You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

606 lines
19KB

  1. /*
  2. * Copyright (c) 2010-2011 Maxim Poliakovski
  3. * Copyright (c) 2010-2011 Elvis Presley
  4. *
  5. * This file is part of FFmpeg.
  6. *
  7. * FFmpeg is free software; you can redistribute it and/or
  8. * modify it under the terms of the GNU Lesser General Public
  9. * License as published by the Free Software Foundation; either
  10. * version 2.1 of the License, or (at your option) any later version.
  11. *
  12. * FFmpeg is distributed in the hope that it will be useful,
  13. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  14. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  15. * Lesser General Public License for more details.
  16. *
  17. * You should have received a copy of the GNU Lesser General Public
  18. * License along with FFmpeg; if not, write to the Free Software
  19. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  20. */
  21. /**
  22. * @file
  23. * Known FOURCCs: 'apch' (HQ), 'apcn' (SD), 'apcs' (LT), 'acpo' (Proxy), 'ap4h' (4444)
  24. */
  25. //#define DEBUG
  26. #define LONG_BITSTREAM_READER
  27. #include "avcodec.h"
  28. #include "get_bits.h"
  29. #include "internal.h"
  30. #include "simple_idct.h"
  31. #include "proresdec.h"
  32. static void permute(uint8_t *dst, const uint8_t *src, const uint8_t permutation[64])
  33. {
  34. int i;
  35. for (i = 0; i < 64; i++)
  36. dst[i] = permutation[src[i]];
  37. }
  38. static const uint8_t progressive_scan[64] = {
  39. 0, 1, 8, 9, 2, 3, 10, 11,
  40. 16, 17, 24, 25, 18, 19, 26, 27,
  41. 4, 5, 12, 20, 13, 6, 7, 14,
  42. 21, 28, 29, 22, 15, 23, 30, 31,
  43. 32, 33, 40, 48, 41, 34, 35, 42,
  44. 49, 56, 57, 50, 43, 36, 37, 44,
  45. 51, 58, 59, 52, 45, 38, 39, 46,
  46. 53, 60, 61, 54, 47, 55, 62, 63
  47. };
  48. static const uint8_t interlaced_scan[64] = {
  49. 0, 8, 1, 9, 16, 24, 17, 25,
  50. 2, 10, 3, 11, 18, 26, 19, 27,
  51. 32, 40, 33, 34, 41, 48, 56, 49,
  52. 42, 35, 43, 50, 57, 58, 51, 59,
  53. 4, 12, 5, 6, 13, 20, 28, 21,
  54. 14, 7, 15, 22, 29, 36, 44, 37,
  55. 30, 23, 31, 38, 45, 52, 60, 53,
  56. 46, 39, 47, 54, 61, 62, 55, 63,
  57. };
  58. static av_cold int decode_init(AVCodecContext *avctx)
  59. {
  60. ProresContext *ctx = avctx->priv_data;
  61. uint8_t idct_permutation[64];
  62. avctx->bits_per_raw_sample = 10;
  63. ff_dsputil_init(&ctx->dsp, avctx);
  64. ff_proresdsp_init(&ctx->prodsp, avctx);
  65. avctx->coded_frame = &ctx->frame;
  66. ctx->frame.type = AV_PICTURE_TYPE_I;
  67. ctx->frame.key_frame = 1;
  68. ff_init_scantable_permutation(idct_permutation,
  69. ctx->prodsp.idct_permutation_type);
  70. permute(ctx->progressive_scan, progressive_scan, idct_permutation);
  71. permute(ctx->interlaced_scan, interlaced_scan, idct_permutation);
  72. return 0;
  73. }
  74. static int decode_frame_header(ProresContext *ctx, const uint8_t *buf,
  75. const int data_size, AVCodecContext *avctx)
  76. {
  77. int hdr_size, width, height, flags;
  78. int version;
  79. const uint8_t *ptr;
  80. hdr_size = AV_RB16(buf);
  81. av_dlog(avctx, "header size %d\n", hdr_size);
