|
- /*
- * AAC coefficients encoder
- * Copyright (C) 2008-2009 Konstantin Shishkov
- *
- * This file is part of FFmpeg.
- *
- * FFmpeg is free software; you can redistribute it and/or
- * modify it under the terms of the GNU Lesser General Public
- * License as published by the Free Software Foundation; either
- * version 2.1 of the License, or (at your option) any later version.
- *
- * FFmpeg is distributed in the hope that it will be useful,
- * but WITHOUT ANY WARRANTY; without even the implied warranty of
- * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
- * Lesser General Public License for more details.
- *
- * You should have received a copy of the GNU Lesser General Public
- * License along with FFmpeg; if not, write to the Free Software
- * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
- */
-
- /**
- * @file
- * AAC coefficients encoder
- */
-
- /***********************************
- * TODOs:
- * speedup quantizer selection
- * add sane pulse detection
- ***********************************/
-
- #include "libavutil/libm.h" // brought forward to work around cygwin header breakage
-
- #include <float.h>
- #include "libavutil/mathematics.h"
- #include "avcodec.h"
- #include "put_bits.h"
- #include "aac.h"
- #include "aacenc.h"
- #include "aactab.h"
- #include "aacenctab.h"
- #include "aacenc_utils.h"
- #include "aacenc_quantization.h"
- #include "aac_tablegen_decl.h"
-
- #include "aacenc_is.h"
- #include "aacenc_tns.h"
- #include "aacenc_pred.h"
-
- /** Frequency in Hz for lower limit of noise substitution **/
- #define NOISE_LOW_LIMIT 4000
-
- /* Parameter of f(x) = a*(lambda/100), defines the maximum fourier spread
- * beyond which no PNS is used (since the SFBs contain tone rather than noise) */
- #define NOISE_SPREAD_THRESHOLD 0.9673f
-
- /* Parameter of f(x) = a*(100/lambda), defines how much PNS is allowed to
- * replace low energy non zero bands */
- #define NOISE_LAMBDA_REPLACE 1.948f
-
- /**
- * structure used in optimal codebook search
- */
- typedef struct BandCodingPath {
- int prev_idx; ///< pointer to the previous path point
- float cost; ///< path cost
- int run;
- } BandCodingPath;
-
- /**
- * Encode band info for single window group bands.
- */
- static void encode_window_bands_info(AACEncContext *s, SingleChannelElement *sce,
- int win, int group_len, const float lambda)
- {
- BandCodingPath path[120][CB_TOT_ALL];
- int w, swb, cb, start, size;
- int i, j;
- const int max_sfb = sce->ics.max_sfb;
- const int run_bits = sce->ics.num_windows == 1 ? 5 : 3;
- const int run_esc = (1 << run_bits) - 1;
- int idx, ppos, count;
- int stackrun[120], stackcb[120], stack_len;
- float next_minrd = INFINITY;
- int next_mincb = 0;
-
- abs_pow34_v(s->scoefs, sce->coeffs, 1024);
- start = win*128;
- for (cb = 0; cb < CB_TOT_ALL; cb++) {
- path[0][cb].cost = 0.0f;
- path[0][cb].prev_idx = -1;
- path[0][cb].run = 0;
- }
- for (swb = 0; swb < max_sfb; swb++) {
- size = sce->ics.swb_sizes[swb];
- if (sce->zeroes[win*16 + swb]) {
- for (cb = 0; cb < CB_TOT_ALL; cb++) {
- path[swb+1][cb].prev_idx = cb;
- path[swb+1][cb].cost = path[swb][cb].cost;
- path[swb+1][cb].run = path[swb][cb].run + 1;
- }
- } else {
- float minrd = next_minrd;
- int mincb = next_mincb;
- next_minrd = INFINITY;
- next_mincb = 0;
- for (cb = 0; cb < CB_TOT_ALL; cb++) {
- float cost_stay_here, cost_get_here;
- float rd = 0.0f;
- if (cb >= 12 && sce->band_type[win*16+swb] < aac_cb_out_map[cb] ||
- cb < aac_cb_in_map[sce->band_type[win*16+swb]] && sce->band_type[win*16+swb] > aac_cb_out_map[cb]) {
- path[swb+1][cb].prev_idx = -1;
- path[swb+1][cb].cost = INFINITY;
- path[swb+1][cb].run = path[swb][cb].run + 1;
- continue;
- }
- for (w = 0; w < group_len; w++) {
- FFPsyBand *band = &s->psy.ch[s->cur_channel].psy_bands[(win+w)*16+swb];
- rd += quantize_band_cost(s, &sce->coeffs[start + w*128],
- &s->scoefs[start + w*128], size,
- sce->sf_idx[(win+w)*16+swb], aac_cb_out_map[cb],
- lambda / band->threshold, INFINITY, NULL, 0);
- }
