You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

1593 lines
53KB

  1. /*
  2. * huffyuv codec for libavcodec
  3. *
  4. * Copyright (c) 2002-2003 Michael Niedermayer <michaelni@gmx.at>
  5. *
  6. * see http://www.pcisys.net/~melanson/codecs/huffyuv.txt for a description of
  7. * the algorithm used
  8. *
  9. * This file is part of FFmpeg.
  10. *
  11. * FFmpeg is free software; you can redistribute it and/or
  12. * modify it under the terms of the GNU Lesser General Public
  13. * License as published by the Free Software Foundation; either
  14. * version 2.1 of the License, or (at your option) any later version.
  15. *
  16. * FFmpeg is distributed in the hope that it will be useful,
  17. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  18. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  19. * Lesser General Public License for more details.
  20. *
  21. * You should have received a copy of the GNU Lesser General Public
  22. * License along with FFmpeg; if not, write to the Free Software
  23. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  24. */
  25. /**
  26. * @file
  27. * huffyuv codec for libavcodec.
  28. */
  29. #include "avcodec.h"
  30. #include "internal.h"
  31. #include "get_bits.h"
  32. #include "put_bits.h"
  33. #include "dsputil.h"
  34. #include "thread.h"
  35. #include "huffman.h"
  36. #define VLC_BITS 11
  37. #if HAVE_BIGENDIAN
  38. #define B 3
  39. #define G 2
  40. #define R 1
  41. #define A 0
  42. #else
  43. #define B 0
  44. #define G 1
  45. #define R 2
  46. #define A 3
  47. #endif
  48. typedef enum Predictor {
  49. LEFT= 0,
  50. PLANE,
  51. MEDIAN,
  52. } Predictor;
  53. typedef struct HYuvContext {
  54. AVCodecContext *avctx;
  55. Predictor predictor;
  56. GetBitContext gb;
  57. PutBitContext pb;
  58. int interlaced;
  59. int decorrelate;
  60. int bitstream_bpp;
  61. int version;
  62. int yuy2; //use yuy2 instead of 422P
  63. int bgr32; //use bgr32 instead of bgr24
  64. int width, height;
  65. int flags;
  66. int context;
  67. int picture_number;
  68. int last_slice_end;
  69. uint8_t *temp[3];
  70. uint64_t stats[3][256];
  71. uint8_t len[3][256];
  72. uint32_t bits[3][256];
  73. uint32_t pix_bgr_map[1<<VLC_BITS];
  74. VLC vlc[6]; //Y,U,V,YY,YU,YV
  75. AVFrame picture;
  76. uint8_t *bitstream_buffer;
  77. unsigned int bitstream_buffer_size;
  78. DSPContext dsp;
  79. } HYuvContext;
  80. #define classic_shift_luma_table_size 42
  81. static const unsigned char classic_shift_luma[classic_shift_luma_table_size + FF_INPUT_BUFFER_PADDING_SIZE] = {
  82. 34,36,35,69,135,232,9,16,10,24,11,23,12,16,13,10,14,8,15,8,
  83. 16,8,17,20,16,10,207,206,205,236,11,8,10,21,9,23,8,8,199,70,
  84. 69,68, 0,
  85. 0,0,0,0,0,0,0,0,
  86. };
  87. #define classic_shift_chroma_table_size 59
  88. static const unsigned char classic_shift_chroma[classic_shift_chroma_table_size + FF_INPUT_BUFFER_PADDING_SIZE] = {
  89. 66,36,37,38,39,40,41,75,76,77,110,239,144,81,82,83,84,85,118,183,
  90. 56,57,88,89,56,89,154,57,58,57,26,141,57,56,58,57,58,57,184,119,
  91. 214,245,116,83,82,49,80,79,78,77,44,75,41,40,39,38,37,36,34, 0,
  92. 0,0,0,0,0,0,0,0,
  93. };
  94. static const unsigned char classic_add_luma[256] = {
  95. 3, 9, 5, 12, 10, 35, 32, 29, 27, 50, 48, 45, 44, 41, 39, 37,
  96. 73, 70, 68, 65, 64, 61, 58, 56, 53, 50, 49, 46, 44, 41, 38, 36,
  97. 68, 65, 63, 61, 58, 55, 53, 51, 48, 46, 45, 43, 41, 39, 38, 36,
  98. 35, 33, 32, 30, 29, 27, 26, 25, 48, 47, 46, 44, 43, 41, 40, 39,
  99. 37, 36, 35, 34, 32, 31, 30, 28, 27, 26, 24, 23, 22, 20, 19, 37,
  100. 35, 34, 33, 31, 30, 29, 27, 26, 24, 23, 21, 20, 18, 17, 15, 29,
  101. 27, 26, 24, 22, 21, 19, 17, 16, 14, 26, 25, 23, 21, 19, 18, 16,
  102. 15, 27, 25, 23, 21, 19, 17, 16, 14, 26, 25, 23, 21, 18, 17, 14,
  103. 12, 17, 19, 13, 4, 9, 2, 11, 1, 7, 8, 0, 16, 3, 14, 6,
  104. 12, 10, 5, 15, 18, 11, 10, 13, 15, 16, 19, 20, 22, 24, 27, 15,
  105. 18, 20, 22, 24, 26, 14, 17, 20, 22, 24, 27, 15, 18, 20, 23, 25,
  106. 28, 16, 19, 22, 25, 28, 32, 36, 21, 25, 29, 33, 38, 42, 45, 49,
  107. 28, 31, 34, 37, 40, 42, 44, 47, 49, 50, 52, 54, 56, 57, 59, 60,
  108. 62, 64, 66, 67, 69, 35, 37, 39, 40, 42, 43, 45, 47, 48, 51, 52,
  109. 54, 55, 57, 59, 60, 62, 63, 66, 67, 69, 71, 72, 38, 40, 42, 43,
  110. 46, 47, 49, 51, 26, 28, 30, 31, 33, 34, 18, 19, 11, 13, 7, 8,
  111. };
  112. static const unsigned char classic_add_chroma[256] = {
  113. 3, 1, 2, 2, 2, 2, 3, 3, 7, 5, 7, 5, 8, 6, 11, 9,
  114. 7, 13, 11, 10, 9, 8, 7, 5, 9, 7, 6, 4, 7, 5, 8, 7,
  115. 11, 8, 13, 11, 19, 15, 22, 23, 20, 33, 32, 28, 27, 29, 51, 77,
  116. 43, 45, 76, 81, 46, 82, 75, 55, 56,144, 58, 80, 60, 74,147, 63,
  117. 143, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79,
  118. 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 27, 30, 21, 22,
  119. 17, 14, 5, 6,100, 54, 47, 50, 51, 53,106,107,108,109,110,111,
  120. 112,113,114,115, 4,117,118, 92, 94,121,122, 3,124,103, 2, 1,
  121. 0,129,130,131,120,119,126,125,136,137,138,139,140,141,142,134,
  122. 135,132,133,104, 64,101, 62, 57,102, 95, 93, 59, 61, 28, 97, 96,
  123. 52, 49, 48, 29, 32, 25, 24, 46, 23, 98, 45, 44, 43, 20, 42, 41,
  124. 19, 18, 99, 40, 15, 39, 38, 16, 13, 12, 11, 37, 10, 9, 8, 36,
  125. 7,128,127,105,123,116, 35, 34, 33,145, 31, 79, 42,146, 78, 26,
  126. 83, 48, 49, 50, 44, 47, 26, 31, 30, 18, 17, 19, 21, 24, 25, 13,
  127. 14, 16, 17, 18, 20, 21, 12, 14, 15, 9, 10, 6, 9, 6, 5, 8,
  128. 6, 12, 8, 10, 7, 9, 6, 4, 6, 2, 2, 3, 3, 3, 3, 2,
  129. };
  130. static inline int sub_left_prediction(HYuvContext *s, uint8_t *dst,
  131. const uint8_t *src, int w, int left)
  132. {
  133. int i;
  134. if (w < 32) {
  135. for (i = 0; i < w; i++) {
  136. const int temp = src[i];
  137. dst[i] = temp - left;
  138. left = temp;
  139. }
  140. return left;
  141. } else {
  142. for (i = 0; i < 16; i++) {
  143. const int temp = src[i];
  144. dst[i] = temp - left;
  145. left = temp;
  146. }
  147. s->dsp.diff_bytes(dst + 16, src + 16, src + 15, w - 16);
  148. return src[w-1];
  149. }
  150. }
  151. static inline void sub_left_prediction_bgr32(HYuvContext *s, uint8_t *dst,
  152. const uint8_t *src, int w,
  153. int *red, int *green, int *blue, int *alpha)
  154. {
  155. int i;
  156. int r,g,b,a;
  157. r = *red;
  158. g = *green;
  159. b = *blue;
  160. a = *alpha;
  161. for (i = 0; i < FFMIN(w, 4); i++) {
  162. const int rt = src[i * 4 + R];
  163. const int gt = src[i * 4 + G];
  164. const int bt = src[i * 4 + B];
  165. const int at = src[i * 4 + A];
  166. dst[i * 4 + R] = rt - r;
  167. dst[i * 4 + G] = gt - g;
  168. dst[i * 4 + B] = bt - b;
  169. dst[i * 4 + A] = at - a;
  170. r = rt;
  171. g = gt;
  172. b = bt;
  173. a = at;
  174. }
  175. s->dsp.diff_bytes(dst + 16, src + 16, src + 12, w * 4 - 16);
  176. *red = src[(w - 1) * 4 + R];
  177. *green = src[(w - 1) * 4 + G];
  178. *blue = src[(w - 1) * 4 + B];
  179. *alpha = src[(w - 1) * 4 + A];
  180. }
