You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

269 lines
8.1KB

  1. /*
  2. * Copyright (c) 2013-2014 Mozilla Corporation
  3. *
  4. * This file is part of Libav.
  5. *
  6. * Libav is free software; you can redistribute it and/or
  7. * modify it under the terms of the GNU Lesser General Public
  8. * License as published by the Free Software Foundation; either
  9. * version 2.1 of the License, or (at your option) any later version.
  10. *
  11. * Libav is distributed in the hope that it will be useful,
  12. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  13. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  14. * Lesser General Public License for more details.
  15. *
  16. * You should have received a copy of the GNU Lesser General Public
  17. * License along with Libav; if not, write to the Free Software
  18. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  19. */
  20. /**
  21. * @file
  22. * Celt non-power of 2 iMDCT
  23. */
  24. #include <float.h>
  25. #include <math.h>
  26. #include "libavutil/attributes.h"
  27. #include "libavutil/common.h"
  28. #include "fft.h"
  29. #include "opus.h"
  30. // complex c = a * b
  31. #define CMUL3(cre, cim, are, aim, bre, bim) \
  32. do { \
  33. cre = are * bre - aim * bim; \
  34. cim = are * bim + aim * bre; \
  35. } while (0)
  36. #define CMUL(c, a, b) CMUL3((c).re, (c).im, (a).re, (a).im, (b).re, (b).im)
  37. // complex c = a * b
  38. // d = a * conjugate(b)
  39. #define CMUL2(c, d, a, b) \
  40. do { \
  41. float are = (a).re; \
  42. float aim = (a).im; \
  43. float bre = (b).re; \
  44. float bim = (b).im; \
  45. float rr = are * bre; \
  46. float ri = are * bim; \
  47. float ir = aim * bre; \
  48. float ii = aim * bim; \
  49. (c).re = rr - ii; \
  50. (c).im = ri + ir; \
  51. (d).re = rr + ii; \
  52. (d).im = -ri + ir; \
  53. } while (0)
  54. struct CeltIMDCTContext {
  55. int fft_n;
  56. int len2;
  57. int len4;
  58. FFTComplex *tmp;
  59. FFTComplex *twiddle_exptab;
  60. FFTComplex *exptab[6];
  61. };
  62. av_cold void ff_celt_imdct_uninit(CeltIMDCTContext **ps)
  63. {
  64. CeltIMDCTContext *s = *ps;
  65. int i;
  66. if (!s)
  67. return;
  68. for (i = 0; i < FF_ARRAY_ELEMS(s->exptab); i++)
  69. av_freep(&s->exptab[i]);
  70. av_freep(&s->twiddle_exptab);
  71. av_freep(&s->tmp);
  72. av_freep(ps);
  73. }
  74. av_cold int ff_celt_imdct_init(CeltIMDCTContext **ps, int N)
  75. {
  76. CeltIMDCTContext *s;
  77. int len2 = 15 * (1 << N);
  78. int len = 2 * len2;
  79. int i, j;
  80. if (len2 > CELT_MAX_FRAME_SIZE)
  81. return AVERROR(EINVAL);
  82. s = av_mallocz(sizeof(*s));
  83. if (!s)
  84. return AVERROR(ENOMEM);
  85. s->fft_n = N - 1;
  86. s->len4 = len2 / 2;
  87. s->len2 = len2;
  88. s->tmp = av_malloc(len * 2 * sizeof(*s->tmp));
  89. if (!s->tmp)
  90. goto fail;
  91. s->twiddle_exptab = av_malloc(s->len4 * sizeof(*s->twiddle_exptab));
  92. if (!s->twiddle_exptab)
  93. goto fail;
  94. for (i = 0; i < s->len4; i++) {
  95. s->twiddle_exptab[i].re = cos(2 * M_PI * (i + 0.125 + s->len4) / len);
  96. s->twiddle_exptab[i].im = sin(2 * M_PI * (i + 0.125 + s->len4) / len);
  97. }
  98. for (i = 0; i < FF_ARRAY_ELEMS(s->exptab); i++) {
  99. int N = 15 * (1 << i);
  100. s->exptab[i] = av_malloc(sizeof(*s->exptab[i]) * FFMAX(N, 19));
  101. if (!s->exptab[i])
  102. goto fail;
  103. for (j = 0; j < N; j++) {
  104. s->exptab[i][j].re = cos(2 * M_PI * j / N);
  105. s->exptab[i][j].im = sin(2 * M_PI * j / N);
  106. }
  107. }
  108. // wrap around to simplify fft15
  109. for (j = 15; j < 19; j++)
  110. s->exptab[0][j] = s->exptab[0][j - 15];
  111. *ps = s;
  112. return 0;
  113. fail:
  114. ff_celt_imdct_uninit(&s);
  115. return AVERROR(ENOMEM);
  116. }
  117. static void fft5(FFTComplex *out, const FFTComplex *in, int stride)
  118. {
  119. // [0] = exp(2 * i * pi / 5), [1] = exp(2 * i * pi * 2 / 5)
  120. static const FFTComplex fact[] = { { 0.30901699437494745, 0.95105651629515353 },
  121. { -0.80901699437494734, 0.58778525229247325 } };
