You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

1209 lines
43KB

  1. /*
  2. * Copyright (c) 2003 The FFmpeg Project
  3. *
  4. * This file is part of FFmpeg.
  5. *
  6. * FFmpeg is free software; you can redistribute it and/or
  7. * modify it under the terms of the GNU Lesser General Public
  8. * License as published by the Free Software Foundation; either
  9. * version 2.1 of the License, or (at your option) any later version.
  10. *
  11. * FFmpeg is distributed in the hope that it will be useful,
  12. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  13. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  14. * Lesser General Public License for more details.
  15. *
  16. * You should have received a copy of the GNU Lesser General Public
  17. * License along with FFmpeg; if not, write to the Free Software
  18. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  19. */
  20. /*
  21. * How to use this decoder:
  22. * SVQ3 data is transported within Apple Quicktime files. Quicktime files
  23. * have stsd atoms to describe media trak properties. A stsd atom for a
  24. * video trak contains 1 or more ImageDescription atoms. These atoms begin
  25. * with the 4-byte length of the atom followed by the codec fourcc. Some
  26. * decoders need information in this atom to operate correctly. Such
  27. * is the case with SVQ3. In order to get the best use out of this decoder,
  28. * the calling app must make the SVQ3 ImageDescription atom available
  29. * via the AVCodecContext's extradata[_size] field:
  30. *
  31. * AVCodecContext.extradata = pointer to ImageDescription, first characters
  32. * are expected to be 'S', 'V', 'Q', and '3', NOT the 4-byte atom length
  33. * AVCodecContext.extradata_size = size of ImageDescription atom memory
  34. * buffer (which will be the same as the ImageDescription atom size field
  35. * from the QT file, minus 4 bytes since the length is missing)
  36. *
  37. * You will know you have these parameters passed correctly when the decoder
  38. * correctly decodes this file:
  39. * http://samples.mplayerhq.hu/V-codecs/SVQ3/Vertical400kbit.sorenson3.mov
  40. */
  41. #include "internal.h"
  42. #include "dsputil.h"
  43. #include "avcodec.h"
  44. #include "mpegvideo.h"
  45. #include "h264.h"
  46. #include "h264data.h" // FIXME FIXME FIXME
  47. #include "h264_mvpred.h"
  48. #include "golomb.h"
  49. #include "rectangle.h"
  50. #include "vdpau_internal.h"
  51. #if CONFIG_ZLIB
  52. #include <zlib.h>
  53. #endif
  54. #include "svq1.h"
  55. /**
  56. * @file
  57. * svq3 decoder.
  58. */
  59. typedef struct {
  60. H264Context h;
  61. int halfpel_flag;
  62. int thirdpel_flag;
  63. int unknown_flag;
  64. int next_slice_index;
  65. uint32_t watermark_key;
  66. uint8_t *buf;
  67. int buf_size;
  68. } SVQ3Context;
  69. #define FULLPEL_MODE 1
  70. #define HALFPEL_MODE 2
  71. #define THIRDPEL_MODE 3
  72. #define PREDICT_MODE 4
  73. /* dual scan (from some older h264 draft)
  74. * o-->o-->o o
  75. * | /|
  76. * o o o / o
  77. * | / | |/ |
  78. * o o o o
  79. * /
  80. * o-->o-->o-->o
  81. */
  82. static const uint8_t svq3_scan[16] = {
  83. 0 + 0 * 4, 1 + 0 * 4, 2 + 0 * 4, 2 + 1 * 4,
  84. 2 + 2 * 4, 3 + 0 * 4, 3 + 1 * 4, 3 + 2 * 4,
  85. 0 + 1 * 4, 0 + 2 * 4, 1 + 1 * 4, 1 + 2 * 4,
  86. 0 + 3 * 4, 1 + 3 * 4, 2 + 3 * 4, 3 + 3 * 4,
  87. };
  88. static const uint8_t svq3_pred_0[25][2] = {
  89. { 0, 0 },
  90. { 1, 0 }, { 0, 1 },
  91. { 0, 2 }, { 1, 1 }, { 2, 0 },
  92. { 3, 0 }, { 2, 1 }, { 1, 2 }, { 0, 3 },
  93. { 0, 4 }, { 1, 3 }, { 2, 2 }, { 3, 1 }, { 4, 0 },
  94. { 4, 1 }, { 3, 2 }, { 2, 3 }, { 1, 4 },
  95. { 2, 4 }, { 3, 3 }, { 4, 2 },
  96. { 4, 3 }, { 3, 4 },
  97. { 4, 4 }
  98. };
  99. static const int8_t svq3_pred_1[6][6][5] = {
  100. { { 2, -1, -1, -1, -1 }, { 2, 1, -1, -1, -1 }, { 1, 2, -1, -1, -1 },
  101. { 2, 1, -1, -1, -1 }, { 1, 2, -1, -1, -1 }, { 1, 2, -1, -1, -1 } },
  102. { { 0, 2, -1, -1, -1 }, { 0, 2, 1, 4, 3 }, { 0, 1, 2, 4, 3 },
  103. { 0, 2, 1, 4, 3 }, { 2, 0, 1, 3, 4 }, { 0, 4, 2, 1, 3 } },
  104. { { 2, 0, -1, -1, -1 }, { 2, 1, 0, 4, 3 }, { 1, 2, 4, 0, 3 },
  105. { 2, 1, 0, 4, 3 }, { 2, 1, 4, 3, 0 }, { 1, 2, 4, 0, 3 } },
  106. { { 2, 0, -1, -1, -1 }, { 2, 0, 1, 4, 3 }, { 1, 2, 0, 4, 3 },
  107. { 2, 1, 0, 4, 3 }, { 2, 1, 3, 4, 0 }, { 2, 4, 1, 0, 3 } },
  108. { { 0, 2, -1, -1, -1 }, { 0, 2, 1, 3, 4 }, { 1, 2, 3, 0, 4 },
  109. { 2, 0, 1, 3, 4 }, { 2, 1, 3, 0, 4 }, { 2, 0, 4, 3, 1 } },
  110. { { 0, 2, -1, -1, -1 }, { 0, 2, 4, 1, 3 }, { 1, 4, 2, 0, 3 },
  111. { 4, 2, 0, 1, 3 }, { 2, 0, 1, 4, 3 }, { 4, 2, 1, 0, 3 } },
  112. };
  113. static const struct {
  114. uint8_t run;
  115. uint8_t level;
  116. } svq3_dct_tables[2][16] = {
  117. { { 0, 0 }, { 0, 1 }, { 1, 1 }, { 2, 1 }, { 0, 2 }, { 3, 1 }, { 4, 1 }, { 5, 1 },
  118. { 0, 3 }, { 1, 2 }, { 2, 2 }, { 6, 1 }, { 7, 1 }, { 8, 1 }, { 9, 1 }, { 0, 4 } },
