedBitstreamContext *ctx,
  1176. CodedBitstreamUnit *unit)
  1177. {
  1178. CodedBitstreamH2645Context *priv = ctx->priv_data;
  1179. enum AVCodecID codec_id = ctx->codec->codec_id;
  1180. PutBitContext pbc;
  1181. int err;
  1182. if (!priv->write_buffer) {
  1183. // Initial write buffer size is 1MB.
  1184. priv->write_buffer_size = 1024 * 1024;
  1185. reallocate_and_try_again:
  1186. err = av_reallocp(&priv->write_buffer, priv->write_buffer_size);
  1187. if (err < 0) {
  1188. av_log(ctx->log_ctx, AV_LOG_ERROR, "Unable to allocate a "
  1189. "sufficiently large write buffer (last attempt "
  1190. "%"SIZE_SPECIFIER" bytes).\n", priv->write_buffer_size);
  1191. return err;
  1192. }
  1193. }
  1194. init_put_bits(&pbc, priv->write_buffer, priv->write_buffer_size);
  1195. if (codec_id == AV_CODEC_ID_H264)
  1196. err = cbs_h264_write_nal_unit(ctx, unit, &pbc);
  1197. else
  1198. err = cbs_h265_write_nal_unit(ctx, unit, &pbc);
  1199. if (err == AVERROR(ENOSPC)) {
  1200. // Overflow.
  1201. priv->write_buffer_size *= 2;
  1202. goto reallocate_and_try_again;
  1203. }
  1204. // Overflow but we didn't notice.
  1205. av_assert0(put_bits_count(&pbc) <= 8 * priv->write_buffer_size);
  1206. if (err < 0) {
  1207. // Write failed for some other reason.
  1208. return err;
  1209. }
  1210. if (put_bits_count(&pbc) % 8)
  1211. unit->data_bit_padding = 8 - put_bits_count(&pbc) % 8;
  1212. else
  1213. unit->data_bit_padding = 0;
  1214. unit->data_size = (put_bits_count(&pbc) + 7) / 8;
  1215. flush_put_bits(&pbc);
  1216. err = ff_cbs_alloc_unit_data(ctx, unit, unit->data_size);
  1217. if (err < 0)
  1218. return err;
  1219. memcpy(unit->data, priv->write_buffer, unit->data_size);
  1220. return 0;
  1221. }
  1222. static int cbs_h2645_assemble_fragment(CodedBitstreamContext *ctx,
  1223. CodedBitstreamFragment *frag)
  1224. {
  1225. uint8_t *data;
  1226. size_t max_size, dp, sp;
  1227. int err, i, zero_run;
  1228. for (i = 0; i < frag->nb_units; i++) {
  1229. // Data should already all have been written when we get here.
  1230. av_assert0(frag->units[i].data);
  1231. }
  1232. max_size = 0;
  1233. for (i = 0; i < frag->nb_units; i++) {
  1234. // Start code + content with worst-case emulation prevention.
