You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

993 lines
32KB

  1. /*
  2. * Copyright (c) 2003 The FFmpeg Project.
  3. *
  4. * This file is part of FFmpeg.
  5. *
  6. * FFmpeg is free software; you can redistribute it and/or
  7. * modify it under the terms of the GNU Lesser General Public
  8. * License as published by the Free Software Foundation; either
  9. * version 2.1 of the License, or (at your option) any later version.
  10. *
  11. * FFmpeg is distributed in the hope that it will be useful,
  12. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  13. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  14. * Lesser General Public License for more details.
  15. *
  16. * You should have received a copy of the GNU Lesser General Public
  17. * License along with FFmpeg; if not, write to the Free Software
  18. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  19. */
  20. /*
  21. * How to use this decoder:
  22. * SVQ3 data is transported within Apple Quicktime files. Quicktime files
  23. * have stsd atoms to describe media trak properties. A stsd atom for a
  24. * video trak contains 1 or more ImageDescription atoms. These atoms begin
  25. * with the 4-byte length of the atom followed by the codec fourcc. Some
  26. * decoders need information in this atom to operate correctly. Such
  27. * is the case with SVQ3. In order to get the best use out of this decoder,
  28. * the calling app must make the SVQ3 ImageDescription atom available
  29. * via the AVCodecContext's extradata[_size] field:
  30. *
  31. * AVCodecContext.extradata = pointer to ImageDescription, first characters
  32. * are expected to be 'S', 'V', 'Q', and '3', NOT the 4-byte atom length
  33. * AVCodecContext.extradata_size = size of ImageDescription atom memory
  34. * buffer (which will be the same as the ImageDescription atom size field
  35. * from the QT file, minus 4 bytes since the length is missing)
  36. *
  37. * You will know you have these parameters passed correctly when the decoder
  38. * correctly decodes this file:
  39. * ftp://ftp.mplayerhq.hu/MPlayer/samples/V-codecs/SVQ3/Vertical400kbit.sorenson3.mov
  40. */
  41. #ifdef CONFIG_ZLIB
  42. #include <zlib.h>
  43. #endif
  44. /**
  45. * @file svq3.c
  46. * svq3 decoder.
  47. */
  48. #define FULLPEL_MODE 1
  49. #define HALFPEL_MODE 2
  50. #define THIRDPEL_MODE 3
  51. #define PREDICT_MODE 4
  52. /* dual scan (from some older h264 draft)
  53. o-->o-->o o
  54. | /|
  55. o o o / o
  56. | / | |/ |
  57. o o o o
  58. /
  59. o-->o-->o-->o
  60. */
  61. static const uint8_t svq3_scan[16]={
  62. 0+0*4, 1+0*4, 2+0*4, 2+1*4,
  63. 2+2*4, 3+0*4, 3+1*4, 3+2*4,
  64. 0+1*4, 0+2*4, 1+1*4, 1+2*4,
  65. 0+3*4, 1+3*4, 2+3*4, 3+3*4,
  66. };
  67. static const uint8_t svq3_pred_0[25][2] = {
  68. { 0, 0 },
  69. { 1, 0 }, { 0, 1 },
  70. { 0, 2 }, { 1, 1 }, { 2, 0 },
  71. { 3, 0 }, { 2, 1 }, { 1, 2 }, { 0, 3 },
  72. { 0, 4 }, { 1, 3 }, { 2, 2 }, { 3, 1 }, { 4, 0 },
  73. { 4, 1 }, { 3, 2 }, { 2, 3 }, { 1, 4 },
  74. { 2, 4 }, { 3, 3 }, { 4, 2 },
  75. { 4, 3 }, { 3, 4 },
  76. { 4, 4 }
  77. };
  78. static const int8_t svq3_pred_1[6][6][5] = {
  79. { { 2,-1,-1,-1,-1 }, { 2, 1,-1,-1,-1 }, { 1, 2,-1,-1,-1 },
  80. { 2, 1,-1,-1,-1 }, { 1, 2,-1,-1,-1 }, { 1, 2,-1,-1,-1 } },
  81. { { 0, 2,-1,-1,-1 }, { 0, 2, 1, 4, 3 }, { 0, 1, 2, 4, 3 },
  82. { 0, 2, 1, 4, 3 }, { 2, 0, 1, 3, 4 }, { 0, 4, 2, 1, 3 } },
  83. { { 2, 0,-1,-1,-1 }, { 2, 1, 0, 4, 3 }, { 1, 2, 4, 0, 3 },
  84. { 2, 1, 0, 4, 3 }, { 2, 1, 4, 3, 0 }, { 1, 2, 4, 0, 3 } },
  85. { { 2, 0,-1,-1,-1 }, { 2, 0, 1, 4, 3 }, { 1, 2, 0, 4, 3 },
  86. { 2, 1, 0, 4, 3 }, { 2, 1, 3, 4, 0 }, { 2, 4, 1, 0, 3 } },
  87. { { 0, 2,-1,-1,-1 }, { 0, 2, 1, 3, 4 }, { 1, 2, 3, 0, 4 },
  88. { 2, 0, 1, 3, 4 }, { 2, 1, 3, 0, 4 }, { 2, 0, 4, 3, 1 } },
  89. { { 0, 2,-1,-1,-1 }, { 0, 2, 4, 1, 3 }, { 1, 4, 2, 0, 3 },
  90. { 4, 2, 0, 1, 3 }, { 2, 0, 1, 4, 3 }, { 4, 2, 1, 0, 3 } },
  91. };
  92. static const struct { uint8_t run; uint8_t level; } svq3_dct_tables[2][16] = {
  93. { { 0, 0 }, { 0, 1 }, { 1, 1 }, { 2, 1 }, { 0, 2 }, { 3, 1 }, { 4, 1 }, { 5, 1 },