  119. { { 0, 0 }, { 0, 1 }, { 1, 1 }, { 0, 2 }, { 2, 1 }, { 0, 3 }, { 0, 4 }, { 0, 5 },
  120. { 3, 1 }, { 4, 1 }, { 1, 2 }, { 1, 3 }, { 0, 6 }, { 0, 7 }, { 0, 8 }, { 0, 9 } }
  121. };
  122. static const uint32_t svq3_dequant_coeff[32] = {
  123. 3881, 4351, 4890, 5481, 6154, 6914, 7761, 8718,
  124. 9781, 10987, 12339, 13828, 15523, 17435, 19561, 21873,
  125. 24552, 27656, 30847, 34870, 38807, 43747, 49103, 54683,
  126. 61694, 68745, 77615, 89113, 100253, 109366, 126635, 141533
  127. };
  128. void ff_svq3_luma_dc_dequant_idct_c(DCTELEM *output, DCTELEM *input, int qp)
  129. {
  130. const int qmul = svq3_dequant_coeff[qp];
  131. #define stride 16
  132. int i;
  133. int temp[16];
  134. static const uint8_t x_offset[4] = { 0, 1 * stride, 4 * stride, 5 * stride };
  135. for (i = 0; i < 4; i++) {
  136. const int z0 = 13 * (input[4 * i + 0] + input[4 * i + 2]);
  137. const int z1 = 13 * (input[4 * i + 0] - input[4 * i + 2]);
  138. const int z2 = 7 * input[4 * i + 1] - 17 * input[4 * i + 3];
  139. const int z3 = 17 * input[4 * i + 1] + 7 * input[4 * i + 3];
  140. temp[4 * i + 0] = z0 + z3;
  141. temp[4 * i + 1] = z1 + z2;
  142. temp[4 * i + 2] = z1 - z2;
  143. temp[4 * i + 3] = z0 - z3;
  144. }
  145. for (i = 0; i < 4; i++) {
  146. const int offset = x_offset[i];
  147. const int z0 = 13 * (temp[4 * 0 + i] + temp[4 * 2 + i]);
  148. const int z1 = 13 * (temp[4 * 0 + i] - temp[4 * 2 + i]);
  149. const int z2 = 7 * temp[4 * 1 + i] - 17 * temp[4 * 3 + i];
  150. const int z3 = 17 * temp[4 * 1 + i] + 7 * temp[4 * 3 + i];
  151. output[stride * 0 + offset] = (z0 + z3) * qmul + 0x80000 >> 20;
  152. output[stride * 2 + offset] = (z1 + z2) * qmul + 0x80000 >> 20;
  153. output[stride * 8 + offset] = (z1 - z2) * qmul + 0x80000 >> 20;
  154. output[stride * 10 + offset] = (z0 - z3) * qmul + 0x80000 >> 20;
  155. }
  156. }
  157. #undef stride
  158. void ff_svq3_add_idct_c(uint8_t *dst, DCTELEM *block,
  159. int stride, int qp, int dc)
  160. {
  161. const int qmul = svq3_dequant_coeff[qp];
  162. int i;
  163. if (dc) {
  164. dc = 13 * 13 * (dc == 1 ? 1538 * block[0]
  165. : qmul * (block[0] >> 3) / 2);
  166. block[0] = 0;
  167. }
  168. for (i = 0; i < 4; i++) {
  169. const int z0 = 13 * (block[0 + 4 * i] + block[2 + 4 * i]);
  170. const int z1 = 13 * (block[0 + 4 * i] - block[2 + 4 * i]);
  171. const int z2 = 7 * block[1 + 4 * i] - 17 * block[3 + 4 * i];
  172. const int z3 = 17 * block[1 + 4 * i] + 7 * block[3 + 4 * i];
  173. block[0 + 4 * i] = z0 + z3;
  174. block[1 + 4 * i] = z1 + z2;
  175. block[2 + 4 * i] = z1 - z2;
  176. block[3 + 4 * i] = z0 - z3;
  177. }
  178. for (i = 0; i < 4; i++) {
  179. const int z0 = 13 * (block[i + 4 * 0] + block[i + 4 * 2]);
  180. const int z1 = 13 * (block[i + 4 * 0] - block[i + 4 * 2]);
  181. const int z2 = 7 * block[i + 4 * 1] - 17 * block[i + 4 * 3];
  182. const int z3 = 17 * block[i + 4 * 1] + 7 * block[i + 4 * 3];
  183. const int rr = (dc + 0x80000);
  184. dst[i + stride * 0] = av_clip_uint8(dst[i + stride * 0] + ((z0 + z3) * qmul + rr >> 20));
  185. dst[i + stride * 1] = av_clip_uint8(dst[i + stride * 1] + ((z1 + z2) * qmul + rr >> 20));
  186. dst[i + stride * 2] = av_clip_uint8(dst[i + stride * 2] + ((z1 - z2) * qmul + rr >> 20));
  187. dst[i + stride * 3] = av_clip_uint8(dst[i + stride * 3] + ((z0 - z3) * qmul + rr >> 20));
  188. }
  189. }
  190. static inline int svq3_decode_block(GetBitContext *gb, DCTELEM *block,
  191. int index, const int type)
  192. {
  193. static const uint8_t *const scan_patterns[4] =
  194. { luma_dc_zigzag_scan, zigzag_scan, svq3_scan, chroma_dc_scan };
  195. int run, level, sign, limit;
  196. unsigned vlc;
  197. const int intra = 3 * type >> 2;
  198. const uint8_t *const scan = scan_patterns[type];
  199. for (limit = (16 >> intra); index < 16; index = limit, limit += 8) {
  200. for (; (vlc = svq3_get_ue_golomb(gb)) != 0; index++) {
  201. if ((int32_t)vlc < 0)
  202. return -1;
  203. sign = (vlc & 1) ? 0 : -1;
  204. vlc = vlc + 1 >> 1;
  205. if (type == 3) {
  206. if (vlc < 3) {
  207. run = 0;
  208. level = vlc;
  209. } else if (vlc < 4) {
  210. run = 1;
  211. level = 1;
  212. } else {
  213. run = vlc & 0x3;
  214. level = (vlc + 9 >> 2) - run;
  215. }
  216. } else {
  217. if (vlc < 16U) {
  218. run = svq3_dct_tables[intra][vlc].run;
  219. level = svq3_dct_tables[intra][vlc].level;
  220. } else if (intra) {
  221. run = vlc & 0x7;
  222. level = (vlc >> 3) + ((run == 0) ? 8 : ((run < 2) ? 2 : ((run < 5) ? 0 : -1)));
  223. } else {
  224. run = vlc & 0xF;
  225. level = (vlc >> 4) + ((run == 0) ? 4 : ((run < 3) ? 2 : ((run < 10) ? 1 : 0)));
  226. }
  227. }
  228. if ((index += run) >= limit)
  229. return -1;
  230. block[scan[index]] = (level ^ sign) - sign;
  231. }
  232. if (type != 2) {
  233. break;
  234. }
  235. }
  236. return 0;
  237. }
  238. static inline void svq3_mc_dir_part(MpegEncContext *s,
  239. int x, int y, int width, int height,
  240. int mx, int my, int dxy,