- cost_stay_here = path[swb][cb].cost + rd;
- cost_get_here = minrd + rd + run_bits + 4;
- if ( run_value_bits[sce->ics.num_windows == 8][path[swb][cb].run]
- != run_value_bits[sce->ics.num_windows == 8][path[swb][cb].run+1])
- cost_stay_here += run_bits;
- if (cost_get_here < cost_stay_here) {
- path[swb+1][cb].prev_idx = mincb;
- path[swb+1][cb].cost = cost_get_here;
- path[swb+1][cb].run = 1;
- } else {
- path[swb+1][cb].prev_idx = cb;
- path[swb+1][cb].cost = cost_stay_here;
- path[swb+1][cb].run = path[swb][cb].run + 1;
- }
- if (path[swb+1][cb].cost < next_minrd) {
- next_minrd = path[swb+1][cb].cost;
- next_mincb = cb;
- }
- }
- }
- start += sce->ics.swb_sizes[swb];
- }
-
- //convert resulting path from backward-linked list
- stack_len = 0;
- idx = 0;
- for (cb = 1; cb < CB_TOT_ALL; cb++)
- if (path[max_sfb][cb].cost < path[max_sfb][idx].cost)
- idx = cb;
- ppos = max_sfb;
- while (ppos > 0) {
- av_assert1(idx >= 0);
- cb = idx;
- stackrun[stack_len] = path[ppos][cb].run;
- stackcb [stack_len] = cb;
- idx = path[ppos-path[ppos][cb].run+1][cb].prev_idx;
- ppos -= path[ppos][cb].run;
- stack_len++;
- }
- //perform actual band info encoding
- start = 0;
- for (i = stack_len - 1; i >= 0; i--) {
- cb = aac_cb_out_map[stackcb[i]];
- put_bits(&s->pb, 4, cb);
- count = stackrun[i];
- memset(sce->zeroes + win*16 + start, !cb, count);
- //XXX: memset when band_type is also uint8_t
- for (j = 0; j < count; j++) {
- sce->band_type[win*16 + start] = cb;
- start++;
- }
- while (count >= run_esc) {
- put_bits(&s->pb, run_bits, run_esc);
- count -= run_esc;
- }
- put_bits(&s->pb, run_bits, count);
- }
- }
-
- static void codebook_trellis_rate(AACEncContext *s, SingleChannelElement *sce,
- int win, int group_len, const float lambda)
- {
- BandCodingPath path[120][CB_TOT_ALL];
- int w, swb, cb, start, size;
- int i, j;
- const int max_sfb = sce->ics.max_sfb;
- const int run_bits = sce->ics.num_windows == 1 ? 5 : 3;
- const int run_esc = (1 << run_bits) - 1;
- int idx, ppos, count;
- int stackrun[120], stackcb[120], stack_len;
- float next_minbits = INFINITY;
- int next_mincb = 0;
-
- abs_pow34_v(s->scoefs, sce->coeffs, 1024);
- start = win*128;
- for (cb = 0; cb < CB_TOT_ALL; cb++) {
- path[0][cb].cost = run_bits+4;
- path[0][cb].prev_idx = -1;
- path[0][cb].run = 0;
- }
- for (swb = 0; swb < max_sfb; swb++) {
- size = sce->ics.swb_sizes[swb];
- if (sce->zeroes[win*16 + swb]) {
- float cost_stay_here = path[swb][0].cost;
- float cost_get_here = next_minbits + run_bits + 4;
- if ( run_value_bits[sce->ics.num_windows == 8][path[swb][0].run]
- != run_value_bits[sce->ics.num_windows == 8][path[swb][0].run+1])
- cost_stay_here += run_bits;
- if (cost_get_here < cost_stay_here) {
- path[swb+1][0].prev_idx = next_mincb;
- path[swb+1][0].cost = cost_get_here;
- path[swb+1][0].run = 1;
- } else {
- path[swb+1][0].prev_idx = 0;
- path[swb+1][0].cost = cost_stay_here;
- path[swb+1][0].run = path[swb][0].run + 1;
- }
- next_minbits = path[swb+1][0].cost;
- next_mincb = 0;
- for (cb = 1; cb < CB_TOT_ALL; cb++) {
- path[swb+1][cb].cost = 61450;
- path[swb+1][cb].prev_idx = -1;
- path[swb+1][cb].run = 0;
- }
- } else {
- float minbits = next_minbits;
- int mincb = next_mincb;
- int startcb = sce->band_type[win*16+swb];
- startcb = aac_cb_in_map[startcb];
- next_minbits = INFINITY;
- next_mincb = 0;
- for (cb = 0; cb < startcb; cb++) {
- path[swb+1][cb].cost = 61450;
- path[swb+1][cb].prev_idx = -1;
- path[swb+1][cb].run = 0;
- }
- for (cb = startcb; cb < CB_TOT_ALL; cb++) {
- float cost_stay_here, cost_get_here;
- float bits = 0.0f;
- if (cb >= 12 && sce->band_type[win*16+swb] != aac_cb_out_map[cb]) {
- path[swb+1][cb].cost = 61450;
- path[swb+1][cb].prev_idx = -1;
- path[swb+1][cb].run = 0;
- continue;
- }
- for (w = 0; w < group_len; w++) {
- bits += quantize_band_cost(s, &sce->coeffs[start + w*128],
- &s->scoefs[start + w*128], size,
- sce->sf_idx[win*16+swb],
- aac_cb_out_map[cb],
- 0, INFINITY, NULL, 0);
- }
- cost_stay_here = path[swb][cb].cost + bits;