  94. { 0, 3 }, { 1, 2 }, { 2, 2 }, { 6, 1 }, { 7, 1 }, { 8, 1 }, { 9, 1 }, { 0, 4 } },
  95. { { 0, 0 }, { 0, 1 }, { 1, 1 }, { 0, 2 }, { 2, 1 }, { 0, 3 }, { 0, 4 }, { 0, 5 },
  96. { 3, 1 }, { 4, 1 }, { 1, 2 }, { 1, 3 }, { 0, 6 }, { 0, 7 }, { 0, 8 }, { 0, 9 } }
  97. };
  98. static const uint32_t svq3_dequant_coeff[32] = {
  99. 3881, 4351, 4890, 5481, 6154, 6914, 7761, 8718,
  100. 9781, 10987, 12339, 13828, 15523, 17435, 19561, 21873,
  101. 24552, 27656, 30847, 34870, 38807, 43747, 49103, 54683,
  102. 61694, 68745, 77615, 89113,100253,109366,126635,141533
  103. };
  104. static void svq3_luma_dc_dequant_idct_c(DCTELEM *block, int qp){
  105. const int qmul= svq3_dequant_coeff[qp];
  106. #define stride 16
  107. int i;
  108. int temp[16];
  109. static const int x_offset[4]={0, 1*stride, 4* stride, 5*stride};
  110. static const int y_offset[4]={0, 2*stride, 8* stride, 10*stride};
  111. for(i=0; i<4; i++){
  112. const int offset= y_offset[i];
  113. const int z0= 13*(block[offset+stride*0] + block[offset+stride*4]);
  114. const int z1= 13*(block[offset+stride*0] - block[offset+stride*4]);
  115. const int z2= 7* block[offset+stride*1] - 17*block[offset+stride*5];
  116. const int z3= 17* block[offset+stride*1] + 7*block[offset+stride*5];
  117. temp[4*i+0]= z0+z3;
  118. temp[4*i+1]= z1+z2;
  119. temp[4*i+2]= z1-z2;
  120. temp[4*i+3]= z0-z3;
  121. }
  122. for(i=0; i<4; i++){
  123. const int offset= x_offset[i];
  124. const int z0= 13*(temp[4*0+i] + temp[4*2+i]);
  125. const int z1= 13*(temp[4*0+i] - temp[4*2+i]);
  126. const int z2= 7* temp[4*1+i] - 17*temp[4*3+i];
  127. const int z3= 17* temp[4*1+i] + 7*temp[4*3+i];
  128. block[stride*0 +offset]= ((z0 + z3)*qmul + 0x80000)>>20;
  129. block[stride*2 +offset]= ((z1 + z2)*qmul + 0x80000)>>20;
  130. block[stride*8 +offset]= ((z1 - z2)*qmul + 0x80000)>>20;
  131. block[stride*10+offset]= ((z0 - z3)*qmul + 0x80000)>>20;
  132. }
  133. }
  134. #undef stride
  135. static void svq3_add_idct_c (uint8_t *dst, DCTELEM *block, int stride, int qp, int dc){
  136. const int qmul= svq3_dequant_coeff[qp];
  137. int i;
  138. uint8_t *cm = ff_cropTbl + MAX_NEG_CROP;
  139. if (dc) {
  140. dc = 13*13*((dc == 1) ? 1538*block[0] : ((qmul*(block[0] >> 3)) / 2));
  141. block[0] = 0;
  142. }
  143. for (i=0; i < 4; i++) {
  144. const int z0= 13*(block[0 + 4*i] + block[2 + 4*i]);
  145. const int z1= 13*(block[0 + 4*i] - block[2 + 4*i]);
  146. const int z2= 7* block[1 + 4*i] - 17*block[3 + 4*i];
  147. const int z3= 17* block[1 + 4*i] + 7*block[3 + 4*i];
  148. block[0 + 4*i]= z0 + z3;
  149. block[1 + 4*i]= z1 + z2;
  150. block[2 + 4*i]= z1 - z2;
  151. block[3 + 4*i]= z0 - z3;
  152. }
  153. for (i=0; i < 4; i++) {
  154. const int z0= 13*(block[i + 4*0] + block[i + 4*2]);
  155. const int z1= 13*(block[i + 4*0] - block[i + 4*2]);
  156. const int z2= 7* block[i + 4*1] - 17*block[i + 4*3];
  157. const int z3= 17* block[i + 4*1] + 7*block[i + 4*3];
  158. const int rr= (dc + 0x80000);
  159. dst[i + stride*0]= cm[ dst[i + stride*0] + (((z0 + z3)*qmul + rr) >> 20) ];
  160. dst[i + stride*1]= cm[ dst[i + stride*1] + (((z1 + z2)*qmul + rr) >> 20) ];
  161. dst[i + stride*2]= cm[ dst[i + stride*2] + (((z1 - z2)*qmul + rr) >> 20) ];
  162. dst[i + stride*3]= cm[ dst[i + stride*3] + (((z0 - z3)*qmul + rr) >> 20) ];
  163. }
  164. }
  165. static inline int svq3_decode_block (GetBitContext *gb, DCTELEM *block,
  166. int index, const int type) {
  167. static const uint8_t *const scan_patterns[4] =
  168. { luma_dc_zigzag_scan, zigzag_scan, svq3_scan, chroma_dc_scan };
  169. int run, level, sign, vlc, limit;
  170. const int intra = (3 * type) >> 2;
  171. const uint8_t *const scan = scan_patterns[type];
  172. for (limit=(16 >> intra); index < 16; index=limit, limit+=8) {
  173. for (; (vlc = svq3_get_ue_golomb (gb)) != 0; index++) {
  174. if (vlc == INVALID_VLC)
  175. return -1;
  176. sign = (vlc & 0x1) - 1;
  177. vlc = (vlc + 1) >> 1;
  178. if (type == 3) {
  179. if (vlc < 3) {
  180. run = 0;
  181. level = vlc;
  182. } else if (vlc < 4) {
  183. run = 1;
