You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

1313 lines
50KB

  1. \input texinfo @c -*- texinfo -*-
  2. @settitle ffmpeg Documentation
  3. @titlepage
  4. @center @titlefont{ffmpeg Documentation}
  5. @end titlepage
  6. @top
  7. @contents
  8. @chapter Synopsis
  9. The generic syntax is:
  10. @example
  11. @c man begin SYNOPSIS
  12. ffmpeg [global options] [[infile options][@option{-i} @var{infile}]]... @{[outfile options] @var{outfile}@}...
  13. @c man end
  14. @end example
  15. @chapter Description
  16. @c man begin DESCRIPTION
  17. ffmpeg is a very fast video and audio converter that can also grab from
  18. a live audio/video source. It can also convert between arbitrary sample
  19. rates and resize video on the fly with a high quality polyphase filter.
  20. ffmpeg reads from an arbitrary number of input "files" (which can be regular
  21. files, pipes, network streams, grabbing devices, etc.), specified by the
  22. @code{-i} option, and writes to an arbitrary number of output "files", which are
  23. specified by a plain output filename. Anything found on the command line which
  24. cannot be interpreted as an option is considered to be an output filename.
  25. Each input or output file can in principle contain any number of streams of
  26. different types (video/audio/subtitle/attachment/data). Allowed number and/or
  27. types of streams can be limited by the container format. Selecting, which
  28. streams from which inputs go into output, is done either automatically or with
  29. the @code{-map} option (see the Stream selection chapter).
  30. To refer to input files in options, you must use their indices (0-based). E.g.
  31. the first input file is @code{0}, the second is @code{1} etc. Similarly, streams
  32. within a file are referred to by their indices. E.g. @code{2:3} refers to the
  33. fourth stream in the third input file. See also the Stream specifiers chapter.
  34. As a general rule, options are applied to the next specified
  35. file. Therefore, order is important, and you can have the same
  36. option on the command line multiple times. Each occurrence is
  37. then applied to the next input or output file.
  38. Exceptions from this rule are the global options (e.g. verbosity level),
  39. which should be specified first.
  40. Do not mix input and output files -- first specify all input files, then all
  41. output files. Also do not mix options which belong to different files. All
  42. options apply ONLY to the next input or output file and are reset between files.
  43. @itemize
  44. @item
  45. To set the video bitrate of the output file to 64kbit/s:
  46. @example
  47. ffmpeg -i input.avi -b:v 64k -bufsize 64k output.avi
  48. @end example
  49. @item
  50. To force the frame rate of the output file to 24 fps:
  51. @example
  52. ffmpeg -i input.avi -r 24 output.avi
  53. @end example
  54. @item
  55. To force the frame rate of the input file (valid for raw formats only)
  56. to 1 fps and the frame rate of the output file to 24 fps:
  57. @example
  58. ffmpeg -r 1 -i input.m2v -r 24 output.avi
  59. @end example
  60. @end itemize
  61. The format option may be needed for raw input files.
  62. @c man end DESCRIPTION
  63. @chapter Detailed description
  64. @c man begin DETAILED DESCRIPTION
  65. The transcoding process in @command{ffmpeg} for each output can be described by
  66. the following diagram:
  67. @example
  68. _______ ______________ _________ ______________ ________
  69. | | | | | | | | | |
  70. | input | demuxer | encoded data | decoder | decoded | encoder | encoded data | muxer | output |
  71. | file | ---------> | packets | ---------> | frames | ---------> | packets | -------> | file |
  72. |_______| |______________| |_________| |______________| |________|
  73. @end example
  74. @command{ffmpeg} calls the libavformat library (containing demuxers) to read
  75. input files and get packets containing encoded data from them. When there are
  76. multiple input files, @command{ffmpeg} tries to keep them synchronized by
  77. tracking lowest timestamp on any active input stream.
  78. Encoded packets are then passed to the decoder (unless streamcopy is selected
  79. for the stream, see further for a description). The decoder produces
  80. uncompressed frames (raw video/PCM audio/...) which can be processed further by
  81. filtering (see next section). After filtering the frames are passed to the
  82. encoder, which encodes them and outputs encoded packets again. Finally those are
  83. passed to the muxer, which writes the encoded packets to the output file.
  84. @section Filtering
  85. Before encoding, @command{ffmpeg} can process raw audio and video frames using
  86. filters from the libavfilter library. Several chained filters form a filter
  87. graph. @command{ffmpeg} distinguishes between two types of filtergraphs -
  88. simple and complex.
  89. @subsection Simple filtergraphs
  90. Simple filtergraphs are those that have exactly one input and output, both of
  91. the same type. In the above diagram they can be represented by simply inserting
  92. an additional step between decoding and encoding:
  93. @example
  94. _________ __________ ______________
  95. | | | | | |
  96. | decoded | simple filtergraph | filtered | encoder | encoded data |
  97. | frames | -------------------> | frames | ---------> | packets |
  98. |_________| |__________| |______________|
  99. @end example
  100. Simple filtergraphs are configured with the per-stream @option{-filter} option
  101. (with @option{-vf} and @option{-af} aliases for video and audio respectively).
  102. A simple filtergraph for video can look for example like this:
  103. @example
  104. _______ _____________ _______ _____ ________
  105. | | | | | | | | | |
  106. | input | ---> | deinterlace | ---> | scale | ---> | fps | ---> | output |
  107. |_______| |_____________| |_______| |_____| |________|
  108. @end example
  109. Note that some filters change frame properties but not frame contents. E.g. the
  110. @code{fps} filter in the example above changes number of frames, but does not
  111. touch the frame contents. Another example is the @code{setpts} filter, which
  112. only sets timestamps and otherwise passes the frames unchanged.
  113. @subsection Complex filtergraphs
  114. Complex filtergraphs are those which cannot be described as simply a linear
  115. processing chain applied to one stream. This is the case e.g. when the graph has
  116. more than one input and/or output, or when output stream type is different from
  117. input. They can be represented with the following diagram:
  118. @example
  119. _________
  120. | |
  121. | input 0 |\ __________
  122. |_________| \ | |
  123. \ _________ /| output 0 |
  124. \ | | / |__________|
  125. _________ \| complex | /
  126. | | | |/
  127. | input 1 |---->| filter |\
  128. |_________| | | \ __________
  129. /| graph | \ | |
  130. / | | \| output 1 |
  131. _________ / |_________| |__________|
  132. | | /
  133. | input 2 |/
  134. |_________|
  135. @end example
  136. Complex filtergraphs are configured with the @option{-filter_complex} option.
  137. Note that this option is global, since a complex filtergraph by its nature
  138. cannot be unambiguously associated with a single stream or file.
  139. A trivial example of a complex filtergraph is the @code{overlay} filter, which
  140. has two video inputs and one video output, containing one video overlaid on top
  141. of the other. Its audio counterpart is the @code{amix} filter.