- cost_get_here = minbits + bits + run_bits + 4;
- if ( run_value_bits[sce->ics.num_windows == 8][path[swb][cb].run]
- != run_value_bits[sce->ics.num_windows == 8][path[swb][cb].run+1])
- cost_stay_here += run_bits;
- if (cost_get_here < cost_stay_here) {
- path[swb+1][cb].prev_idx = mincb;
- path[swb+1][cb].cost = cost_get_here;
- path[swb+1][cb].run = 1;
- } else {
- path[swb+1][cb].prev_idx = cb;
- path[swb+1][cb].cost = cost_stay_here;
- path[swb+1][cb].run = path[swb][cb].run + 1;
- }
- if (path[swb+1][cb].cost < next_minbits) {
- next_minbits = path[swb+1][cb].cost;
- next_mincb = cb;
- }
- }
- }
- start += sce->ics.swb_sizes[swb];
- }
-
- //convert resulting path from backward-linked list
- stack_len = 0;
- idx = 0;
- for (cb = 1; cb < CB_TOT_ALL; cb++)
- if (path[max_sfb][cb].cost < path[max_sfb][idx].cost)
- idx = cb;
- ppos = max_sfb;
- while (ppos > 0) {
- av_assert1(idx >= 0);
- cb = idx;
- stackrun[stack_len] = path[ppos][cb].run;
- stackcb [stack_len] = cb;
- idx = path[ppos-path[ppos][cb].run+1][cb].prev_idx;
- ppos -= path[ppos][cb].run;
- stack_len++;
- }
- //perform actual band info encoding
- start = 0;
- for (i = stack_len - 1; i >= 0; i--) {
- cb = aac_cb_out_map[stackcb[i]];
- put_bits(&s->pb, 4, cb);
- count = stackrun[i];
- memset(sce->zeroes + win*16 + start, !cb, count);
- //XXX: memset when band_type is also uint8_t
- for (j = 0; j < count; j++) {
- sce->band_type[win*16 + start] = cb;
- start++;
- }
- while (count >= run_esc) {
- put_bits(&s->pb, run_bits, run_esc);
- count -= run_esc;
- }
- put_bits(&s->pb, run_bits, count);
- }
- }
-
- typedef struct TrellisPath {
- float cost;
- int prev;
- } TrellisPath;
-
- #define TRELLIS_STAGES 121
- #define TRELLIS_STATES (SCALE_MAX_DIFF+1)
-
- static void set_special_band_scalefactors(AACEncContext *s, SingleChannelElement *sce)
- {
- int w, g, start = 0;
- int minscaler_n = sce->sf_idx[0], minscaler_i = sce->sf_idx[0];
- int bands = 0;
-
- for (w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w]) {
- start = 0;
- for (g = 0; g < sce->ics.num_swb; g++) {
- if (sce->band_type[w*16+g] == INTENSITY_BT || sce->band_type[w*16+g] == INTENSITY_BT2) {
- sce->sf_idx[w*16+g] = av_clip(roundf(log2f(sce->is_ener[w*16+g])*2), -155, 100);
- minscaler_i = FFMIN(minscaler_i, sce->sf_idx[w*16+g]);
- bands++;
- } else if (sce->band_type[w*16+g] == NOISE_BT) {
- sce->sf_idx[w*16+g] = av_clip(roundf(log2f(sce->pns_ener[w*16+g])*2), -100, 155);
- minscaler_n = FFMIN(minscaler_n, sce->sf_idx[w*16+g]);
- bands++;
- }
- start += sce->ics.swb_sizes[g];
- }
- }
-
- if (!bands)
- return;
-
- /* Clip the scalefactor indices */
- for (w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w]) {
- for (g = 0; g < sce->ics.num_swb; g++) {
- if (sce->band_type[w*16+g] == INTENSITY_BT || sce->band_type[w*16+g] == INTENSITY_BT2) {
- sce->sf_idx[w*16+g] = av_clip(sce->sf_idx[w*16+g], minscaler_i, minscaler_i + SCALE_MAX_DIFF);
- } else if (sce->band_type[w*16+g] == NOISE_BT) {
- sce->sf_idx[w*16+g] = av_clip(sce->sf_idx[w*16+g], minscaler_n, minscaler_n + SCALE_MAX_DIFF);
- }
- }
- }
- }
-
- static void search_for_quantizers_anmr(AVCodecContext *avctx, AACEncContext *s,
- SingleChannelElement *sce,
- const float lambda)
- {
- int q, w, w2, g, start = 0;
- int i, j;
- int idx;
- TrellisPath paths[TRELLIS_STAGES][TRELLIS_STATES];
- int bandaddr[TRELLIS_STAGES];
- int minq;
- float mincost;
- float q0f = FLT_MAX, q1f = 0.0f, qnrgf = 0.0f;
- int q0, q1, qcnt = 0;
-
- for (i = 0; i < 1024; i++) {
- float t = fabsf(sce->coeffs[i]);
- if (t > 0.0f) {
- q0f = FFMIN(q0f, t);
- q1f = FFMAX(q1f, t);
- qnrgf += t*t;
- qcnt++;
- }
- }
-
- if (!qcnt) {
- memset(sce->sf_idx, 0, sizeof(sce->sf_idx));
- memset(sce->zeroes, 1, sizeof(sce->zeroes));
- return;
- }
-
- //minimum scalefactor index is when minimum nonzero coefficient after quantizing is not clipped
- q0 = coef2minsf(q0f);
- //maximum scalefactor index is when maximum coefficient after quantizing is still not zero
- q1 = coef2maxsf(q1f);
- if (q1 - q0 > 60) {