  181. static inline void sub_left_prediction_rgb24(HYuvContext *s, uint8_t *dst, const uint8_t *src, int w, int *red, int *green, int *blue){
  182. int i;
  183. int r,g,b;
  184. r = *red;
  185. g = *green;
  186. b = *blue;
  187. for (i = 0; i < FFMIN(w,16); i++) {
  188. const int rt = src[i*3 + 0];
  189. const int gt = src[i*3 + 1];
  190. const int bt = src[i*3 + 2];
  191. dst[i*3 + 0] = rt - r;
  192. dst[i*3 + 1] = gt - g;
  193. dst[i*3 + 2] = bt - b;
  194. r = rt;
  195. g = gt;
  196. b = bt;
  197. }
  198. s->dsp.diff_bytes(dst + 48, src + 48, src + 48 - 3, w*3 - 48);
  199. *red = src[(w - 1)*3 + 0];
  200. *green = src[(w - 1)*3 + 1];
  201. *blue = src[(w - 1)*3 + 2];
  202. }
  203. static int read_len_table(uint8_t *dst, GetBitContext *gb)
  204. {
  205. int i, val, repeat;
  206. for (i = 0; i < 256;) {
  207. repeat = get_bits(gb, 3);
  208. val = get_bits(gb, 5);
  209. if (repeat == 0)
  210. repeat = get_bits(gb, 8);
  211. if (i + repeat > 256 || get_bits_left(gb) < 0) {
  212. av_log(NULL, AV_LOG_ERROR, "Error reading huffman table\n");
  213. return -1;
  214. }
  215. while (repeat--)
  216. dst[i++] = val;
  217. }
  218. return 0;
  219. }
  220. static int generate_bits_table(uint32_t *dst, const uint8_t *len_table)
  221. {
  222. int len, index;
  223. uint32_t bits = 0;
  224. for (len = 32; len > 0; len--) {
  225. for (index = 0; index < 256; index++) {
  226. if (len_table[index] == len)
  227. dst[index] = bits++;
  228. }
  229. if (bits & 1) {
  230. av_log(NULL, AV_LOG_ERROR, "Error generating huffman table\n");
  231. return -1;
  232. }
  233. bits >>= 1;
  234. }
  235. return 0;
  236. }
  237. static void generate_joint_tables(HYuvContext *s)
  238. {
  239. uint16_t symbols[1 << VLC_BITS];
  240. uint16_t bits[1 << VLC_BITS];
  241. uint8_t len[1 << VLC_BITS];
  242. if (s->bitstream_bpp < 24) {
  243. int p, i, y, u;
  244. for (p = 0; p < 3; p++) {
  245. for (i = y = 0; y < 256; y++) {
  246. int len0 = s->len[0][y];
  247. int limit = VLC_BITS - len0;
  248. if(limit <= 0)
  249. continue;
  250. for (u = 0; u < 256; u++) {
  251. int len1 = s->len[p][u];
  252. if (len1 > limit)
  253. continue;
  254. len[i] = len0 + len1;
  255. bits[i] = (s->bits[0][y] << len1) + s->bits[p][u];
  256. symbols[i] = (y << 8) + u;
  257. if(symbols[i] != 0xffff) // reserved to mean "invalid"
  258. i++;
  259. }
  260. }
  261. ff_free_vlc(&s->vlc[3 + p]);
  262. ff_init_vlc_sparse(&s->vlc[3 + p], VLC_BITS, i, len, 1, 1,
  263. bits, 2, 2, symbols, 2, 2, 0);
  264. }
  265. } else {
  266. uint8_t (*map)[4] = (uint8_t(*)[4])s->pix_bgr_map;
  267. int i, b, g, r, code;
  268. int p0 = s->decorrelate;
  269. int p1 = !s->decorrelate;
  270. // restrict the range to +/-16 because that's pretty much guaranteed to
  271. // cover all the combinations that fit in 11 bits total, and it doesn't
  272. // matter if we miss a few rare codes.
  273. for (i = 0, g = -16; g < 16; g++) {
  274. int len0 = s->len[p0][g & 255];
  275. int limit0 = VLC_BITS - len0;
  276. if (limit0 < 2)
  277. continue;
  278. for (b = -16; b < 16; b++) {
  279. int len1 = s->len[p1][b & 255];
  280. int limit1 = limit0 - len1;
  281. if (limit1 < 1)
  282. continue;
  283. code = (s->bits[p0][g & 255] << len1) + s->bits[p1][b & 255];
  284. for (r = -16; r < 16; r++) {
  285. int len2 = s->len[2][r & 255];
  286. if (len2 > limit1)
  287. continue;
  288. len[i] = len0 + len1 + len2;
  289. bits[i] = (code << len2) + s->bits[2][r & 255];
  290. if (s->decorrelate) {
  291. map[i][G] = g;
  292. map[i][B] = g + b;
  293. map[i][R] = g + r;
  294. } else {
  295. map[i][B] = g;
  296. map[i][G] = b;
  297. map[i][R] = r;
  298. }
  299. i++;
  300. }
  301. }
  302. }
  303. ff_free_vlc(&s->vlc[3]);
  304. init_vlc(&s->vlc[3], VLC_BITS, i, len, 1, 1, bits, 2, 2, 0);
  305. }
  306. }
  307. static int read_huffman_tables(HYuvContext *s, const uint8_t *src, int length)
  308. {
  309. GetBitContext gb;
  310. int i;
  311. init_get_bits(&gb, src, length * 8);
  312. for (i = 0; i < 3; i++) {
  313. if (read_len_table(s->len[i], &gb) < 0)
  314. return -1;
  315. if (generate_bits_table(s->bits[i], s->len[i]) < 0) {
  316. return -1;
  317. }
  318. ff_free_vlc(&s->vlc[i]);
  319. init_vlc(&s->vlc[i], VLC_BITS, 256, s->len[i], 1, 1,
  320. s->bits[i], 4, 4, 0);
  321. }
  322. generate_joint_tables(s);
  323. return (get_bits_count(&gb) + 7) / 8;
  324. }
  325. static int read_old_huffman_tables(HYuvContext *s)
  326. {
  327. GetBitContext gb;
  328. int i;
  329. init_get_bits(&gb, classic_shift_luma,
  330. classic_shift_luma_table_size * 8);
  331. if (read_len_table(s->len[0], &gb) < 0)
  332. return -1;
  333. init_get_bits(&gb, classic_shift_chroma,
  334. classic_shift_chroma_table_size * 8);
  335. if (read_len_table(s->len[1], &gb) < 0)
  336. return -1;
  337. for(i=0; i<256; i++) s->bits[0][i] = classic_add_luma [i];
  338. for(i=0; i<256; i++) s->bits[1][i] = classic_add_chroma[i];
  339. if (s->bitstream_bpp >= 24) {
  340. memcpy(s->bits[1], s->bits[0], 256 * sizeof(uint32_t));
  341. memcpy(s->len[1] , s->len [0], 256 * sizeof(uint8_t));
  342. }
  343. memcpy(s->bits[2], s->bits[1], 256 * sizeof(uint32_t));
  344. memcpy(s->len[2] , s->len [1], 256 * sizeof(uint8_t));
  345. for (i = 0; i < 3; i++) {
  346. ff_free_vlc(&s->vlc[i]);
  347. init_vlc(&s->vlc[i], VLC_BITS, 256, s->len[i], 1, 1,
  348. s->bits[i], 4, 4, 0);
  349. }
  350. generate_joint_tables(s);
  351. return 0;
  352. }
  353. static av_cold int alloc_temp(HYuvContext *s)
  354. {
  355. int i;
  356. if (s->bitstream_bpp<24) {
  357. for (i=0; i<3; i++) {
  358. s->temp[i]= av_malloc(s->width + 16);
  359. if (!s->temp[i])
  360. return AVERROR(ENOMEM);
  361. }
  362. } else {
  363. s->temp[0]= av_mallocz(4*s->width + 16);
  364. if (!s->temp[0])
  365. return AVERROR(ENOMEM);
  366. }
  367. return 0;
  368. }
  369. static av_cold int common_init(AVCodecContext *avctx)
  370. {
  371. HYuvContext *s = avctx->priv_data;
  372. s->avctx = avctx;
  373. s->flags = avctx->flags;
  374. ff_dsputil_init(&s->dsp, avctx);
  375. s->width = avctx->width;
  376. s->height = avctx->height;
  377. av_assert1(s->width > 0 && s->height > 0);
  378. return 0;
  379. }
  380. static av_cold int common_end(HYuvContext *s)
  381. {
  382. int i;
  383. for(i = 0; i < 3; i++) {
  384. av_freep(&s->temp[i]);
  385. }
  386. return 0;
  387. }
  388. #if CONFIG_HUFFYUV_DECODER || CONFIG_FFVHUFF_DECODER
  389. static av_cold int decode_init(AVCodecContext *avctx)
  390. {
  391. HYuvContext *s = avctx->priv_data;
  392. common_init(avctx);
  393. memset(s->vlc, 0, 3 * sizeof(VLC));
  394. avctx->coded_frame = &s->picture;
  395. avcodec_get_frame_defaults(&s->picture);
  396. s->interlaced = s->height > 288;
  397. s->bgr32 = 1;
  398. if (avctx->extradata_size) {
  399. if ((avctx->bits_per_coded_sample & 7) &&
  400. avctx->bits_per_coded_sample != 12)
  401. s->version = 1; // do such files exist at all?