  142. @section Stream copy
  143. Stream copy is a mode selected by supplying the @code{copy} parameter to the
  144. @option{-codec} option. It makes @command{ffmpeg} omit the decoding and encoding
  145. step for the specified stream, so it does only demuxing and muxing. It is useful
  146. for changing the container format or modifying container-level metadata. The
  147. diagram above will in this case simplify to this:
  148. @example
  149. _______ ______________ ________
  150. | | | | | |
  151. | input | demuxer | encoded data | muxer | output |
  152. | file | ---------> | packets | -------> | file |
  153. |_______| |______________| |________|
  154. @end example
  155. Since there is no decoding or encoding, it is very fast and there is no quality
  156. loss. However it might not work in some cases because of many factors. Applying
  157. filters is obviously also impossible, since filters work on uncompressed data.
  158. @c man end DETAILED DESCRIPTION
  159. @chapter Stream selection
  160. @c man begin STREAM SELECTION
  161. By default ffmpeg includes only one stream of each type (video, audio, subtitle)
  162. present in the input files and adds them to each output file. It picks the
  163. "best" of each based upon the following criteria; for video it is the stream
  164. with the highest resolution, for audio the stream with the most channels, for
  165. subtitle it's the first subtitle stream. In the case where several streams of
  166. the same type rate equally, the lowest numbered stream is chosen.
  167. You can disable some of those defaults by using @code{-vn/-an/-sn} options. For
  168. full manual control, use the @code{-map} option, which disables the defaults just
  169. described.
  170. @c man end STREAM SELECTION
  171. @chapter Options
  172. @c man begin OPTIONS
  173. @include avtools-common-opts.texi
  174. @section Main options
  175. @table @option
  176. @item -f @var{fmt} (@emph{input/output})
  177. Force input or output file format. The format is normally auto detected for input
  178. files and guessed from file extension for output files, so this option is not
  179. needed in most cases.
  180. @item -i @var{filename} (@emph{input})
  181. input file name
  182. @item -y (@emph{global})
  183. Overwrite output files without asking.
  184. @item -n (@emph{global})
  185. Do not overwrite output files but exit if file exists.
  186. @item -c[:@var{stream_specifier}] @var{codec} (@emph{input/output,per-stream})
  187. @itemx -codec[:@var{stream_specifier}] @var{codec} (@emph{input/output,per-stream})
  188. Select an encoder (when used before an output file) or a decoder (when used
  189. before an input file) for one or more streams. @var{codec} is the name of a
  190. decoder/encoder or a special value @code{copy} (output only) to indicate that
  191. the stream is not to be re-encoded.
  192. For example
  193. @example
  194. ffmpeg -i INPUT -map 0 -c:v libx264 -c:a copy OUTPUT
  195. @end example
  196. encodes all video streams with libx264 and copies all audio streams.
  197. For each stream, the last matching @code{c} option is applied, so
  198. @example
  199. ffmpeg -i INPUT -map 0 -c copy -c:v:1 libx264 -c:a:137 libvorbis OUTPUT
  200. @end example
  201. will copy all the streams except the second video, which will be encoded with
  202. libx264, and the 138th audio, which will be encoded with libvorbis.
  203. @item -t @var{duration} (@emph{output})
  204. Stop writing the output after its duration reaches @var{duration}.
  205. @var{duration} may be a number in seconds, or in @code{hh:mm:ss[.xxx]} form.
  206. @item -fs @var{limit_size} (@emph{output})
  207. Set the file size limit, expressed in bytes.
  208. @item -ss @var{position} (@emph{input/output})
  209. When used as an input option (before @code{-i}), seeks in this input file to
  210. @var{position}. When used as an output option (before an output filename),
  211. decodes but discards input until the timestamps reach @var{position}. This is
  212. slower, but more accurate.
  213. @var{position} may be either in seconds or in @code{hh:mm:ss[.xxx]} form.
  214. @item -itsoffset @var{offset} (@emph{input})
  215. Set the input time offset in seconds.
  216. @code{[-]hh:mm:ss[.xxx]} syntax is also supported.
  217. The offset is added to the timestamps of the input files.
  218. Specifying a positive offset means that the corresponding
  219. streams are delayed by @var{offset} seconds.
  220. @item -timestamp @var{time} (@emph{output})
  221. Set the recording timestamp in the container.
  222. The syntax for @var{time} is:
  223. @example
  224. now|([(YYYY-MM-DD|YYYYMMDD)[T|t| ]]((HH:MM:SS[.m...])|(HHMMSS[.m...]))[Z|z])
  225. @end example
  226. If the value is "now" it takes the current time.
  227. Time is local time unless 'Z' or 'z' is appended, in which case it is
  228. interpreted as UTC.
  229. If the year-month-day part is not specified it takes the current
  230. year-month-day.
  231. @item -metadata[:metadata_specifier] @var{key}=@var{value} (@emph{output,per-metadata})
  232. Set a metadata key/value pair.
  233. An optional @var{metadata_specifier} may be given to set metadata
  234. on streams or chapters. See @code{-map_metadata} documentation for
  235. details.
  236. This option overrides metadata set with @code{-map_metadata}. It is
  237. also possible to delete metadata by using an empty value.
  238. For example, for setting the title in the output file:
  239. @example
  240. ffmpeg -i in.avi -metadata title="my title" out.flv
  241. @end example
  242. To set the language of the first audio stream:
  243. @example
  244. ffmpeg -i INPUT -metadata:s:a:1 language=eng OUTPUT
  245. @end example
  246. @item -target @var{type} (@emph{output})
  247. Specify target file type (@code{vcd}, @code{svcd}, @code{dvd}, @code{dv},
  248. @code{dv50}). @var{type} may be prefixed with @code{pal-}, @code{ntsc-} or
  249. @code{film-} to use the corresponding standard. All the format options
  250. (bitrate, codecs, buffer sizes) are then set automatically. You can just type:
  251. @example
  252. ffmpeg -i myfile.avi -target vcd /tmp/vcd.mpg
  253. @end example
  254. Nevertheless you can specify additional options as long as you know
  255. they do not conflict with the standard, as in:
  256. @example
  257. ffmpeg -i myfile.avi -target vcd -bf 2 /tmp/vcd.mpg
  258. @end example
  259. @item -dframes @var{number} (@emph{output})
  260. Set the number of data frames to record. This is an alias for @code{-frames:d}.
  261. @item -frames[:@var{stream_specifier}] @var{framecount} (@emph{output,per-stream})
  262. Stop writing to the stream after @var{framecount} frames.
  263. @item -q[:@var{stream_specifier}] @var{q} (@emph{output,per-stream})
  264. @itemx -qscale[:@var{stream_specifier}] @var{q} (@emph{output,per-stream})
  265. Use fixed quality scale (VBR). The meaning of @var{q} is
  266. codec-dependent.
  267. @item -filter[:@var{stream_specifier}] @var{filter_graph} (@emph{output,per-stream})
  268. @var{filter_graph} is a description of the filter graph to apply to
  269. the stream. Use @code{-filters} to show all the available filters
  270. (including also sources and sinks).