- int q0low = q0;
- int q1high = q1;
- //minimum scalefactor index is when maximum nonzero coefficient after quantizing is not clipped
- int qnrg = av_clip_uint8(log2f(sqrtf(qnrgf/qcnt))*4 - 31 + SCALE_ONE_POS - SCALE_DIV_512);
- q1 = qnrg + 30;
- q0 = qnrg - 30;
- if (q0 < q0low) {
- q1 += q0low - q0;
- q0 = q0low;
- } else if (q1 > q1high) {
- q0 -= q1 - q1high;
- q1 = q1high;
- }
- }
-
- for (i = 0; i < TRELLIS_STATES; i++) {
- paths[0][i].cost = 0.0f;
- paths[0][i].prev = -1;
- }
- for (j = 1; j < TRELLIS_STAGES; j++) {
- for (i = 0; i < TRELLIS_STATES; i++) {
- paths[j][i].cost = INFINITY;
- paths[j][i].prev = -2;
- }
- }
- idx = 1;
- abs_pow34_v(s->scoefs, sce->coeffs, 1024);
- for (w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w]) {
- start = w*128;
- for (g = 0; g < sce->ics.num_swb; g++) {
- const float *coefs = &sce->coeffs[start];
- float qmin, qmax;
- int nz = 0;
-
- bandaddr[idx] = w * 16 + g;
- qmin = INT_MAX;
- qmax = 0.0f;
- for (w2 = 0; w2 < sce->ics.group_len[w]; w2++) {
- FFPsyBand *band = &s->psy.ch[s->cur_channel].psy_bands[(w+w2)*16+g];
- if (band->energy <= band->threshold || band->threshold == 0.0f) {
- sce->zeroes[(w+w2)*16+g] = 1;
- continue;
- }
- sce->zeroes[(w+w2)*16+g] = 0;
- nz = 1;
- for (i = 0; i < sce->ics.swb_sizes[g]; i++) {
- float t = fabsf(coefs[w2*128+i]);
- if (t > 0.0f)
- qmin = FFMIN(qmin, t);
- qmax = FFMAX(qmax, t);
- }
- }
- if (nz) {
- int minscale, maxscale;
- float minrd = INFINITY;
- float maxval;
- //minimum scalefactor index is when minimum nonzero coefficient after quantizing is not clipped
- minscale = coef2minsf(qmin);
- //maximum scalefactor index is when maximum coefficient after quantizing is still not zero
- maxscale = coef2maxsf(qmax);
- minscale = av_clip(minscale - q0, 0, TRELLIS_STATES - 1);
- maxscale = av_clip(maxscale - q0, 0, TRELLIS_STATES);
- maxval = find_max_val(sce->ics.group_len[w], sce->ics.swb_sizes[g], s->scoefs+start);
- for (q = minscale; q < maxscale; q++) {
- float dist = 0;
- int cb = find_min_book(maxval, sce->sf_idx[w*16+g]);
- for (w2 = 0; w2 < sce->ics.group_len[w]; w2++) {
- FFPsyBand *band = &s->psy.ch[s->cur_channel].psy_bands[(w+w2)*16+g];
- dist += quantize_band_cost(s, coefs + w2*128, s->scoefs + start + w2*128, sce->ics.swb_sizes[g],
- q + q0, cb, lambda / band->threshold, INFINITY, NULL, 0);
- }
- minrd = FFMIN(minrd, dist);
-
- for (i = 0; i < q1 - q0; i++) {
- float cost;
- cost = paths[idx - 1][i].cost + dist
- + ff_aac_scalefactor_bits[q - i + SCALE_DIFF_ZERO];
- if (cost < paths[idx][q].cost) {
- paths[idx][q].cost = cost;
- paths[idx][q].prev = i;
- }
- }
- }
- } else {
- for (q = 0; q < q1 - q0; q++) {
- paths[idx][q].cost = paths[idx - 1][q].cost + 1;
- paths[idx][q].prev = q;
- }
- }
- sce->zeroes[w*16+g] = !nz;
- start += sce->ics.swb_sizes[g];
- idx++;
- }
- }
- idx--;
- mincost = paths[idx][0].cost;
- minq = 0;
- for (i = 1; i < TRELLIS_STATES; i++) {
- if (paths[idx][i].cost < mincost) {
- mincost = paths[idx][i].cost;
- minq = i;
- }
- }
- while (idx) {
- sce->sf_idx[bandaddr[idx]] = minq + q0;
- minq = paths[idx][minq].prev;
- idx--;
- }
- //set the same quantizers inside window groups
- for (w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w])
- for (g = 0; g < sce->ics.num_swb; g++)
- for (w2 = 1; w2 < sce->ics.group_len[w]; w2++)
- sce->sf_idx[(w+w2)*16+g] = sce->sf_idx[w*16+g];
- }
-
- /**
- * two-loop quantizers search taken from ISO 13818-7 Appendix C
- */
- static void search_for_quantizers_twoloop(AVCodecContext *avctx,
- AACEncContext *s,
- SingleChannelElement *sce,
- const float lambda)
- {
- int start = 0, i, w, w2, g;
- int destbits = avctx->bit_rate * 1024.0 / avctx->sample_rate / avctx->channels * (lambda / 120.f);
- float dists[128] = { 0 }, uplims[128] = { 0 };
- float maxvals[128];
- int fflag, minscaler;
- int its = 0;
- int allz = 0;
- float minthr = INFINITY;
-
- // for values above this the decoder might end up in an endless loop
- // due to always having more bits than what can be encoded.