  184. level = 1;
  185. } else {
  186. run = (vlc & 0x3);
  187. level = ((vlc + 9) >> 2) - run;
  188. }
  189. } else {
  190. if (vlc < 16) {
  191. run = svq3_dct_tables[intra][vlc].run;
  192. level = svq3_dct_tables[intra][vlc].level;
  193. } else if (intra) {
  194. run = (vlc & 0x7);
  195. level = (vlc >> 3) + ((run == 0) ? 8 : ((run < 2) ? 2 : ((run < 5) ? 0 : -1)));
  196. } else {
  197. run = (vlc & 0xF);
  198. level = (vlc >> 4) + ((run == 0) ? 4 : ((run < 3) ? 2 : ((run < 10) ? 1 : 0)));
  199. }
  200. }
  201. if ((index += run) >= limit)
  202. return -1;
  203. block[scan[index]] = (level ^ sign) - sign;
  204. }
  205. if (type != 2) {
  206. break;
  207. }
  208. }
  209. return 0;
  210. }
  211. static inline void svq3_mc_dir_part (MpegEncContext *s,
  212. int x, int y, int width, int height,
  213. int mx, int my, int dxy,
  214. int thirdpel, int dir, int avg) {
  215. const Picture *pic = (dir == 0) ? &s->last_picture : &s->next_picture;
  216. uint8_t *src, *dest;
  217. int i, emu = 0;
  218. int blocksize= 2 - (width>>3); //16->0, 8->1, 4->2
  219. mx += x;
  220. my += y;
  221. if (mx < 0 || mx >= (s->h_edge_pos - width - 1) ||
  222. my < 0 || my >= (s->v_edge_pos - height - 1)) {
  223. if ((s->flags & CODEC_FLAG_EMU_EDGE)) {
  224. emu = 1;
  225. }
  226. mx = av_clip (mx, -16, (s->h_edge_pos - width + 15));
  227. my = av_clip (my, -16, (s->v_edge_pos - height + 15));
  228. }
  229. /* form component predictions */
  230. dest = s->current_picture.data[0] + x + y*s->linesize;
  231. src = pic->data[0] + mx + my*s->linesize;
  232. if (emu) {
  233. ff_emulated_edge_mc (s->edge_emu_buffer, src, s->linesize, (width + 1), (height + 1),
  234. mx, my, s->h_edge_pos, s->v_edge_pos);
  235. src = s->edge_emu_buffer;
  236. }
  237. if(thirdpel)
  238. (avg ? s->dsp.avg_tpel_pixels_tab : s->dsp.put_tpel_pixels_tab)[dxy](dest, src, s->linesize, width, height);
  239. else
  240. (avg ? s->dsp.avg_pixels_tab : s->dsp.put_pixels_tab)[blocksize][dxy](dest, src, s->linesize, height);
  241. if (!(s->flags & CODEC_FLAG_GRAY)) {
  242. mx = (mx + (mx < (int) x)) >> 1;
  243. my = (my + (my < (int) y)) >> 1;
  244. width = (width >> 1);
  245. height = (height >> 1);
  246. blocksize++;
  247. for (i=1; i < 3; i++) {
  248. dest = s->current_picture.data[i] + (x >> 1) + (y >> 1)*s->uvlinesize;
  249. src = pic->data[i] + mx + my*s->uvlinesize;
  250. if (emu) {
  251. ff_emulated_edge_mc (s->edge_emu_buffer, src, s->uvlinesize, (width + 1), (height + 1),
  252. mx, my, (s->h_edge_pos >> 1), (s->v_edge_pos >> 1));
  253. src = s->edge_emu_buffer;
  254. }
  255. if(thirdpel)
  256. (avg ? s->dsp.avg_tpel_pixels_tab : s->dsp.put_tpel_pixels_tab)[dxy](dest, src, s->uvlinesize, width, height);
  257. else
  258. (avg ? s->dsp.avg_pixels_tab : s->dsp.put_pixels_tab)[blocksize][dxy](dest, src, s->uvlinesize, height);
  259. }
  260. }
  261. }
  262. static inline int svq3_mc_dir (H264Context *h, int size, int mode, int dir, int avg) {
  263. int i, j, k, mx, my, dx, dy, x, y;
  264. MpegEncContext *const s = (MpegEncContext *) h;
  265. const int part_width = ((size & 5) == 4) ? 4 : 16 >> (size & 1);
  266. const int part_height = 16 >> ((unsigned) (size + 1) / 3);
  267. const int extra_width = (mode == PREDICT_MODE) ? -16*6 : 0;
  268. const int h_edge_pos = 6*(s->h_edge_pos - part_width ) - extra_width;
  269. const int v_edge_pos = 6*(s->v_edge_pos - part_height) - extra_width;
  270. for (i=0; i < 16; i+=part_height) {
  271. for (j=0; j < 16; j+=part_width) {
  272. const int b_xy = (4*s->mb_x+(j>>2)) + (4*s->mb_y+(i>>2))*h->b_stride;
  273. int dxy;
  274. x = 16*s->mb_x + j;
  275. y = 16*s->mb_y + i;
  276. k = ((j>>2)&1) + ((i>>1)&2) + ((j>>1)&4) + (i&8);
  277. if (mode != PREDICT_MODE) {
  278. pred_motion (h, k, (part_width >> 2), dir, 1, &mx, &my);
  279. } else {
  280. mx = s->next_picture.motion_val[0][b_xy][0]<<1;
  281. my = s->next_picture.motion_val[0][b_xy][1]<<1;
  282. if (dir == 0) {
  283. mx = ((mx * h->frame_num_offset) / h->prev_frame_num_offset + 1)>>1;
  284. my = ((my * h->frame_num_offset) / h->prev_frame_num_offset + 1)>>1;