  271. See also the @option{-filter_complex} option if you want to create filter graphs
  272. with multiple inputs and/or outputs.
  273. @item -pre[:@var{stream_specifier}] @var{preset_name} (@emph{output,per-stream})
  274. Specify the preset for matching stream(s).
  275. @item -stats (@emph{global})
  276. Print encoding progress/statistics. On by default.
  277. @item -progress @var{url} (@emph{global})
  278. Send program-friendly progress information to @var{url}.
  279. Progress information is written approximately every second and at the end of
  280. the encoding process. It is made of "@var{key}=@var{value}" lines. @var{key}
  281. consists of only alphanumeric characters. The last key of a sequence of
  282. progress information is always "progress".
  283. @item -stdin
  284. Enable interaction on standard input. On by default unless standard input is
  285. used as an input. To explicitly disable interaction you need to specify
  286. @code{-nostdin}.
  287. Disabling interaction on standard input is useful, for example, if
  288. ffmpeg is in the background process group. Roughly the same result can
  289. be achieved with @code{ffmpeg ... < /dev/null} but it requires a
  290. shell.
  291. @item -debug_ts (@emph{global})
  292. Print timestamp information. It is off by default. This option is
  293. mostly useful for testing and debugging purposes, and the output
  294. format may change from one version to another, so it should not be
  295. employed by portable scripts.
  296. See also the option @code{-fdebug ts}.
  297. @item -attach @var{filename} (@emph{output})
  298. Add an attachment to the output file. This is supported by a few formats
  299. like Matroska for e.g. fonts used in rendering subtitles. Attachments
  300. are implemented as a specific type of stream, so this option will add
  301. a new stream to the file. It is then possible to use per-stream options
  302. on this stream in the usual way. Attachment streams created with this
  303. option will be created after all the other streams (i.e. those created
  304. with @code{-map} or automatic mappings).
  305. Note that for Matroska you also have to set the mimetype metadata tag:
  306. @example
  307. ffmpeg -i INPUT -attach DejaVuSans.ttf -metadata:s:2 mimetype=application/x-truetype-font out.mkv
  308. @end example
  309. (assuming that the attachment stream will be third in the output file).
  310. @item -dump_attachment[:@var{stream_specifier}] @var{filename} (@emph{input,per-stream})
  311. Extract the matching attachment stream into a file named @var{filename}. If
  312. @var{filename} is empty, then the value of the @code{filename} metadata tag
  313. will be used.
  314. E.g. to extract the first attachment to a file named 'out.ttf':
  315. @example
  316. ffmpeg -dump_attachment:t:0 out.ttf INPUT
  317. @end example
  318. To extract all attachments to files determined by the @code{filename} tag:
  319. @example
  320. ffmpeg -dump_attachment:t "" INPUT
  321. @end example
  322. Technical note -- attachments are implemented as codec extradata, so this
  323. option can actually be used to extract extradata from any stream, not just
  324. attachments.
  325. @end table
  326. @section Video Options
  327. @table @option
  328. @item -vframes @var{number} (@emph{output})
  329. Set the number of video frames to record. This is an alias for @code{-frames:v}.
  330. @item -r[:@var{stream_specifier}] @var{fps} (@emph{input/output,per-stream})
  331. Set frame rate (Hz value, fraction or abbreviation).
  332. As an input option, ignore any timestamps stored in the file and instead
  333. generate timestamps assuming constant frame rate @var{fps}.
  334. As an output option, duplicate or drop input frames to achieve constant output
  335. frame rate @var{fps}.
  336. @item -s[:@var{stream_specifier}] @var{size} (@emph{input/output,per-stream})
  337. Set frame size.
  338. As an input option, this is a shortcut for the @option{video_size} private
  339. option, recognized by some demuxers for which the frame size is either not
  340. stored in the file or is configurable -- e.g. raw video or video grabbers.
  341. As an output option, this inserts the @code{scale} video filter to the
  342. @emph{end} of the corresponding filtergraph. Please use the @code{scale} filter
  343. directly to insert it at the beginning or some other place.
  344. The format is @samp{wxh} (default - same as source).
  345. @item -aspect[:@var{stream_specifier}] @var{aspect} (@emph{output,per-stream})
  346. Set the video display aspect ratio specified by @var{aspect}.
  347. @var{aspect} can be a floating point number string, or a string of the
  348. form @var{num}:@var{den}, where @var{num} and @var{den} are the
  349. numerator and denominator of the aspect ratio. For example "4:3",
  350. "16:9", "1.3333", and "1.7777" are valid argument values.
  351. @item -croptop @var{size}
  352. @item -cropbottom @var{size}
  353. @item -cropleft @var{size}
  354. @item -cropright @var{size}
  355. All the crop options have been removed. Use -vf
  356. crop=width:height:x:y instead.
  357. @item -padtop @var{size}
  358. @item -padbottom @var{size}
  359. @item -padleft @var{size}
  360. @item -padright @var{size}
  361. @item -padcolor @var{hex_color}
  362. All the pad options have been removed. Use -vf
  363. pad=width:height:x:y:color instead.
  364. @item -vn (@emph{output})
  365. Disable video recording.
  366. @item -vcodec @var{codec} (@emph{output})
  367. Set the video codec. This is an alias for @code{-codec:v}.
  368. @item -pass[:@var{stream_specifier}] @var{n} (@emph{output,per-stream})
  369. Select the pass number (1 or 2). It is used to do two-pass
  370. video encoding. The statistics of the video are recorded in the first
  371. pass into a log file (see also the option -passlogfile),
  372. and in the second pass that log file is used to generate the video
  373. at the exact requested bitrate.
  374. On pass 1, you may just deactivate audio and set output to null,
  375. examples for Windows and Unix:
  376. @example
  377. ffmpeg -i foo.mov -c:v libxvid -pass 1 -an -f rawvideo -y NUL
  378. ffmpeg -i foo.mov -c:v libxvid -pass 1 -an -f rawvideo -y /dev/null
  379. @end example
  380. @item -passlogfile[:@var{stream_specifier}] @var{prefix} (@emph{output,per-stream})
  381. Set two-pass log file name prefix to @var{prefix}, the default file name
  382. prefix is ``ffmpeg2pass''. The complete file name will be
  383. @file{PREFIX-N.log}, where N is a number specific to the output
  384. stream
  385. @item -vlang @var{code}
  386. Set the ISO 639 language code (3 letters) of the current video stream.
  387. @item -vf @var{filter_graph} (@emph{output})
  388. @var{filter_graph} is a description of the filter graph to apply to
  389. the input video.
  390. Use the option "-filters" to show all the available filters (including
  391. also sources and sinks). This is an alias for @code{-filter:v}.
  392. @end table
  393. @section Advanced Video Options
  394. @table @option
  395. @item -pix_fmt[:@var{stream_specifier}] @var{format} (@emph{input/output,per-stream})
  396. Set pixel format. Use @code{-pix_fmts} to show all the supported
  397. pixel formats.
