You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

596 lines
21KB

  1. /*
  2. * Copyright (C) 2011 Michael Niedermayer (michaelni@gmx.at)
  3. *
  4. * This file is part of libswresample
  5. *
  6. * libswresample is free software; you can redistribute it and/or
  7. * modify it under the terms of the GNU Lesser General Public
  8. * License as published by the Free Software Foundation; either
  9. * version 2.1 of the License, or (at your option) any later version.
  10. *
  11. * libswresample is distributed in the hope that it will be useful,
  12. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  13. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  14. * Lesser General Public License for more details.
  15. *
  16. * You should have received a copy of the GNU Lesser General Public
  17. * License along with libswresample; if not, write to the Free Software
  18. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  19. */
  20. #include "libavutil/opt.h"
  21. #include "swresample_internal.h"
  22. #include "audioconvert.h"
  23. #include "libavutil/avassert.h"
  24. #include "libavutil/audioconvert.h"
  25. #define C30DB M_SQRT2
  26. #define C15DB 1.189207115
  27. #define C__0DB 1.0
  28. #define C_15DB 0.840896415
  29. #define C_30DB M_SQRT1_2
  30. #define C_45DB 0.594603558
  31. #define C_60DB 0.5
  32. //TODO split options array out?
  33. #define OFFSET(x) offsetof(SwrContext,x)
  34. static const AVOption options[]={
  35. {"ich", "input channel count", OFFSET( in.ch_count ), AV_OPT_TYPE_INT, {.dbl=2}, 0, SWR_CH_MAX, 0},
  36. {"och", "output channel count", OFFSET(out.ch_count ), AV_OPT_TYPE_INT, {.dbl=2}, 0, SWR_CH_MAX, 0},
  37. {"uch", "used channel count", OFFSET(used_ch_count ), AV_OPT_TYPE_INT, {.dbl=0}, 0, SWR_CH_MAX, 0},
  38. {"isr", "input sample rate" , OFFSET( in_sample_rate), AV_OPT_TYPE_INT, {.dbl=48000}, 1, INT_MAX, 0},
  39. {"osr", "output sample rate" , OFFSET(out_sample_rate), AV_OPT_TYPE_INT, {.dbl=48000}, 1, INT_MAX, 0},
  40. //{"ip" , "input planar" , OFFSET( in.planar ), AV_OPT_TYPE_INT, {.dbl=0}, 0, 1, 0},
  41. //{"op" , "output planar" , OFFSET(out.planar ), AV_OPT_TYPE_INT, {.dbl=0}, 0, 1, 0},
  42. {"isf", "input sample format", OFFSET( in_sample_fmt ), AV_OPT_TYPE_INT, {.dbl=AV_SAMPLE_FMT_S16}, 0, AV_SAMPLE_FMT_NB-1+256, 0},
  43. {"osf", "output sample format", OFFSET(out_sample_fmt ), AV_OPT_TYPE_INT, {.dbl=AV_SAMPLE_FMT_S16}, 0, AV_SAMPLE_FMT_NB-1+256, 0},
  44. {"tsf", "internal sample format", OFFSET(int_sample_fmt ), AV_OPT_TYPE_INT, {.dbl=AV_SAMPLE_FMT_NONE}, -1, AV_SAMPLE_FMT_FLT, 0},
  45. {"icl", "input channel layout" , OFFSET( in_ch_layout), AV_OPT_TYPE_INT64, {.dbl=0}, 0, INT64_MAX, 0, "channel_layout"},
  46. {"ocl", "output channel layout", OFFSET(out_ch_layout), AV_OPT_TYPE_INT64, {.dbl=0}, 0, INT64_MAX, 0, "channel_layout"},
  47. {"clev", "center mix level" , OFFSET(clev) , AV_OPT_TYPE_FLOAT, {.dbl=C_30DB}, 0, 4, 0},
  48. {"slev", "sourround mix level" , OFFSET(slev) , AV_OPT_TYPE_FLOAT, {.dbl=C_30DB}, 0, 4, 0},
  49. {"rmvol", "rematrix volume" , OFFSET(rematrix_volume), AV_OPT_TYPE_FLOAT, {.dbl=1.0}, -1000, 1000, 0},
  50. {"flags", NULL , OFFSET(flags) , AV_OPT_TYPE_FLAGS, {.dbl=0}, 0, UINT_MAX, 0, "flags"},
  51. {"res", "force resampling", 0, AV_OPT_TYPE_CONST, {.dbl=SWR_FLAG_RESAMPLE}, INT_MIN, INT_MAX, 0, "flags"},
  52. {0}
  53. };
  54. static const char* context_to_name(void* ptr) {
  55. return "SWR";
  56. }
  57. static const AVClass av_class = {
  58. .class_name = "SwrContext",
  59. .item_name = context_to_name,
  60. .option = options,
  61. .version = LIBAVUTIL_VERSION_INT,
  62. .log_level_offset_offset = OFFSET(log_level_offset),
  63. .parent_log_context_offset = OFFSET(log_ctx),
  64. };
  65. unsigned swresample_version(void)
  66. {