  285. } else {
  286. mx = ((mx * (h->frame_num_offset - h->prev_frame_num_offset)) / h->prev_frame_num_offset + 1)>>1;
  287. my = ((my * (h->frame_num_offset - h->prev_frame_num_offset)) / h->prev_frame_num_offset + 1)>>1;
  288. }
  289. }
  290. /* clip motion vector prediction to frame border */
  291. mx = av_clip (mx, extra_width - 6*x, h_edge_pos - 6*x);
  292. my = av_clip (my, extra_width - 6*y, v_edge_pos - 6*y);
  293. /* get (optional) motion vector differential */
  294. if (mode == PREDICT_MODE) {
  295. dx = dy = 0;
  296. } else {
  297. dy = svq3_get_se_golomb (&s->gb);
  298. dx = svq3_get_se_golomb (&s->gb);
  299. if (dx == INVALID_VLC || dy == INVALID_VLC) {
  300. av_log(h->s.avctx, AV_LOG_ERROR, "invalid MV vlc\n");
  301. return -1;
  302. }
  303. }
  304. /* compute motion vector */
  305. if (mode == THIRDPEL_MODE) {
  306. int fx, fy;
  307. mx = ((mx + 1)>>1) + dx;
  308. my = ((my + 1)>>1) + dy;
  309. fx= ((unsigned)(mx + 0x3000))/3 - 0x1000;
  310. fy= ((unsigned)(my + 0x3000))/3 - 0x1000;
  311. dxy= (mx - 3*fx) + 4*(my - 3*fy);
  312. svq3_mc_dir_part (s, x, y, part_width, part_height, fx, fy, dxy, 1, dir, avg);
  313. mx += mx;
  314. my += my;
  315. } else if (mode == HALFPEL_MODE || mode == PREDICT_MODE) {
  316. mx = ((unsigned)(mx + 1 + 0x3000))/3 + dx - 0x1000;
  317. my = ((unsigned)(my + 1 + 0x3000))/3 + dy - 0x1000;
  318. dxy= (mx&1) + 2*(my&1);
  319. svq3_mc_dir_part (s, x, y, part_width, part_height, mx>>1, my>>1, dxy, 0, dir, avg);
  320. mx *= 3;
  321. my *= 3;
  322. } else {
  323. mx = ((unsigned)(mx + 3 + 0x6000))/6 + dx - 0x1000;
  324. my = ((unsigned)(my + 3 + 0x6000))/6 + dy - 0x1000;
  325. svq3_mc_dir_part (s, x, y, part_width, part_height, mx, my, 0, 0, dir, avg);
  326. mx *= 6;
  327. my *= 6;
  328. }
  329. /* update mv_cache */
  330. if (mode != PREDICT_MODE) {
  331. int32_t mv = pack16to32(mx,my);
  332. if (part_height == 8 && i < 8) {
  333. *(int32_t *) h->mv_cache[dir][scan8[k] + 1*8] = mv;
  334. if (part_width == 8 && j < 8) {
  335. *(int32_t *) h->mv_cache[dir][scan8[k] + 1 + 1*8] = mv;
  336. }
  337. }
  338. if (part_width == 8 && j < 8) {
  339. *(int32_t *) h->mv_cache[dir][scan8[k] + 1] = mv;
  340. }
  341. if (part_width == 4 || part_height == 4) {
  342. *(int32_t *) h->mv_cache[dir][scan8[k]] = mv;
  343. }
  344. }
  345. /* write back motion vectors */
  346. fill_rectangle(s->current_picture.motion_val[dir][b_xy], part_width>>2, part_height>>2, h->b_stride, pack16to32(mx,my), 4);
  347. }
  348. }
  349. return 0;
  350. }
  351. static int svq3_decode_mb (H264Context *h, unsigned int mb_type) {
  352. int i, j, k, m, dir, mode;
  353. int cbp = 0;
  354. uint32_t vlc;
  355. int8_t *top, *left;
  356. MpegEncContext *const s = (MpegEncContext *) h;
  357. const int mb_xy = h->mb_xy;
  358. const int b_xy = 4*s->mb_x + 4*s->mb_y*h->b_stride;
  359. h->top_samples_available = (s->mb_y == 0) ? 0x33FF : 0xFFFF;
  360. h->left_samples_available = (s->mb_x == 0) ? 0x5F5F : 0xFFFF;
  361. h->topright_samples_available = 0xFFFF;
  362. if (mb_type == 0) { /* SKIP */
  363. if (s->pict_type == FF_P_TYPE || s->next_picture.mb_type[mb_xy] == -1) {
  364. svq3_mc_dir_part (s, 16*s->mb_x, 16*s->mb_y, 16, 16, 0, 0, 0, 0, 0, 0);
  365. if (s->pict_type == FF_B_TYPE) {
  366. svq3_mc_dir_part (s, 16*s->mb_x, 16*s->mb_y, 16, 16, 0, 0, 0, 0, 1, 1);
  367. }
  368. mb_type = MB_TYPE_SKIP;
  369. } else {
  370. mb_type= FFMIN(s->next_picture.mb_type[mb_xy], 6);
  371. if(svq3_mc_dir (h, mb_type, PREDICT_MODE, 0, 0) < 0)
  372. return -1;
  373. if(svq3_mc_dir (h, mb_type, PREDICT_MODE, 1, 1) < 0)
  374. return -1;
  375. mb_type = MB_TYPE_16x16;
  376. }
  377. } else if (mb_type < 8) { /* INTER */
  378. if (h->thirdpel_flag && h->halfpel_flag == !get_bits1 (&s->gb)) {
  379. mode = THIRDPEL_MODE;
  380. } else if (h->halfpel_flag && h->thirdpel_flag == !get_bits1 (&s->gb)) {
  381. mode = HALFPEL_MODE;
  382. } else {
  383. mode = FULLPEL_MODE;
  384. }
  385. /* fill caches */
  386. /* note ref_cache should contain here:
  387. ????????