  398. If the selected pixel format can not be selected, ffmpeg will print a
  399. warning and select the best pixel format supported by the encoder.
  400. If @var{pix_fmt} is prefixed by a @code{+}, ffmpeg will exit with an error
  401. if the requested pixel format can not be selected, and automatic conversions
  402. inside filter graphs are disabled.
  403. If @var{pix_fmt} is a single @code{+}, ffmpeg selects the same pixel format
  404. as the input (or graph output) and automatic conversions are disabled.
  405. @item -sws_flags @var{flags} (@emph{input/output})
  406. Set SwScaler flags.
  407. @item -vdt @var{n}
  408. Discard threshold.
  409. @item -rc_override[:@var{stream_specifier}] @var{override} (@emph{output,per-stream})
  410. Rate control override for specific intervals, formatted as "int,int,int"
  411. list separated with slashes. Two first values are the beginning and
  412. end frame numbers, last one is quantizer to use if positive, or quality
  413. factor if negative.
  414. @item -deinterlace
  415. Deinterlace pictures.
  416. This option is deprecated since the deinterlacing is very low quality.
  417. Use the yadif filter with @code{-filter:v yadif}.
  418. @item -ilme
  419. Force interlacing support in encoder (MPEG-2 and MPEG-4 only).
  420. Use this option if your input file is interlaced and you want
  421. to keep the interlaced format for minimum losses.
  422. The alternative is to deinterlace the input stream with
  423. @option{-deinterlace}, but deinterlacing introduces losses.
  424. @item -psnr
  425. Calculate PSNR of compressed frames.
  426. @item -vstats
  427. Dump video coding statistics to @file{vstats_HHMMSS.log}.
  428. @item -vstats_file @var{file}
  429. Dump video coding statistics to @var{file}.
  430. @item -top[:@var{stream_specifier}] @var{n} (@emph{output,per-stream})
  431. top=1/bottom=0/auto=-1 field first
  432. @item -dc @var{precision}
  433. Intra_dc_precision.
  434. @item -vtag @var{fourcc/tag} (@emph{output})
  435. Force video tag/fourcc. This is an alias for @code{-tag:v}.
  436. @item -qphist (@emph{global})
  437. Show QP histogram
  438. @item -vbsf @var{bitstream_filter}
  439. Deprecated see -bsf
  440. @item -force_key_frames[:@var{stream_specifier}] @var{time}[,@var{time}...] (@emph{output,per-stream})
  441. Force key frames at the specified timestamps, more precisely at the first
  442. frames after each specified time.
  443. This option can be useful to ensure that a seek point is present at a
  444. chapter mark or any other designated place in the output file.
  445. The timestamps must be specified in ascending order.
  446. @item -copyinkf[:@var{stream_specifier}] (@emph{output,per-stream})
  447. When doing stream copy, copy also non-key frames found at the
  448. beginning.
  449. @end table
  450. @section Audio Options
  451. @table @option
  452. @item -aframes @var{number} (@emph{output})
  453. Set the number of audio frames to record. This is an alias for @code{-frames:a}.
  454. @item -ar[:@var{stream_specifier}] @var{freq} (@emph{input/output,per-stream})
  455. Set the audio sampling frequency. For output streams it is set by
  456. default to the frequency of the corresponding input stream. For input
  457. streams this option only makes sense for audio grabbing devices and raw
  458. demuxers and is mapped to the corresponding demuxer options.
  459. @item -aq @var{q} (@emph{output})
  460. Set the audio quality (codec-specific, VBR). This is an alias for -q:a.
  461. @item -ac[:@var{stream_specifier}] @var{channels} (@emph{input/output,per-stream})
  462. Set the number of audio channels. For output streams it is set by
  463. default to the number of input audio channels. For input streams
  464. this option only makes sense for audio grabbing devices and raw demuxers
  465. and is mapped to the corresponding demuxer options.
  466. @item -an (@emph{output})
  467. Disable audio recording.
  468. @item -acodec @var{codec} (@emph{input/output})
  469. Set the audio codec. This is an alias for @code{-codec:a}.
  470. @item -sample_fmt[:@var{stream_specifier}] @var{sample_fmt} (@emph{output,per-stream})
  471. Set the audio sample format. Use @code{-sample_fmts} to get a list
  472. of supported sample formats.
  473. @item -af @var{filter_graph} (@emph{output})
  474. @var{filter_graph} is a description of the filter graph to apply to
  475. the input audio.
  476. Use the option "-filters" to show all the available filters (including
  477. also sources and sinks). This is an alias for @code{-filter:a}.
  478. @end table
  479. @section Advanced Audio options:
  480. @table @option
  481. @item -atag @var{fourcc/tag} (@emph{output})
  482. Force audio tag/fourcc. This is an alias for @code{-tag:a}.
  483. @item -absf @var{bitstream_filter}
  484. Deprecated, see -bsf
  485. @end table
  486. @section Subtitle options:
  487. @table @option
  488. @item -slang @var{code}
  489. Set the ISO 639 language code (3 letters) of the current subtitle stream.
  490. @item -scodec @var{codec} (@emph{input/output})
  491. Set the subtitle codec. This is an alias for @code{-codec:s}.
  492. @item -sn (@emph{output})
  493. Disable subtitle recording.
  494. @item -sbsf @var{bitstream_filter}
  495. Deprecated, see -bsf
  496. @end table
  497. @section Advanced Subtitle options:
  498. @table @option
  499. @item -fix_sub_duration
  500. Fix subtitles durations. For each subtitle, wait for the next packet in the
  501. same stream and adjust the duration of the first to avoid overlap. This is
  502. necessary with some subtitles codecs, especially DVB subtitles, because the
  503. duration in the original packet is only a rough estimate and the end is
  504. actually marked by an empty subtitle frame. Failing to use this option when
  505. necessary can result in exaggerated durations or muxing failures due to
  506. non-monotonic timestamps.
  507. Note that this option will delay the output of all data until the next
  508. subtitle packet is decoded: it may increase memory consumption and latency a
  509. lot.
  510. @end table
  511. @section Advanced options
  512. @table @option
  513. @item -map [-]@var{input_file_id}[:@var{stream_specifier}][,@var{sync_file_id}[:@var{stream_specifier}]] | @var{[linklabel]} (@emph{output})
  514. Designate one or more input streams as a source for the output file. Each input
  515. stream is identified by the input file index @var{input_file_id} and
  516. the input stream index @var{input_stream_id} within the input
  517. file. Both indices start at 0. If specified,
  518. @var{sync_file_id}:@var{stream_specifier} sets which input stream
  519. is used as a presentation sync reference.
  520. The first @code{-map} option on the command line specifies the
  521. source for output stream 0, the second @code{-map} option specifies
  522. the source for output stream 1, etc.
  523. A @code{-} character before the stream identifier creates a "negative" mapping.
  524. It disables matching streams from already created mappings.
  525. An alternative @var{[linklabel]} form will map outputs from complex filter
  526. graphs (see the @option{-filter_complex} option) to the output file.