  82. if (hdr_size > data_size) {
  83. av_log(avctx, AV_LOG_ERROR, "error, wrong header size\n");
  84. return -1;
  85. }
  86. version = AV_RB16(buf + 2);
  87. av_dlog(avctx, "%.4s version %d\n", buf+4, version);
  88. if (version > 1) {
  89. av_log(avctx, AV_LOG_ERROR, "unsupported version: %d\n", version);
  90. return -1;
  91. }
  92. width = AV_RB16(buf + 8);
  93. height = AV_RB16(buf + 10);
  94. if (width != avctx->width || height != avctx->height) {
  95. av_log(avctx, AV_LOG_ERROR, "picture resolution change: %dx%d -> %dx%d\n",
  96. avctx->width, avctx->height, width, height);
  97. return -1;
  98. }
  99. ctx->frame_type = (buf[12] >> 2) & 3;
  100. av_dlog(avctx, "frame type %d\n", ctx->frame_type);
  101. if (ctx->frame_type == 0) {
  102. ctx->scan = ctx->progressive_scan; // permuted
  103. } else {
  104. ctx->scan = ctx->interlaced_scan; // permuted
  105. ctx->frame.interlaced_frame = 1;
  106. ctx->frame.top_field_first = ctx->frame_type == 1;
  107. }
  108. avctx->pix_fmt = (buf[12] & 0xC0) == 0xC0 ? AV_PIX_FMT_YUV444P10 : AV_PIX_FMT_YUV422P10;
  109. ptr = buf + 20;
  110. flags = buf[19];
  111. av_dlog(avctx, "flags %x\n", flags);
  112. if (flags & 2) {
  113. if(buf + data_size - ptr < 64) {
  114. av_log(avctx, AV_LOG_ERROR, "Header truncated\n");
  115. return -1;
  116. }
  117. permute(ctx->qmat_luma, ctx->prodsp.idct_permutation, ptr);
  118. ptr += 64;
  119. } else {
  120. memset(ctx->qmat_luma, 4, 64);
  121. }
  122. if (flags & 1) {
  123. if(buf + data_size - ptr < 64) {
  124. av_log(avctx, AV_LOG_ERROR, "Header truncated\n");
  125. return -1;
  126. }
  127. permute(ctx->qmat_chroma, ctx->prodsp.idct_permutation, ptr);
  128. } else {
  129. memset(ctx->qmat_chroma, 4, 64);
  130. }
  131. return hdr_size;
  132. }
  133. static int decode_picture_header(AVCodecContext *avctx, const uint8_t *buf, const int buf_size)
  134. {
  135. ProresContext *ctx = avctx->priv_data;
  136. int i, hdr_size, slice_count;
  137. unsigned pic_data_size;
  138. int log2_slice_mb_width, log2_slice_mb_height;
  139. int slice_mb_count, mb_x, mb_y;
  140. const uint8_t *data_ptr, *index_ptr;
  141. hdr_size = buf[0] >> 3;
  142. if (hdr_size < 8 || hdr_size > buf_size) {
  143. av_log(avctx, AV_LOG_ERROR, "error, wrong picture header size\n");
  144. return -1;
  145. }
  146. pic_data_size = AV_RB32(buf + 1);
  147. if (pic_data_size > buf_size) {
  148. av_log(avctx, AV_LOG_ERROR, "error, wrong picture data size\n");
  149. return -1;
  150. }
  151. log2_slice_mb_width = buf[7] >> 4;
  152. log2_slice_mb_height = buf[7] & 0xF;
  153. if (log2_slice_mb_width > 3 || log2_slice_mb_height) {
  154. av_log(avctx, AV_LOG_ERROR, "unsupported slice resolution: %dx%d\n",
  155. 1 << log2_slice_mb_width, 1 << log2_slice_mb_height);
  156. return -1;
  157. }
  158. ctx->mb_width = (avctx->width + 15) >> 4;
  159. if (ctx->frame_type)
  160. ctx->mb_height = (avctx->height + 31) >> 5;
  161. else
  162. ctx->mb_height = (avctx->height + 15) >> 4;
  163. slice_count = AV_RB16(buf + 5);
  164. if (ctx->slice_count != slice_count || !ctx->slices) {
  165. av_freep(&ctx->slices);