  1235. max_size += 3 + frag->units[i].data_size * 3 / 2;
  1236. }
  1237. data = av_malloc(max_size + AV_INPUT_BUFFER_PADDING_SIZE);
  1238. if (!data)
  1239. return AVERROR(ENOMEM);
  1240. dp = 0;
  1241. for (i = 0; i < frag->nb_units; i++) {
  1242. CodedBitstreamUnit *unit = &frag->units[i];
  1243. if (unit->data_bit_padding > 0) {
  1244. if (i < frag->nb_units - 1)
  1245. av_log(ctx->log_ctx, AV_LOG_WARNING, "Probably invalid "
  1246. "unaligned padding on non-final NAL unit.\n");
  1247. else
  1248. frag->data_bit_padding = unit->data_bit_padding;
  1249. }
  1250. if ((ctx->codec->codec_id == AV_CODEC_ID_H264 &&
  1251. (unit->type == H264_NAL_SPS ||
  1252. unit->type == H264_NAL_PPS)) ||
  1253. (ctx->codec->codec_id == AV_CODEC_ID_HEVC &&
  1254. (unit->type == HEVC_NAL_VPS ||
  1255. unit->type == HEVC_NAL_SPS ||
  1256. unit->type == HEVC_NAL_PPS)) ||
  1257. i == 0 /* (Assume this is the start of an access unit.) */) {
  1258. // zero_byte
  1259. data[dp++] = 0;
  1260. }
  1261. // start_code_prefix_one_3bytes
  1262. data[dp++] = 0;
  1263. data[dp++] = 0;
  1264. data[dp++] = 1;
  1265. zero_run = 0;
  1266. for (sp = 0; sp < unit->data_size; sp++) {
  1267. if (zero_run < 2) {
  1268. if (unit->data[sp] == 0)
  1269. ++zero_run;
  1270. else
  1271. zero_run = 0;
  1272. } else {
  1273. if ((unit->data[sp] & ~3) == 0) {
  1274. // emulation_prevention_three_byte
  1275. data[dp++] = 3;
  1276. }
  1277. zero_run = unit->data[sp] == 0;
  1278. }
  1279. data[dp++] = unit->data[sp];
  1280. }
  1281. }
  1282. av_assert0(dp <= max_size);
  1283. err = av_reallocp(&data, dp + AV_INPUT_BUFFER_PADDING_SIZE);
  1284. if (err)
  1285. return err;
  1286. memset(data + dp, 0, AV_INPUT_BUFFER_PADDING_SIZE);
  1287. frag->data_ref = av_buffer_create(data, dp + AV_INPUT_BUFFER_PADDING_SIZE,
  1288. NULL, NULL, 0);
  1289. if (!frag->data_ref) {
  1290. av_freep(&data);
  1291. return AVERROR(ENOMEM);
  1292. }
  1293. frag->data = data;
  1294. frag->data_size = dp;
  1295. return 0;
  1296. }
  1297. static void cbs_h264_close(CodedBitstreamContext *ctx)
  1298. {
  1299. CodedBitstreamH264Context *h264 = ctx->priv_data;
  1300. int i;
  1301. ff_h2645_packet_uninit(&h264->common.read_packet);
  1302. av_freep(&h264->common.write_buffer);
  1303. for (i = 0; i < FF_ARRAY_ELEMS(h264->sps); i++)
  1304. av_buffer_unref(&h264->sps_ref[i]);
  1305. for (i = 0; i < FF_ARRAY_ELEMS(h264->pps); i++)
  1306. av_buffer_unref(&h264->pps_ref[i]);
  1307. }
  1308. static void cbs_h265_close(CodedBitstreamContext *ctx)
  1309. {
  1310. CodedBitstreamH265Context *h265 = ctx->priv_data;
  1311. int i;
  1312. ff_h2645_packet_uninit(&h265->common.read_packet);
  1313. av_freep(&h265->common.write_buffer);
  1314. for (i = 0; i < FF_ARRAY_ELEMS(h265->vps); i++)
  1315. av_buffer_unref(&h265->vps_ref[i]);
  1316. for (i = 0; i < FF_ARRAY_ELEMS(h265->sps); i++)
  1317. av_buffer_unref(&h265->sps_ref[i]);
  1318. for (i = 0; i < FF_ARRAY_ELEMS(h265->pps); i++)
  1319. av_buffer_unref(&h265->pps_ref[i]);
  1320. }
  1321. const CodedBitstreamType ff_cbs_type_h264 = {
  1322. .codec_id = AV_CODEC_ID_H264,
  1323. .priv_data_size = sizeof(CodedBitstreamH264Context),
  1324. .split_fragment = &cbs_h2645_split_fragment,
  1325. .read_unit = &cbs_h264_read_nal_unit,
  1326. .write_unit = &cbs_h2645_write_nal_unit,
  1327. .assemble_fragment = &cbs_h2645_assemble_fragment,
  1328. .close = &cbs_h264_close,
  1329. };
  1330. const CodedBitstreamType ff_cbs_type_h265 = {
  1331. .codec_id = AV_CODEC_ID_HEVC,
  1332. .priv_data_size = sizeof(CodedBitstreamH265Context),
  1333. .split_fragment = &cbs_h2645_split_fragment,
  1334. .read_unit = &cbs_h265_read_nal_unit,
  1335. .write_unit = &cbs_h2645_write_nal_unit,
  1336. .assemble_fragment = &cbs_h2645_assemble_fragment,
  1337. .close = &cbs_h265_close,
  1338. };
  1339. int ff_cbs_h264_add_sei_message(CodedBitstreamContext *ctx,
  1340. CodedBitstreamFragment *au,
  1341. const H264RawSEIPayload *payload)
  1342. {
  1343. H264RawSEI *sei;
  1344. CodedBitstreamUnit *nal = NULL;
  1345. int err, i;
  1346. // Find an existing SEI NAL unit to add to.