  388. ???11111
  389. N??11111
  390. N??11111
  391. N??11111
  392. */
  393. for (m=0; m < 2; m++) {
  394. if (s->mb_x > 0 && h->intra4x4_pred_mode[mb_xy - 1][0] != -1) {
  395. for (i=0; i < 4; i++) {
  396. *(uint32_t *) h->mv_cache[m][scan8[0] - 1 + i*8] = *(uint32_t *) s->current_picture.motion_val[m][b_xy - 1 + i*h->b_stride];
  397. }
  398. } else {
  399. for (i=0; i < 4; i++) {
  400. *(uint32_t *) h->mv_cache[m][scan8[0] - 1 + i*8] = 0;
  401. }
  402. }
  403. if (s->mb_y > 0) {
  404. memcpy (h->mv_cache[m][scan8[0] - 1*8], s->current_picture.motion_val[m][b_xy - h->b_stride], 4*2*sizeof(int16_t));
  405. memset (&h->ref_cache[m][scan8[0] - 1*8], (h->intra4x4_pred_mode[mb_xy - s->mb_stride][4] == -1) ? PART_NOT_AVAILABLE : 1, 4);
  406. if (s->mb_x < (s->mb_width - 1)) {
  407. *(uint32_t *) h->mv_cache[m][scan8[0] + 4 - 1*8] = *(uint32_t *) s->current_picture.motion_val[m][b_xy - h->b_stride + 4];
  408. h->ref_cache[m][scan8[0] + 4 - 1*8] =
  409. (h->intra4x4_pred_mode[mb_xy - s->mb_stride + 1][0] == -1 ||
  410. h->intra4x4_pred_mode[mb_xy - s->mb_stride][4] == -1) ? PART_NOT_AVAILABLE : 1;
  411. }else
  412. h->ref_cache[m][scan8[0] + 4 - 1*8] = PART_NOT_AVAILABLE;
  413. if (s->mb_x > 0) {
  414. *(uint32_t *) h->mv_cache[m][scan8[0] - 1 - 1*8] = *(uint32_t *) s->current_picture.motion_val[m][b_xy - h->b_stride - 1];
  415. h->ref_cache[m][scan8[0] - 1 - 1*8] = (h->intra4x4_pred_mode[mb_xy - s->mb_stride - 1][3] == -1) ? PART_NOT_AVAILABLE : 1;
  416. }else
  417. h->ref_cache[m][scan8[0] - 1 - 1*8] = PART_NOT_AVAILABLE;
  418. }else
  419. memset (&h->ref_cache[m][scan8[0] - 1*8 - 1], PART_NOT_AVAILABLE, 8);
  420. if (s->pict_type != FF_B_TYPE)
  421. break;
  422. }
  423. /* decode motion vector(s) and form prediction(s) */
  424. if (s->pict_type == FF_P_TYPE) {
  425. if(svq3_mc_dir (h, (mb_type - 1), mode, 0, 0) < 0)
  426. return -1;
  427. } else { /* FF_B_TYPE */
  428. if (mb_type != 2) {
  429. if(svq3_mc_dir (h, 0, mode, 0, 0) < 0)
  430. return -1;
  431. } else {
  432. for (i=0; i < 4; i++) {
  433. memset (s->current_picture.motion_val[0][b_xy + i*h->b_stride], 0, 4*2*sizeof(int16_t));
  434. }
  435. }
  436. if (mb_type != 1) {
  437. if(svq3_mc_dir (h, 0, mode, 1, (mb_type == 3)) < 0)
  438. return -1;
  439. } else {
  440. for (i=0; i < 4; i++) {
  441. memset (s->current_picture.motion_val[1][b_xy + i*h->b_stride], 0, 4*2*sizeof(int16_t));
  442. }
  443. }
  444. }
  445. mb_type = MB_TYPE_16x16;
  446. } else if (mb_type == 8 || mb_type == 33) { /* INTRA4x4 */
  447. memset (h->intra4x4_pred_mode_cache, -1, 8*5*sizeof(int8_t));
  448. if (mb_type == 8) {
  449. if (s->mb_x > 0) {
  450. for (i=0; i < 4; i++) {
  451. h->intra4x4_pred_mode_cache[scan8[0] - 1 + i*8] = h->intra4x4_pred_mode[mb_xy - 1][i];
  452. }
  453. if (h->intra4x4_pred_mode_cache[scan8[0] - 1] == -1) {
  454. h->left_samples_available = 0x5F5F;
  455. }
  456. }
  457. if (s->mb_y > 0) {
  458. h->intra4x4_pred_mode_cache[4+8*0] = h->intra4x4_pred_mode[mb_xy - s->mb_stride][4];
  459. h->intra4x4_pred_mode_cache[5+8*0] = h->intra4x4_pred_mode[mb_xy - s->mb_stride][5];
  460. h->intra4x4_pred_mode_cache[6+8*0] = h->intra4x4_pred_mode[mb_xy - s->mb_stride][6];
  461. h->intra4x4_pred_mode_cache[7+8*0] = h->intra4x4_pred_mode[mb_xy - s->mb_stride][3];
  462. if (h->intra4x4_pred_mode_cache[4+8*0] == -1) {
  463. h->top_samples_available = 0x33FF;
  464. }
  465. }
  466. /* decode prediction codes for luma blocks */
  467. for (i=0; i < 16; i+=2) {
  468. vlc = svq3_get_ue_golomb (&s->gb);
  469. if (vlc >= 25){
  470. av_log(h->s.avctx, AV_LOG_ERROR, "luma prediction:%d\n", vlc);
  471. return -1;
  472. }
  473. left = &h->intra4x4_pred_mode_cache[scan8[i] - 1];
  474. top = &h->intra4x4_pred_mode_cache[scan8[i] - 8];
  475. left[1] = svq3_pred_1[top[0] + 1][left[0] + 1][svq3_pred_0[vlc][0]];
  476. left[2] = svq3_pred_1[top[1] + 1][left[1] + 1][svq3_pred_0[vlc][1]];
  477. if (left[1] == -1 || left[2] == -1){
  478. av_log(h->s.avctx, AV_LOG_ERROR, "weird prediction\n");
  479. return -1;
  480. }
  481. }
  482. } else { /* mb_type == 33, DC_128_PRED block type */
  483. for (i=0; i < 4; i++) {
  484. memset (&h->intra4x4_pred_mode_cache[scan8[0] + 8*i], DC_PRED, 4);