  67. av_assert0(LIBSWRESAMPLE_VERSION_MICRO >= 100);
  68. return LIBSWRESAMPLE_VERSION_INT;
  69. }
  70. const char *swresample_configuration(void)
  71. {
  72. return FFMPEG_CONFIGURATION;
  73. }
  74. const char *swresample_license(void)
  75. {
  76. #define LICENSE_PREFIX "libswresample license: "
  77. return LICENSE_PREFIX FFMPEG_LICENSE + sizeof(LICENSE_PREFIX) - 1;
  78. }
  79. int swr_set_channel_mapping(struct SwrContext *s, const int *channel_map){
  80. if(!s || s->in_convert) // s needs to be allocated but not initialized
  81. return AVERROR(EINVAL);
  82. s->channel_map = channel_map;
  83. return 0;
  84. }
  85. struct SwrContext *swr_alloc(void){
  86. SwrContext *s= av_mallocz(sizeof(SwrContext));
  87. if(s){
  88. s->av_class= &av_class;
  89. av_opt_set_defaults(s);
  90. }
  91. return s;
  92. }
  93. struct SwrContext *swr_alloc_set_opts(struct SwrContext *s,
  94. int64_t out_ch_layout, enum AVSampleFormat out_sample_fmt, int out_sample_rate,
  95. int64_t in_ch_layout, enum AVSampleFormat in_sample_fmt, int in_sample_rate,
  96. int log_offset, void *log_ctx){
  97. if(!s) s= swr_alloc();
  98. if(!s) return NULL;
  99. s->log_level_offset= log_offset;
  100. s->log_ctx= log_ctx;
  101. av_opt_set_int(s, "ocl", out_ch_layout, 0);
  102. av_opt_set_int(s, "osf", out_sample_fmt, 0);
  103. av_opt_set_int(s, "osr", out_sample_rate, 0);
  104. av_opt_set_int(s, "icl", in_ch_layout, 0);
  105. av_opt_set_int(s, "isf", in_sample_fmt, 0);
  106. av_opt_set_int(s, "isr", in_sample_rate, 0);
  107. av_opt_set_int(s, "tsf", AV_SAMPLE_FMT_S16, 0);
  108. av_opt_set_int(s, "ich", av_get_channel_layout_nb_channels(s-> in_ch_layout), 0);
  109. av_opt_set_int(s, "och", av_get_channel_layout_nb_channels(s->out_ch_layout), 0);
  110. av_opt_set_int(s, "uch", 0, 0);
  111. return s;
  112. }
  113. static void free_temp(AudioData *a){
  114. av_free(a->data);
  115. memset(a, 0, sizeof(*a));
  116. }
  117. void swr_free(SwrContext **ss){
  118. SwrContext *s= *ss;
  119. if(s){
  120. free_temp(&s->postin);
  121. free_temp(&s->midbuf);
  122. free_temp(&s->preout);
  123. free_temp(&s->in_buffer);
  124. swri_audio_convert_free(&s-> in_convert);
  125. swri_audio_convert_free(&s->out_convert);
  126. swri_audio_convert_free(&s->full_convert);
  127. swri_resample_free(&s->resample);
  128. }
  129. av_freep(ss);
  130. }
  131. int swr_init(struct SwrContext *s){
  132. s->in_buffer_index= 0;
  133. s->in_buffer_count= 0;
  134. s->resample_in_constraint= 0;
  135. free_temp(&s->postin);
  136. free_temp(&s->midbuf);
  137. free_temp(&s->preout);
  138. free_temp(&s->in_buffer);
  139. swri_audio_convert_free(&s-> in_convert);
  140. swri_audio_convert_free(&s->out_convert);
  141. swri_audio_convert_free(&s->full_convert);
  142. s->flushed = 0;
  143. s-> in.planar= av_sample_fmt_is_planar(s-> in_sample_fmt);
  144. s->out.planar= av_sample_fmt_is_planar(s->out_sample_fmt);
  145. s-> in_sample_fmt= av_get_alt_sample_fmt(s-> in_sample_fmt, 0);
  146. s->out_sample_fmt= av_get_alt_sample_fmt(s->out_sample_fmt, 0);
  147. if(s-> in_sample_fmt >= AV_SAMPLE_FMT_NB){
  148. av_log(s, AV_LOG_ERROR, "Requested input sample format %d is invalid\n", s->in_sample_fmt);
  149. return AVERROR(EINVAL);
  150. }
  151. if(s->out_sample_fmt >= AV_SAMPLE_FMT_NB){
  152. av_log(s, AV_LOG_ERROR, "Requested output sample format %d is invalid\n", s->out_sample_fmt);
  153. return AVERROR(EINVAL);
  154. }
  155. if( s->int_sample_fmt != AV_SAMPLE_FMT_S16
  156. &&s->int_sample_fmt != AV_SAMPLE_FMT_FLT){
  157. av_log(s, AV_LOG_ERROR, "Requested sample format %s is not supported internally, only float & S16 is supported\n", av_get_sample_fmt_name(s->int_sample_fmt));
  158. return AVERROR(EINVAL);
  159. }
  160. //FIXME should we allow/support using FLT on material that doesnt need it ?