- destbits = FFMIN(destbits, 5800);
- //XXX: some heuristic to determine initial quantizers will reduce search time
- //determine zero bands and upper limits
- for (w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w]) {
- for (g = 0; g < sce->ics.num_swb; g++) {
- int nz = 0;
- float uplim = 0.0f, energy = 0.0f;
- for (w2 = 0; w2 < sce->ics.group_len[w]; w2++) {
- FFPsyBand *band = &s->psy.ch[s->cur_channel].psy_bands[(w+w2)*16+g];
- uplim += band->threshold;
- energy += band->energy;
- if (band->energy <= band->threshold || band->threshold == 0.0f) {
- sce->zeroes[(w+w2)*16+g] = 1;
- continue;
- }
- nz = 1;
- }
- uplims[w*16+g] = uplim *512;
- sce->zeroes[w*16+g] = !nz;
- if (nz)
- minthr = FFMIN(minthr, uplim);
- allz |= nz;
- }
- }
- for (w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w]) {
- for (g = 0; g < sce->ics.num_swb; g++) {
- if (sce->zeroes[w*16+g]) {
- sce->sf_idx[w*16+g] = SCALE_ONE_POS;
- continue;
- }
- sce->sf_idx[w*16+g] = SCALE_ONE_POS + FFMIN(log2f(uplims[w*16+g]/minthr)*4,59);
- }
- }
-
- if (!allz)
- return;
- abs_pow34_v(s->scoefs, sce->coeffs, 1024);
-
- for (w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w]) {
- start = w*128;
- for (g = 0; g < sce->ics.num_swb; g++) {
- const float *scaled = s->scoefs + start;
- maxvals[w*16+g] = find_max_val(sce->ics.group_len[w], sce->ics.swb_sizes[g], scaled);
- start += sce->ics.swb_sizes[g];
- }
- }
-
- //perform two-loop search
- //outer loop - improve quality
- do {
- int tbits, qstep;
- minscaler = sce->sf_idx[0];
- //inner loop - quantize spectrum to fit into given number of bits
- qstep = its ? 1 : 32;
- do {
- int prev = -1;
- tbits = 0;
- for (w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w]) {
- start = w*128;
- for (g = 0; g < sce->ics.num_swb; g++) {
- const float *coefs = &sce->coeffs[start];
- const float *scaled = &s->scoefs[start];
- int bits = 0;
- int cb;
- float dist = 0.0f;
-
- if (sce->zeroes[w*16+g] || sce->sf_idx[w*16+g] >= 218) {
- start += sce->ics.swb_sizes[g];
- continue;
- }
- minscaler = FFMIN(minscaler, sce->sf_idx[w*16+g]);
- cb = find_min_book(maxvals[w*16+g], sce->sf_idx[w*16+g]);
- for (w2 = 0; w2 < sce->ics.group_len[w]; w2++) {
- int b;
- dist += quantize_band_cost(s, coefs + w2*128,
- scaled + w2*128,
- sce->ics.swb_sizes[g],
- sce->sf_idx[w*16+g],
- cb,
- 1.0f,
- INFINITY,
- &b,
- 0);
- bits += b;
- }
- dists[w*16+g] = dist - bits;
- if (prev != -1) {
- bits += ff_aac_scalefactor_bits[sce->sf_idx[w*16+g] - prev + SCALE_DIFF_ZERO];
- }
- tbits += bits;
- start += sce->ics.swb_sizes[g];
- prev = sce->sf_idx[w*16+g];
- }
- }
- if (tbits > destbits) {
- for (i = 0; i < 128; i++)
- if (sce->sf_idx[i] < 218 - qstep)
- sce->sf_idx[i] += qstep;
- } else {
- for (i = 0; i < 128; i++)
- if (sce->sf_idx[i] > 60 - qstep)
- sce->sf_idx[i] -= qstep;
- }
- qstep >>= 1;
- if (!qstep && tbits > destbits*1.02 && sce->sf_idx[0] < 217)
- qstep = 1;
- } while (qstep);
-
- fflag = 0;
- minscaler = av_clip(minscaler, 60, 255 - SCALE_MAX_DIFF);
-
- for (w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w]) {
- for (g = 0; g < sce->ics.num_swb; g++) {
- int prevsc = sce->sf_idx[w*16+g];
- if (dists[w*16+g] > uplims[w*16+g] && sce->sf_idx[w*16+g] > 60) {
- if (find_min_book(maxvals[w*16+g], sce->sf_idx[w*16+g]-1))
- sce->sf_idx[w*16+g]--;
- else //Try to make sure there is some energy in every band
- sce->sf_idx[w*16+g]-=2;
- }
- sce->sf_idx[w*16+g] = av_clip(sce->sf_idx[w*16+g], minscaler, minscaler + SCALE_MAX_DIFF);
- sce->sf_idx[w*16+g] = FFMIN(sce->sf_idx[w*16+g], 219);
- if (sce->sf_idx[w*16+g] != prevsc)
- fflag = 1;
- sce->band_type[w*16+g] = find_min_book(maxvals[w*16+g], sce->sf_idx[w*16+g]);
- }
- }
- its++;
- } while (fflag && its < 10);
- }
-
- static void search_for_quantizers_faac(AVCodecContext *avctx, AACEncContext *s,
- SingleChannelElement *sce,
- const float lambda)
- {
- int start = 0, i, w, w2, g;
- float uplim[128], maxq[128];
- int minq, maxsf;
- float distfact = ((sce->ics.num_windows > 1) ? 85.80 : 147.84) / lambda;
- int last = 0, lastband = 0, curband = 0;
- float avg_energy = 0.0;
- if (sce->ics.num_windows == 1) {
- start = 0;