  402. else
  403. s->version = 2;
  404. } else
  405. s->version = 0;
  406. if (s->version == 2) {
  407. int method, interlace;
  408. if (avctx->extradata_size < 4)
  409. return -1;
  410. method = ((uint8_t*)avctx->extradata)[0];
  411. s->decorrelate = method & 64 ? 1 : 0;
  412. s->predictor = method & 63;
  413. s->bitstream_bpp = ((uint8_t*)avctx->extradata)[1];
  414. if (s->bitstream_bpp == 0)
  415. s->bitstream_bpp = avctx->bits_per_coded_sample & ~7;
  416. interlace = (((uint8_t*)avctx->extradata)[2] & 0x30) >> 4;
  417. s->interlaced = (interlace == 1) ? 1 : (interlace == 2) ? 0 : s->interlaced;
  418. s->context = ((uint8_t*)avctx->extradata)[2] & 0x40 ? 1 : 0;
  419. if ( read_huffman_tables(s, ((uint8_t*)avctx->extradata) + 4,
  420. avctx->extradata_size - 4) < 0)
  421. return AVERROR_INVALIDDATA;
  422. }else{
  423. switch (avctx->bits_per_coded_sample & 7) {
  424. case 1:
  425. s->predictor = LEFT;
  426. s->decorrelate = 0;
  427. break;
  428. case 2:
  429. s->predictor = LEFT;
  430. s->decorrelate = 1;
  431. break;
  432. case 3:
  433. s->predictor = PLANE;
  434. s->decorrelate = avctx->bits_per_coded_sample >= 24;
  435. break;
  436. case 4:
  437. s->predictor = MEDIAN;
  438. s->decorrelate = 0;
  439. break;
  440. default:
  441. s->predictor = LEFT; //OLD
  442. s->decorrelate = 0;
  443. break;
  444. }
  445. s->bitstream_bpp = avctx->bits_per_coded_sample & ~7;
  446. s->context = 0;
  447. if (read_old_huffman_tables(s) < 0)
  448. return AVERROR_INVALIDDATA;
  449. }
  450. switch (s->bitstream_bpp) {
  451. case 12:
  452. avctx->pix_fmt = AV_PIX_FMT_YUV420P;
  453. break;
  454. case 16:
  455. if (s->yuy2) {
  456. avctx->pix_fmt = AV_PIX_FMT_YUYV422;
  457. } else {
  458. avctx->pix_fmt = AV_PIX_FMT_YUV422P;
  459. }
  460. break;
  461. case 24:
  462. case 32:
  463. if (s->bgr32) {
  464. avctx->pix_fmt = AV_PIX_FMT_RGB32;
  465. } else {
  466. avctx->pix_fmt = AV_PIX_FMT_BGR24;
  467. }
  468. break;
  469. default:
  470. return AVERROR_INVALIDDATA;
  471. }
  472. if ((avctx->pix_fmt == AV_PIX_FMT_YUV422P || avctx->pix_fmt == AV_PIX_FMT_YUV420P) && avctx->width & 1) {
  473. av_log(avctx, AV_LOG_ERROR, "width must be even for this colorspace\n");
  474. return AVERROR_INVALIDDATA;
  475. }
  476. if (s->predictor == MEDIAN && avctx->pix_fmt == AV_PIX_FMT_YUV422P && avctx->width%4) {
  477. av_log(avctx, AV_LOG_ERROR, "width must be a multiple of 4 this colorspace and predictor\n");
  478. return AVERROR_INVALIDDATA;
  479. }
  480. if (alloc_temp(s)) {
  481. common_end(s);
  482. return AVERROR(ENOMEM);
  483. }
  484. return 0;
  485. }
  486. static av_cold int decode_init_thread_copy(AVCodecContext *avctx)
  487. {
  488. HYuvContext *s = avctx->priv_data;
  489. int i;
  490. avctx->coded_frame= &s->picture;
  491. if (alloc_temp(s)) {
  492. common_end(s);
  493. return AVERROR(ENOMEM);
  494. }
  495. for (i = 0; i < 6; i++)
  496. s->vlc[i].table = NULL;
  497. if (s->version == 2) {
  498. if (read_huffman_tables(s, ((uint8_t*)avctx->extradata) + 4,
  499. avctx->extradata_size) < 0)
  500. return AVERROR_INVALIDDATA;
  501. } else {
  502. if (read_old_huffman_tables(s) < 0)
  503. return AVERROR_INVALIDDATA;
  504. }
  505. return 0;
  506. }
  507. #endif /* CONFIG_HUFFYUV_DECODER || CONFIG_FFVHUFF_DECODER */
  508. #if CONFIG_HUFFYUV_ENCODER || CONFIG_FFVHUFF_ENCODER
  509. static int store_table(HYuvContext *s, const uint8_t *len, uint8_t *buf)
  510. {
  511. int i;
  512. int index = 0;
  513. for (i = 0; i < 256;) {
  514. int val = len[i];
  515. int repeat = 0;
  516. for (; i < 256 && len[i] == val && repeat < 255; i++)
  517. repeat++;
  518. av_assert0(val < 32 && val >0 && repeat<256 && repeat>0);
  519. if (repeat > 7) {
  520. buf[index++] = val;
  521. buf[index++] = repeat;
  522. } else {
  523. buf[index++] = val | (repeat << 5);
  524. }
  525. }
  526. return index;
  527. }
  528. static av_cold int encode_init(AVCodecContext *avctx)
  529. {
  530. HYuvContext *s = avctx->priv_data;
  531. int i, j;
  532. common_init(avctx);
  533. avctx->extradata = av_mallocz(1024*30); // 256*3+4 == 772
  534. avctx->stats_out = av_mallocz(1024*30); // 21*256*3(%llu ) + 3(\n) + 1(0) = 16132
  535. if (!avctx->extradata || !avctx->stats_out) {
  536. av_freep(&avctx->stats_out);
  537. return AVERROR(ENOMEM);
  538. }
  539. s->version = 2;
  540. avctx->coded_frame = &s->picture;
  541. switch (avctx->pix_fmt) {
  542. case AV_PIX_FMT_YUV420P:
  543. case AV_PIX_FMT_YUV422P:
  544. if (s->width & 1) {
  545. av_log(avctx, AV_LOG_ERROR, "width must be even for this colorspace\n");
  546. return AVERROR(EINVAL);
  547. }
  548. s->bitstream_bpp = avctx->pix_fmt == AV_PIX_FMT_YUV420P ? 12 : 16;
  549. break;
  550. case AV_PIX_FMT_RGB32:
  551. s->bitstream_bpp = 32;
  552. break;
  553. case AV_PIX_FMT_RGB24:
  554. s->bitstream_bpp = 24;
  555. break;
  556. default:
  557. av_log(avctx, AV_LOG_ERROR, "format not supported\n");
  558. return AVERROR(EINVAL);
  559. }
  560. avctx->bits_per_coded_sample = s->bitstream_bpp;
  561. s->decorrelate = s->bitstream_bpp >= 24;
  562. s->predictor = avctx->prediction_method;
  563. s->interlaced = avctx->flags&CODEC_FLAG_INTERLACED_ME ? 1 : 0;
  564. if (avctx->context_model == 1) {
  565. s->context = avctx->context_model;
  566. if (s->flags & (CODEC_FLAG_PASS1|CODEC_FLAG_PASS2)) {
  567. av_log(avctx, AV_LOG_ERROR,
  568. "context=1 is not compatible with "
  569. "2 pass huffyuv encoding\n");
  570. return AVERROR(EINVAL);
  571. }
  572. }else s->context= 0;
  573. if (avctx->codec->id == AV_CODEC_ID_HUFFYUV) {
  574. if (avctx->pix_fmt == AV_PIX_FMT_YUV420P) {
  575. av_log(avctx, AV_LOG_ERROR,
  576. "Error: YV12 is not supported by huffyuv; use "
  577. "vcodec=ffvhuff or format=422p\n");
  578. return AVERROR(EINVAL);
  579. }
  580. if (avctx->context_model) {
  581. av_log(avctx, AV_LOG_ERROR,
  582. "Error: per-frame huffman tables are not supported "
  583. "by huffyuv; use vcodec=ffvhuff\n");
  584. return AVERROR(EINVAL);
  585. }
  586. if (s->interlaced != ( s->height > 288 ))