  161. if(s->in_sample_fmt <= AV_SAMPLE_FMT_S16 || s->int_sample_fmt==AV_SAMPLE_FMT_S16){
  162. s->int_sample_fmt= AV_SAMPLE_FMT_S16;
  163. }else
  164. s->int_sample_fmt= AV_SAMPLE_FMT_FLT;
  165. if (s->out_sample_rate!=s->in_sample_rate || (s->flags & SWR_FLAG_RESAMPLE)){
  166. s->resample = swri_resample_init(s->resample, s->out_sample_rate, s->in_sample_rate, 16, 10, 0, 0.8);
  167. }else
  168. swri_resample_free(&s->resample);
  169. if(s->int_sample_fmt != AV_SAMPLE_FMT_S16 && s->resample){
  170. av_log(s, AV_LOG_ERROR, "Resampling only supported with internal s16 currently\n"); //FIXME
  171. return -1;
  172. }
  173. if(!s->used_ch_count)
  174. s->used_ch_count= s->in.ch_count;
  175. if(s->used_ch_count && s-> in_ch_layout && s->used_ch_count != av_get_channel_layout_nb_channels(s-> in_ch_layout)){
  176. av_log(s, AV_LOG_WARNING, "Input channel layout has a different number of channels than the number of used channels, ignoring layout\n");
  177. s-> in_ch_layout= 0;
  178. }
  179. if(!s-> in_ch_layout)
  180. s-> in_ch_layout= av_get_default_channel_layout(s->used_ch_count);
  181. if(!s->out_ch_layout)
  182. s->out_ch_layout= av_get_default_channel_layout(s->out.ch_count);
  183. s->rematrix= s->out_ch_layout !=s->in_ch_layout || s->rematrix_volume!=1.0 ||
  184. s->rematrix_custom;
  185. #define RSC 1 //FIXME finetune
  186. if(!s-> in.ch_count)
  187. s-> in.ch_count= av_get_channel_layout_nb_channels(s-> in_ch_layout);
  188. if(!s->used_ch_count)
  189. s->used_ch_count= s->in.ch_count;
  190. if(!s->out.ch_count)
  191. s->out.ch_count= av_get_channel_layout_nb_channels(s->out_ch_layout);
  192. if(!s-> in.ch_count){
  193. av_assert0(!s->in_ch_layout);
  194. av_log(s, AV_LOG_ERROR, "Input channel count and layout are unset\n");
  195. return -1;
  196. }
  197. if ((!s->out_ch_layout || !s->in_ch_layout) && s->used_ch_count != s->out.ch_count && !s->rematrix_custom) {
  198. av_log(s, AV_LOG_ERROR, "Rematrix is needed but there is not enough information to do it\n");
  199. return -1;
  200. }
  201. av_assert0(s->used_ch_count);
  202. av_assert0(s->out.ch_count);
  203. s->resample_first= RSC*s->out.ch_count/s->in.ch_count - RSC < s->out_sample_rate/(float)s-> in_sample_rate - 1.0;
  204. s-> in.bps= av_get_bytes_per_sample(s-> in_sample_fmt);
  205. s->int_bps= av_get_bytes_per_sample(s->int_sample_fmt);
  206. s->out.bps= av_get_bytes_per_sample(s->out_sample_fmt);
  207. s->in_buffer= s->in;
  208. if(!s->resample && !s->rematrix && !s->channel_map){
  209. s->full_convert = swri_audio_convert_alloc(s->out_sample_fmt,