  241. int thirdpel, int dir, int avg)
  242. {
  243. const Picture *pic = (dir == 0) ? &s->last_picture : &s->next_picture;
  244. uint8_t *src, *dest;
  245. int i, emu = 0;
  246. int blocksize = 2 - (width >> 3); // 16->0, 8->1, 4->2
  247. mx += x;
  248. my += y;
  249. if (mx < 0 || mx >= s->h_edge_pos - width - 1 ||
  250. my < 0 || my >= s->v_edge_pos - height - 1) {
  251. if ((s->flags & CODEC_FLAG_EMU_EDGE))
  252. emu = 1;
  253. mx = av_clip(mx, -16, s->h_edge_pos - width + 15);
  254. my = av_clip(my, -16, s->v_edge_pos - height + 15);
  255. }
  256. /* form component predictions */
  257. dest = s->current_picture.f.data[0] + x + y * s->linesize;
  258. src = pic->f.data[0] + mx + my * s->linesize;
  259. if (emu) {
  260. s->dsp.emulated_edge_mc(s->edge_emu_buffer, src, s->linesize,
  261. width + 1, height + 1,
  262. mx, my, s->h_edge_pos, s->v_edge_pos);
  263. src = s->edge_emu_buffer;
  264. }
  265. if (thirdpel)
  266. (avg ? s->dsp.avg_tpel_pixels_tab
  267. : s->dsp.put_tpel_pixels_tab)[dxy](dest, src, s->linesize,
  268. width, height);
  269. else
  270. (avg ? s->dsp.avg_pixels_tab
  271. : s->dsp.put_pixels_tab)[blocksize][dxy](dest, src, s->linesize,
  272. height);
  273. if (!(s->flags & CODEC_FLAG_GRAY)) {
  274. mx = mx + (mx < (int) x) >> 1;
  275. my = my + (my < (int) y) >> 1;
  276. width = width >> 1;
  277. height = height >> 1;
  278. blocksize++;
  279. for (i = 1; i < 3; i++) {
  280. dest = s->current_picture.f.data[i] + (x >> 1) + (y >> 1) * s->uvlinesize;
  281. src = pic->f.data[i] + mx + my * s->uvlinesize;
  282. if (emu) {
  283. s->dsp.emulated_edge_mc(s->edge_emu_buffer, src, s->uvlinesize,
  284. width + 1, height + 1,
  285. mx, my, (s->h_edge_pos >> 1),
  286. s->v_edge_pos >> 1);
  287. src = s->edge_emu_buffer;
  288. }
  289. if (thirdpel)
  290. (avg ? s->dsp.avg_tpel_pixels_tab
  291. : s->dsp.put_tpel_pixels_tab)[dxy](dest, src,
  292. s->uvlinesize,
  293. width, height);
  294. else
  295. (avg ? s->dsp.avg_pixels_tab
  296. : s->dsp.put_pixels_tab)[blocksize][dxy](dest, src,
  297. s->uvlinesize,
  298. height);
  299. }
  300. }
  301. }
  302. static inline int svq3_mc_dir(H264Context *h, int size, int mode,
  303. int dir, int avg)
  304. {
  305. int i, j, k, mx, my, dx, dy, x, y;
  306. MpegEncContext *const s = (MpegEncContext *)h;
  307. const int part_width = ((size & 5) == 4) ? 4 : 16 >> (size & 1);
  308. const int part_height = 16 >> ((unsigned)(size + 1) / 3);
  309. const int extra_width = (mode == PREDICT_MODE) ? -16 * 6 : 0;
  310. const int h_edge_pos = 6 * (s->h_edge_pos - part_width) - extra_width;
  311. const int v_edge_pos = 6 * (s->v_edge_pos - part_height) - extra_width;
  312. for (i = 0; i < 16; i += part_height)
  313. for (j = 0; j < 16; j += part_width) {
  314. const int b_xy = (4 * s->mb_x + (j >> 2)) +
  315. (4 * s->mb_y + (i >> 2)) * h->b_stride;
  316. int dxy;
  317. x = 16 * s->mb_x + j;
  318. y = 16 * s->mb_y + i;
  319. k = (j >> 2 & 1) + (i >> 1 & 2) +
  320. (j >> 1 & 4) + (i & 8);
  321. if (mode != PREDICT_MODE) {
  322. pred_motion(h, k, part_width >> 2, dir, 1, &mx, &my);
  323. } else {
  324. mx = s->next_picture.f.motion_val[0][b_xy][0] << 1;
  325. my = s->next_picture.f.motion_val[0][b_xy][1] << 1;
  326. if (dir == 0) {
  327. mx = mx * h->frame_num_offset /
  328. h->prev_frame_num_offset + 1 >> 1;
  329. my = my * h->frame_num_offset /
  330. h->prev_frame_num_offset + 1 >> 1;
  331. } else {
  332. mx = mx * (h->frame_num_offset - h->prev_frame_num_offset) /
  333. h->prev_frame_num_offset + 1 >> 1;
  334. my = my * (h->frame_num_offset - h->prev_frame_num_offset) /
  335. h->prev_frame_num_offset + 1 >> 1;
  336. }
  337. }
  338. /* clip motion vector prediction to frame border */
  339. mx = av_clip(mx, extra_width - 6 * x, h_edge_pos - 6 * x);
  340. my = av_clip(my, extra_width - 6 * y, v_edge_pos - 6 * y);
  341. /* get (optional) motion vector differential */
  342. if (mode == PREDICT_MODE) {
  343. dx = dy = 0;
  344. } else {
  345. dy = svq3_get_se_golomb(&s->gb);
  346. dx = svq3_get_se_golomb(&s->gb);
  347. if (dx == INVALID_VLC || dy == INVALID_VLC) {
  348. av_log(h->s.avctx, AV_LOG_ERROR, "invalid MV vlc\n");
  349. return -1;
  350. }
  351. }
  352. /* compute motion vector */
  353. if (mode == THIRDPEL_MODE) {
  354. int fx, fy;
  355. mx = (mx + 1 >> 1) + dx;
  356. my = (my + 1 >> 1) + dy;
  357. fx = (unsigned)(mx + 0x3000) / 3 - 0x1000;
  358. fy = (unsigned)(my + 0x3000) / 3 - 0x1000;
  359. dxy = (mx - 3 * fx) + 4 * (my - 3 * fy);
  360. svq3_mc_dir_part(s, x, y, part_width, part_height,
  361. fx, fy, dxy, 1, dir, avg);
  362. mx += mx;
  363. my += my;
  364. } else if (mode == HALFPEL_MODE || mode == PREDICT_MODE) {
  365. mx = (unsigned)(mx + 1 + 0x3000) / 3 + dx - 0x1000;
  366. my = (unsigned)(my + 1 + 0x3000) / 3 + dy - 0x1000;
  367. dxy = (mx & 1) + 2 * (my & 1);
  368. svq3_mc_dir_part(s, x, y, part_width, part_height,