- for (i = 0; i < 1024; i++) {
- if (i - start >= sce->ics.swb_sizes[curband]) {
- start += sce->ics.swb_sizes[curband];
- curband++;
- }
- if (sce->coeffs[i]) {
- avg_energy += sce->coeffs[i] * sce->coeffs[i];
- last = i;
- lastband = curband;
- }
- }
- } else {
- for (w = 0; w < 8; w++) {
- const float *coeffs = &sce->coeffs[w*128];
- curband = start = 0;
- for (i = 0; i < 128; i++) {
- if (i - start >= sce->ics.swb_sizes[curband]) {
- start += sce->ics.swb_sizes[curband];
- curband++;
- }
- if (coeffs[i]) {
- avg_energy += coeffs[i] * coeffs[i];
- last = FFMAX(last, i);
- lastband = FFMAX(lastband, curband);
- }
- }
- }
- }
- last++;
- avg_energy /= last;
- if (avg_energy == 0.0f) {
- for (i = 0; i < FF_ARRAY_ELEMS(sce->sf_idx); i++)
- sce->sf_idx[i] = SCALE_ONE_POS;
- return;
- }
- for (w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w]) {
- start = w*128;
- for (g = 0; g < sce->ics.num_swb; g++) {
- float *coefs = &sce->coeffs[start];
- const int size = sce->ics.swb_sizes[g];
- int start2 = start, end2 = start + size, peakpos = start;
- float maxval = -1, thr = 0.0f, t;
- maxq[w*16+g] = 0.0f;
- if (g > lastband) {
- maxq[w*16+g] = 0.0f;
- start += size;
- for (w2 = 0; w2 < sce->ics.group_len[w]; w2++)
- memset(coefs + w2*128, 0, sizeof(coefs[0])*size);
- continue;
- }
- for (w2 = 0; w2 < sce->ics.group_len[w]; w2++) {
- for (i = 0; i < size; i++) {
- float t = coefs[w2*128+i]*coefs[w2*128+i];
- maxq[w*16+g] = FFMAX(maxq[w*16+g], fabsf(coefs[w2*128 + i]));
- thr += t;
- if (sce->ics.num_windows == 1 && maxval < t) {
- maxval = t;
- peakpos = start+i;
- }
- }
- }
- if (sce->ics.num_windows == 1) {
- start2 = FFMAX(peakpos - 2, start2);
- end2 = FFMIN(peakpos + 3, end2);
- } else {
- start2 -= start;
- end2 -= start;
- }
- start += size;
- thr = pow(thr / (avg_energy * (end2 - start2)), 0.3 + 0.1*(lastband - g) / lastband);
- t = 1.0 - (1.0 * start2 / last);
- uplim[w*16+g] = distfact / (1.4 * thr + t*t*t + 0.075);
- }
- }
- memset(sce->sf_idx, 0, sizeof(sce->sf_idx));
- abs_pow34_v(s->scoefs, sce->coeffs, 1024);
- for (w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w]) {
- start = w*128;
- for (g = 0; g < sce->ics.num_swb; g++) {
- const float *coefs = &sce->coeffs[start];
- const float *scaled = &s->scoefs[start];
- const int size = sce->ics.swb_sizes[g];
- int scf, prev_scf, step;
- int min_scf = -1, max_scf = 256;
- float curdiff;
- if (maxq[w*16+g] < 21.544) {
- sce->zeroes[w*16+g] = 1;
- start += size;
- continue;
- }
- sce->zeroes[w*16+g] = 0;
- scf = prev_scf = av_clip(SCALE_ONE_POS - SCALE_DIV_512 - log2f(1/maxq[w*16+g])*16/3, 60, 218);
- for (;;) {
- float dist = 0.0f;
- int quant_max;
-
- for (w2 = 0; w2 < sce->ics.group_len[w]; w2++) {
- int b;
- dist += quantize_band_cost(s, coefs + w2*128,
- scaled + w2*128,
- sce->ics.swb_sizes[g],
- scf,
- ESC_BT,
- lambda,
- INFINITY,
- &b,
- 0);
- dist -= b;
- }
- dist *= 1.0f / 512.0f / lambda;
- quant_max = quant(maxq[w*16+g], ff_aac_pow2sf_tab[POW_SF2_ZERO - scf + SCALE_ONE_POS - SCALE_DIV_512], ROUND_STANDARD);
- if (quant_max >= 8191) { // too much, return to the previous quantizer
- sce->sf_idx[w*16+g] = prev_scf;
- break;
- }
- prev_scf = scf;
- curdiff = fabsf(dist - uplim[w*16+g]);
- if (curdiff <= 1.0f)
- step = 0;
- else
- step = log2f(curdiff);
- if (dist > uplim[w*16+g])
- step = -step;
- scf += step;
- scf = av_clip_uint8(scf);
- step = scf - prev_scf;
- if (FFABS(step) <= 1 || (step > 0 && scf >= max_scf) || (step < 0 && scf <= min_scf)) {
- sce->sf_idx[w*16+g] = av_clip(scf, min_scf, max_scf);
- break;
- }
- if (step > 0)
- min_scf = prev_scf;
- else
- max_scf = prev_scf;
- }
- start += size;
- }
- }
- minq = sce->sf_idx[0] ? sce->sf_idx[0] : INT_MAX;
- for (i = 1; i < 128; i++) {
- if (!sce->sf_idx[i])
- sce->sf_idx[i] = sce->sf_idx[i-1];
- else
- minq = FFMIN(minq, sce->sf_idx[i]);
- }
- if (minq == INT_MAX)
- minq = 0;
- minq = FFMIN(minq, SCALE_MAX_POS);
- maxsf = FFMIN(minq + SCALE_MAX_DIFF, SCALE_MAX_POS);
- for (i = 126; i >= 0; i--) {
- if (!sce->sf_idx[i])
- sce->sf_idx[i] = sce->sf_idx[i+1];
- sce->sf_idx[i] = av_clip(sce->sf_idx[i], minq, maxsf);
- }
- }
-