  587. av_log(avctx, AV_LOG_INFO,
  588. "using huffyuv 2.2.0 or newer interlacing flag\n");
  589. }
  590. if (s->bitstream_bpp >= 24 && s->predictor == MEDIAN) {
  591. av_log(avctx, AV_LOG_ERROR,
  592. "Error: RGB is incompatible with median predictor\n");
  593. return AVERROR(EINVAL);
  594. }
  595. ((uint8_t*)avctx->extradata)[0] = s->predictor | (s->decorrelate << 6);
  596. ((uint8_t*)avctx->extradata)[1] = s->bitstream_bpp;
  597. ((uint8_t*)avctx->extradata)[2] = s->interlaced ? 0x10 : 0x20;
  598. if (s->context)
  599. ((uint8_t*)avctx->extradata)[2] |= 0x40;
  600. ((uint8_t*)avctx->extradata)[3] = 0;
  601. s->avctx->extradata_size = 4;
  602. if (avctx->stats_in) {
  603. char *p = avctx->stats_in;
  604. for (i = 0; i < 3; i++)
  605. for (j = 0; j < 256; j++)
  606. s->stats[i][j] = 1;
  607. for (;;) {
  608. for (i = 0; i < 3; i++) {
  609. char *next;
  610. for (j = 0; j < 256; j++) {
  611. s->stats[i][j] += strtol(p, &next, 0);
  612. if (next == p) return -1;
  613. p = next;
  614. }
  615. }
  616. if (p[0] == 0 || p[1] == 0 || p[2] == 0) break;
  617. }
  618. } else {
  619. for (i = 0; i < 3; i++)
  620. for (j = 0; j < 256; j++) {
  621. int d = FFMIN(j, 256 - j);
  622. s->stats[i][j] = 100000000 / (d + 1);
  623. }
  624. }
  625. for (i = 0; i < 3; i++) {
  626. ff_huff_gen_len_table(s->len[i], s->stats[i]);
  627. if (generate_bits_table(s->bits[i], s->len[i]) < 0) {
  628. return -1;
  629. }
  630. s->avctx->extradata_size +=
  631. store_table(s, s->len[i], &((uint8_t*)s->avctx->extradata)[s->avctx->extradata_size]);
  632. }
  633. if (s->context) {
  634. for (i = 0; i < 3; i++) {
  635. int pels = s->width * s->height / (i ? 40 : 10);
  636. for (j = 0; j < 256; j++) {
  637. int d = FFMIN(j, 256 - j);
  638. s->stats[i][j] = pels/(d + 1);
  639. }
  640. }
  641. } else {
  642. for (i = 0; i < 3; i++)
  643. for (j = 0; j < 256; j++)
  644. s->stats[i][j]= 0;
  645. }
  646. if (alloc_temp(s)) {
  647. common_end(s);
  648. return AVERROR(ENOMEM);
  649. }
  650. s->picture_number=0;
  651. return 0;
  652. }
  653. #endif /* CONFIG_HUFFYUV_ENCODER || CONFIG_FFVHUFF_ENCODER */
  654. /* TODO instead of restarting the read when the code isn't in the first level
  655. * of the joint table, jump into the 2nd level of the individual table. */
  656. #define READ_2PIX(dst0, dst1, plane1){\
  657. uint16_t code = get_vlc2(&s->gb, s->vlc[3+plane1].table, VLC_BITS, 1);\
  658. if(code != 0xffff){\
  659. dst0 = code>>8;\
  660. dst1 = code;\
  661. }else{\
  662. dst0 = get_vlc2(&s->gb, s->vlc[0].table, VLC_BITS, 3);\
  663. dst1 = get_vlc2(&s->gb, s->vlc[plane1].table, VLC_BITS, 3);\
  664. }\
  665. }
  666. static void decode_422_bitstream(HYuvContext *s, int count)
  667. {
  668. int i;
  669. count /= 2;
  670. if (count >= (get_bits_left(&s->gb)) / (31 * 4)) {
  671. for (i = 0; i < count && get_bits_left(&s->gb) > 0; i++) {
  672. READ_2PIX(s->temp[0][2 * i ], s->temp[1][i], 1);
  673. READ_2PIX(s->temp[0][2 * i + 1], s->temp[2][i], 2);
  674. }
  675. } else {
  676. for (i = 0; i < count; i++) {
  677. READ_2PIX(s->temp[0][2 * i ], s->temp[1][i], 1);
  678. READ_2PIX(s->temp[0][2 * i + 1], s->temp[2][i], 2);
  679. }
  680. }
  681. }
  682. static void decode_gray_bitstream(HYuvContext *s, int count)
  683. {
  684. int i;
  685. count/=2;
  686. if (count >= (get_bits_left(&s->gb)) / (31 * 2)) {
  687. for (i = 0; i < count && get_bits_left(&s->gb) > 0; i++) {
  688. READ_2PIX(s->temp[0][2 * i], s->temp[0][2 * i + 1], 0);
  689. }
  690. } else {
  691. for(i=0; i<count; i++){
  692. READ_2PIX(s->temp[0][2 * i], s->temp[0][2 * i + 1], 0);
  693. }
  694. }
  695. }
  696. #if CONFIG_HUFFYUV_ENCODER || CONFIG_FFVHUFF_ENCODER
  697. static int encode_422_bitstream(HYuvContext *s, int offset, int count)
  698. {
  699. int i;
  700. const uint8_t *y = s->temp[0] + offset;
  701. const uint8_t *u = s->temp[1] + offset / 2;
  702. const uint8_t *v = s->temp[2] + offset / 2;
  703. if (s->pb.buf_end - s->pb.buf - (put_bits_count(&s->pb) >> 3) < 2 * 4 * count) {
  704. av_log(s->avctx, AV_LOG_ERROR, "encoded frame too large\n");
  705. return -1;
  706. }
  707. #define LOAD4\
  708. int y0 = y[2 * i];\
  709. int y1 = y[2 * i + 1];\
  710. int u0 = u[i];\
  711. int v0 = v[i];
  712. count /= 2;
  713. if (s->flags & CODEC_FLAG_PASS1) {
  714. for(i = 0; i < count; i++) {
  715. LOAD4;
  716. s->stats[0][y0]++;
  717. s->stats[1][u0]++;
  718. s->stats[0][y1]++;
  719. s->stats[2][v0]++;
  720. }
  721. }
  722. if (s->avctx->flags2 & CODEC_FLAG2_NO_OUTPUT)
  723. return 0;
  724. if (s->context) {
  725. for (i = 0; i < count; i++) {
  726. LOAD4;
  727. s->stats[0][y0]++;
  728. put_bits(&s->pb, s->len[0][y0], s->bits[0][y0]);
  729. s->stats[1][u0]++;
  730. put_bits(&s->pb, s->len[1][u0], s->bits[1][u0]);
  731. s->stats[0][y1]++;
  732. put_bits(&s->pb, s->len[0][y1], s->bits[0][y1]);
  733. s->stats[2][v0]++;
  734. put_bits(&s->pb, s->len[2][v0], s->bits[2][v0]);
  735. }
  736. } else {
  737. for(i = 0; i < count; i++) {
  738. LOAD4;
  739. put_bits(&s->pb, s->len[0][y0], s->bits[0][y0]);
  740. put_bits(&s->pb, s->len[1][u0], s->bits[1][u0]);
  741. put_bits(&s->pb, s->len[0][y1], s->bits[0][y1]);
  742. put_bits(&s->pb, s->len[2][v0], s->bits[2][v0]);
  743. }
  744. }
  745. return 0;
  746. }
  747. static int encode_gray_bitstream(HYuvContext *s, int count)
  748. {
  749. int i;
  750. if (s->pb.buf_end - s->pb.buf - (put_bits_count(&s->pb) >> 3) < 4 * count) {
  751. av_log(s->avctx, AV_LOG_ERROR, "encoded frame too large\n");
  752. return -1;
  753. }
  754. #define LOAD2\
  755. int y0 = s->temp[0][2 * i];\
  756. int y1 = s->temp[0][2 * i + 1];
  757. #define STAT2\
  758. s->stats[0][y0]++;\
  759. s->stats[0][y1]++;
  760. #define WRITE2\
  761. put_bits(&s->pb, s->len[0][y0], s->bits[0][y0]);\
  762. put_bits(&s->pb, s->len[0][y1], s->bits[0][y1]);
  763. count /= 2;
  764. if (s->flags & CODEC_FLAG_PASS1) {
  765. for (i = 0; i < count; i++) {
  766. LOAD2;
  767. STAT2;
  768. }
  769. }