  485. }
  486. }
  487. write_back_intra_pred_mode (h);
  488. if (mb_type == 8) {
  489. check_intra4x4_pred_mode (h);
  490. h->top_samples_available = (s->mb_y == 0) ? 0x33FF : 0xFFFF;
  491. h->left_samples_available = (s->mb_x == 0) ? 0x5F5F : 0xFFFF;
  492. } else {
  493. for (i=0; i < 4; i++) {
  494. memset (&h->intra4x4_pred_mode_cache[scan8[0] + 8*i], DC_128_PRED, 4);
  495. }
  496. h->top_samples_available = 0x33FF;
  497. h->left_samples_available = 0x5F5F;
  498. }
  499. mb_type = MB_TYPE_INTRA4x4;
  500. } else { /* INTRA16x16 */
  501. dir = i_mb_type_info[mb_type - 8].pred_mode;
  502. dir = (dir >> 1) ^ 3*(dir & 1) ^ 1;
  503. if ((h->intra16x16_pred_mode = check_intra_pred_mode (h, dir)) == -1){
  504. av_log(h->s.avctx, AV_LOG_ERROR, "check_intra_pred_mode = -1\n");
  505. return -1;
  506. }
  507. cbp = i_mb_type_info[mb_type - 8].cbp;
  508. mb_type = MB_TYPE_INTRA16x16;
  509. }
  510. if (!IS_INTER(mb_type) && s->pict_type != FF_I_TYPE) {
  511. for (i=0; i < 4; i++) {
  512. memset (s->current_picture.motion_val[0][b_xy + i*h->b_stride], 0, 4*2*sizeof(int16_t));
  513. }
  514. if (s->pict_type == FF_B_TYPE) {
  515. for (i=0; i < 4; i++) {
  516. memset (s->current_picture.motion_val[1][b_xy + i*h->b_stride], 0, 4*2*sizeof(int16_t));
  517. }
  518. }
  519. }
  520. if (!IS_INTRA4x4(mb_type)) {
  521. memset (h->intra4x4_pred_mode[mb_xy], DC_PRED, 8);
  522. }
  523. if (!IS_SKIP(mb_type) || s->pict_type == FF_B_TYPE) {
  524. memset (h->non_zero_count_cache + 8, 0, 4*9*sizeof(uint8_t));
  525. s->dsp.clear_blocks(h->mb);
  526. }
  527. if (!IS_INTRA16x16(mb_type) && (!IS_SKIP(mb_type) || s->pict_type == FF_B_TYPE)) {
  528. if ((vlc = svq3_get_ue_golomb (&s->gb)) >= 48){
  529. av_log(h->s.avctx, AV_LOG_ERROR, "cbp_vlc=%d\n", vlc);
  530. return -1;
  531. }
  532. cbp = IS_INTRA(mb_type) ? golomb_to_intra4x4_cbp[vlc] : golomb_to_inter_cbp[vlc];
  533. }
  534. if (IS_INTRA16x16(mb_type) || (s->pict_type != FF_I_TYPE && s->adaptive_quant && cbp)) {
  535. s->qscale += svq3_get_se_golomb (&s->gb);
  536. if (s->qscale > 31){
  537. av_log(h->s.avctx, AV_LOG_ERROR, "qscale:%d\n", s->qscale);
  538. return -1;
  539. }
  540. }
  541. if (IS_INTRA16x16(mb_type)) {
  542. if (svq3_decode_block (&s->gb, h->mb, 0, 0)){
  543. av_log(h->s.avctx, AV_LOG_ERROR, "error while decoding intra luma dc\n");
  544. return -1;
  545. }
  546. }
  547. if (cbp) {
  548. const int index = IS_INTRA16x16(mb_type) ? 1 : 0;
  549. const int type = ((s->qscale < 24 && IS_INTRA4x4(mb_type)) ? 2 : 1);
  550. for (i=0; i < 4; i++) {
  551. if ((cbp & (1 << i))) {
  552. for (j=0; j < 4; j++) {
  553. k = index ? ((j&1) + 2*(i&1) + 2*(j&2) + 4*(i&2)) : (4*i + j);
  554. h->non_zero_count_cache[ scan8[k] ] = 1;
  555. if (svq3_decode_block (&s->gb, &h->mb[16*k], index, type)){
  556. av_log(h->s.avctx, AV_LOG_ERROR, "error while decoding block\n");
  557. return -1;
  558. }
  559. }
  560. }
  561. }
  562. if ((cbp & 0x30)) {
  563. for (i=0; i < 2; ++i) {
  564. if (svq3_decode_block (&s->gb, &h->mb[16*(16 + 4*i)], 0, 3)){
  565. av_log(h->s.avctx, AV_LOG_ERROR, "error while decoding chroma dc block\n");
  566. return -1;
  567. }
  568. }
  569. if ((cbp & 0x20)) {
  570. for (i=0; i < 8; i++) {
  571. h->non_zero_count_cache[ scan8[16+i] ] = 1;
  572. if (svq3_decode_block (&s->gb, &h->mb[16*(16 + i)], 1, 1)){
  573. av_log(h->s.avctx, AV_LOG_ERROR, "error while decoding chroma ac block\n");
  574. return -1;
  575. }
  576. }
  577. }
  578. }
  579. }
  580. s->current_picture.mb_type[mb_xy] = mb_type;
  581. if (IS_INTRA(mb_type)) {
  582. h->chroma_pred_mode = check_intra_pred_mode (h, DC_PRED8x8);
  583. }
  584. return 0;
  585. }
  586. static int svq3_decode_slice_header (H264Context *h) {
  587. MpegEncContext *const s = (MpegEncContext *) h;
  588. const int mb_xy = h->mb_xy;
  589. int i, header;
  590. header = get_bits (&s->gb, 8);
  591. if (((header & 0x9F) != 1 && (header & 0x9F) != 2) || (header & 0x60) == 0) {
  592. /* TODO: what? */
  593. av_log(h->s.avctx, AV_LOG_ERROR, "unsupported slice header (%02X)\n", header);
  594. return -1;
  595. } else {
  596. int length = (header >> 5) & 3;