  527. @var{linklabel} must correspond to a defined output link label in the graph.
  528. For example, to map ALL streams from the first input file to output
  529. @example
  530. ffmpeg -i INPUT -map 0 output
  531. @end example
  532. For example, if you have two audio streams in the first input file,
  533. these streams are identified by "0:0" and "0:1". You can use
  534. @code{-map} to select which streams to place in an output file. For
  535. example:
  536. @example
  537. ffmpeg -i INPUT -map 0:1 out.wav
  538. @end example
  539. will map the input stream in @file{INPUT} identified by "0:1" to
  540. the (single) output stream in @file{out.wav}.
  541. For example, to select the stream with index 2 from input file
  542. @file{a.mov} (specified by the identifier "0:2"), and stream with
  543. index 6 from input @file{b.mov} (specified by the identifier "1:6"),
  544. and copy them to the output file @file{out.mov}:
  545. @example
  546. ffmpeg -i a.mov -i b.mov -c copy -map 0:2 -map 1:6 out.mov
  547. @end example
  548. To select all video and the third audio stream from an input file:
  549. @example
  550. ffmpeg -i INPUT -map 0:v -map 0:a:2 OUTPUT
  551. @end example
  552. To map all the streams except the second audio, use negative mappings
  553. @example
  554. ffmpeg -i INPUT -map 0 -map -0:a:1 OUTPUT
  555. @end example
  556. Note that using this option disables the default mappings for this output file.
  557. @item -map_channel [@var{input_file_id}.@var{stream_specifier}.@var{channel_id}|-1][:@var{output_file_id}.@var{stream_specifier}]
  558. Map an audio channel from a given input to an output. If
  559. @var{output_file_id}.@var{stream_specifier} is not set, the audio channel will
  560. be mapped on all the audio streams.
  561. Using "-1" instead of
  562. @var{input_file_id}.@var{stream_specifier}.@var{channel_id} will map a muted
  563. channel.
  564. For example, assuming @var{INPUT} is a stereo audio file, you can switch the
  565. two audio channels with the following command:
  566. @example
  567. ffmpeg -i INPUT -map_channel 0.0.1 -map_channel 0.0.0 OUTPUT
  568. @end example
  569. If you want to mute the first channel and keep the second:
  570. @example
  571. ffmpeg -i INPUT -map_channel -1 -map_channel 0.0.1 OUTPUT
  572. @end example
  573. The order of the "-map_channel" option specifies the order of the channels in
  574. the output stream. The output channel layout is guessed from the number of
  575. channels mapped (mono if one "-map_channel", stereo if two, etc.). Using "-ac"
  576. in combination of "-map_channel" makes the channel gain levels to be updated if
  577. input and output channel layouts don't match (for instance two "-map_channel"
  578. options and "-ac 6").
  579. You can also extract each channel of an input to specific outputs; the following
  580. command extracts two channels of the @var{INPUT} audio stream (file 0, stream 0)
  581. to the respective @var{OUTPUT_CH0} and @var{OUTPUT_CH1} outputs:
  582. @example
  583. ffmpeg -i INPUT -map_channel 0.0.0 OUTPUT_CH0 -map_channel 0.0.1 OUTPUT_CH1
  584. @end example
  585. The following example splits the channels of a stereo input into two separate
  586. streams, which are put into the same output file:
  587. @example
  588. ffmpeg -i stereo.wav -map 0:0 -map 0:0 -map_channel 0.0.0:0.0 -map_channel 0.0.1:0.1 -y out.ogg
  589. @end example
  590. Note that currently each output stream can only contain channels from a single
  591. input stream; you can't for example use "-map_channel" to pick multiple input
  592. audio channels contained in different streams (from the same or different files)
  593. and merge them into a single output stream. It is therefore not currently
  594. possible, for example, to turn two separate mono streams into a single stereo
  595. stream. However splitting a stereo stream into two single channel mono streams
  596. is possible.
  597. If you need this feature, a possible workaround is to use the @emph{amerge}
  598. filter. For example, if you need to merge a media (here @file{input.mkv}) with 2
  599. mono audio streams into one single stereo channel audio stream (and keep the
  600. video stream), you can use the following command:
  601. @example
  602. ffmpeg -i input.mkv -filter_complex "[0:1] [0:2] amerge" -c:a pcm_s16le -c:v copy output.mkv
  603. @end example
  604. @item -map_metadata[:@var{metadata_spec_out}] @var{infile}[:@var{metadata_spec_in}] (@emph{output,per-metadata})
  605. Set metadata information of the next output file from @var{infile}. Note that
  606. those are file indices (zero-based), not filenames.
  607. Optional @var{metadata_spec_in/out} parameters specify, which metadata to copy.
  608. A metadata specifier can have the following forms:
  609. @table @option
  610. @item @var{g}
  611. global metadata, i.e. metadata that applies to the whole file
  612. @item @var{s}[:@var{stream_spec}]
  613. per-stream metadata. @var{stream_spec} is a stream specifier as described
  614. in the @ref{Stream specifiers} chapter. In an input metadata specifier, the first
  615. matching stream is copied from. In an output metadata specifier, all matching
  616. streams are copied to.
  617. @item @var{c}:@var{chapter_index}
  618. per-chapter metadata. @var{chapter_index} is the zero-based chapter index.
  619. @item @var{p}:@var{program_index}
  620. per-program metadata. @var{program_index} is the zero-based program index.
  621. @end table
  622. If metadata specifier is omitted, it defaults to global.
  623. By default, global metadata is copied from the first input file,
  624. per-stream and per-chapter metadata is copied along with streams/chapters. These
  625. default mappings are disabled by creating any mapping of the relevant type. A negative
  626. file index can be used to create a dummy mapping that just disables automatic copying.
  627. For example to copy metadata from the first stream of the input file to global metadata
  628. of the output file:
  629. @example
  630. ffmpeg -i in.ogg -map_metadata 0:s:0 out.mp3
  631. @end example
  632. To do the reverse, i.e. copy global metadata to all audio streams:
  633. @example
  634. ffmpeg -i in.mkv -map_metadata:s:a 0:g out.mkv
  635. @end example
  636. Note that simple @code{0} would work as well in this example, since global
  637. metadata is assumed by default.
  638. @item -map_chapters @var{input_file_index} (@emph{output})
  639. Copy chapters from input file with index @var{input_file_index} to the next
  640. output file. If no chapter mapping is specified, then chapters are copied from
  641. the first input file with at least one chapter. Use a negative file index to
  642. disable any chapter copying.
  643. @item -benchmark (@emph{global})
  644. Show benchmarking information at the end of an encode.
  645. Shows CPU time used and maximum memory consumption.
  646. Maximum memory consumption is not supported on all systems,
  647. it will usually display as 0 if not supported.