  770. if (s->avctx->flags2 & CODEC_FLAG2_NO_OUTPUT)
  771. return 0;
  772. if (s->context) {
  773. for (i = 0; i < count; i++) {
  774. LOAD2;
  775. STAT2;
  776. WRITE2;
  777. }
  778. } else {
  779. for (i = 0; i < count; i++) {
  780. LOAD2;
  781. WRITE2;
  782. }
  783. }
  784. return 0;
  785. }
  786. #endif /* CONFIG_HUFFYUV_ENCODER || CONFIG_FFVHUFF_ENCODER */
  787. static av_always_inline void decode_bgr_1(HYuvContext *s, int count,
  788. int decorrelate, int alpha)
  789. {
  790. int i;
  791. for (i = 0; i < count; i++) {
  792. int code = get_vlc2(&s->gb, s->vlc[3].table, VLC_BITS, 1);
  793. if (code != -1) {
  794. *(uint32_t*)&s->temp[0][4 * i] = s->pix_bgr_map[code];
  795. } else if(decorrelate) {
  796. s->temp[0][4 * i + G] = get_vlc2(&s->gb, s->vlc[1].table, VLC_BITS, 3);
  797. s->temp[0][4 * i + B] = get_vlc2(&s->gb, s->vlc[0].table, VLC_BITS, 3) +
  798. s->temp[0][4 * i + G];
  799. s->temp[0][4 * i + R] = get_vlc2(&s->gb, s->vlc[2].table, VLC_BITS, 3) +
  800. s->temp[0][4 * i + G];
  801. } else {
  802. s->temp[0][4 * i + B] = get_vlc2(&s->gb, s->vlc[0].table, VLC_BITS, 3);
  803. s->temp[0][4 * i + G] = get_vlc2(&s->gb, s->vlc[1].table, VLC_BITS, 3);
  804. s->temp[0][4 * i + R] = get_vlc2(&s->gb, s->vlc[2].table, VLC_BITS, 3);
  805. }
  806. if (alpha)
  807. s->temp[0][4 * i + A] = get_vlc2(&s->gb, s->vlc[2].table, VLC_BITS, 3);
  808. }
  809. }
  810. static void decode_bgr_bitstream(HYuvContext *s, int count)
  811. {
  812. if (s->decorrelate) {
  813. if (s->bitstream_bpp==24)
  814. decode_bgr_1(s, count, 1, 0);
  815. else
  816. decode_bgr_1(s, count, 1, 1);
  817. } else {
  818. if (s->bitstream_bpp==24)
  819. decode_bgr_1(s, count, 0, 0);
  820. else
  821. decode_bgr_1(s, count, 0, 1);
  822. }
  823. }
  824. static inline int encode_bgra_bitstream(HYuvContext *s, int count, int planes)
  825. {
  826. int i;
  827. if (s->pb.buf_end - s->pb.buf - (put_bits_count(&s->pb)>>3) < 4*planes*count) {
  828. av_log(s->avctx, AV_LOG_ERROR, "encoded frame too large\n");
  829. return -1;
  830. }
  831. #define LOAD3\
  832. int g = s->temp[0][planes==3 ? 3*i + 1 : 4*i + G];\
  833. int b = (s->temp[0][planes==3 ? 3*i + 2 : 4*i + B] - g) & 0xff;\
  834. int r = (s->temp[0][planes==3 ? 3*i + 0 : 4*i + R] - g) & 0xff;\
  835. int a = s->temp[0][planes*i + A];
  836. #define STAT3\
  837. s->stats[0][b]++;\
  838. s->stats[1][g]++;\
  839. s->stats[2][r]++;\
  840. if(planes==4) s->stats[2][a]++;
  841. #define WRITE3\
  842. put_bits(&s->pb, s->len[1][g], s->bits[1][g]);\
  843. put_bits(&s->pb, s->len[0][b], s->bits[0][b]);\
  844. put_bits(&s->pb, s->len[2][r], s->bits[2][r]);\
  845. if(planes==4) put_bits(&s->pb, s->len[2][a], s->bits[2][a]);
  846. if ((s->flags & CODEC_FLAG_PASS1) &&
  847. (s->avctx->flags2 & CODEC_FLAG2_NO_OUTPUT)) {
  848. for (i = 0; i < count; i++) {
  849. LOAD3;
  850. STAT3;
  851. }
  852. } else if (s->context || (s->flags & CODEC_FLAG_PASS1)) {
  853. for (i = 0; i < count; i++) {
  854. LOAD3;
  855. STAT3;
  856. WRITE3;
  857. }
  858. } else {
  859. for (i = 0; i < count; i++) {
  860. LOAD3;
  861. WRITE3;
  862. }
  863. }
  864. return 0;
  865. }
  866. #if CONFIG_HUFFYUV_DECODER || CONFIG_FFVHUFF_DECODER
  867. static void draw_slice(HYuvContext *s, int y)
  868. {
  869. int h, cy, i;
  870. int offset[AV_NUM_DATA_POINTERS];
  871. if (s->avctx->draw_horiz_band==NULL)
  872. return;
  873. h = y - s->last_slice_end;
  874. y -= h;
  875. if (s->bitstream_bpp == 12) {
  876. cy = y>>1;
  877. } else {
  878. cy = y;
  879. }
  880. offset[0] = s->picture.linesize[0]*y;
  881. offset[1] = s->picture.linesize[1]*cy;
  882. offset[2] = s->picture.linesize[2]*cy;
  883. for (i = 3; i < AV_NUM_DATA_POINTERS; i++)
  884. offset[i] = 0;
  885. emms_c();
  886. s->avctx->draw_horiz_band(s->avctx, &s->picture, offset, y, 3, h);
  887. s->last_slice_end = y + h;
  888. }
  889. static int decode_frame(AVCodecContext *avctx, void *data, int *got_frame,
  890. AVPacket *avpkt)
  891. {
  892. const uint8_t *buf = avpkt->data;
  893. int buf_size = avpkt->size;
  894. HYuvContext *s = avctx->priv_data;
  895. const int width = s->width;
  896. const int width2 = s->width>>1;
  897. const int height = s->height;
  898. int fake_ystride, fake_ustride, fake_vstride;
  899. AVFrame * const p = &s->picture;
  900. int table_size = 0, ret;
  901. AVFrame *picture = data;
  902. av_fast_padded_malloc(&s->bitstream_buffer,
  903. &s->bitstream_buffer_size,
  904. buf_size);
  905. if (!s->bitstream_buffer)
  906. return AVERROR(ENOMEM);
  907. s->dsp.bswap_buf((uint32_t*)s->bitstream_buffer,
  908. (const uint32_t*)buf, buf_size / 4);
  909. if (p->data[0])
  910. ff_thread_release_buffer(avctx, p);
  911. p->reference = 0;
  912. if ((ret = ff_thread_get_buffer(avctx, p)) < 0) {
  913. av_log(avctx, AV_LOG_ERROR, "get_buffer() failed\n");
  914. return ret;
  915. }
  916. if (s->context) {
  917. table_size = read_huffman_tables(s, s->bitstream_buffer, buf_size);
  918. if (table_size < 0)
  919. return AVERROR_INVALIDDATA;
  920. }
  921. if ((unsigned)(buf_size-table_size) >= INT_MAX / 8)
  922. return AVERROR_INVALIDDATA;
  923. init_get_bits(&s->gb, s->bitstream_buffer+table_size,
  924. (buf_size-table_size) * 8);
  925. fake_ystride = s->interlaced ? p->linesize[0] * 2 : p->linesize[0];
  926. fake_ustride = s->interlaced ? p->linesize[1] * 2 : p->linesize[1];
  927. fake_vstride = s->interlaced ? p->linesize[2] * 2 : p->linesize[2];
  928. s->last_slice_end = 0;
  929. if (s->bitstream_bpp < 24) {
  930. int y, cy;
  931. int lefty, leftu, leftv;
  932. int lefttopy, lefttopu, lefttopv;
  933. if (s->yuy2) {
  934. p->data[0][3] = get_bits(&s->gb, 8);
  935. p->data[0][2] = get_bits(&s->gb, 8);
  936. p->data[0][1] = get_bits(&s->gb, 8);
  937. p->data[0][0] = get_bits(&s->gb, 8);
  938. av_log(avctx, AV_LOG_ERROR,
  939. "YUY2 output is not implemented yet\n");
  940. return AVERROR_PATCHWELCOME;
  941. } else {
  942. leftv = p->data[2][0] = get_bits(&s->gb, 8);
  943. lefty = p->data[0][1] = get_bits(&s->gb, 8);
  944. leftu = p->data[1][0] = get_bits(&s->gb, 8);