  210. s-> in_sample_fmt, s-> in.ch_count, NULL, 0);
  211. return 0;
  212. }
  213. s->in_convert = swri_audio_convert_alloc(s->int_sample_fmt,
  214. s-> in_sample_fmt, s->used_ch_count, s->channel_map, 0);
  215. s->out_convert= swri_audio_convert_alloc(s->out_sample_fmt,
  216. s->int_sample_fmt, s->out.ch_count, NULL, 0);
  217. s->postin= s->in;
  218. s->preout= s->out;
  219. s->midbuf= s->in;
  220. if(s->channel_map){
  221. s->postin.ch_count=
  222. s->midbuf.ch_count= s->used_ch_count;
  223. if(s->resample)
  224. s->in_buffer.ch_count= s->used_ch_count;
  225. }
  226. if(!s->resample_first){
  227. s->midbuf.ch_count= s->out.ch_count;
  228. if(s->resample)
  229. s->in_buffer.ch_count = s->out.ch_count;
  230. }
  231. s->postin.bps = s->midbuf.bps = s->preout.bps = s->int_bps;
  232. s->postin.planar = s->midbuf.planar = s->preout.planar = 1;
  233. if(s->resample){
  234. s->in_buffer.bps = s->int_bps;
  235. s->in_buffer.planar = 1;
  236. }
  237. if(s->rematrix)
  238. return swri_rematrix_init(s);
  239. return 0;
  240. }
  241. static int realloc_audio(AudioData *a, int count){
  242. int i, countb;
  243. AudioData old;
  244. if(a->count >= count)
  245. return 0;
  246. count*=2;
  247. countb= FFALIGN(count*a->bps, 32);
  248. old= *a;
  249. av_assert0(a->bps);
  250. av_assert0(a->ch_count);
  251. a->data= av_malloc(countb*a->ch_count);
  252. if(!a->data)
  253. return AVERROR(ENOMEM);
  254. for(i=0; i<a->ch_count; i++){
  255. a->ch[i]= a->data + i*(a->planar ? countb : a->bps);
  256. if(a->planar) memcpy(a->ch[i], old.ch[i], a->count*a->bps);
  257. }
  258. if(!a->planar) memcpy(a->ch[0], old.ch[0], a->count*a->ch_count*a->bps);
  259. av_free(old.data);
  260. a->count= count;
  261. return 1;
  262. }
  263. static void copy(AudioData *out, AudioData *in,
  264. int count){
  265. av_assert0(out->planar == in->planar);
  266. av_assert0(out->bps == in->bps);
  267. av_assert0(out->ch_count == in->ch_count);
  268. if(out->planar){
  269. int ch;
  270. for(ch=0; ch<out->ch_count; ch++)
  271. memcpy(out->ch[ch], in->ch[ch], count*out->bps);
  272. }else
  273. memcpy(out->ch[0], in->ch[0], count*out->ch_count*out->bps);
  274. }
  275. static void fill_audiodata(AudioData *out, uint8_t *in_arg [SWR_CH_MAX]){
  276. int i;
  277. if(out->planar){
  278. for(i=0; i<out->ch_count; i++)
  279. out->ch[i]= in_arg[i];
  280. }else{
  281. for(i=0; i<out->ch_count; i++)
  282. out->ch[i]= in_arg[0] + i*out->bps;
  283. }
  284. }
  285. /**
  286. *
  287. * out may be equal in.