  166. ctx->slices = av_mallocz(slice_count * sizeof(*ctx->slices));
  167. if (!ctx->slices)
  168. return AVERROR(ENOMEM);
  169. ctx->slice_count = slice_count;
  170. }
  171. if (!slice_count)
  172. return AVERROR(EINVAL);
  173. if (hdr_size + slice_count*2 > buf_size) {
  174. av_log(avctx, AV_LOG_ERROR, "error, wrong slice count\n");
  175. return -1;
  176. }
  177. // parse slice information
  178. index_ptr = buf + hdr_size;
  179. data_ptr = index_ptr + slice_count*2;
  180. slice_mb_count = 1 << log2_slice_mb_width;
  181. mb_x = 0;
  182. mb_y = 0;
  183. for (i = 0; i < slice_count; i++) {
  184. SliceContext *slice = &ctx->slices[i];
  185. slice->data = data_ptr;
  186. data_ptr += AV_RB16(index_ptr + i*2);
  187. while (ctx->mb_width - mb_x < slice_mb_count)
  188. slice_mb_count >>= 1;
  189. slice->mb_x = mb_x;
  190. slice->mb_y = mb_y;
  191. slice->mb_count = slice_mb_count;
  192. slice->data_size = data_ptr - slice->data;
  193. if (slice->data_size < 6) {
  194. av_log(avctx, AV_LOG_ERROR, "error, wrong slice data size\n");
  195. return -1;
  196. }
  197. mb_x += slice_mb_count;
  198. if (mb_x == ctx->mb_width) {
  199. slice_mb_count = 1 << log2_slice_mb_width;
  200. mb_x = 0;
  201. mb_y++;
  202. }
  203. if (data_ptr > buf + buf_size) {
  204. av_log(avctx, AV_LOG_ERROR, "error, slice out of bounds\n");
  205. return -1;
  206. }
  207. }
  208. if (mb_x || mb_y != ctx->mb_height) {
  209. av_log(avctx, AV_LOG_ERROR, "error wrong mb count y %d h %d\n",
  210. mb_y, ctx->mb_height);
  211. return -1;
  212. }
  213. return pic_data_size;
  214. }
  215. #define DECODE_CODEWORD(val, codebook) \
  216. do { \
  217. unsigned int rice_order, exp_order, switch_bits; \
  218. unsigned int q, buf, bits; \
  219. \
  220. UPDATE_CACHE(re, gb); \
  221. buf = GET_CACHE(re, gb); \
  222. \
  223. /* number of bits to switch between rice and exp golomb */ \
  224. switch_bits = codebook & 3; \
  225. rice_order = codebook >> 5; \
  226. exp_order = (codebook >> 2) & 7; \
  227. \
  228. q = 31 - av_log2(buf); \
  229. \
  230. if (q > switch_bits) { /* exp golomb */ \
  231. bits = exp_order - switch_bits + (q<<1); \
  232. val = SHOW_UBITS(re, gb, bits) - (1 << exp_order) + \
  233. ((switch_bits + 1) << rice_order); \
  234. SKIP_BITS(re, gb, bits); \
  235. } else if (rice_order) { \
  236. SKIP_BITS(re, gb, q+1); \
  237. val = (q << rice_order) + SHOW_UBITS(re, gb, rice_order); \
  238. SKIP_BITS(re, gb, rice_order); \
  239. } else { \
  240. val = q; \
  241. SKIP_BITS(re, gb, q+1); \
  242. } \
  243. } while (0)
  244. #define TOSIGNED(x) (((x) >> 1) ^ (-((x) & 1)))
  245. #define FIRST_DC_CB 0xB8
  246. static const uint8_t dc_codebook[7] = { 0x04, 0x28, 0x28, 0x4D, 0x4D, 0x70, 0x70};
  247. static av_always_inline void decode_dc_coeffs(GetBitContext *gb, DCTELEM *out,
  248. int blocks_per_slice)
  249. {
  250. DCTELEM prev_dc;
  251. int code, i, sign;
  252. OPEN_READER(re, gb);
  253. DECODE_CODEWORD(code, FIRST_DC_CB);
  254. prev_dc = TOSIGNED(code);
  255. out[0] = prev_dc;
  256. out += 64; // dc coeff for the next block
  257. code = 5;
  258. sign = 0;