  945. p->data[0][0] = get_bits(&s->gb, 8);
  946. switch (s->predictor) {
  947. case LEFT:
  948. case PLANE:
  949. decode_422_bitstream(s, width-2);
  950. lefty = s->dsp.add_hfyu_left_prediction(p->data[0] + 2, s->temp[0], width-2, lefty);
  951. if (!(s->flags&CODEC_FLAG_GRAY)) {
  952. leftu = s->dsp.add_hfyu_left_prediction(p->data[1] + 1, s->temp[1], width2 - 1, leftu);
  953. leftv = s->dsp.add_hfyu_left_prediction(p->data[2] + 1, s->temp[2], width2 - 1, leftv);
  954. }
  955. for (cy = y = 1; y < s->height; y++, cy++) {
  956. uint8_t *ydst, *udst, *vdst;
  957. if (s->bitstream_bpp == 12) {
  958. decode_gray_bitstream(s, width);
  959. ydst = p->data[0] + p->linesize[0] * y;
  960. lefty = s->dsp.add_hfyu_left_prediction(ydst, s->temp[0], width, lefty);
  961. if (s->predictor == PLANE) {
  962. if (y > s->interlaced)
  963. s->dsp.add_bytes(ydst, ydst - fake_ystride, width);
  964. }
  965. y++;
  966. if (y >= s->height) break;
  967. }
  968. draw_slice(s, y);
  969. ydst = p->data[0] + p->linesize[0]*y;
  970. udst = p->data[1] + p->linesize[1]*cy;
  971. vdst = p->data[2] + p->linesize[2]*cy;
  972. decode_422_bitstream(s, width);
  973. lefty = s->dsp.add_hfyu_left_prediction(ydst, s->temp[0], width, lefty);
  974. if (!(s->flags & CODEC_FLAG_GRAY)) {
  975. leftu= s->dsp.add_hfyu_left_prediction(udst, s->temp[1], width2, leftu);
  976. leftv= s->dsp.add_hfyu_left_prediction(vdst, s->temp[2], width2, leftv);
  977. }
  978. if (s->predictor == PLANE) {
  979. if (cy > s->interlaced) {
  980. s->dsp.add_bytes(ydst, ydst - fake_ystride, width);
  981. if (!(s->flags & CODEC_FLAG_GRAY)) {
  982. s->dsp.add_bytes(udst, udst - fake_ustride, width2);
  983. s->dsp.add_bytes(vdst, vdst - fake_vstride, width2);
  984. }
  985. }
  986. }
  987. }
  988. draw_slice(s, height);
  989. break;
  990. case MEDIAN:
  991. /* first line except first 2 pixels is left predicted */
  992. decode_422_bitstream(s, width - 2);
  993. lefty= s->dsp.add_hfyu_left_prediction(p->data[0] + 2, s->temp[0], width - 2, lefty);
  994. if (!(s->flags & CODEC_FLAG_GRAY)) {
  995. leftu = s->dsp.add_hfyu_left_prediction(p->data[1] + 1, s->temp[1], width2 - 1, leftu);
  996. leftv = s->dsp.add_hfyu_left_prediction(p->data[2] + 1, s->temp[2], width2 - 1, leftv);
  997. }
  998. cy = y = 1;
  999. /* second line is left predicted for interlaced case */
  1000. if (s->interlaced) {
  1001. decode_422_bitstream(s, width);
  1002. lefty = s->dsp.add_hfyu_left_prediction(p->data[0] + p->linesize[0], s->temp[0], width, lefty);
  1003. if (!(s->flags & CODEC_FLAG_GRAY)) {
  1004. leftu = s->dsp.add_hfyu_left_prediction(p->data[1] + p->linesize[2], s->temp[1], width2, leftu);
  1005. leftv = s->dsp.add_hfyu_left_prediction(p->data[2] + p->linesize[1], s->temp[2], width2, leftv);
  1006. }
  1007. y++; cy++;
  1008. }
  1009. /* next 4 pixels are left predicted too */
  1010. decode_422_bitstream(s, 4);
  1011. lefty = s->dsp.add_hfyu_left_prediction(p->data[0] + fake_ystride, s->temp[0], 4, lefty);
  1012. if (!(s->flags&CODEC_FLAG_GRAY)) {
  1013. leftu = s->dsp.add_hfyu_left_prediction(p->data[1] + fake_ustride, s->temp[1], 2, leftu);
  1014. leftv = s->dsp.add_hfyu_left_prediction(p->data[2] + fake_vstride, s->temp[2], 2, leftv);
  1015. }
  1016. /* next line except the first 4 pixels is median predicted */
  1017. lefttopy = p->data[0][3];
  1018. decode_422_bitstream(s, width - 4);
  1019. s->dsp.add_hfyu_median_prediction(p->data[0] + fake_ystride+4, p->data[0]+4, s->temp[0], width-4, &lefty, &lefttopy);
  1020. if (!(s->flags&CODEC_FLAG_GRAY)) {
  1021. lefttopu = p->data[1][1];
  1022. lefttopv = p->data[2][1];
  1023. s->dsp.add_hfyu_median_prediction(p->data[1] + fake_ustride+2, p->data[1] + 2, s->temp[1], width2 - 2, &leftu, &lefttopu);
  1024. s->dsp.add_hfyu_median_prediction(p->data[2] + fake_vstride+2, p->data[2] + 2, s->temp[2], width2 - 2, &leftv, &lefttopv);
  1025. }
  1026. y++; cy++;
  1027. for (; y<height; y++, cy++) {
  1028. uint8_t *ydst, *udst, *vdst;
  1029. if (s->bitstream_bpp == 12) {
  1030. while (2 * cy > y) {
  1031. decode_gray_bitstream(s, width);
  1032. ydst = p->data[0] + p->linesize[0] * y;
  1033. s->dsp.add_hfyu_median_prediction(ydst, ydst - fake_ystride, s->temp[0], width, &lefty, &lefttopy);
  1034. y++;
  1035. }
  1036. if (y >= height) break;
  1037. }
  1038. draw_slice(s, y);
  1039. decode_422_bitstream(s, width);
  1040. ydst = p->data[0] + p->linesize[0] * y;
  1041. udst = p->data[1] + p->linesize[1] * cy;
  1042. vdst = p->data[2] + p->linesize[2] * cy;
  1043. s->dsp.add_hfyu_median_prediction(ydst, ydst - fake_ystride, s->temp[0], width, &lefty, &lefttopy);
  1044. if (!(s->flags & CODEC_FLAG_GRAY)) {
  1045. s->dsp.add_hfyu_median_prediction(udst, udst - fake_ustride, s->temp[1], width2, &leftu, &lefttopu);
  1046. s->dsp.add_hfyu_median_prediction(vdst, vdst - fake_vstride, s->temp[2], width2, &leftv, &lefttopv);
  1047. }
  1048. }
  1049. draw_slice(s, height);
  1050. break;
  1051. }
  1052. }
  1053. } else {
  1054. int y;
  1055. int leftr, leftg, leftb, lefta;
  1056. const int last_line = (height - 1) * p->linesize[0];
  1057. if (s->bitstream_bpp == 32) {
  1058. lefta = p->data[0][last_line+A] = get_bits(&s->gb, 8);
  1059. leftr = p->data[0][last_line+R] = get_bits(&s->gb, 8);
  1060. leftg = p->data[0][last_line+G] = get_bits(&s->gb, 8);
  1061. leftb = p->data[0][last_line+B] = get_bits(&s->gb, 8);
  1062. } else {
  1063. leftr = p->data[0][last_line+R] = get_bits(&s->gb, 8);
  1064. leftg = p->data[0][last_line+G] = get_bits(&s->gb, 8);
  1065. leftb = p->data[0][last_line+B] = get_bits(&s->gb, 8);
  1066. lefta = p->data[0][last_line+A] = 255;
  1067. skip_bits(&s->gb, 8);
  1068. }
  1069. if (s->bgr32) {
  1070. switch (s->predictor) {
  1071. case LEFT:
  1072. case PLANE:
  1073. decode_bgr_bitstream(s, width - 1);
  1074. s->dsp.add_hfyu_left_prediction_bgr32(p->data[0] + last_line+4, s->temp[0], width - 1, &leftr, &leftg, &leftb, &lefta);
  1075. for (y = s->height - 2; y >= 0; y--) { //Yes it is stored upside down.