  288. */
  289. static void buf_set(AudioData *out, AudioData *in, int count){
  290. if(in->planar){
  291. int ch;
  292. for(ch=0; ch<out->ch_count; ch++)
  293. out->ch[ch]= in->ch[ch] + count*out->bps;
  294. }else
  295. out->ch[0]= in->ch[0] + count*out->ch_count*out->bps;
  296. }
  297. /**
  298. *
  299. * @return number of samples output per channel
  300. */
  301. static int resample(SwrContext *s, AudioData *out_param, int out_count,
  302. const AudioData * in_param, int in_count){
  303. AudioData in, out, tmp;
  304. int ret_sum=0;
  305. int border=0;
  306. tmp=out=*out_param;
  307. in = *in_param;
  308. do{
  309. int ret, size, consumed;
  310. if(!s->resample_in_constraint && s->in_buffer_count){
  311. buf_set(&tmp, &s->in_buffer, s->in_buffer_index);
  312. ret= swri_multiple_resample(s->resample, &out, out_count, &tmp, s->in_buffer_count, &consumed);
  313. out_count -= ret;
  314. ret_sum += ret;
  315. buf_set(&out, &out, ret);
  316. s->in_buffer_count -= consumed;
  317. s->in_buffer_index += consumed;
  318. if(!in_count)
  319. break;
  320. if(s->in_buffer_count <= border){
  321. buf_set(&in, &in, -s->in_buffer_count);
  322. in_count += s->in_buffer_count;
  323. s->in_buffer_count=0;
  324. s->in_buffer_index=0;
  325. border = 0;
  326. }
  327. }
  328. if(in_count && !s->in_buffer_count){
  329. s->in_buffer_index=0;
  330. ret= swri_multiple_resample(s->resample, &out, out_count, &in, in_count, &consumed);
  331. out_count -= ret;
  332. ret_sum += ret;
  333. buf_set(&out, &out, ret);
  334. in_count -= consumed;
  335. buf_set(&in, &in, consumed);
  336. }
  337. //TODO is this check sane considering the advanced copy avoidance below
  338. size= s->in_buffer_index + s->in_buffer_count + in_count;
  339. if( size > s->in_buffer.count
  340. && s->in_buffer_count + in_count <= s->in_buffer_index){
  341. buf_set(&tmp, &s->in_buffer, s->in_buffer_index);
  342. copy(&s->in_buffer, &tmp, s->in_buffer_count);
  343. s->in_buffer_index=0;
  344. }else
  345. if((ret=realloc_audio(&s->in_buffer, size)) < 0)
  346. return ret;
  347. if(in_count){
  348. int count= in_count;
  349. if(s->in_buffer_count && s->in_buffer_count+2 < count && out_count) count= s->in_buffer_count+2;
  350. buf_set(&tmp, &s->in_buffer, s->in_buffer_index + s->in_buffer_count);
  351. copy(&tmp, &in, /*in_*/count);
  352. s->in_buffer_count += count;
  353. in_count -= count;
  354. border += count;
  355. buf_set(&in, &in, count);
  356. s->resample_in_constraint= 0;
  357. if(s->in_buffer_count != count || in_count)
  358. continue;
  359. }
  360. break;
  361. }while(1);
  362. s->resample_in_constraint= !!out_count;
  363. return ret_sum;
  364. }
  365. static int swr_convert_internal(struct SwrContext *s, AudioData *out, int out_count,
  366. AudioData *in , int in_count){
  367. AudioData *postin, *midbuf, *preout;
  368. int ret/*, in_max*/;
  369. AudioData preout_tmp, midbuf_tmp;
  370. if(s->full_convert){
  371. av_assert0(!s->resample);
  372. swri_audio_convert(s->full_convert, out, in, in_count);
  373. return out_count;
  374. }
  375. // in_max= out_count*(int64_t)s->in_sample_rate / s->out_sample_rate + resample_filter_taps;
  376. // in_count= FFMIN(in_count, in_in + 2 - s->hist_buffer_count);
  377. if((ret=realloc_audio(&s->postin, in_count))<0)
  378. return ret;
  379. if(s->resample_first){
  380. av_assert0(s->midbuf.ch_count == s->used_ch_count);
  381. if((ret=realloc_audio(&s->midbuf, out_count))<0)
  382. return ret;
  383. }else{
  384. av_assert0(s->midbuf.ch_count == s->out.ch_count);
  385. if((ret=realloc_audio(&s->midbuf, in_count))<0)
  386. return ret;
  387. }
  388. if((ret=realloc_audio(&s->preout, out_count))<0)
  389. return ret;
  390. postin= &s->postin;
  391. midbuf_tmp= s->midbuf;
  392. midbuf= &midbuf_tmp;
  393. preout_tmp= s->preout;
  394. preout= &preout_tmp;
  395. if(s->int_sample_fmt == s-> in_sample_fmt && s->in.planar)
  396. postin= in;
  397. if(s->resample_first ? !s->resample : !s->rematrix)
  398. midbuf= postin;
  399. if(s->resample_first ? !s->rematrix : !s->resample)
  400. preout= midbuf;
  401. if(s->int_sample_fmt == s->out_sample_fmt && s->out.planar){
  402. if(preout==in){
  403. out_count= FFMIN(out_count, in_count); //TODO check at the end if this is needed or redundant
  404. av_assert0(s->in.planar); //we only support planar internally so it has to be, we support copying non planar though
  405. copy(out, in, out_count);
  406. return out_count;
  407. }
  408. else if(preout==postin) preout= midbuf= postin= out;
  409. else if(preout==midbuf) preout= midbuf= out;
  410. else preout= out;
  411. }
  412. if(in != postin){
  413. swri_audio_convert(s->in_convert, postin, in, in_count);
  414. }
  415. if(s->resample_first){
  416. if(postin != midbuf)
  417. out_count= resample(s, midbuf, out_count, postin, in_count);
  418. if(midbuf != preout)
  419. swri_rematrix(s, preout, midbuf, out_count, preout==out);
  420. }else{
  421. if(postin != midbuf)
  422. swri_rematrix(s, midbuf, postin, in_count, midbuf==out);
  423. if(midbuf != preout)
  424. out_count= resample(s, preout, out_count, midbuf, in_count);
  425. }
  426. if(preout != out && out_count){
  427. //FIXME packed doesnt need more than 1 chan here!