  369. mx >> 1, my >> 1, dxy, 0, dir, avg);
  370. mx *= 3;
  371. my *= 3;
  372. } else {
  373. mx = (unsigned)(mx + 3 + 0x6000) / 6 + dx - 0x1000;
  374. my = (unsigned)(my + 3 + 0x6000) / 6 + dy - 0x1000;
  375. svq3_mc_dir_part(s, x, y, part_width, part_height,
  376. mx, my, 0, 0, dir, avg);
  377. mx *= 6;
  378. my *= 6;
  379. }
  380. /* update mv_cache */
  381. if (mode != PREDICT_MODE) {
  382. int32_t mv = pack16to32(mx, my);
  383. if (part_height == 8 && i < 8) {
  384. AV_WN32A(h->mv_cache[dir][scan8[k] + 1 * 8], mv);
  385. if (part_width == 8 && j < 8)
  386. AV_WN32A(h->mv_cache[dir][scan8[k] + 1 + 1 * 8], mv);
  387. }
  388. if (part_width == 8 && j < 8)
  389. AV_WN32A(h->mv_cache[dir][scan8[k] + 1], mv);
  390. if (part_width == 4 || part_height == 4)
  391. AV_WN32A(h->mv_cache[dir][scan8[k]], mv);
  392. }
  393. /* write back motion vectors */
  394. fill_rectangle(s->current_picture.f.motion_val[dir][b_xy],
  395. part_width >> 2, part_height >> 2, h->b_stride,
  396. pack16to32(mx, my), 4);
  397. }
  398. return 0;
  399. }
  400. static int svq3_decode_mb(SVQ3Context *svq3, unsigned int mb_type)
  401. {
  402. H264Context *h = &svq3->h;
  403. int i, j, k, m, dir, mode;
  404. int cbp = 0;
  405. uint32_t vlc;
  406. int8_t *top, *left;
  407. MpegEncContext *const s = (MpegEncContext *)h;
  408. const int mb_xy = h->mb_xy;
  409. const int b_xy = 4 * s->mb_x + 4 * s->mb_y * h->b_stride;
  410. h->top_samples_available = (s->mb_y == 0) ? 0x33FF : 0xFFFF;
  411. h->left_samples_available = (s->mb_x == 0) ? 0x5F5F : 0xFFFF;
  412. h->topright_samples_available = 0xFFFF;
  413. if (mb_type == 0) { /* SKIP */
  414. if (s->pict_type == AV_PICTURE_TYPE_P ||
  415. s->next_picture.f.mb_type[mb_xy] == -1) {
  416. svq3_mc_dir_part(s, 16 * s->mb_x, 16 * s->mb_y, 16, 16,
  417. 0, 0, 0, 0, 0, 0);
  418. if (s->pict_type == AV_PICTURE_TYPE_B)
  419. svq3_mc_dir_part(s, 16 * s->mb_x, 16 * s->mb_y, 16, 16,
  420. 0, 0, 0, 0, 1, 1);
  421. mb_type = MB_TYPE_SKIP;
  422. } else {
  423. mb_type = FFMIN(s->next_picture.f.mb_type[mb_xy], 6);
  424. if (svq3_mc_dir(h, mb_type, PREDICT_MODE, 0, 0) < 0)
  425. return -1;
  426. if (svq3_mc_dir(h, mb_type, PREDICT_MODE, 1, 1) < 0)
  427. return -1;
  428. mb_type = MB_TYPE_16x16;
  429. }
  430. } else if (mb_type < 8) { /* INTER */
  431. if (svq3->thirdpel_flag && svq3->halfpel_flag == !get_bits1(&s->gb))
  432. mode = THIRDPEL_MODE;
  433. else if (svq3->halfpel_flag &&
  434. svq3->thirdpel_flag == !get_bits1(&s->gb))
  435. mode = HALFPEL_MODE;
  436. else
  437. mode = FULLPEL_MODE;
  438. /* fill caches */
  439. /* note ref_cache should contain here:
  440. * ????????
  441. * ???11111
  442. * N??11111
  443. * N??11111
  444. * N??11111
  445. */
  446. for (m = 0; m < 2; m++) {
  447. if (s->mb_x > 0 && h->intra4x4_pred_mode[h->mb2br_xy[mb_xy - 1] + 6] != -1) {
  448. for (i = 0; i < 4; i++)
  449. AV_COPY32(h->mv_cache[m][scan8[0] - 1 + i * 8],
  450. s->current_picture.f.motion_val[m][b_xy - 1 + i * h->b_stride]);
  451. } else {
  452. for (i = 0; i < 4; i++)
  453. AV_ZERO32(h->mv_cache[m][scan8[0] - 1 + i * 8]);
  454. }
  455. if (s->mb_y > 0) {
  456. memcpy(h->mv_cache[m][scan8[0] - 1 * 8],
  457. s->current_picture.f.motion_val[m][b_xy - h->b_stride],
  458. 4 * 2 * sizeof(int16_t));
  459. memset(&h->ref_cache[m][scan8[0] - 1 * 8],
  460. (h->intra4x4_pred_mode[h->mb2br_xy[mb_xy - s->mb_stride]] == -1) ? PART_NOT_AVAILABLE : 1, 4);
  461. if (s->mb_x < s->mb_width - 1) {
  462. AV_COPY32(h->mv_cache[m][scan8[0] + 4 - 1 * 8],
  463. s->current_picture.f.motion_val[m][b_xy - h->b_stride + 4]);
  464. h->ref_cache[m][scan8[0] + 4 - 1 * 8] =
  465. (h->intra4x4_pred_mode[h->mb2br_xy[mb_xy - s->mb_stride + 1] + 6] == -1 ||
  466. h->intra4x4_pred_mode[h->mb2br_xy[mb_xy - s->mb_stride]] == -1) ? PART_NOT_AVAILABLE : 1;
  467. } else
  468. h->ref_cache[m][scan8[0] + 4 - 1 * 8] = PART_NOT_AVAILABLE;
  469. if (s->mb_x > 0) {
  470. AV_COPY32(h->mv_cache[m][scan8[0] - 1 - 1 * 8],
  471. s->current_picture.f.motion_val[m][b_xy - h->b_stride - 1]);
  472. h->ref_cache[m][scan8[0] - 1 - 1 * 8] =
  473. (h->intra4x4_pred_mode[h->mb2br_xy[mb_xy - s->mb_stride - 1] + 3] == -1) ? PART_NOT_AVAILABLE : 1;
  474. } else
  475. h->ref_cache[m][scan8[0] - 1 - 1 * 8] = PART_NOT_AVAILABLE;
  476. } else
  477. memset(&h->ref_cache[m][scan8[0] - 1 * 8 - 1],
  478. PART_NOT_AVAILABLE, 8);
  479. if (s->pict_type != AV_PICTURE_TYPE_B)
  480. break;
  481. }
  482. /* decode motion vector(s) and form prediction(s) */
  483. if (s->pict_type == AV_PICTURE_TYPE_P) {
  484. if (svq3_mc_dir(h, mb_type - 1, mode, 0, 0) < 0)
  485. return -1;
  486. } else { /* AV_PICTURE_TYPE_B */
  487. if (mb_type != 2) {
  488. if (svq3_mc_dir(h, 0, mode, 0, 0) < 0)
  489. return -1;
  490. } else {
  491. for (i = 0; i < 4; i++)
  492. memset(s->current_picture.f.motion_val[0][b_xy + i * h->b_stride],
  493. 0, 4 * 2 * sizeof(int16_t));