- static void search_for_quantizers_fast(AVCodecContext *avctx, AACEncContext *s,
- SingleChannelElement *sce,
- const float lambda)
- {
- int i, w, w2, g;
- int minq = 255;
-
- memset(sce->sf_idx, 0, sizeof(sce->sf_idx));
- for (w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w]) {
- for (g = 0; g < sce->ics.num_swb; g++) {
- for (w2 = 0; w2 < sce->ics.group_len[w]; w2++) {
- FFPsyBand *band = &s->psy.ch[s->cur_channel].psy_bands[(w+w2)*16+g];
- if (band->energy <= band->threshold) {
- sce->sf_idx[(w+w2)*16+g] = 218;
- sce->zeroes[(w+w2)*16+g] = 1;
- } else {
- sce->sf_idx[(w+w2)*16+g] = av_clip(SCALE_ONE_POS - SCALE_DIV_512 + log2f(band->threshold), 80, 218);
- sce->zeroes[(w+w2)*16+g] = 0;
- }
- minq = FFMIN(minq, sce->sf_idx[(w+w2)*16+g]);
- }
- }
- }
- for (i = 0; i < 128; i++) {
- sce->sf_idx[i] = 140;
- //av_clip(sce->sf_idx[i], minq, minq + SCALE_MAX_DIFF - 1);
- }
- //set the same quantizers inside window groups
- for (w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w])
- for (g = 0; g < sce->ics.num_swb; g++)
- for (w2 = 1; w2 < sce->ics.group_len[w]; w2++)
- sce->sf_idx[(w+w2)*16+g] = sce->sf_idx[w*16+g];
- }
-
- static void search_for_pns(AACEncContext *s, AVCodecContext *avctx, SingleChannelElement *sce)
- {
- FFPsyBand *band;
- int w, g, w2, i, start, count = 0;
- float *PNS = &s->scoefs[0*128], *PNS34 = &s->scoefs[1*128];
- float *NOR34 = &s->scoefs[3*128];
- const float lambda = s->lambda;
- const float freq_mult = avctx->sample_rate/(1024.0f/sce->ics.num_windows)/2.0f;
- const float thr_mult = NOISE_LAMBDA_REPLACE*(100.0f/lambda);
- const float spread_threshold = NOISE_SPREAD_THRESHOLD*(lambda/100.f);
-
- for (w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w]) {
- start = 0;
- for (g = 0; g < sce->ics.num_swb; g++) {
- int noise_sfi, try_pns = 0;
- float dist1 = 0.0f, dist2 = 0.0f, noise_amp;
- float pns_energy = 0.0f, energy_ratio, dist_thresh;
- float sfb_energy = 0.0f, threshold = 0.0f, spread = 0.0f;
- float freq_boost = FFMAX(0.88f*start*freq_mult/NOISE_LOW_LIMIT, 1.0f);
- if (start*freq_mult < NOISE_LOW_LIMIT) {
- start += sce->ics.swb_sizes[g];
- continue;
- } else {
- dist_thresh = FFMIN(0.008f*(NOISE_LOW_LIMIT/start*freq_mult), 1.11f);
- }
- for (w2 = 0; w2 < sce->ics.group_len[w]; w2++) {
- band = &s->psy.ch[s->cur_channel].psy_bands[(w+w2)*16+g];
- sfb_energy += band->energy;
- spread += band->spread;
- threshold += band->threshold;
- }
-
- if (sce->zeroes[w*16+g]) {
- try_pns = 1;
- } else if (sfb_energy < threshold*freq_boost) {
- try_pns = 1;
- } else if (spread > spread_threshold) {
- try_pns = 0;
- } else if (sfb_energy < threshold*thr_mult*freq_boost) {
- try_pns = 1;
- }
-
- if (!try_pns || !sfb_energy) {
- start += sce->ics.swb_sizes[g];
- continue;
- }
-
- noise_sfi = av_clip(roundf(log2f(sfb_energy)*2), -100, 155); /* Quantize */
- noise_amp = -ff_aac_pow2sf_tab[noise_sfi + POW_SF2_ZERO]; /* Dequantize */
- for (w2 = 0; w2 < sce->ics.group_len[w]; w2++) {
- float band_energy, scale;
- band = &s->psy.ch[s->cur_channel+0].psy_bands[(w+w2)*16+g];
- for (i = 0; i < sce->ics.swb_sizes[g]; i++)
- PNS[i] = s->random_state = lcg_random(s->random_state);
- band_energy = s->fdsp->scalarproduct_float(PNS, PNS, sce->ics.swb_sizes[g]);
- scale = noise_amp/sqrtf(band_energy);
- s->fdsp->vector_fmul_scalar(PNS, PNS, scale, sce->ics.swb_sizes[g]);
- pns_energy += s->fdsp->scalarproduct_float(PNS, PNS, sce->ics.swb_sizes[g]);
- abs_pow34_v(NOR34, &sce->coeffs[start+(w+w2)*128], sce->ics.swb_sizes[g]);
- abs_pow34_v(PNS34, PNS, sce->ics.swb_sizes[g]);
- dist1 += quantize_band_cost(s, &sce->coeffs[start + (w+w2)*128],
- NOR34,
- sce->ics.swb_sizes[g],
- sce->sf_idx[(w+w2)*16+g],
- sce->band_alt[(w+w2)*16+g],
- lambda/band->threshold, INFINITY, NULL, 0);
- dist2 += quantize_band_cost(s, PNS,
- PNS34,
- sce->ics.swb_sizes[g],
- noise_sfi,
- NOISE_BT,
- lambda/band->threshold, INFINITY, NULL, 0);
- }
- energy_ratio = sfb_energy/pns_energy; /* Compensates for quantization error */
- sce->pns_ener[w*16+g] = energy_ratio*sfb_energy;
- if (energy_ratio > 0.80f && energy_ratio < 1.20f && dist1/dist2 > dist_thresh) {
- sce->band_type[w*16+g] = NOISE_BT;