  428. swri_audio_convert(s->out_convert, out, preout, out_count);
  429. }
  430. return out_count;
  431. }
  432. int swr_convert(struct SwrContext *s, uint8_t *out_arg[SWR_CH_MAX], int out_count,
  433. const uint8_t *in_arg [SWR_CH_MAX], int in_count){
  434. AudioData * in= &s->in;
  435. AudioData *out= &s->out;
  436. if(!in_arg){
  437. if(s->in_buffer_count){
  438. if (s->resample && !s->flushed) {
  439. AudioData *a= &s->in_buffer;
  440. int i, j, ret;
  441. if((ret=realloc_audio(a, s->in_buffer_index + 2*s->in_buffer_count)) < 0)
  442. return ret;
  443. av_assert0(a->planar);
  444. for(i=0; i<a->ch_count; i++){
  445. for(j=0; j<s->in_buffer_count; j++){
  446. memcpy(a->ch[i] + (s->in_buffer_index+s->in_buffer_count+j )*a->bps,
  447. a->ch[i] + (s->in_buffer_index+s->in_buffer_count-j-1)*a->bps, a->bps);
  448. }
  449. }
  450. s->in_buffer_count += (s->in_buffer_count+1)/2;
  451. s->resample_in_constraint = 0;
  452. s->flushed = 1;
  453. }
  454. }else{
  455. return 0;
  456. }
  457. }else
  458. fill_audiodata(in , (void*)in_arg);
  459. fill_audiodata(out, out_arg);
  460. if(s->resample){
  461. return swr_convert_internal(s, out, out_count, in, in_count);
  462. }else{
  463. AudioData tmp= *in;
  464. int ret2=0;
  465. int ret, size;
  466. size = FFMIN(out_count, s->in_buffer_count);
  467. if(size){
  468. buf_set(&tmp, &s->in_buffer, s->in_buffer_index);
  469. ret= swr_convert_internal(s, out, size, &tmp, size);
  470. if(ret<0)
  471. return ret;
  472. ret2= ret;
  473. s->in_buffer_count -= ret;
  474. s->in_buffer_index += ret;
  475. buf_set(out, out, ret);
  476. out_count -= ret;
  477. if(!s->in_buffer_count)
  478. s->in_buffer_index = 0;
  479. }
  480. if(in_count){
  481. size= s->in_buffer_index + s->in_buffer_count + in_count - out_count;
  482. if(in_count > out_count) { //FIXME move after swr_convert_internal
  483. if( size > s->in_buffer.count
  484. && s->in_buffer_count + in_count - out_count <= s->in_buffer_index){
  485. buf_set(&tmp, &s->in_buffer, s->in_buffer_index);
  486. copy(&s->in_buffer, &tmp, s->in_buffer_count);
  487. s->in_buffer_index=0;
  488. }else
  489. if((ret=realloc_audio(&s->in_buffer, size)) < 0)
  490. return ret;
  491. }
  492. if(out_count){
  493. size = FFMIN(in_count, out_count);
  494. ret= swr_convert_internal(s, out, size, in, size);
  495. if(ret<0)
  496. return ret;
  497. buf_set(in, in, ret);
  498. in_count -= ret;
  499. ret2 += ret;
  500. }
  501. if(in_count){
  502. buf_set(&tmp, &s->in_buffer, s->in_buffer_index);
  503. copy(&tmp, in, in_count);
  504. s->in_buffer_count += in_count;
  505. }
  506. }
  507. return ret2;
  508. }
  509. }