  494. }
  495. if (mb_type != 1) {
  496. if (svq3_mc_dir(h, 0, mode, 1, mb_type == 3) < 0)
  497. return -1;
  498. } else {
  499. for (i = 0; i < 4; i++)
  500. memset(s->current_picture.f.motion_val[1][b_xy + i * h->b_stride],
  501. 0, 4 * 2 * sizeof(int16_t));
  502. }
  503. }
  504. mb_type = MB_TYPE_16x16;
  505. } else if (mb_type == 8 || mb_type == 33) { /* INTRA4x4 */
  506. memset(h->intra4x4_pred_mode_cache, -1, 8 * 5 * sizeof(int8_t));
  507. if (mb_type == 8) {
  508. if (s->mb_x > 0) {
  509. for (i = 0; i < 4; i++)
  510. h->intra4x4_pred_mode_cache[scan8[0] - 1 + i * 8] = h->intra4x4_pred_mode[h->mb2br_xy[mb_xy - 1] + 6 - i];
  511. if (h->intra4x4_pred_mode_cache[scan8[0] - 1] == -1)
  512. h->left_samples_available = 0x5F5F;
  513. }
  514. if (s->mb_y > 0) {
  515. h->intra4x4_pred_mode_cache[4 + 8 * 0] = h->intra4x4_pred_mode[h->mb2br_xy[mb_xy - s->mb_stride] + 0];
  516. h->intra4x4_pred_mode_cache[5 + 8 * 0] = h->intra4x4_pred_mode[h->mb2br_xy[mb_xy - s->mb_stride] + 1];
  517. h->intra4x4_pred_mode_cache[6 + 8 * 0] = h->intra4x4_pred_mode[h->mb2br_xy[mb_xy - s->mb_stride] + 2];
  518. h->intra4x4_pred_mode_cache[7 + 8 * 0] = h->intra4x4_pred_mode[h->mb2br_xy[mb_xy - s->mb_stride] + 3];
  519. if (h->intra4x4_pred_mode_cache[4 + 8 * 0] == -1)
  520. h->top_samples_available = 0x33FF;
  521. }
  522. /* decode prediction codes for luma blocks */
  523. for (i = 0; i < 16; i += 2) {
  524. vlc = svq3_get_ue_golomb(&s->gb);
  525. if (vlc >= 25U) {
  526. av_log(h->s.avctx, AV_LOG_ERROR, "luma prediction:%d\n", vlc);
  527. return -1;
  528. }
  529. left = &h->intra4x4_pred_mode_cache[scan8[i] - 1];
  530. top = &h->intra4x4_pred_mode_cache[scan8[i] - 8];
  531. left[1] = svq3_pred_1[top[0] + 1][left[0] + 1][svq3_pred_0[vlc][0]];
  532. left[2] = svq3_pred_1[top[1] + 1][left[1] + 1][svq3_pred_0[vlc][1]];
  533. if (left[1] == -1 || left[2] == -1) {
  534. av_log(h->s.avctx, AV_LOG_ERROR, "weird prediction\n");
  535. return -1;
  536. }
  537. }
  538. } else { /* mb_type == 33, DC_128_PRED block type */
  539. for (i = 0; i < 4; i++)
  540. memset(&h->intra4x4_pred_mode_cache[scan8[0] + 8 * i], DC_PRED, 4);
  541. }
  542. write_back_intra_pred_mode(h);
  543. if (mb_type == 8) {
  544. ff_h264_check_intra4x4_pred_mode(h);
  545. h->top_samples_available = (s->mb_y == 0) ? 0x33FF : 0xFFFF;
  546. h->left_samples_available = (s->mb_x == 0) ? 0x5F5F : 0xFFFF;
  547. } else {
  548. for (i = 0; i < 4; i++)
  549. memset(&h->intra4x4_pred_mode_cache[scan8[0] + 8 * i], DC_128_PRED, 4);
  550. h->top_samples_available = 0x33FF;
  551. h->left_samples_available = 0x5F5F;
  552. }
  553. mb_type = MB_TYPE_INTRA4x4;
  554. } else { /* INTRA16x16 */
  555. dir = i_mb_type_info[mb_type - 8].pred_mode;
  556. dir = (dir >> 1) ^ 3 * (dir & 1) ^ 1;
  557. if ((h->intra16x16_pred_mode = ff_h264_check_intra_pred_mode(h, dir, 0)) == -1) {
  558. av_log(h->s.avctx, AV_LOG_ERROR, "check_intra_pred_mode = -1\n");
  559. return -1;
  560. }
  561. cbp = i_mb_type_info[mb_type - 8].cbp;
  562. mb_type = MB_TYPE_INTRA16x16;
  563. }
  564. if (!IS_INTER(mb_type) && s->pict_type != AV_PICTURE_TYPE_I) {
  565. for (i = 0; i < 4; i++)
  566. memset(s->current_picture.f.motion_val[0][b_xy + i * h->b_stride],
  567. 0, 4 * 2 * sizeof(int16_t));
  568. if (s->pict_type == AV_PICTURE_TYPE_B) {
  569. for (i = 0; i < 4; i++)
  570. memset(s->current_picture.f.motion_val[1][b_xy + i * h->b_stride],
  571. 0, 4 * 2 * sizeof(int16_t));
  572. }
  573. }
  574. if (!IS_INTRA4x4(mb_type)) {
  575. memset(h->intra4x4_pred_mode + h->mb2br_xy[mb_xy], DC_PRED, 8);
  576. }
  577. if (!IS_SKIP(mb_type) || s->pict_type == AV_PICTURE_TYPE_B) {
  578. memset(h->non_zero_count_cache + 8, 0, 14 * 8 * sizeof(uint8_t));
  579. s->dsp.clear_blocks(h->mb + 0);
  580. s->dsp.clear_blocks(h->mb + 384);
  581. }
  582. if (!IS_INTRA16x16(mb_type) &&
  583. (!IS_SKIP(mb_type) || s->pict_type == AV_PICTURE_TYPE_B)) {
  584. if ((vlc = svq3_get_ue_golomb(&s->gb)) >= 48U){
  585. av_log(h->s.avctx, AV_LOG_ERROR, "cbp_vlc=%d\n", vlc);
  586. return -1;
  587. }
  588. cbp = IS_INTRA(mb_type) ? golomb_to_intra4x4_cbp[vlc]
  589. : golomb_to_inter_cbp[vlc];
  590. }
  591. if (IS_INTRA16x16(mb_type) ||
  592. (s->pict_type != AV_PICTURE_TYPE_I && s->adaptive_quant && cbp)) {
  593. s->qscale += svq3_get_se_golomb(&s->gb);
  594. if (s->qscale > 31u) {
  595. av_log(h->s.avctx, AV_LOG_ERROR, "qscale:%d\n", s->qscale);
  596. return -1;
  597. }
  598. }
  599. if (IS_INTRA16x16(mb_type)) {
  600. AV_ZERO128(h->mb_luma_dc[0] + 0);
  601. AV_ZERO128(h->mb_luma_dc[0] + 8);
  602. if (svq3_decode_block(&s->gb, h->mb_luma_dc[0], 0, 1)) {
  603. av_log(h->s.avctx, AV_LOG_ERROR,
  604. "error while decoding intra luma dc\n");
  605. return -1;
  606. }
  607. }
  608. if (cbp) {
  609. const int index = IS_INTRA16x16(mb_type) ? 1 : 0;
  610. const int type = ((s->qscale < 24 && IS_INTRA4x4(mb_type)) ? 2 : 1);