- sce->zeroes[w*16+g] = 0;
- if (sce->band_type[w*16+g-1] != NOISE_BT && /* Prevent holes */
- sce->band_type[w*16+g-2] == NOISE_BT) {
- sce->band_type[w*16+g-1] = NOISE_BT;
- sce->zeroes[w*16+g-1] = 0;
- }
- count++;
- }
- start += sce->ics.swb_sizes[g];
- }
- }
- }
-
- static void search_for_ms(AACEncContext *s, ChannelElement *cpe)
- {
- int start = 0, i, w, w2, g;
- float M[128], S[128];
- float *L34 = s->scoefs, *R34 = s->scoefs + 128, *M34 = s->scoefs + 128*2, *S34 = s->scoefs + 128*3;
- const float lambda = s->lambda;
- SingleChannelElement *sce0 = &cpe->ch[0];
- SingleChannelElement *sce1 = &cpe->ch[1];
- if (!cpe->common_window)
- return;
- for (w = 0; w < sce0->ics.num_windows; w += sce0->ics.group_len[w]) {
- start = 0;
- for (g = 0; g < sce0->ics.num_swb; g++) {
- if (!cpe->ch[0].zeroes[w*16+g] && !cpe->ch[1].zeroes[w*16+g]) {
- float dist1 = 0.0f, dist2 = 0.0f;
- for (w2 = 0; w2 < sce0->ics.group_len[w]; w2++) {
- FFPsyBand *band0 = &s->psy.ch[s->cur_channel+0].psy_bands[(w+w2)*16+g];
- FFPsyBand *band1 = &s->psy.ch[s->cur_channel+1].psy_bands[(w+w2)*16+g];
- float minthr = FFMIN(band0->threshold, band1->threshold);
- float maxthr = FFMAX(band0->threshold, band1->threshold);
- for (i = 0; i < sce0->ics.swb_sizes[g]; i++) {
- M[i] = (sce0->coeffs[start+(w+w2)*128+i]
- + sce1->coeffs[start+(w+w2)*128+i]) * 0.5;
- S[i] = M[i]
- - sce1->coeffs[start+(w+w2)*128+i];
- }
- abs_pow34_v(L34, sce0->coeffs+start+(w+w2)*128, sce0->ics.swb_sizes[g]);
- abs_pow34_v(R34, sce1->coeffs+start+(w+w2)*128, sce0->ics.swb_sizes[g]);
- abs_pow34_v(M34, M, sce0->ics.swb_sizes[g]);
- abs_pow34_v(S34, S, sce0->ics.swb_sizes[g]);
- dist1 += quantize_band_cost(s, &sce0->coeffs[start + (w+w2)*128],
- L34,
- sce0->ics.swb_sizes[g],
- sce0->sf_idx[(w+w2)*16+g],
- sce0->band_type[(w+w2)*16+g],
- lambda / band0->threshold, INFINITY, NULL, 0);
- dist1 += quantize_band_cost(s, &sce1->coeffs[start + (w+w2)*128],
- R34,
- sce1->ics.swb_sizes[g],
- sce1->sf_idx[(w+w2)*16+g],
- sce1->band_type[(w+w2)*16+g],
- lambda / band1->threshold, INFINITY, NULL, 0);
- dist2 += quantize_band_cost(s, M,
- M34,
- sce0->ics.swb_sizes[g],
- sce0->sf_idx[(w+w2)*16+g],
- sce0->band_type[(w+w2)*16+g],
- lambda / maxthr, INFINITY, NULL, 0);
- dist2 += quantize_band_cost(s, S,
- S34,
- sce1->ics.swb_sizes[g],
- sce1->sf_idx[(w+w2)*16+g],
- sce1->band_type[(w+w2)*16+g],
- lambda / minthr, INFINITY, NULL, 0);
- }
- cpe->ms_mask[w*16+g] = dist2 < dist1;
- }
- start += sce0->ics.swb_sizes[g];
- }
- }
- }
-
- AACCoefficientsEncoder ff_aac_coders[AAC_CODER_NB] = {
- [AAC_CODER_FAAC] = {
- search_for_quantizers_faac,
- encode_window_bands_info,
- quantize_and_encode_band,
- ff_aac_encode_tns_info,
- ff_aac_encode_main_pred,
- ff_aac_adjust_common_prediction,
- ff_aac_apply_main_pred,
- ff_aac_apply_tns,
- set_special_band_scalefactors,
- search_for_pns,
- ff_aac_search_for_tns,
- search_for_ms,
- ff_aac_search_for_is,
- ff_aac_search_for_pred,
- },
- [AAC_CODER_ANMR] = {
- search_for_quantizers_anmr,
- encode_window_bands_info,
- quantize_and_encode_band,
- ff_aac_encode_tns_info,
- ff_aac_encode_main_pred,
- ff_aac_adjust_common_prediction,
- ff_aac_apply_main_pred,
- ff_aac_apply_tns,
- set_special_band_scalefactors,
- search_for_pns,
- ff_aac_search_for_tns,
- search_for_ms,
- ff_aac_search_for_is,
- ff_aac_search_for_pred,
- },
- [AAC_CODER_TWOLOOP] = {
- search_for_quantizers_twoloop,
- codebook_trellis_rate,
- quantize_and_encode_band,
- ff_aac_encode_tns_info,
- ff_aac_encode_main_pred,
- ff_aac_adjust_common_prediction,
- ff_aac_apply_main_pred,
- ff_aac_apply_tns,
- set_special_band_scalefactors,
- search_for_pns,
- ff_aac_search_for_tns,
- search_for_ms,
- ff_aac_search_for_is,
- ff_aac_search_for_pred,
- },
- [AAC_CODER_FAST] = {
- search_for_quantizers_fast,
- encode_window_bands_info,
- quantize_and_encode_band,
- ff_aac_encode_tns_info,
- ff_aac_encode_main_pred,
- ff_aac_adjust_common_prediction,
- ff_aac_apply_main_pred,
- ff_aac_apply_tns,
- set_special_band_scalefactors,
- search_for_pns,
- ff_aac_search_for_tns,
- search_for_ms,
- ff_aac_search_for_is,
- ff_aac_search_for_pred,
- },
- };
|