  648. @item -benchmark_all (@emph{global})
  649. Show benchmarking information during the encode.
  650. Shows CPU time used in various steps (audio/video encode/decode).
  651. @item -timelimit @var{duration} (@emph{global})
  652. Exit after ffmpeg has been running for @var{duration} seconds.
  653. @item -dump (@emph{global})
  654. Dump each input packet to stderr.
  655. @item -hex (@emph{global})
  656. When dumping packets, also dump the payload.
  657. @item -re (@emph{input})
  658. Read input at native frame rate. Mainly used to simulate a grab device.
  659. By default @command{ffmpeg} attempts to read the input(s) as fast as possible.
  660. This option will slow down the reading of the input(s) to the native frame rate
  661. of the input(s). It is useful for real-time output (e.g. live streaming). If
  662. your input(s) is coming from some other live streaming source (through HTTP or
  663. UDP for example) the server might already be in real-time, thus the option will
  664. likely not be required. On the other hand, this is meaningful if your input(s)
  665. is a file you are trying to push in real-time.
  666. @item -loop_input
  667. Loop over the input stream. Currently it works only for image
  668. streams. This option is used for automatic FFserver testing.
  669. This option is deprecated, use -loop 1.
  670. @item -loop_output @var{number_of_times}
  671. Repeatedly loop output for formats that support looping such as animated GIF
  672. (0 will loop the output infinitely).
  673. This option is deprecated, use -loop.
  674. @item -vsync @var{parameter}
  675. Video sync method.
  676. For compatibility reasons old values can be specified as numbers.
  677. Newly added values will have to be specified as strings always.
  678. @table @option
  679. @item 0, passthrough
  680. Each frame is passed with its timestamp from the demuxer to the muxer.
  681. @item 1, cfr
  682. Frames will be duplicated and dropped to achieve exactly the requested
  683. constant framerate.
  684. @item 2, vfr
  685. Frames are passed through with their timestamp or dropped so as to
  686. prevent 2 frames from having the same timestamp.
  687. @item drop
  688. As passthrough but destroys all timestamps, making the muxer generate
  689. fresh timestamps based on frame-rate.
  690. @item -1, auto
  691. Chooses between 1 and 2 depending on muxer capabilities. This is the
  692. default method.
  693. @end table
  694. With -map you can select from which stream the timestamps should be
  695. taken. You can leave either video or audio unchanged and sync the
  696. remaining stream(s) to the unchanged one.
  697. @item -async @var{samples_per_second}
  698. Audio sync method. "Stretches/squeezes" the audio stream to match the timestamps,
  699. the parameter is the maximum samples per second by which the audio is changed.
  700. -async 1 is a special case where only the start of the audio stream is corrected
  701. without any later correction.
  702. This option has been deprecated. Use the @code{aresample} audio filter instead.
  703. @item -copyts
  704. Do not process input timestamps, but keep their values without trying
  705. to sanitize them. In particular, do not remove the initial start time
  706. offset value.
  707. Note that, depending on the @option{vsync} option or on specific muxer
  708. processing, the output timestamps may mismatch with the input
  709. timestamps even when this option is selected.
  710. @item -copytb @var{mode}
  711. Specify how to set the encoder timebase when stream copying. @var{mode} is an
  712. integer numeric value, and can assume one of the following values:
  713. @table @option
  714. @item 1
  715. Use the demuxer timebase.
  716. The time base is copied to the output encoder from the corresponding input
  717. demuxer. This is sometimes required to avoid non monotonically increasing
  718. timestamps when copying video streams with variable frame rate.
  719. @item 0
  720. Use the decoder timebase.
  721. The time base is copied to the output encoder from the corresponding input
  722. decoder.
  723. @item -1
  724. Try to make the choice automatically, in order to generate a sane output.
  725. @end table
  726. Default value is -1.
  727. @item -shortest (@emph{output})
  728. Finish encoding when the shortest input stream ends.
  729. @item -dts_delta_threshold
  730. Timestamp discontinuity delta threshold.
  731. @item -muxdelay @var{seconds} (@emph{input})
  732. Set the maximum demux-decode delay.
  733. @item -muxpreload @var{seconds} (@emph{input})
  734. Set the initial demux-decode delay.
  735. @item -streamid @var{output-stream-index}:@var{new-value} (@emph{output})
  736. Assign a new stream-id value to an output stream. This option should be
  737. specified prior to the output filename to which it applies.
  738. For the situation where multiple output files exist, a streamid
  739. may be reassigned to a different value.
  740. For example, to set the stream 0 PID to 33 and the stream 1 PID to 36 for
  741. an output mpegts file:
  742. @example
  743. ffmpeg -i infile -streamid 0:33 -streamid 1:36 out.ts
  744. @end example
  745. @item -bsf[:@var{stream_specifier}] @var{bitstream_filters} (@emph{output,per-stream})
  746. Set bitstream filters for matching streams. @var{bistream_filters} is
  747. a comma-separated list of bitstream filters. Use the @code{-bsfs} option
  748. to get the list of bitstream filters.
  749. @example
  750. ffmpeg -i h264.mp4 -c:v copy -bsf:v h264_mp4toannexb -an out.h264
  751. @end example
  752. @example
  753. ffmpeg -i file.mov -an -vn -bsf:s mov2textsub -c:s copy -f rawvideo sub.txt
  754. @end example
  755. @item -tag[:@var{stream_specifier}] @var{codec_tag} (@emph{per-stream})
  756. Force a tag/fourcc for matching streams.
  757. @item -timecode @var{hh}:@var{mm}:@var{ss}SEP@var{ff}
  758. Specify Timecode for writing. @var{SEP} is ':' for non drop timecode and ';'
  759. (or '.') for drop.
  760. @example
  761. ffmpeg -i input.mpg -timecode 01:02:03.04 -r 30000/1001 -s ntsc output.mpg
  762. @end example
  763. @item -filter_complex @var{filtergraph} (@emph{global})
  764. Define a complex filter graph, i.e. one with arbitrary number of inputs and/or
  765. outputs. For simple graphs -- those with one input and one output of the same
  766. type -- see the @option{-filter} options. @var{filtergraph} is a description of
  767. the filter graph, as described in @ref{Filtergraph syntax}.
  768. Input link labels must refer to input streams using the
  769. @code{[file_index:stream_specifier]} syntax (i.e. the same as @option{-map}
  770. uses). If @var{stream_specifier} matches multiple streams, the first one will be
  771. used. An unlabeled input will be connected to the first unused input stream of
  772. the matching type.
  773. Output link labels are referred to with @option{-map}. Unlabeled outputs are
  774. added to the first output file.
  775. Note that with this option it is possible to use only lavfi sources without
  776. normal input files.
  777. For example, to overlay an image over video
  778. @example
  779. ffmpeg -i video.mkv -i image.png -filter_complex '[0:v][1:v]overlay[out]' -map
  780. '[out]' out.mkv
  781. @end example
  782. Here @code{[0:v]} refers to the first video stream in the first input file,
  783. which is linked to the first (main) input of the overlay filter. Similarly the
  784. first video stream in the second input is linked to the second (overlay) input
  785. of overlay.