  611. for (i = 0; i < 4; i++)
  612. if ((cbp & (1 << i))) {
  613. for (j = 0; j < 4; j++) {
  614. k = index ? (1 * (j & 1) + 2 * (i & 1) +
  615. 2 * (j & 2) + 4 * (i & 2))
  616. : (4 * i + j);
  617. h->non_zero_count_cache[scan8[k]] = 1;
  618. if (svq3_decode_block(&s->gb, &h->mb[16 * k], index, type)) {
  619. av_log(h->s.avctx, AV_LOG_ERROR,
  620. "error while decoding block\n");
  621. return -1;
  622. }
  623. }
  624. }
  625. if ((cbp & 0x30)) {
  626. for (i = 1; i < 3; ++i)
  627. if (svq3_decode_block(&s->gb, &h->mb[16 * 16 * i], 0, 3)) {
  628. av_log(h->s.avctx, AV_LOG_ERROR,
  629. "error while decoding chroma dc block\n");
  630. return -1;
  631. }
  632. if ((cbp & 0x20)) {
  633. for (i = 1; i < 3; i++) {
  634. for (j = 0; j < 4; j++) {
  635. k = 16 * i + j;
  636. h->non_zero_count_cache[scan8[k]] = 1;
  637. if (svq3_decode_block(&s->gb, &h->mb[16 * k], 1, 1)) {
  638. av_log(h->s.avctx, AV_LOG_ERROR,
  639. "error while decoding chroma ac block\n");
  640. return -1;
  641. }
  642. }
  643. }
  644. }
  645. }
  646. }
  647. h->cbp = cbp;
  648. s->current_picture.f.mb_type[mb_xy] = mb_type;
  649. if (IS_INTRA(mb_type))
  650. h->chroma_pred_mode = ff_h264_check_intra_pred_mode(h, DC_PRED8x8, 1);
  651. return 0;
  652. }
  653. static int svq3_decode_slice_header(AVCodecContext *avctx)
  654. {
  655. SVQ3Context *svq3 = avctx->priv_data;
  656. H264Context *h = &svq3->h;
  657. MpegEncContext *s = &h->s;
  658. const int mb_xy = h->mb_xy;
  659. int i, header;
  660. unsigned slice_id;
  661. header = get_bits(&s->gb, 8);
  662. if (((header & 0x9F) != 1 && (header & 0x9F) != 2) || (header & 0x60) == 0) {
  663. /* TODO: what? */
  664. av_log(avctx, AV_LOG_ERROR, "unsupported slice header (%02X)\n", header);
  665. return -1;
  666. } else {
  667. int length = header >> 5 & 3;
  668. svq3->next_slice_index = get_bits_count(&s->gb) +
  669. 8 * show_bits(&s->gb, 8 * length) +
  670. 8 * length;
  671. if (svq3->next_slice_index > s->gb.size_in_bits) {
  672. av_log(avctx, AV_LOG_ERROR, "slice after bitstream end\n");
  673. return -1;
  674. }
  675. s->gb.size_in_bits = svq3->next_slice_index - 8 * (length - 1);
  676. skip_bits(&s->gb, 8);
  677. if (svq3->watermark_key) {
  678. uint32_t header = AV_RL32(&s->gb.buffer[(get_bits_count(&s->gb) >> 3) + 1]);
  679. AV_WL32(&s->gb.buffer[(get_bits_count(&s->gb) >> 3) + 1],
  680. header ^ svq3->watermark_key);
  681. }
  682. if (length > 0) {
  683. memcpy((uint8_t *) &s->gb.buffer[get_bits_count(&s->gb) >> 3],
  684. &s->gb.buffer[s->gb.size_in_bits >> 3], length - 1);
  685. }
  686. skip_bits_long(&s->gb, 0);
  687. }
  688. if ((slice_id = svq3_get_ue_golomb(&s->gb)) >= 3) {
  689. av_log(h->s.avctx, AV_LOG_ERROR, "illegal slice type %d \n", slice_id);
  690. return -1;
  691. }
  692. h->slice_type = golomb_to_pict_type[slice_id];
  693. if ((header & 0x9F) == 2) {
  694. i = (s->mb_num < 64) ? 6 : (1 + av_log2(s->mb_num - 1));
  695. s->mb_skip_run = get_bits(&s->gb, i) -
  696. (s->mb_y * s->mb_width + s->mb_x);
  697. } else {
  698. skip_bits1(&s->gb);
  699. s->mb_skip_run = 0;
  700. }
  701. h->slice_num = get_bits(&s->gb, 8);
  702. s->qscale = get_bits(&s->gb, 5);
  703. s->adaptive_quant = get_bits1(&s->gb);
  704. /* unknown fields */
  705. skip_bits1(&s->gb);
  706. if (svq3->unknown_flag)
  707. skip_bits1(&s->gb);
  708. skip_bits1(&s->gb);
  709. skip_bits(&s->gb, 2);
  710. while (get_bits1(&s->gb))
  711. skip_bits(&s->gb, 8);
  712. /* reset intra predictors and invalidate motion vector references */
  713. if (s->mb_x > 0) {
  714. memset(h->intra4x4_pred_mode + h->mb2br_xy[mb_xy - 1] + 3,
  715. -1, 4 * sizeof(int8_t));
  716. memset(h->intra4x4_pred_mode + h->mb2br_xy[mb_xy - s->mb_x],
  717. -1, 8 * sizeof(int8_t) * s->mb_x);
  718. }
  719. if (s->mb_y > 0) {
  720. memset(h->intra4x4_pred_mode + h->mb2br_xy[mb_xy - s->mb_stride],
  721. -1, 8 * sizeof(int8_t) * (s->mb_width - s->mb_x));
  722. if (s->mb_x > 0)
  723. h->intra4x4_pred_mode[h->mb2br_xy[mb_xy - s->mb_stride - 1] + 3] = -1;
  724. }
  725. return 0;
  726. }
  727. static av_cold int svq3_decode_init(AVCodecContext *avctx)
  728. {
  729. SVQ3Context *svq3 = avctx->priv_data;
  730. H264Context *h = &svq3->h;
  731. MpegEncContext *s = &h->s;
  732. int m;
  733. unsigned char *extradata;
  734. unsigned char *extradata_end;
  735. unsigned int size;
  736. int marker_found = 0;
  737. if (ff_h264_decode_init(avctx) < 0)
  738. return -1;
  739. s->flags = avctx->flags;
  740. s->flags2 = avctx->flags2;
  741. s->unrestricted_mv = 1;
  742. h->is_complex = 1;
  743. h->sps.chroma_format_idc = 1;
  744. avctx->pix_fmt = avctx->codec->pix_fmts[0];
  745. if (!s->context_initialized) {
  746. h->chroma_qp[0] = h->chroma_qp[1] = 4;
  747. svq3->halfpel_flag = 1;
  748. svq3->thirdpel_flag = 1;
  749. svq3->unknown_flag = 0;
  750. /* prowl for the "SEQH" marker in the extradata */