  1076. decode_bgr_bitstream(s, width);
  1077. s->dsp.add_hfyu_left_prediction_bgr32(p->data[0] + p->linesize[0]*y, s->temp[0], width, &leftr, &leftg, &leftb, &lefta);
  1078. if (s->predictor == PLANE) {
  1079. if (s->bitstream_bpp != 32) lefta = 0;
  1080. if ((y & s->interlaced) == 0 &&
  1081. y < s->height - 1 - s->interlaced) {
  1082. s->dsp.add_bytes(p->data[0] + p->linesize[0] * y,
  1083. p->data[0] + p->linesize[0] * y +
  1084. fake_ystride, fake_ystride);
  1085. }
  1086. }
  1087. }
  1088. // just 1 large slice as this is not possible in reverse order
  1089. draw_slice(s, height);
  1090. break;
  1091. default:
  1092. av_log(avctx, AV_LOG_ERROR,
  1093. "prediction type not supported!\n");
  1094. }
  1095. }else{
  1096. av_log(avctx, AV_LOG_ERROR,
  1097. "BGR24 output is not implemented yet\n");
  1098. return AVERROR_PATCHWELCOME;
  1099. }
  1100. }
  1101. emms_c();
  1102. *picture = *p;
  1103. *got_frame = 1;
  1104. return (get_bits_count(&s->gb) + 31) / 32 * 4 + table_size;
  1105. }
  1106. #endif /* CONFIG_HUFFYUV_DECODER || CONFIG_FFVHUFF_DECODER */
  1107. #if CONFIG_HUFFYUV_DECODER || CONFIG_FFVHUFF_DECODER
  1108. static av_cold int decode_end(AVCodecContext *avctx)
  1109. {
  1110. HYuvContext *s = avctx->priv_data;
  1111. int i;
  1112. if (s->picture.data[0])
  1113. avctx->release_buffer(avctx, &s->picture);
  1114. common_end(s);
  1115. av_freep(&s->bitstream_buffer);
  1116. for (i = 0; i < 6; i++) {
  1117. ff_free_vlc(&s->vlc[i]);
  1118. }
  1119. return 0;
  1120. }
  1121. #endif /* CONFIG_HUFFYUV_DECODER || CONFIG_FFVHUFF_DECODER */
  1122. #if CONFIG_HUFFYUV_ENCODER || CONFIG_FFVHUFF_ENCODER
  1123. static int encode_frame(AVCodecContext *avctx, AVPacket *pkt,
  1124. const AVFrame *pict, int *got_packet)
  1125. {
  1126. HYuvContext *s = avctx->priv_data;
  1127. const int width = s->width;
  1128. const int width2 = s->width>>1;
  1129. const int height = s->height;
  1130. const int fake_ystride = s->interlaced ? pict->linesize[0]*2 : pict->linesize[0];
  1131. const int fake_ustride = s->interlaced ? pict->linesize[1]*2 : pict->linesize[1];
  1132. const int fake_vstride = s->interlaced ? pict->linesize[2]*2 : pict->linesize[2];
  1133. AVFrame * const p = &s->picture;
  1134. int i, j, size = 0, ret;
  1135. if ((ret = ff_alloc_packet2(avctx, pkt, width * height * 3 * 4 + FF_MIN_BUFFER_SIZE)) < 0)
  1136. return ret;
  1137. *p = *pict;
  1138. p->pict_type = AV_PICTURE_TYPE_I;
  1139. p->key_frame = 1;
  1140. if (s->context) {
  1141. for (i = 0; i < 3; i++) {
  1142. ff_huff_gen_len_table(s->len[i], s->stats[i]);
  1143. if (generate_bits_table(s->bits[i], s->len[i]) < 0)
  1144. return -1;
  1145. size += store_table(s, s->len[i], &pkt->data[size]);
  1146. }
  1147. for (i = 0; i < 3; i++)
  1148. for (j = 0; j < 256; j++)
  1149. s->stats[i][j] >>= 1;
  1150. }
  1151. init_put_bits(&s->pb, pkt->data + size, pkt->size - size);
  1152. if (avctx->pix_fmt == AV_PIX_FMT_YUV422P ||
  1153. avctx->pix_fmt == AV_PIX_FMT_YUV420P) {
  1154. int lefty, leftu, leftv, y, cy;
  1155. put_bits(&s->pb, 8, leftv = p->data[2][0]);
  1156. put_bits(&s->pb, 8, lefty = p->data[0][1]);
  1157. put_bits(&s->pb, 8, leftu = p->data[1][0]);
  1158. put_bits(&s->pb, 8, p->data[0][0]);
  1159. lefty = sub_left_prediction(s, s->temp[0], p->data[0], width , 0);
  1160. leftu = sub_left_prediction(s, s->temp[1], p->data[1], width2, 0);
  1161. leftv = sub_left_prediction(s, s->temp[2], p->data[2], width2, 0);
  1162. encode_422_bitstream(s, 2, width-2);
  1163. if (s->predictor==MEDIAN) {
  1164. int lefttopy, lefttopu, lefttopv;
  1165. cy = y = 1;
  1166. if (s->interlaced) {
  1167. lefty = sub_left_prediction(s, s->temp[0], p->data[0] + p->linesize[0], width , lefty);
  1168. leftu = sub_left_prediction(s, s->temp[1], p->data[1] + p->linesize[1], width2, leftu);
  1169. leftv = sub_left_prediction(s, s->temp[2], p->data[2] + p->linesize[2], width2, leftv);
  1170. encode_422_bitstream(s, 0, width);
  1171. y++; cy++;
  1172. }
  1173. lefty = sub_left_prediction(s, s->temp[0], p->data[0] + fake_ystride, 4, lefty);
  1174. leftu = sub_left_prediction(s, s->temp[1], p->data[1] + fake_ustride, 2, leftu);
  1175. leftv = sub_left_prediction(s, s->temp[2], p->data[2] + fake_vstride, 2, leftv);
  1176. encode_422_bitstream(s, 0, 4);
  1177. lefttopy = p->data[0][3];
  1178. lefttopu = p->data[1][1];
  1179. lefttopv = p->data[2][1];
  1180. s->dsp.sub_hfyu_median_prediction(s->temp[0], p->data[0]+4, p->data[0] + fake_ystride + 4, width - 4 , &lefty, &lefttopy);
  1181. s->dsp.sub_hfyu_median_prediction(s->temp[1], p->data[1]+2, p->data[1] + fake_ustride + 2, width2 - 2, &leftu, &lefttopu);
  1182. s->dsp.sub_hfyu_median_prediction(s->temp[2], p->data[2]+2, p->data[2] + fake_vstride + 2, width2 - 2, &leftv, &lefttopv);
  1183. encode_422_bitstream(s, 0, width - 4);
  1184. y++; cy++;
  1185. for (; y < height; y++,cy++) {
  1186. uint8_t *ydst, *udst, *vdst;
  1187. if (s->bitstream_bpp == 12) {
  1188. while (2 * cy > y) {
  1189. ydst = p->data[0] + p->linesize[0] * y;
  1190. s->dsp.sub_hfyu_median_prediction(s->temp[0], ydst - fake_ystride, ydst, width , &lefty, &lefttopy);
  1191. encode_gray_bitstream(s, width);
  1192. y++;
  1193. }
  1194. if (y >= height) break;
  1195. }
  1196. ydst = p->data[0] + p->linesize[0] * y;
  1197. udst = p->data[1] + p->linesize[1] * cy;
  1198. vdst = p->data[2] + p->linesize[2] * cy;
  1199. s->dsp.sub_hfyu_median_prediction(s->temp[0], ydst - fake_ystride, ydst, width , &lefty, &lefttopy);
  1200. s->dsp.sub_hfyu_median_prediction(s->temp[1], udst - fake_ustride, udst, width2, &leftu, &lefttopu);
  1201. s->dsp.sub_hfyu_median_prediction(s->temp[2], vdst - fake_vstride, vdst, width2, &leftv, &lefttopv);
  1202. encode_422_bitstream(s, 0, width);
  1203. }
  1204. } else {
  1205. for (cy = y = 1; y < height; y++, cy++) {
  1206. uint8_t *ydst, *udst, *vdst;
  1207. /* encode a luma only line & y++ */
  1208. if (s->bitstream_bpp == 12) {
  1209. ydst = p->data[0] + p->linesize[0] * y;
  1210. if (s->predictor == PLANE && s->interlaced < y) {
  1211. s->dsp.diff_bytes(s->temp[1], ydst, ydst - fake_ystride, width);
  1212. lefty = sub_left_prediction(s, s->temp[0], s->temp[1], width , lefty);
  1213. } else {
  1214. lefty = sub_left_prediction(s, s->temp[0], ydst, width , lefty);
  1215. }
  1216. encode_gray_bitstream(s, width);
  1217. y++;
  1218. if (y >= height) break;
  1219. }
  1220. ydst = p->data[0] + p->linesize[0] * y;
  1221. udst = p->data[1] + p->linesize[1] * cy;