  786. Assuming there is only one video stream in each input file, we can omit input
  787. labels, so the above is equivalent to
  788. @example
  789. ffmpeg -i video.mkv -i image.png -filter_complex 'overlay[out]' -map
  790. '[out]' out.mkv
  791. @end example
  792. Furthermore we can omit the output label and the single output from the filter
  793. graph will be added to the output file automatically, so we can simply write
  794. @example
  795. ffmpeg -i video.mkv -i image.png -filter_complex 'overlay' out.mkv
  796. @end example
  797. To generate 5 seconds of pure red video using lavfi @code{color} source:
  798. @example
  799. ffmpeg -filter_complex 'color=red' -t 5 out.mkv
  800. @end example
  801. @end table
  802. As a special exception, you can use a bitmap subtitle stream as input: it
  803. will be converted into a video with the same size as the largest video in
  804. the file, or 720×576 if no video is present. Note that this is an
  805. experimental and temporary solution. It will be removed once libavfilter has
  806. proper support for subtitles.
  807. For example, to hardcode subtitles on top of a DVB-T recording stored in
  808. MPEG-TS format, delaying the subtitles by 1 second:
  809. @example
  810. ffmpeg -i input.ts -filter_complex \
  811. '[#0x2ef] setpts=PTS+1/TB [sub] ; [#0x2d0] [sub] overlay' \
  812. -sn -map '#0x2dc' output.mkv
  813. @end example
  814. (0x2d0, 0x2dc and 0x2ef are the MPEG-TS PIDs of respectively the video,
  815. audio and subtitles streams; 0:0, 0:3 and 0:7 would have worked too)
  816. @section Preset files
  817. A preset file contains a sequence of @var{option}=@var{value} pairs,
  818. one for each line, specifying a sequence of options which would be
  819. awkward to specify on the command line. Lines starting with the hash
  820. ('#') character are ignored and are used to provide comments. Check
  821. the @file{presets} directory in the FFmpeg source tree for examples.
  822. Preset files are specified with the @code{vpre}, @code{apre},
  823. @code{spre}, and @code{fpre} options. The @code{fpre} option takes the
  824. filename of the preset instead of a preset name as input and can be
  825. used for any kind of codec. For the @code{vpre}, @code{apre}, and
  826. @code{spre} options, the options specified in a preset file are
  827. applied to the currently selected codec of the same type as the preset
  828. option.
  829. The argument passed to the @code{vpre}, @code{apre}, and @code{spre}
  830. preset options identifies the preset file to use according to the
  831. following rules:
  832. First ffmpeg searches for a file named @var{arg}.ffpreset in the
  833. directories @file{$FFMPEG_DATADIR} (if set), and @file{$HOME/.ffmpeg}, and in
  834. the datadir defined at configuration time (usually @file{PREFIX/share/ffmpeg})
  835. or in a @file{ffpresets} folder along the executable on win32,
  836. in that order. For example, if the argument is @code{libvpx-1080p}, it will
  837. search for the file @file{libvpx-1080p.ffpreset}.
  838. If no such file is found, then ffmpeg will search for a file named
  839. @var{codec_name}-@var{arg}.ffpreset in the above-mentioned
  840. directories, where @var{codec_name} is the name of the codec to which
  841. the preset file options will be applied. For example, if you select
  842. the video codec with @code{-vcodec libvpx} and use @code{-vpre 1080p},
  843. then it will search for the file @file{libvpx-1080p.ffpreset}.
  844. @c man end OPTIONS
  845. @chapter Tips
  846. @c man begin TIPS
  847. @itemize
  848. @item
  849. For streaming at very low bitrate application, use a low frame rate
  850. and a small GOP size. This is especially true for RealVideo where
  851. the Linux player does not seem to be very fast, so it can miss
  852. frames. An example is:
  853. @example
  854. ffmpeg -g 3 -r 3 -t 10 -b:v 50k -s qcif -f rv10 /tmp/b.rm
  855. @end example
  856. @item
  857. The parameter 'q' which is displayed while encoding is the current
  858. quantizer. The value 1 indicates that a very good quality could
  859. be achieved. The value 31 indicates the worst quality. If q=31 appears
  860. too often, it means that the encoder cannot compress enough to meet
  861. your bitrate. You must either increase the bitrate, decrease the
  862. frame rate or decrease the frame size.
  863. @item
  864. If your computer is not fast enough, you can speed up the
  865. compression at the expense of the compression ratio. You can use
  866. '-me zero' to speed up motion estimation, and '-g 0' to disable
  867. motion estimation completely (you have only I-frames, which means it
  868. is about as good as JPEG compression).
  869. @item
  870. To have very low audio bitrates, reduce the sampling frequency
  871. (down to 22050 Hz for MPEG audio, 22050 or 11025 for AC-3).
  872. @item
  873. To have a constant quality (but a variable bitrate), use the option
  874. '-qscale n' when 'n' is between 1 (excellent quality) and 31 (worst
  875. quality).
  876. @end itemize
  877. @c man end TIPS
  878. @chapter Examples
  879. @c man begin EXAMPLES
  880. @section Preset files
  881. A preset file contains a sequence of @var{option=value} pairs, one for
  882. each line, specifying a sequence of options which can be specified also on
  883. the command line. Lines starting with the hash ('#') character are ignored and
  884. are used to provide comments. Empty lines are also ignored. Check the
  885. @file{presets} directory in the FFmpeg source tree for examples.
  886. Preset files are specified with the @code{pre} option, this option takes a
  887. preset name as input. FFmpeg searches for a file named @var{preset_name}.avpreset in
  888. the directories @file{$AVCONV_DATADIR} (if set), and @file{$HOME/.ffmpeg}, and in
  889. the data directory defined at configuration time (usually @file{$PREFIX/share/ffmpeg})
  890. in that order. For example, if the argument is @code{libx264-max}, it will
  891. search for the file @file{libx264-max.avpreset}.
  892. @section Video and Audio grabbing
  893. If you specify the input format and device then ffmpeg can grab video
  894. and audio directly.
  895. @example
  896. ffmpeg -f oss -i /dev/dsp -f video4linux2 -i /dev/video0 /tmp/out.mpg
  897. @end example
  898. Or with an ALSA audio source (mono input, card id 1) instead of OSS:
  899. @example
  900. ffmpeg -f alsa -ac 1 -i hw:1 -f video4linux2 -i /dev/video0 /tmp/out.mpg
  901. @end example
  902. Note that you must activate the right video source and channel before
  903. launching ffmpeg with any TV viewer such as
  904. @uref{http://linux.bytesex.org/xawtv/, xawtv} by Gerd Knorr. You also
  905. have to set the audio recording levels correctly with a
  906. standard mixer.
  907. @section X11 grabbing
  908. Grab the X11 display with ffmpeg via
  909. @example
  910. ffmpeg -f x11grab -s cif -r 25 -i :0.0 /tmp/out.mpg
  911. @end example
  912. 0.0 is display.screen number of your X11 server, same as
  913. the DISPLAY environment variable.