  259. for (i = 1; i < blocks_per_slice; i++, out += 64) {
  260. DECODE_CODEWORD(code, dc_codebook[FFMIN(code, 6U)]);
  261. if(code) sign ^= -(code & 1);
  262. else sign = 0;
  263. prev_dc += (((code + 1) >> 1) ^ sign) - sign;
  264. out[0] = prev_dc;
  265. }
  266. CLOSE_READER(re, gb);
  267. }
  268. // adaptive codebook switching lut according to previous run/level values
  269. static const uint8_t run_to_cb[16] = { 0x06, 0x06, 0x05, 0x05, 0x04, 0x29, 0x29, 0x29, 0x29, 0x28, 0x28, 0x28, 0x28, 0x28, 0x28, 0x4C };
  270. static const uint8_t lev_to_cb[10] = { 0x04, 0x0A, 0x05, 0x06, 0x04, 0x28, 0x28, 0x28, 0x28, 0x4C };
  271. static av_always_inline void decode_ac_coeffs(AVCodecContext *avctx, GetBitContext *gb,
  272. DCTELEM *out, int blocks_per_slice)
  273. {
  274. ProresContext *ctx = avctx->priv_data;
  275. int block_mask, sign;
  276. unsigned pos, run, level;
  277. int max_coeffs, i, bits_left;
  278. int log2_block_count = av_log2(blocks_per_slice);
  279. OPEN_READER(re, gb);
  280. UPDATE_CACHE(re, gb); \
  281. run = 4;
  282. level = 2;
  283. max_coeffs = 64 << log2_block_count;
  284. block_mask = blocks_per_slice - 1;
  285. for (pos = block_mask;;) {
  286. bits_left = gb->size_in_bits - re_index;
  287. if (!bits_left || (bits_left < 32 && !SHOW_UBITS(re, gb, bits_left)))
  288. break;
  289. DECODE_CODEWORD(run, run_to_cb[FFMIN(run, 15)]);
  290. pos += run + 1;
  291. if (pos >= max_coeffs) {
  292. av_log(avctx, AV_LOG_ERROR, "ac tex damaged %d, %d\n", pos, max_coeffs);
  293. return;
  294. }
  295. DECODE_CODEWORD(level, lev_to_cb[FFMIN(level, 9)]);
  296. level += 1;
  297. i = pos >> log2_block_count;
  298. sign = SHOW_SBITS(re, gb, 1);
  299. SKIP_BITS(re, gb, 1);
  300. out[((pos & block_mask) << 6) + ctx->scan[i]] = ((level ^ sign) - sign);
  301. }
  302. CLOSE_READER(re, gb);
  303. }
  304. static void decode_slice_luma(AVCodecContext *avctx, SliceContext *slice,
  305. uint16_t *dst, int dst_stride,
  306. const uint8_t *buf, unsigned buf_size,
  307. const int16_t *qmat)
  308. {
  309. ProresContext *ctx = avctx->priv_data;
  310. LOCAL_ALIGNED_16(DCTELEM, blocks, [8*4*64]);
  311. DCTELEM *block;
  312. GetBitContext gb;
  313. int i, blocks_per_slice = slice->mb_count<<2;
  314. for (i = 0; i < blocks_per_slice; i++)
  315. ctx->dsp.clear_block(blocks+(i<<6));
  316. init_get_bits(&gb, buf, buf_size << 3);
  317. decode_dc_coeffs(&gb, blocks, blocks_per_slice);
  318. decode_ac_coeffs(avctx, &gb, blocks, blocks_per_slice);
  319. block = blocks;
  320. for (i = 0; i < slice->mb_count; i++) {
  321. ctx->prodsp.idct_put(dst, dst_stride, block+(0<<6), qmat);
  322. ctx->prodsp.idct_put(dst +8, dst_stride, block+(1<<6), qmat);
  323. ctx->prodsp.idct_put(dst+4*dst_stride , dst_stride, block+(2<<6), qmat);
  324. ctx->prodsp.idct_put(dst+4*dst_stride+8, dst_stride, block+(3<<6), qmat);
  325. block += 4*64;
  326. dst += 16;
  327. }
  328. }
  329. static void decode_slice_chroma(AVCodecContext *avctx, SliceContext *slice,
  330. uint16_t *dst, int dst_stride,
  331. const uint8_t *buf, unsigned buf_size,
  332. const int16_t *qmat, int log2_blocks_per_mb)
  333. {