  1222. vdst = p->data[2] + p->linesize[2] * cy;
  1223. if (s->predictor == PLANE && s->interlaced < cy) {
  1224. s->dsp.diff_bytes(s->temp[1], ydst, ydst - fake_ystride, width);
  1225. s->dsp.diff_bytes(s->temp[2], udst, udst - fake_ustride, width2);
  1226. s->dsp.diff_bytes(s->temp[2] + width2, vdst, vdst - fake_vstride, width2);
  1227. lefty = sub_left_prediction(s, s->temp[0], s->temp[1], width , lefty);
  1228. leftu = sub_left_prediction(s, s->temp[1], s->temp[2], width2, leftu);
  1229. leftv = sub_left_prediction(s, s->temp[2], s->temp[2] + width2, width2, leftv);
  1230. } else {
  1231. lefty = sub_left_prediction(s, s->temp[0], ydst, width , lefty);
  1232. leftu = sub_left_prediction(s, s->temp[1], udst, width2, leftu);
  1233. leftv = sub_left_prediction(s, s->temp[2], vdst, width2, leftv);
  1234. }
  1235. encode_422_bitstream(s, 0, width);
  1236. }
  1237. }
  1238. } else if(avctx->pix_fmt == AV_PIX_FMT_RGB32) {
  1239. uint8_t *data = p->data[0] + (height - 1) * p->linesize[0];
  1240. const int stride = -p->linesize[0];
  1241. const int fake_stride = -fake_ystride;
  1242. int y;
  1243. int leftr, leftg, leftb, lefta;
  1244. put_bits(&s->pb, 8, lefta = data[A]);
  1245. put_bits(&s->pb, 8, leftr = data[R]);
  1246. put_bits(&s->pb, 8, leftg = data[G]);
  1247. put_bits(&s->pb, 8, leftb = data[B]);
  1248. sub_left_prediction_bgr32(s, s->temp[0], data + 4, width - 1, &leftr, &leftg, &leftb, &lefta);
  1249. encode_bgra_bitstream(s, width - 1, 4);
  1250. for (y = 1; y < s->height; y++) {
  1251. uint8_t *dst = data + y*stride;
  1252. if (s->predictor == PLANE && s->interlaced < y) {
  1253. s->dsp.diff_bytes(s->temp[1], dst, dst - fake_stride, width * 4);
  1254. sub_left_prediction_bgr32(s, s->temp[0], s->temp[1], width, &leftr, &leftg, &leftb, &lefta);
  1255. } else {
  1256. sub_left_prediction_bgr32(s, s->temp[0], dst, width, &leftr, &leftg, &leftb, &lefta);
  1257. }
  1258. encode_bgra_bitstream(s, width, 4);
  1259. }
  1260. }else if(avctx->pix_fmt == AV_PIX_FMT_RGB24){
  1261. uint8_t *data = p->data[0] + (height-1)*p->linesize[0];
  1262. const int stride = -p->linesize[0];
  1263. const int fake_stride = -fake_ystride;
  1264. int y;
  1265. int leftr, leftg, leftb;
  1266. put_bits(&s->pb, 8, leftr= data[0]);
  1267. put_bits(&s->pb, 8, leftg= data[1]);
  1268. put_bits(&s->pb, 8, leftb= data[2]);
  1269. put_bits(&s->pb, 8, 0);
  1270. sub_left_prediction_rgb24(s, s->temp[0], data+3, width-1, &leftr, &leftg, &leftb);
  1271. encode_bgra_bitstream(s, width-1, 3);
  1272. for(y=1; y<s->height; y++){
  1273. uint8_t *dst = data + y*stride;
  1274. if(s->predictor == PLANE && s->interlaced < y){
  1275. s->dsp.diff_bytes(s->temp[1], dst, dst - fake_stride, width*3);
  1276. sub_left_prediction_rgb24(s, s->temp[0], s->temp[1], width, &leftr, &leftg, &leftb);
  1277. }else{
  1278. sub_left_prediction_rgb24(s, s->temp[0], dst, width, &leftr, &leftg, &leftb);
  1279. }
  1280. encode_bgra_bitstream(s, width, 3);
  1281. }
  1282. } else {
  1283. av_log(avctx, AV_LOG_ERROR, "Format not supported!\n");
  1284. }
  1285. emms_c();
  1286. size += (put_bits_count(&s->pb) + 31) / 8;
  1287. put_bits(&s->pb, 16, 0);
  1288. put_bits(&s->pb, 15, 0);
  1289. size /= 4;
  1290. if ((s->flags&CODEC_FLAG_PASS1) && (s->picture_number & 31) == 0) {
  1291. int j;
  1292. char *p = avctx->stats_out;
  1293. char *end = p + 1024*30;
  1294. for (i = 0; i < 3; i++) {
  1295. for (j = 0; j < 256; j++) {
  1296. snprintf(p, end-p, "%"PRIu64" ", s->stats[i][j]);
  1297. p += strlen(p);
  1298. s->stats[i][j]= 0;
  1299. }
  1300. snprintf(p, end-p, "\n");
  1301. p++;
  1302. }
  1303. } else
  1304. avctx->stats_out[0] = '\0';
  1305. if (!(s->avctx->flags2 & CODEC_FLAG2_NO_OUTPUT)) {
  1306. flush_put_bits(&s->pb);
  1307. s->dsp.bswap_buf((uint32_t*)pkt->data, (uint32_t*)pkt->data, size);
  1308. }
  1309. s->picture_number++;
  1310. pkt->size = size * 4;
  1311. pkt->flags |= AV_PKT_FLAG_KEY;
  1312. *got_packet = 1;
  1313. return 0;
  1314. }
  1315. static av_cold int encode_end(AVCodecContext *avctx)
  1316. {
  1317. HYuvContext *s = avctx->priv_data;
  1318. common_end(s);
  1319. av_freep(&avctx->extradata);
  1320. av_freep(&avctx->stats_out);
  1321. return 0;
  1322. }
  1323. #endif /* CONFIG_HUFFYUV_ENCODER || CONFIG_FFVHUFF_ENCODER */
  1324. #if CONFIG_HUFFYUV_DECODER
  1325. AVCodec ff_huffyuv_decoder = {
  1326. .name = "huffyuv",
  1327. .type = AVMEDIA_TYPE_VIDEO,
  1328. .id = AV_CODEC_ID_HUFFYUV,
  1329. .priv_data_size = sizeof(HYuvContext),
  1330. .init = decode_init,
  1331. .close = decode_end,
  1332. .decode = decode_frame,
  1333. .capabilities = CODEC_CAP_DR1 | CODEC_CAP_DRAW_HORIZ_BAND |
  1334. CODEC_CAP_FRAME_THREADS,
  1335. .init_thread_copy = ONLY_IF_THREADS_ENABLED(decode_init_thread_copy),
  1336. .long_name = NULL_IF_CONFIG_SMALL("Huffyuv / HuffYUV"),
  1337. };
  1338. #endif
  1339. #if CONFIG_FFVHUFF_DECODER
  1340. AVCodec ff_ffvhuff_decoder = {
  1341. .name = "ffvhuff",
  1342. .type = AVMEDIA_TYPE_VIDEO,
  1343. .id = AV_CODEC_ID_FFVHUFF,
  1344. .priv_data_size = sizeof(HYuvContext),
  1345. .init = decode_init,
  1346. .close = decode_end,
  1347. .decode = decode_frame,
  1348. .capabilities = CODEC_CAP_DR1 | CODEC_CAP_DRAW_HORIZ_BAND |
  1349. CODEC_CAP_FRAME_THREADS,
  1350. .init_thread_copy = ONLY_IF_THREADS_ENABLED(decode_init_thread_copy),
  1351. .long_name = NULL_IF_CONFIG_SMALL("Huffyuv FFmpeg variant"),
  1352. };
  1353. #endif
  1354. #if CONFIG_HUFFYUV_ENCODER
  1355. AVCodec ff_huffyuv_encoder = {
  1356. .name = "huffyuv",
  1357. .type = AVMEDIA_TYPE_VIDEO,
  1358. .id = AV_CODEC_ID_HUFFYUV,
  1359. .priv_data_size = sizeof(HYuvContext),
  1360. .init = encode_init,
  1361. .encode2 = encode_frame,
  1362. .close = encode_end,
  1363. .pix_fmts = (const enum AVPixelFormat[]){
  1364. AV_PIX_FMT_YUV422P, AV_PIX_FMT_RGB24, AV_PIX_FMT_RGB32, AV_PIX_FMT_NONE
  1365. },
  1366. .long_name = NULL_IF_CONFIG_SMALL("Huffyuv / HuffYUV"),
  1367. };
  1368. #endif
  1369. #if CONFIG_FFVHUFF_ENCODER
  1370. AVCodec ff_ffvhuff_encoder = {
  1371. .name = "ffvhuff",
  1372. .type = AVMEDIA_TYPE_VIDEO,
  1373. .id = AV_CODEC_ID_FFVHUFF,
  1374. .priv_data_size = sizeof(HYuvContext),
  1375. .init = encode_init,
  1376. .encode2 = encode_frame,
  1377. .close = encode_end,
  1378. .pix_fmts = (const enum AVPixelFormat[]){
  1379. AV_PIX_FMT_YUV420P, AV_PIX_FMT_YUV422P, AV_PIX_FMT_RGB24, AV_PIX_FMT_RGB32, AV_PIX_FMT_NONE
  1380. },
  1381. .long_name = NULL_IF_CONFIG_SMALL("Huffyuv FFmpeg variant"),
  1382. };
  1383. #endif