  597. h->next_slice_index = get_bits_count(&s->gb) + 8*show_bits (&s->gb, 8*length) + 8*length;
  598. if (h->next_slice_index > s->gb.size_in_bits){
  599. av_log(h->s.avctx, AV_LOG_ERROR, "slice after bitstream end\n");
  600. return -1;
  601. }
  602. s->gb.size_in_bits = h->next_slice_index - 8*(length - 1);
  603. skip_bits(&s->gb, 8);
  604. if (length > 0) {
  605. memcpy ((uint8_t *) &s->gb.buffer[get_bits_count(&s->gb) >> 3],
  606. &s->gb.buffer[s->gb.size_in_bits >> 3], (length - 1));
  607. }
  608. }
  609. if ((i = svq3_get_ue_golomb (&s->gb)) == INVALID_VLC || i >= 3){
  610. av_log(h->s.avctx, AV_LOG_ERROR, "illegal slice type %d \n", i);
  611. return -1;
  612. }
  613. h->slice_type = golomb_to_pict_type[i];
  614. if ((header & 0x9F) == 2) {
  615. i = (s->mb_num < 64) ? 6 : (1 + av_log2 (s->mb_num - 1));
  616. s->mb_skip_run = get_bits (&s->gb, i) - (s->mb_x + (s->mb_y * s->mb_width));
  617. } else {
  618. skip_bits1 (&s->gb);
  619. s->mb_skip_run = 0;
  620. }
  621. h->slice_num = get_bits (&s->gb, 8);
  622. s->qscale = get_bits (&s->gb, 5);
  623. s->adaptive_quant = get_bits1 (&s->gb);
  624. /* unknown fields */
  625. skip_bits1 (&s->gb);
  626. if (h->unknown_svq3_flag) {
  627. skip_bits1 (&s->gb);
  628. }
  629. skip_bits1 (&s->gb);
  630. skip_bits (&s->gb, 2);
  631. while (get_bits1 (&s->gb)) {
  632. skip_bits (&s->gb, 8);
  633. }
  634. /* reset intra predictors and invalidate motion vector references */
  635. if (s->mb_x > 0) {
  636. memset (h->intra4x4_pred_mode[mb_xy - 1], -1, 4*sizeof(int8_t));
  637. memset (h->intra4x4_pred_mode[mb_xy - s->mb_x], -1, 8*sizeof(int8_t)*s->mb_x);
  638. }
  639. if (s->mb_y > 0) {
  640. memset (h->intra4x4_pred_mode[mb_xy - s->mb_stride], -1, 8*sizeof(int8_t)*(s->mb_width - s->mb_x));
  641. if (s->mb_x > 0) {
  642. h->intra4x4_pred_mode[mb_xy - s->mb_stride - 1][3] = -1;
  643. }
  644. }
  645. return 0;
  646. }
  647. static int svq3_decode_frame (AVCodecContext *avctx,
  648. void *data, int *data_size,
  649. const uint8_t *buf, int buf_size) {
  650. MpegEncContext *const s = avctx->priv_data;
  651. H264Context *const h = avctx->priv_data;
  652. int m, mb_type;
  653. unsigned char *extradata;
  654. unsigned int size;
  655. s->flags = avctx->flags;
  656. s->flags2 = avctx->flags2;
  657. s->unrestricted_mv = 1;
  658. if (!s->context_initialized) {
  659. s->width = avctx->width;
  660. s->height = avctx->height;
  661. h->halfpel_flag = 1;
  662. h->thirdpel_flag = 1;
  663. h->unknown_svq3_flag = 0;
  664. h->chroma_qp[0] = h->chroma_qp[1] = 4;
  665. if (MPV_common_init (s) < 0)
  666. return -1;
  667. h->b_stride = 4*s->mb_width;
  668. alloc_tables (h);
  669. /* prowl for the "SEQH" marker in the extradata */
  670. extradata = (unsigned char *)avctx->extradata;
  671. for (m = 0; m < avctx->extradata_size; m++) {
  672. if (!memcmp (extradata, "SEQH", 4))
  673. break;
  674. extradata++;
  675. }
  676. /* if a match was found, parse the extra data */
  677. if (extradata && !memcmp (extradata, "SEQH", 4)) {
  678. GetBitContext gb;
  679. size = AV_RB32(&extradata[4]);
  680. init_get_bits (&gb, extradata + 8, size*8);
  681. /* 'frame size code' and optional 'width, height' */
  682. if (get_bits (&gb, 3) == 7) {
  683. skip_bits (&gb, 12);
  684. skip_bits (&gb, 12);
  685. }
  686. h->halfpel_flag = get_bits1 (&gb);
  687. h->thirdpel_flag = get_bits1 (&gb);
  688. /* unknown fields */
  689. skip_bits1 (&gb);
  690. skip_bits1 (&gb);
  691. skip_bits1 (&gb);
  692. skip_bits1 (&gb);
  693. s->low_delay = get_bits1 (&gb);
  694. /* unknown field */
  695. skip_bits1 (&gb);
  696. while (get_bits1 (&gb)) {
  697. skip_bits (&gb, 8);
  698. }
  699. h->unknown_svq3_flag = get_bits1 (&gb);
  700. avctx->has_b_frames = !s->low_delay;
  701. }
  702. }
  703. /* special case for last picture */
  704. if (buf_size == 0) {
  705. if (s->next_picture_ptr && !s->low_delay) {
  706. *(AVFrame *) data = *(AVFrame *) &s->next_picture;
  707. s->next_picture_ptr= NULL;
  708. *data_size = sizeof(AVFrame);
  709. }
  710. return 0;
  711. }
  712. init_get_bits (&s->gb, buf, 8*buf_size);
  713. s->mb_x = s->mb_y = h->mb_xy = 0;
  714. if (svq3_decode_slice_header (h))
  715. return -1;