  334. ProresContext *ctx = avctx->priv_data;
  335. LOCAL_ALIGNED_16(DCTELEM, blocks, [8*4*64]);
  336. DCTELEM *block;
  337. GetBitContext gb;
  338. int i, j, blocks_per_slice = slice->mb_count << log2_blocks_per_mb;
  339. for (i = 0; i < blocks_per_slice; i++)
  340. ctx->dsp.clear_block(blocks+(i<<6));
  341. init_get_bits(&gb, buf, buf_size << 3);
  342. decode_dc_coeffs(&gb, blocks, blocks_per_slice);
  343. decode_ac_coeffs(avctx, &gb, blocks, blocks_per_slice);
  344. block = blocks;
  345. for (i = 0; i < slice->mb_count; i++) {
  346. for (j = 0; j < log2_blocks_per_mb; j++) {
  347. ctx->prodsp.idct_put(dst, dst_stride, block+(0<<6), qmat);
  348. ctx->prodsp.idct_put(dst+4*dst_stride, dst_stride, block+(1<<6), qmat);
  349. block += 2*64;
  350. dst += 8;
  351. }
  352. }
  353. }
  354. static int decode_slice_thread(AVCodecContext *avctx, void *arg, int jobnr, int threadnr)
  355. {
  356. ProresContext *ctx = avctx->priv_data;
  357. SliceContext *slice = &ctx->slices[jobnr];
  358. const uint8_t *buf = slice->data;
  359. AVFrame *pic = avctx->coded_frame;
  360. int i, hdr_size, qscale, log2_chroma_blocks_per_mb;
  361. int luma_stride, chroma_stride;
  362. int y_data_size, u_data_size, v_data_size;
  363. uint8_t *dest_y, *dest_u, *dest_v;
  364. int16_t qmat_luma_scaled[64];
  365. int16_t qmat_chroma_scaled[64];
  366. int mb_x_shift;
  367. slice->ret = -1;
  368. //av_log(avctx, AV_LOG_INFO, "slice %d mb width %d mb x %d y %d\n",
  369. // jobnr, slice->mb_count, slice->mb_x, slice->mb_y);
  370. // slice header
  371. hdr_size = buf[0] >> 3;
  372. qscale = av_clip(buf[1], 1, 224);
  373. qscale = qscale > 128 ? qscale - 96 << 2: qscale;
  374. y_data_size = AV_RB16(buf + 2);
  375. u_data_size = AV_RB16(buf + 4);
  376. v_data_size = slice->data_size - y_data_size - u_data_size - hdr_size;
  377. if (hdr_size > 7) v_data_size = AV_RB16(buf + 6);
  378. if (y_data_size < 0 || u_data_size < 0 || v_data_size < 0
  379. || hdr_size+y_data_size+u_data_size+v_data_size > slice->data_size){
  380. av_log(avctx, AV_LOG_ERROR, "invalid plane data size\n");
  381. return -1;
  382. }
  383. buf += hdr_size;
  384. for (i = 0; i < 64; i++) {
  385. qmat_luma_scaled [i] = ctx->qmat_luma [i] * qscale;
  386. qmat_chroma_scaled[i] = ctx->qmat_chroma[i] * qscale;
  387. }
  388. if (ctx->frame_type == 0) {
  389. luma_stride = pic->linesize[0];
  390. chroma_stride = pic->linesize[1];
  391. } else {
  392. luma_stride = pic->linesize[0] << 1;
  393. chroma_stride = pic->linesize[1] << 1;
  394. }
  395. if (avctx->pix_fmt == AV_PIX_FMT_YUV444P10) {
  396. mb_x_shift = 5;
  397. log2_chroma_blocks_per_mb = 2;
  398. } else {
  399. mb_x_shift = 4;
  400. log2_chroma_blocks_per_mb = 1;
  401. }
  402. dest_y = pic->data[0] + (slice->mb_y << 4) * luma_stride + (slice->mb_x << 5);
  403. dest_u = pic->data[1] + (slice->mb_y << 4) * chroma_stride + (slice->mb_x << mb_x_shift);
  404. dest_v = pic->data[2] + (slice->mb_y << 4) * chroma_stride + (slice->mb_x << mb_x_shift);
  405. if (ctx->frame_type && ctx->first_field ^ ctx->frame.top_field_first) {
  406. dest_y += pic->linesize[0];