  751. extradata = (unsigned char *)avctx->extradata;
  752. extradata_end = avctx->extradata + avctx->extradata_size;
  753. if (extradata) {
  754. for (m = 0; m + 8 < avctx->extradata_size; m++) {
  755. if (!memcmp(extradata, "SEQH", 4)) {
  756. marker_found = 1;
  757. break;
  758. }
  759. extradata++;
  760. }
  761. }
  762. /* if a match was found, parse the extra data */
  763. if (marker_found) {
  764. GetBitContext gb;
  765. int frame_size_code;
  766. size = AV_RB32(&extradata[4]);
  767. if (size > extradata_end - extradata - 8)
  768. return AVERROR_INVALIDDATA;
  769. init_get_bits(&gb, extradata + 8, size * 8);
  770. /* 'frame size code' and optional 'width, height' */
  771. frame_size_code = get_bits(&gb, 3);
  772. switch (frame_size_code) {
  773. case 0:
  774. avctx->width = 160;
  775. avctx->height = 120;
  776. break;
  777. case 1:
  778. avctx->width = 128;
  779. avctx->height = 96;
  780. break;
  781. case 2:
  782. avctx->width = 176;
  783. avctx->height = 144;
  784. break;
  785. case 3:
  786. avctx->width = 352;
  787. avctx->height = 288;
  788. break;
  789. case 4:
  790. avctx->width = 704;
  791. avctx->height = 576;
  792. break;
  793. case 5:
  794. avctx->width = 240;
  795. avctx->height = 180;
  796. break;
  797. case 6:
  798. avctx->width = 320;
  799. avctx->height = 240;
  800. break;
  801. case 7:
  802. avctx->width = get_bits(&gb, 12);
  803. avctx->height = get_bits(&gb, 12);
  804. break;
  805. }
  806. svq3->halfpel_flag = get_bits1(&gb);
  807. svq3->thirdpel_flag = get_bits1(&gb);
  808. /* unknown fields */
  809. skip_bits1(&gb);
  810. skip_bits1(&gb);
  811. skip_bits1(&gb);
  812. skip_bits1(&gb);
  813. s->low_delay = get_bits1(&gb);
  814. /* unknown field */
  815. skip_bits1(&gb);
  816. while (get_bits1(&gb))
  817. skip_bits(&gb, 8);
  818. svq3->unknown_flag = get_bits1(&gb);
  819. avctx->has_b_frames = !s->low_delay;
  820. if (svq3->unknown_flag) {
  821. #if CONFIG_ZLIB
  822. unsigned watermark_width = svq3_get_ue_golomb(&gb);
  823. unsigned watermark_height = svq3_get_ue_golomb(&gb);
  824. int u1 = svq3_get_ue_golomb(&gb);
  825. int u2 = get_bits(&gb, 8);
  826. int u3 = get_bits(&gb, 2);
  827. int u4 = svq3_get_ue_golomb(&gb);
  828. unsigned long buf_len = watermark_width *
  829. watermark_height * 4;
  830. int offset = get_bits_count(&gb) + 7 >> 3;
  831. uint8_t *buf;
  832. if (watermark_height <= 0 || (uint64_t)watermark_width*4 > UINT_MAX/watermark_height)
  833. return -1;
  834. buf = av_malloc(buf_len);
  835. av_log(avctx, AV_LOG_DEBUG, "watermark size: %dx%d\n",
  836. watermark_width, watermark_height);
  837. av_log(avctx, AV_LOG_DEBUG,
  838. "u1: %x u2: %x u3: %x compressed data size: %d offset: %d\n",
  839. u1, u2, u3, u4, offset);
  840. if (uncompress(buf, &buf_len, extradata + 8 + offset,
  841. size - offset) != Z_OK) {
  842. av_log(avctx, AV_LOG_ERROR,
  843. "could not uncompress watermark logo\n");
  844. av_free(buf);
  845. return -1;
  846. }
  847. svq3->watermark_key = ff_svq1_packet_checksum(buf, buf_len, 0);
  848. svq3->watermark_key = svq3->watermark_key << 16 |
  849. svq3->watermark_key;
  850. av_log(avctx, AV_LOG_DEBUG,
  851. "watermark key %#x\n", svq3->watermark_key);
  852. av_free(buf);
  853. #else
  854. av_log(avctx, AV_LOG_ERROR,
  855. "this svq3 file contains watermark which need zlib support compiled in\n");
  856. return -1;
  857. #endif
  858. }
  859. }
  860. s->width = avctx->width;
  861. s->height = avctx->height;
  862. if (ff_MPV_common_init(s) < 0)
  863. return -1;
  864. h->b_stride = 4 * s->mb_width;
  865. if (ff_h264_alloc_tables(h) < 0) {
  866. av_log(avctx, AV_LOG_ERROR, "svq3 memory allocation failed\n");
  867. return AVERROR(ENOMEM);
  868. }
  869. }
  870. return 0;
  871. }
  872. static int svq3_decode_frame(AVCodecContext *avctx, void *data,
  873. int *got_frame, AVPacket *avpkt)
  874. {
  875. SVQ3Context *svq3 = avctx->priv_data;
  876. H264Context *h = &svq3->h;
  877. MpegEncContext *s = &h->s;
  878. int buf_size = avpkt->size;
  879. int m, left;
  880. uint8_t *buf;
  881. /* special case for last picture */
  882. if (buf_size == 0) {
  883. if (s->next_picture_ptr && !s->low_delay) {
  884. *(AVFrame *) data = s->next_picture.f;
  885. s->next_picture_ptr = NULL;
  886. *got_frame = 1;
  887. }
  888. return 0;
  889. }
  890. s->mb_x = s->mb_y = h->mb_xy = 0;
  891. if (svq3->watermark_key) {
  892. av_fast_malloc(&svq3->buf, &svq3->buf_size,
  893. buf_size+FF_INPUT_BUFFER_PADDING_SIZE);
  894. if (!svq3->buf)
  895. return AVERROR(ENOMEM);
  896. memcpy(svq3->buf, avpkt->data, buf_size);
  897. buf = svq3->buf;
  898. } else {
  899. buf = avpkt->data;
  900. }
  901. init_get_bits(&s->gb, buf, 8 * buf_size);
  902. if (svq3_decode_slice_header(avctx))
  903. return -1;
  904. s->pict_type = h->slice_type;
  905. s->picture_number = h->slice_num;
  906. if (avctx->debug & FF_DEBUG_PICT_INFO)