  716. s->pict_type = h->slice_type;
  717. s->picture_number = h->slice_num;
  718. if(avctx->debug&FF_DEBUG_PICT_INFO){
  719. av_log(h->s.avctx, AV_LOG_DEBUG, "%c hpel:%d, tpel:%d aqp:%d qp:%d, slice_num:%02X\n",
  720. av_get_pict_type_char(s->pict_type), h->halfpel_flag, h->thirdpel_flag,
  721. s->adaptive_quant, s->qscale, h->slice_num
  722. );
  723. }
  724. /* for hurry_up==5 */
  725. s->current_picture.pict_type = s->pict_type;
  726. s->current_picture.key_frame = (s->pict_type == FF_I_TYPE);
  727. /* Skip B-frames if we do not have reference frames. */
  728. if (s->last_picture_ptr == NULL && s->pict_type == FF_B_TYPE) return 0;
  729. /* Skip B-frames if we are in a hurry. */
  730. if (avctx->hurry_up && s->pict_type == FF_B_TYPE) return 0;
  731. /* Skip everything if we are in a hurry >= 5. */
  732. if (avctx->hurry_up >= 5) return 0;
  733. if( (avctx->skip_frame >= AVDISCARD_NONREF && s->pict_type==FF_B_TYPE)
  734. ||(avctx->skip_frame >= AVDISCARD_NONKEY && s->pict_type!=FF_I_TYPE)
  735. || avctx->skip_frame >= AVDISCARD_ALL)
  736. return 0;
  737. if (s->next_p_frame_damaged) {
  738. if (s->pict_type == FF_B_TYPE)
  739. return 0;
  740. else
  741. s->next_p_frame_damaged = 0;
  742. }
  743. if (frame_start (h) < 0)
  744. return -1;
  745. if (s->pict_type == FF_B_TYPE) {
  746. h->frame_num_offset = (h->slice_num - h->prev_frame_num);
  747. if (h->frame_num_offset < 0) {
  748. h->frame_num_offset += 256;
  749. }
  750. if (h->frame_num_offset == 0 || h->frame_num_offset >= h->prev_frame_num_offset) {
  751. av_log(h->s.avctx, AV_LOG_ERROR, "error in B-frame picture id\n");
  752. return -1;
  753. }
  754. } else {
  755. h->prev_frame_num = h->frame_num;
  756. h->frame_num = h->slice_num;
  757. h->prev_frame_num_offset = (h->frame_num - h->prev_frame_num);
  758. if (h->prev_frame_num_offset < 0) {
  759. h->prev_frame_num_offset += 256;
  760. }
  761. }
  762. for(m=0; m<2; m++){
  763. int i;
  764. for(i=0; i<4; i++){
  765. int j;
  766. for(j=-1; j<4; j++)
  767. h->ref_cache[m][scan8[0] + 8*i + j]= 1;
  768. if(i<3)
  769. h->ref_cache[m][scan8[0] + 8*i + j]= PART_NOT_AVAILABLE;
  770. }
  771. }
  772. for (s->mb_y=0; s->mb_y < s->mb_height; s->mb_y++) {
  773. for (s->mb_x=0; s->mb_x < s->mb_width; s->mb_x++) {
  774. h->mb_xy = s->mb_x + s->mb_y*s->mb_stride;
  775. if ( (get_bits_count(&s->gb) + 7) >= s->gb.size_in_bits &&
  776. ((get_bits_count(&s->gb) & 7) == 0 || show_bits (&s->gb, (-get_bits_count(&s->gb) & 7)) == 0)) {
  777. skip_bits(&s->gb, h->next_slice_index - get_bits_count(&s->gb));
  778. s->gb.size_in_bits = 8*buf_size;
  779. if (svq3_decode_slice_header (h))
  780. return -1;
  781. /* TODO: support s->mb_skip_run */
  782. }
  783. mb_type = svq3_get_ue_golomb (&s->gb);
  784. if (s->pict_type == FF_I_TYPE) {
  785. mb_type += 8;
  786. } else if (s->pict_type == FF_B_TYPE && mb_type >= 4) {
  787. mb_type += 4;
  788. }
  789. if (mb_type > 33 || svq3_decode_mb (h, mb_type)) {
  790. av_log(h->s.avctx, AV_LOG_ERROR, "error while decoding MB %d %d\n", s->mb_x, s->mb_y);
  791. return -1;
  792. }
  793. if (mb_type != 0) {
  794. hl_decode_mb (h);
  795. }
  796. if (s->pict_type != FF_B_TYPE && !s->low_delay) {
  797. s->current_picture.mb_type[s->mb_x + s->mb_y*s->mb_stride] =
  798. (s->pict_type == FF_P_TYPE && mb_type < 8) ? (mb_type - 1) : -1;
  799. }
  800. }
  801. ff_draw_horiz_band(s, 16*s->mb_y, 16);
  802. }
  803. MPV_frame_end(s);
  804. if (s->pict_type == FF_B_TYPE || s->low_delay) {
  805. *(AVFrame *) data = *(AVFrame *) &s->current_picture;
  806. } else {
  807. *(AVFrame *) data = *(AVFrame *) &s->last_picture;
  808. }
  809. avctx->frame_number = s->picture_number - 1;
  810. /* Do not output the last pic after seeking. */
  811. if (s->last_picture_ptr || s->low_delay) {
  812. *data_size = sizeof(AVFrame);
  813. }
  814. return buf_size;
  815. }
  816. AVCodec svq3_decoder = {
  817. "svq3",
  818. CODEC_TYPE_VIDEO,
  819. CODEC_ID_SVQ3,
  820. sizeof(H264Context),
  821. decode_init,
  822. NULL,
  823. decode_end,
  824. svq3_decode_frame,
  825. CODEC_CAP_DRAW_HORIZ_BAND | CODEC_CAP_DR1 | CODEC_CAP_DELAY,
  826. .long_name = NULL_IF_CONFIG_SMALL("Sorenson Vector Quantizer 3"),
  827. };