  1347. for (i = 0; i < au->nb_units; i++) {
  1348. if (au->units[i].type == H264_NAL_SEI) {
  1349. nal = &au->units[i];
  1350. break;
  1351. }
  1352. }
  1353. if (nal) {
  1354. sei = nal->content;
  1355. } else {
  1356. // Need to make a new SEI NAL unit. Insert it before the first
  1357. // slice data NAL unit; if no slice data, add at the end.
  1358. AVBufferRef *sei_ref;
  1359. sei = av_mallocz(sizeof(*sei));
  1360. if (!sei)
  1361. return AVERROR(ENOMEM);
  1362. sei->nal_unit_header.nal_unit_type = H264_NAL_SEI;
  1363. sei->nal_unit_header.nal_ref_idc = 0;
  1364. sei_ref = av_buffer_create((uint8_t*)sei, sizeof(*sei),
  1365. &cbs_h264_free_sei, ctx, 0);
  1366. if (!sei_ref) {
  1367. av_freep(&sei);
  1368. return AVERROR(ENOMEM);
  1369. }
  1370. for (i = 0; i < au->nb_units; i++) {
  1371. if (au->units[i].type == H264_NAL_SLICE ||
  1372. au->units[i].type == H264_NAL_IDR_SLICE)
  1373. break;
  1374. }
  1375. err = ff_cbs_insert_unit_content(ctx, au, i, H264_NAL_SEI,
  1376. sei, sei_ref);
  1377. av_buffer_unref(&sei_ref);
  1378. if (err < 0)
  1379. return err;
  1380. }
  1381. if (sei->payload_count >= H264_MAX_SEI_PAYLOADS) {
  1382. av_log(ctx->log_ctx, AV_LOG_ERROR, "Too many payloads in "
  1383. "SEI NAL unit.\n");
  1384. return AVERROR(EINVAL);
  1385. }
  1386. memcpy(&sei->payload[sei->payload_count], payload, sizeof(*payload));
  1387. ++sei->payload_count;
  1388. return 0;
  1389. }
  1390. void ff_cbs_h264_delete_sei_message(CodedBitstreamContext *ctx,
  1391. CodedBitstreamFragment *au,
  1392. CodedBitstreamUnit *nal,
  1393. int position)
  1394. {
  1395. H264RawSEI *sei = nal->content;
  1396. av_assert0(nal->type == H264_NAL_SEI);
  1397. av_assert0(position >= 0 && position < sei->payload_count);
  1398. if (position == 0 && sei->payload_count == 1) {
  1399. // Deleting NAL unit entirely.
  1400. int i;
  1401. for (i = 0; i < au->nb_units; i++) {
  1402. if (&au->units[i] == nal)
  1403. break;
  1404. }
  1405. ff_cbs_delete_unit(ctx, au, i);
  1406. } else {
  1407. cbs_h264_free_sei_payload(&sei->payload[position]);
  1408. --sei->payload_count;
  1409. memmove(sei->payload + position,
  1410. sei->payload + position + 1,
  1411. (sei->payload_count - position) * sizeof(*sei->payload));
  1412. }
  1413. }