  907. av_log(h->s.avctx, AV_LOG_DEBUG,
  908. "%c hpel:%d, tpel:%d aqp:%d qp:%d, slice_num:%02X\n",
  909. av_get_picture_type_char(s->pict_type),
  910. svq3->halfpel_flag, svq3->thirdpel_flag,
  911. s->adaptive_quant, s->qscale, h->slice_num);
  912. /* for skipping the frame */
  913. s->current_picture.f.pict_type = s->pict_type;
  914. s->current_picture.f.key_frame = (s->pict_type == AV_PICTURE_TYPE_I);
  915. /* Skip B-frames if we do not have reference frames. */
  916. if (s->last_picture_ptr == NULL && s->pict_type == AV_PICTURE_TYPE_B)
  917. return 0;
  918. if (avctx->skip_frame >= AVDISCARD_NONREF && s->pict_type == AV_PICTURE_TYPE_B ||
  919. avctx->skip_frame >= AVDISCARD_NONKEY && s->pict_type != AV_PICTURE_TYPE_I ||
  920. avctx->skip_frame >= AVDISCARD_ALL)
  921. return 0;
  922. if (s->next_p_frame_damaged) {
  923. if (s->pict_type == AV_PICTURE_TYPE_B)
  924. return 0;
  925. else
  926. s->next_p_frame_damaged = 0;
  927. }
  928. if (ff_h264_frame_start(h) < 0)
  929. return -1;
  930. if (s->pict_type == AV_PICTURE_TYPE_B) {
  931. h->frame_num_offset = h->slice_num - h->prev_frame_num;
  932. if (h->frame_num_offset < 0)
  933. h->frame_num_offset += 256;
  934. if (h->frame_num_offset == 0 ||
  935. h->frame_num_offset >= h->prev_frame_num_offset) {
  936. av_log(h->s.avctx, AV_LOG_ERROR, "error in B-frame picture id\n");
  937. return -1;
  938. }
  939. } else {
  940. h->prev_frame_num = h->frame_num;
  941. h->frame_num = h->slice_num;
  942. h->prev_frame_num_offset = h->frame_num - h->prev_frame_num;
  943. if (h->prev_frame_num_offset < 0)
  944. h->prev_frame_num_offset += 256;
  945. }
  946. for (m = 0; m < 2; m++) {
  947. int i;
  948. for (i = 0; i < 4; i++) {
  949. int j;
  950. for (j = -1; j < 4; j++)
  951. h->ref_cache[m][scan8[0] + 8 * i + j] = 1;
  952. if (i < 3)
  953. h->ref_cache[m][scan8[0] + 8 * i + j] = PART_NOT_AVAILABLE;
  954. }
  955. }
  956. for (s->mb_y = 0; s->mb_y < s->mb_height; s->mb_y++) {
  957. for (s->mb_x = 0; s->mb_x < s->mb_width; s->mb_x++) {
  958. unsigned mb_type;
  959. h->mb_xy = s->mb_x + s->mb_y * s->mb_stride;
  960. if ((get_bits_count(&s->gb) + 7) >= s->gb.size_in_bits &&
  961. ((get_bits_count(&s->gb) & 7) == 0 ||
  962. show_bits(&s->gb, -get_bits_count(&s->gb) & 7) == 0)) {
  963. skip_bits(&s->gb, svq3->next_slice_index - get_bits_count(&s->gb));
  964. s->gb.size_in_bits = 8 * buf_size;
  965. if (svq3_decode_slice_header(avctx))
  966. return -1;
  967. /* TODO: support s->mb_skip_run */
  968. }
  969. mb_type = svq3_get_ue_golomb(&s->gb);
  970. if (s->pict_type == AV_PICTURE_TYPE_I)
  971. mb_type += 8;
  972. else if (s->pict_type == AV_PICTURE_TYPE_B && mb_type >= 4)
  973. mb_type += 4;
  974. if (mb_type > 33 || svq3_decode_mb(svq3, mb_type)) {
  975. av_log(h->s.avctx, AV_LOG_ERROR,
  976. "error while decoding MB %d %d\n", s->mb_x, s->mb_y);
  977. return -1;
  978. }
  979. if (mb_type != 0)
  980. ff_h264_hl_decode_mb(h);
  981. if (s->pict_type != AV_PICTURE_TYPE_B && !s->low_delay)
  982. s->current_picture.f.mb_type[s->mb_x + s->mb_y * s->mb_stride] =
  983. (s->pict_type == AV_PICTURE_TYPE_P && mb_type < 8) ? (mb_type - 1) : -1;
  984. }
  985. ff_draw_horiz_band(s, 16 * s->mb_y, 16);
  986. }
  987. left = buf_size*8 - get_bits_count(&s->gb);
  988. if (s->mb_y != s->mb_height || s->mb_x != s->mb_width) {
  989. av_log(avctx, AV_LOG_INFO, "frame num %d incomplete pic x %d y %d left %d\n", avctx->frame_number, s->mb_y, s->mb_x, left);
  990. //av_hex_dump(stderr, buf+buf_size-8, 8);
  991. }
  992. if (left < 0) {
  993. av_log(avctx, AV_LOG_ERROR, "frame num %d left %d\n", avctx->frame_number, left);
  994. return -1;
  995. }
  996. ff_MPV_frame_end(s);
  997. if (s->pict_type == AV_PICTURE_TYPE_B || s->low_delay)
  998. *(AVFrame *)data = s->current_picture.f;
  999. else
  1000. *(AVFrame *)data = s->last_picture.f;
  1001. /* Do not output the last pic after seeking. */
  1002. if (s->last_picture_ptr || s->low_delay)
  1003. *got_frame = 1;
  1004. return buf_size;
  1005. }
  1006. static int svq3_decode_end(AVCodecContext *avctx)
  1007. {
  1008. SVQ3Context *svq3 = avctx->priv_data;
  1009. H264Context *h = &svq3->h;
  1010. MpegEncContext *s = &h->s;
  1011. ff_h264_free_context(h);
  1012. ff_MPV_common_end(s);
  1013. av_freep(&svq3->buf);
  1014. svq3->buf_size = 0;
  1015. return 0;
  1016. }
  1017. AVCodec ff_svq3_decoder = {
  1018. .name = "svq3",
  1019. .type = AVMEDIA_TYPE_VIDEO,
  1020. .id = AV_CODEC_ID_SVQ3,
  1021. .priv_data_size = sizeof(SVQ3Context),
  1022. .init = svq3_decode_init,
  1023. .close = svq3_decode_end,
  1024. .decode = svq3_decode_frame,
  1025. .capabilities = CODEC_CAP_DRAW_HORIZ_BAND |
  1026. CODEC_CAP_DR1 |
  1027. CODEC_CAP_DELAY,
  1028. .long_name = NULL_IF_CONFIG_SMALL("Sorenson Vector Quantizer 3 / Sorenson Video 3 / SVQ3"),
  1029. .pix_fmts = (const enum AVPixelFormat[]) { AV_PIX_FMT_YUVJ420P,
  1030. AV_PIX_FMT_NONE},
  1031. };