  122. FFTComplex z[4][4];
  123. CMUL2(z[0][0], z[0][3], in[1 * stride], fact[0]);
  124. CMUL2(z[0][1], z[0][2], in[1 * stride], fact[1]);
  125. CMUL2(z[1][0], z[1][3], in[2 * stride], fact[0]);
  126. CMUL2(z[1][1], z[1][2], in[2 * stride], fact[1]);
  127. CMUL2(z[2][0], z[2][3], in[3 * stride], fact[0]);
  128. CMUL2(z[2][1], z[2][2], in[3 * stride], fact[1]);
  129. CMUL2(z[3][0], z[3][3], in[4 * stride], fact[0]);
  130. CMUL2(z[3][1], z[3][2], in[4 * stride], fact[1]);
  131. out[0].re = in[0].re + in[stride].re + in[2 * stride].re + in[3 * stride].re + in[4 * stride].re;
  132. out[0].im = in[0].im + in[stride].im + in[2 * stride].im + in[3 * stride].im + in[4 * stride].im;
  133. out[1].re = in[0].re + z[0][0].re + z[1][1].re + z[2][2].re + z[3][3].re;
  134. out[1].im = in[0].im + z[0][0].im + z[1][1].im + z[2][2].im + z[3][3].im;
  135. out[2].re = in[0].re + z[0][1].re + z[1][3].re + z[2][0].re + z[3][2].re;
  136. out[2].im = in[0].im + z[0][1].im + z[1][3].im + z[2][0].im + z[3][2].im;
  137. out[3].re = in[0].re + z[0][2].re + z[1][0].re + z[2][3].re + z[3][1].re;
  138. out[3].im = in[0].im + z[0][2].im + z[1][0].im + z[2][3].im + z[3][1].im;
  139. out[4].re = in[0].re + z[0][3].re + z[1][2].re + z[2][1].re + z[3][0].re;
  140. out[4].im = in[0].im + z[0][3].im + z[1][2].im + z[2][1].im + z[3][0].im;
  141. }
  142. static void fft15(CeltIMDCTContext *s, FFTComplex *out, const FFTComplex *in, int stride)
  143. {
  144. const FFTComplex *exptab = s->exptab[0];
  145. FFTComplex tmp[5];
  146. FFTComplex tmp1[5];
  147. FFTComplex tmp2[5];
  148. int k;
  149. fft5(tmp, in, stride * 3);
  150. fft5(tmp1, in + stride, stride * 3);
  151. fft5(tmp2, in + 2 * stride, stride * 3);
  152. for (k = 0; k < 5; k++) {
  153. FFTComplex t1, t2;
  154. CMUL(t1, tmp1[k], exptab[k]);
  155. CMUL(t2, tmp2[k], exptab[2 * k]);
  156. out[k].re = tmp[k].re + t1.re + t2.re;
  157. out[k].im = tmp[k].im + t1.im + t2.im;
  158. CMUL(t1, tmp1[k], exptab[k + 5]);
  159. CMUL(t2, tmp2[k], exptab[2 * (k + 5)]);
  160. out[k + 5].re = tmp[k].re + t1.re + t2.re;
  161. out[k + 5].im = tmp[k].im + t1.im + t2.im;
  162. CMUL(t1, tmp1[k], exptab[k + 10]);
  163. CMUL(t2, tmp2[k], exptab[2 * k + 5]);
  164. out[k + 10].re = tmp[k].re + t1.re + t2.re;
  165. out[k + 10].im = tmp[k].im + t1.im + t2.im;
  166. }
  167. }
  168. /*
  169. * FFT of the length 15 * (2^N)
  170. */
  171. static void fft_calc(CeltIMDCTContext *s, FFTComplex *out, const FFTComplex *in, int N, int stride)
  172. {
  173. if (N) {
  174. const FFTComplex *exptab = s->exptab[N];
  175. const int len2 = 15 * (1 << (N - 1));
  176. int k;
  177. fft_calc(s, out, in, N - 1, stride * 2);
  178. fft_calc(s, out + len2, in + stride, N - 1, stride * 2);
  179. for (k = 0; k < len2; k++) {
  180. FFTComplex t;
  181. CMUL(t, out[len2 + k], exptab[k]);
  182. out[len2 + k].re = out[k].re - t.re;
  183. out[len2 + k].im = out[k].im - t.im;
  184. out[k].re += t.re;
  185. out[k].im += t.im;
  186. }
  187. } else
  188. fft15(s, out, in, stride);
  189. }
  190. void ff_celt_imdct_half(CeltIMDCTContext *s, float *dst, const float *src,
  191. int stride, float scale)
  192. {
  193. FFTComplex *z = (FFTComplex *)dst;
  194. const int len8 = s->len4 / 2;
  195. const float *in1 = src;
  196. const float *in2 = src + (s->len2 - 1) * stride;
  197. int i;
  198. for (i = 0; i < s->len4; i++) {
  199. FFTComplex tmp = { *in2, *in1 };
  200. CMUL(s->tmp[i], tmp, s->twiddle_exptab[i]);
  201. in1 += 2 * stride;
  202. in2 -= 2 * stride;
  203. }
  204. fft_calc(s, z, s->tmp, s->fft_n, 1);
  205. for (i = 0; i < len8; i++) {
  206. float r0, i0, r1, i1;
  207. CMUL3(r0, i1, z[len8 - i - 1].im, z[len8 - i - 1].re, s->twiddle_exptab[len8 - i - 1].im, s->twiddle_exptab[len8 - i - 1].re);
  208. CMUL3(r1, i0, z[len8 + i].im, z[len8 + i].re, s->twiddle_exptab[len8 + i].im, s->twiddle_exptab[len8 + i].re);
  209. z[len8 - i - 1].re = scale * r0;
  210. z[len8 - i - 1].im = scale * i0;
  211. z[len8 + i].re = scale * r1;
  212. z[len8 + i].im = scale * i1;
  213. }
  214. }