  407. dest_u += pic->linesize[1];
  408. dest_v += pic->linesize[2];
  409. }
  410. decode_slice_luma(avctx, slice, (uint16_t*)dest_y, luma_stride,
  411. buf, y_data_size, qmat_luma_scaled);
  412. if (!(avctx->flags & CODEC_FLAG_GRAY)) {
  413. decode_slice_chroma(avctx, slice, (uint16_t*)dest_u, chroma_stride,
  414. buf + y_data_size, u_data_size,
  415. qmat_chroma_scaled, log2_chroma_blocks_per_mb);
  416. decode_slice_chroma(avctx, slice, (uint16_t*)dest_v, chroma_stride,
  417. buf + y_data_size + u_data_size, v_data_size,
  418. qmat_chroma_scaled, log2_chroma_blocks_per_mb);
  419. }
  420. slice->ret = 0;
  421. return 0;
  422. }
  423. static int decode_picture(AVCodecContext *avctx)
  424. {
  425. ProresContext *ctx = avctx->priv_data;
  426. int i;
  427. avctx->execute2(avctx, decode_slice_thread, NULL, NULL, ctx->slice_count);
  428. for (i = 0; i < ctx->slice_count; i++)
  429. if (ctx->slices[i].ret < 0)
  430. return ctx->slices[i].ret;
  431. return 0;
  432. }
  433. static int decode_frame(AVCodecContext *avctx, void *data, int *got_frame,
  434. AVPacket *avpkt)
  435. {
  436. ProresContext *ctx = avctx->priv_data;
  437. AVFrame *frame = avctx->coded_frame;
  438. const uint8_t *buf = avpkt->data;
  439. int buf_size = avpkt->size;
  440. int frame_hdr_size, pic_size;
  441. if (buf_size < 28 || AV_RL32(buf + 4) != AV_RL32("icpf")) {
  442. av_log(avctx, AV_LOG_ERROR, "invalid frame header\n");
  443. return -1;
  444. }
  445. ctx->first_field = 1;
  446. buf += 8;
  447. buf_size -= 8;
  448. frame_hdr_size = decode_frame_header(ctx, buf, buf_size, avctx);
  449. if (frame_hdr_size < 0)
  450. return -1;
  451. buf += frame_hdr_size;
  452. buf_size -= frame_hdr_size;
  453. if (frame->data[0])
  454. avctx->release_buffer(avctx, frame);
  455. if (ff_get_buffer(avctx, frame) < 0)
  456. return -1;
  457. decode_picture:
  458. pic_size = decode_picture_header(avctx, buf, buf_size);
  459. if (pic_size < 0) {
  460. av_log(avctx, AV_LOG_ERROR, "error decoding picture header\n");
  461. return -1;
  462. }
  463. if (decode_picture(avctx)) {
  464. av_log(avctx, AV_LOG_ERROR, "error decoding picture\n");
  465. return -1;
  466. }
  467. buf += pic_size;
  468. buf_size -= pic_size;
  469. if (ctx->frame_type && buf_size > 0 && ctx->first_field) {
  470. ctx->first_field = 0;
  471. goto decode_picture;
  472. }
  473. *got_frame = 1;
  474. *(AVFrame*)data = *frame;
  475. return avpkt->size;
  476. }
  477. static av_cold int decode_close(AVCodecContext *avctx)
  478. {
  479. ProresContext *ctx = avctx->priv_data;
  480. AVFrame *frame = avctx->coded_frame;
  481. if (frame->data[0])
  482. avctx->release_buffer(avctx, frame);
  483. av_freep(&ctx->slices);
  484. return 0;
  485. }
  486. AVCodec ff_prores_decoder = {
  487. .name = "prores",
  488. .type = AVMEDIA_TYPE_VIDEO,
  489. .id = AV_CODEC_ID_PRORES,
  490. .priv_data_size = sizeof(ProresContext),
  491. .init = decode_init,
  492. .close = decode_close,
  493. .decode = decode_frame,
  494. .long_name = NULL_IF_CONFIG_SMALL("ProRes"),
  495. .capabilities = CODEC_CAP_DR1 | CODEC_CAP_SLICE_THREADS,
  496. };