  914. @example
  915. ffmpeg -f x11grab -s cif -r 25 -i :0.0+10,20 /tmp/out.mpg
  916. @end example
  917. 0.0 is display.screen number of your X11 server, same as the DISPLAY environment
  918. variable. 10 is the x-offset and 20 the y-offset for the grabbing.
  919. @section Video and Audio file format conversion
  920. Any supported file format and protocol can serve as input to ffmpeg:
  921. Examples:
  922. @itemize
  923. @item
  924. You can use YUV files as input:
  925. @example
  926. ffmpeg -i /tmp/test%d.Y /tmp/out.mpg
  927. @end example
  928. It will use the files:
  929. @example
  930. /tmp/test0.Y, /tmp/test0.U, /tmp/test0.V,
  931. /tmp/test1.Y, /tmp/test1.U, /tmp/test1.V, etc...
  932. @end example
  933. The Y files use twice the resolution of the U and V files. They are
  934. raw files, without header. They can be generated by all decent video
  935. decoders. You must specify the size of the image with the @option{-s} option
  936. if ffmpeg cannot guess it.
  937. @item
  938. You can input from a raw YUV420P file:
  939. @example
  940. ffmpeg -i /tmp/test.yuv /tmp/out.avi
  941. @end example
  942. test.yuv is a file containing raw YUV planar data. Each frame is composed
  943. of the Y plane followed by the U and V planes at half vertical and
  944. horizontal resolution.
  945. @item
  946. You can output to a raw YUV420P file:
  947. @example
  948. ffmpeg -i mydivx.avi hugefile.yuv
  949. @end example
  950. @item
  951. You can set several input files and output files:
  952. @example
  953. ffmpeg -i /tmp/a.wav -s 640x480 -i /tmp/a.yuv /tmp/a.mpg
  954. @end example
  955. Converts the audio file a.wav and the raw YUV video file a.yuv
  956. to MPEG file a.mpg.
  957. @item
  958. You can also do audio and video conversions at the same time:
  959. @example
  960. ffmpeg -i /tmp/a.wav -ar 22050 /tmp/a.mp2
  961. @end example
  962. Converts a.wav to MPEG audio at 22050 Hz sample rate.
  963. @item
  964. You can encode to several formats at the same time and define a
  965. mapping from input stream to output streams:
  966. @example
  967. ffmpeg -i /tmp/a.wav -map 0:a -b:a 64k /tmp/a.mp2 -map 0:a -b:a 128k /tmp/b.mp2
  968. @end example
  969. Converts a.wav to a.mp2 at 64 kbits and to b.mp2 at 128 kbits. '-map
  970. file:index' specifies which input stream is used for each output
  971. stream, in the order of the definition of output streams.
  972. @item
  973. You can transcode decrypted VOBs:
  974. @example
  975. ffmpeg -i snatch_1.vob -f avi -c:v mpeg4 -b:v 800k -g 300 -bf 2 -c:a libmp3lame -b:a 128k snatch.avi
  976. @end example
  977. This is a typical DVD ripping example; the input is a VOB file, the
  978. output an AVI file with MPEG-4 video and MP3 audio. Note that in this
  979. command we use B-frames so the MPEG-4 stream is DivX5 compatible, and
  980. GOP size is 300 which means one intra frame every 10 seconds for 29.97fps
  981. input video. Furthermore, the audio stream is MP3-encoded so you need
  982. to enable LAME support by passing @code{--enable-libmp3lame} to configure.
  983. The mapping is particularly useful for DVD transcoding
  984. to get the desired audio language.
  985. NOTE: To see the supported input formats, use @code{ffmpeg -formats}.
  986. @item
  987. You can extract images from a video, or create a video from many images:
  988. For extracting images from a video:
  989. @example
  990. ffmpeg -i foo.avi -r 1 -s WxH -f image2 foo-%03d.jpeg
  991. @end example
  992. This will extract one video frame per second from the video and will
  993. output them in files named @file{foo-001.jpeg}, @file{foo-002.jpeg},
  994. etc. Images will be rescaled to fit the new WxH values.
  995. If you want to extract just a limited number of frames, you can use the
  996. above command in combination with the -vframes or -t option, or in
  997. combination with -ss to start extracting from a certain point in time.
  998. For creating a video from many images:
  999. @example
  1000. ffmpeg -f image2 -i foo-%03d.jpeg -r 12 -s WxH foo.avi
  1001. @end example
  1002. The syntax @code{foo-%03d.jpeg} specifies to use a decimal number
  1003. composed of three digits padded with zeroes to express the sequence
  1004. number. It is the same syntax supported by the C printf function, but
  1005. only formats accepting a normal integer are suitable.
  1006. When importing an image sequence, -i also supports expanding
  1007. shell-like wildcard patterns (globbing) internally, by selecting the
  1008. image2-specific @code{-pattern_type glob} option.
  1009. For example, for creating a video from filenames matching the glob pattern
  1010. @code{foo-*.jpeg}:
  1011. @example
  1012. ffmpeg -f image2 -pattern_type glob -i 'foo-*.jpeg' -r 12 -s WxH foo.avi
  1013. @end example
  1014. @item
  1015. You can put many streams of the same type in the output:
  1016. @example
  1017. ffmpeg -i test1.avi -i test2.avi -map 0:3 -map 0:2 -map 0:1 -map 0:0 -c copy test12.nut
  1018. @end example
  1019. The resulting output file @file{test12.avi} will contain first four streams from
  1020. the input file in reverse order.
  1021. @item
  1022. To force CBR video output:
  1023. @example
  1024. ffmpeg -i myfile.avi -b 4000k -minrate 4000k -maxrate 4000k -bufsize 1835k out.m2v
  1025. @end example
  1026. @item
  1027. The four options lmin, lmax, mblmin and mblmax use 'lambda' units,
  1028. but you may use the QP2LAMBDA constant to easily convert from 'q' units:
  1029. @example
  1030. ffmpeg -i src.ext -lmax 21*QP2LAMBDA dst.ext
  1031. @end example
  1032. @end itemize
  1033. @c man end EXAMPLES
  1034. @include syntax.texi
  1035. @include eval.texi
  1036. @include decoders.texi
  1037. @include encoders.texi
  1038. @include demuxers.texi
  1039. @include muxers.texi
  1040. @include indevs.texi
  1041. @include outdevs.texi
  1042. @include protocols.texi
  1043. @include bitstream_filters.texi
  1044. @include filters.texi
  1045. @include metadata.texi
  1046. @ignore
  1047. @setfilename ffmpeg
  1048. @settitle ffmpeg video converter
  1049. @c man begin SEEALSO
  1050. ffplay(1), ffprobe(1), ffserver(1) and the FFmpeg HTML documentation
  1051. @c man end
  1052. @c man begin AUTHORS
  1053. See git history
  1054. @c man end
  1055. @end ignore
  1056. @bye